blob: 53a0f4ef4e32aa1897e767a007d62671ad08dd41 [file] [log] [blame]
Kent Overstreetcafe5632013-03-23 16:11:31 -07001/*
2 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
3 *
4 * Uses a block device as cache for other block devices; optimized for SSDs.
5 * All allocation is done in buckets, which should match the erase block size
6 * of the device.
7 *
8 * Buckets containing cached data are kept on a heap sorted by priority;
9 * bucket priority is increased on cache hit, and periodically all the buckets
10 * on the heap have their priority scaled down. This currently is just used as
11 * an LRU but in the future should allow for more intelligent heuristics.
12 *
13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14 * counter. Garbage collection is used to remove stale pointers.
15 *
16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17 * as keys are inserted we only sort the pages that have not yet been written.
18 * When garbage collection is run, we resort the entire node.
19 *
20 * All configuration is done via sysfs; see Documentation/bcache.txt.
21 */
22
23#include "bcache.h"
24#include "btree.h"
25#include "debug.h"
26#include "request.h"
27
28#include <linux/slab.h>
29#include <linux/bitops.h>
30#include <linux/hash.h>
Geert Uytterhoevencd953ed2013-03-27 18:56:28 +010031#include <linux/prefetch.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -070032#include <linux/random.h>
33#include <linux/rcupdate.h>
34#include <trace/events/bcache.h>
35
36/*
37 * Todo:
38 * register_bcache: Return errors out to userspace correctly
39 *
40 * Writeback: don't undirty key until after a cache flush
41 *
42 * Create an iterator for key pointers
43 *
44 * On btree write error, mark bucket such that it won't be freed from the cache
45 *
46 * Journalling:
47 * Check for bad keys in replay
48 * Propagate barriers
49 * Refcount journal entries in journal_replay
50 *
51 * Garbage collection:
52 * Finish incremental gc
53 * Gc should free old UUIDs, data for invalid UUIDs
54 *
55 * Provide a way to list backing device UUIDs we have data cached for, and
56 * probably how long it's been since we've seen them, and a way to invalidate
57 * dirty data for devices that will never be attached again
58 *
59 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
60 * that based on that and how much dirty data we have we can keep writeback
61 * from being starved
62 *
63 * Add a tracepoint or somesuch to watch for writeback starvation
64 *
65 * When btree depth > 1 and splitting an interior node, we have to make sure
66 * alloc_bucket() cannot fail. This should be true but is not completely
67 * obvious.
68 *
69 * Make sure all allocations get charged to the root cgroup
70 *
71 * Plugging?
72 *
73 * If data write is less than hard sector size of ssd, round up offset in open
74 * bucket to the next whole sector
75 *
76 * Also lookup by cgroup in get_open_bucket()
77 *
78 * Superblock needs to be fleshed out for multiple cache devices
79 *
80 * Add a sysfs tunable for the number of writeback IOs in flight
81 *
82 * Add a sysfs tunable for the number of open data buckets
83 *
84 * IO tracking: Can we track when one process is doing io on behalf of another?
85 * IO tracking: Don't use just an average, weigh more recent stuff higher
86 *
87 * Test module load/unload
88 */
89
90static const char * const op_types[] = {
91 "insert", "replace"
92};
93
94static const char *op_type(struct btree_op *op)
95{
96 return op_types[op->type];
97}
98
99#define MAX_NEED_GC 64
100#define MAX_SAVE_PRIO 72
101
102#define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
103
104#define PTR_HASH(c, k) \
105 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
106
107struct workqueue_struct *bch_gc_wq;
108static struct workqueue_struct *btree_io_wq;
109
110void bch_btree_op_init_stack(struct btree_op *op)
111{
112 memset(op, 0, sizeof(struct btree_op));
113 closure_init_stack(&op->cl);
114 op->lock = -1;
115 bch_keylist_init(&op->keys);
116}
117
118/* Btree key manipulation */
119
120static void bkey_put(struct cache_set *c, struct bkey *k, int level)
121{
122 if ((level && KEY_OFFSET(k)) || !level)
123 __bkey_put(c, k);
124}
125
126/* Btree IO */
127
128static uint64_t btree_csum_set(struct btree *b, struct bset *i)
129{
130 uint64_t crc = b->key.ptr[0];
131 void *data = (void *) i + 8, *end = end(i);
132
Kent Overstreet169ef1c2013-03-28 12:50:55 -0600133 crc = bch_crc64_update(crc, data, end - data);
Kent Overstreetc19ed232013-03-26 13:49:02 -0700134 return crc ^ 0xffffffffffffffffULL;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700135}
136
Kent Overstreet57943512013-04-25 13:58:35 -0700137void bch_btree_node_read_done(struct btree *b)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700138{
Kent Overstreetcafe5632013-03-23 16:11:31 -0700139 const char *err = "bad btree header";
Kent Overstreet57943512013-04-25 13:58:35 -0700140 struct bset *i = b->sets[0].data;
141 struct btree_iter *iter;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700142
Kent Overstreet57943512013-04-25 13:58:35 -0700143 iter = mempool_alloc(b->c->fill_iter, GFP_NOWAIT);
144 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700145 iter->used = 0;
146
Kent Overstreet57943512013-04-25 13:58:35 -0700147 if (!i->seq)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700148 goto err;
149
150 for (;
151 b->written < btree_blocks(b) && i->seq == b->sets[0].data->seq;
152 i = write_block(b)) {
153 err = "unsupported bset version";
154 if (i->version > BCACHE_BSET_VERSION)
155 goto err;
156
157 err = "bad btree header";
158 if (b->written + set_blocks(i, b->c) > btree_blocks(b))
159 goto err;
160
161 err = "bad magic";
162 if (i->magic != bset_magic(b->c))
163 goto err;
164
165 err = "bad checksum";
166 switch (i->version) {
167 case 0:
168 if (i->csum != csum_set(i))
169 goto err;
170 break;
171 case BCACHE_BSET_VERSION:
172 if (i->csum != btree_csum_set(b, i))
173 goto err;
174 break;
175 }
176
177 err = "empty set";
178 if (i != b->sets[0].data && !i->keys)
179 goto err;
180
181 bch_btree_iter_push(iter, i->start, end(i));
182
183 b->written += set_blocks(i, b->c);
184 }
185
186 err = "corrupted btree";
187 for (i = write_block(b);
188 index(i, b) < btree_blocks(b);
189 i = ((void *) i) + block_bytes(b->c))
190 if (i->seq == b->sets[0].data->seq)
191 goto err;
192
193 bch_btree_sort_and_fix_extents(b, iter);
194
195 i = b->sets[0].data;
196 err = "short btree key";
197 if (b->sets[0].size &&
198 bkey_cmp(&b->key, &b->sets[0].end) < 0)
199 goto err;
200
201 if (b->written < btree_blocks(b))
202 bch_bset_init_next(b);
203out:
Kent Overstreet57943512013-04-25 13:58:35 -0700204 mempool_free(iter, b->c->fill_iter);
205 return;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700206err:
207 set_btree_node_io_error(b);
Kent Overstreet07e86cc2013-03-25 11:46:43 -0700208 bch_cache_set_error(b->c, "%s at bucket %zu, block %zu, %u keys",
Kent Overstreetcafe5632013-03-23 16:11:31 -0700209 err, PTR_BUCKET_NR(b->c, &b->key, 0),
210 index(i, b), i->keys);
211 goto out;
212}
213
Kent Overstreet57943512013-04-25 13:58:35 -0700214static void btree_node_read_endio(struct bio *bio, int error)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700215{
Kent Overstreet57943512013-04-25 13:58:35 -0700216 struct closure *cl = bio->bi_private;
217 closure_put(cl);
218}
Kent Overstreetcafe5632013-03-23 16:11:31 -0700219
Kent Overstreet57943512013-04-25 13:58:35 -0700220void bch_btree_node_read(struct btree *b)
221{
222 uint64_t start_time = local_clock();
223 struct closure cl;
224 struct bio *bio;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700225
Kent Overstreetc37511b82013-04-26 15:39:55 -0700226 trace_bcache_btree_read(b);
227
Kent Overstreet57943512013-04-25 13:58:35 -0700228 closure_init_stack(&cl);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700229
Kent Overstreet57943512013-04-25 13:58:35 -0700230 bio = bch_bbio_alloc(b->c);
231 bio->bi_rw = REQ_META|READ_SYNC;
232 bio->bi_size = KEY_SIZE(&b->key) << 9;
233 bio->bi_end_io = btree_node_read_endio;
234 bio->bi_private = &cl;
235
236 bch_bio_map(bio, b->sets[0].data);
237
Kent Overstreet57943512013-04-25 13:58:35 -0700238 bch_submit_bbio(bio, b->c, &b->key, 0);
239 closure_sync(&cl);
240
241 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
242 set_btree_node_io_error(b);
243
244 bch_bbio_free(bio, b->c);
245
246 if (btree_node_io_error(b))
247 goto err;
248
249 bch_btree_node_read_done(b);
250
251 spin_lock(&b->c->btree_read_time_lock);
252 bch_time_stats_update(&b->c->btree_read_time, start_time);
253 spin_unlock(&b->c->btree_read_time_lock);
254
255 return;
256err:
257 bch_cache_set_error(b->c, "io error reading bucket %lu",
258 PTR_BUCKET_NR(b->c, &b->key, 0));
Kent Overstreetcafe5632013-03-23 16:11:31 -0700259}
260
261static void btree_complete_write(struct btree *b, struct btree_write *w)
262{
263 if (w->prio_blocked &&
264 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
Kent Overstreet119ba0f2013-04-24 19:01:12 -0700265 wake_up_allocators(b->c);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700266
267 if (w->journal) {
268 atomic_dec_bug(w->journal);
269 __closure_wake_up(&b->c->journal.wait);
270 }
271
Kent Overstreetcafe5632013-03-23 16:11:31 -0700272 w->prio_blocked = 0;
273 w->journal = NULL;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700274}
275
Kent Overstreet57943512013-04-25 13:58:35 -0700276static void __btree_node_write_done(struct closure *cl)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700277{
278 struct btree *b = container_of(cl, struct btree, io.cl);
279 struct btree_write *w = btree_prev_write(b);
280
281 bch_bbio_free(b->bio, b->c);
282 b->bio = NULL;
283 btree_complete_write(b, w);
284
285 if (btree_node_dirty(b))
286 queue_delayed_work(btree_io_wq, &b->work,
287 msecs_to_jiffies(30000));
288
289 closure_return(cl);
290}
291
Kent Overstreet57943512013-04-25 13:58:35 -0700292static void btree_node_write_done(struct closure *cl)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700293{
294 struct btree *b = container_of(cl, struct btree, io.cl);
295 struct bio_vec *bv;
296 int n;
297
298 __bio_for_each_segment(bv, b->bio, n, 0)
299 __free_page(bv->bv_page);
300
Kent Overstreet57943512013-04-25 13:58:35 -0700301 __btree_node_write_done(cl);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700302}
303
Kent Overstreet57943512013-04-25 13:58:35 -0700304static void btree_node_write_endio(struct bio *bio, int error)
305{
306 struct closure *cl = bio->bi_private;
307 struct btree *b = container_of(cl, struct btree, io.cl);
308
309 if (error)
310 set_btree_node_io_error(b);
311
312 bch_bbio_count_io_errors(b->c, bio, error, "writing btree");
313 closure_put(cl);
314}
315
316static void do_btree_node_write(struct btree *b)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700317{
318 struct closure *cl = &b->io.cl;
319 struct bset *i = b->sets[b->nsets].data;
320 BKEY_PADDED(key) k;
321
322 i->version = BCACHE_BSET_VERSION;
323 i->csum = btree_csum_set(b, i);
324
Kent Overstreet57943512013-04-25 13:58:35 -0700325 BUG_ON(b->bio);
326 b->bio = bch_bbio_alloc(b->c);
327
328 b->bio->bi_end_io = btree_node_write_endio;
329 b->bio->bi_private = &b->io.cl;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700330 b->bio->bi_rw = REQ_META|WRITE_SYNC;
331 b->bio->bi_size = set_blocks(i, b->c) * block_bytes(b->c);
Kent Overstreet169ef1c2013-03-28 12:50:55 -0600332 bch_bio_map(b->bio, i);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700333
334 bkey_copy(&k.key, &b->key);
335 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + bset_offset(b, i));
336
Kent Overstreet169ef1c2013-03-28 12:50:55 -0600337 if (!bch_bio_alloc_pages(b->bio, GFP_NOIO)) {
Kent Overstreetcafe5632013-03-23 16:11:31 -0700338 int j;
339 struct bio_vec *bv;
340 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
341
342 bio_for_each_segment(bv, b->bio, j)
343 memcpy(page_address(bv->bv_page),
344 base + j * PAGE_SIZE, PAGE_SIZE);
345
Kent Overstreetcafe5632013-03-23 16:11:31 -0700346 bch_submit_bbio(b->bio, b->c, &k.key, 0);
347
Kent Overstreet57943512013-04-25 13:58:35 -0700348 continue_at(cl, btree_node_write_done, NULL);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700349 } else {
350 b->bio->bi_vcnt = 0;
Kent Overstreet169ef1c2013-03-28 12:50:55 -0600351 bch_bio_map(b->bio, i);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700352
Kent Overstreetcafe5632013-03-23 16:11:31 -0700353 bch_submit_bbio(b->bio, b->c, &k.key, 0);
354
355 closure_sync(cl);
Kent Overstreet57943512013-04-25 13:58:35 -0700356 __btree_node_write_done(cl);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700357 }
358}
359
Kent Overstreet57943512013-04-25 13:58:35 -0700360void bch_btree_node_write(struct btree *b, struct closure *parent)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700361{
362 struct bset *i = b->sets[b->nsets].data;
363
Kent Overstreetc37511b82013-04-26 15:39:55 -0700364 trace_bcache_btree_write(b);
365
Kent Overstreetcafe5632013-03-23 16:11:31 -0700366 BUG_ON(current->bio_list);
Kent Overstreet57943512013-04-25 13:58:35 -0700367 BUG_ON(b->written >= btree_blocks(b));
368 BUG_ON(b->written && !i->keys);
369 BUG_ON(b->sets->data->seq != i->seq);
Kent Overstreetc37511b82013-04-26 15:39:55 -0700370 bch_check_key_order(b, i);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700371
Kent Overstreetcafe5632013-03-23 16:11:31 -0700372 cancel_delayed_work(&b->work);
373
Kent Overstreet57943512013-04-25 13:58:35 -0700374 /* If caller isn't waiting for write, parent refcount is cache set */
375 closure_lock(&b->io, parent ?: &b->c->cl);
376
Kent Overstreetcafe5632013-03-23 16:11:31 -0700377 clear_bit(BTREE_NODE_dirty, &b->flags);
378 change_bit(BTREE_NODE_write_idx, &b->flags);
379
Kent Overstreet57943512013-04-25 13:58:35 -0700380 do_btree_node_write(b);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700381
Kent Overstreetcafe5632013-03-23 16:11:31 -0700382 b->written += set_blocks(i, b->c);
383 atomic_long_add(set_blocks(i, b->c) * b->c->sb.block_size,
384 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
385
386 bch_btree_sort_lazy(b);
387
388 if (b->written < btree_blocks(b))
389 bch_bset_init_next(b);
390}
391
Kent Overstreet57943512013-04-25 13:58:35 -0700392static void btree_node_write_work(struct work_struct *w)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700393{
394 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
395
Kent Overstreet57943512013-04-25 13:58:35 -0700396 rw_lock(true, b, b->level);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700397
398 if (btree_node_dirty(b))
Kent Overstreet57943512013-04-25 13:58:35 -0700399 bch_btree_node_write(b, NULL);
400 rw_unlock(true, b);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700401}
402
Kent Overstreet57943512013-04-25 13:58:35 -0700403static void bch_btree_leaf_dirty(struct btree *b, struct btree_op *op)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700404{
405 struct bset *i = b->sets[b->nsets].data;
406 struct btree_write *w = btree_current_write(b);
407
Kent Overstreet57943512013-04-25 13:58:35 -0700408 BUG_ON(!b->written);
409 BUG_ON(!i->keys);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700410
Kent Overstreet57943512013-04-25 13:58:35 -0700411 if (!btree_node_dirty(b))
412 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700413
Kent Overstreet57943512013-04-25 13:58:35 -0700414 set_btree_node_dirty(b);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700415
Kent Overstreet57943512013-04-25 13:58:35 -0700416 if (op && op->journal) {
Kent Overstreetcafe5632013-03-23 16:11:31 -0700417 if (w->journal &&
418 journal_pin_cmp(b->c, w, op)) {
419 atomic_dec_bug(w->journal);
420 w->journal = NULL;
421 }
422
423 if (!w->journal) {
424 w->journal = op->journal;
425 atomic_inc(w->journal);
426 }
427 }
428
Kent Overstreetcafe5632013-03-23 16:11:31 -0700429 /* Force write if set is too big */
Kent Overstreet57943512013-04-25 13:58:35 -0700430 if (set_bytes(i) > PAGE_SIZE - 48 &&
431 !current->bio_list)
432 bch_btree_node_write(b, NULL);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700433}
434
435/*
436 * Btree in memory cache - allocation/freeing
437 * mca -> memory cache
438 */
439
440static void mca_reinit(struct btree *b)
441{
442 unsigned i;
443
444 b->flags = 0;
445 b->written = 0;
446 b->nsets = 0;
447
448 for (i = 0; i < MAX_BSETS; i++)
449 b->sets[i].size = 0;
450 /*
451 * Second loop starts at 1 because b->sets[0]->data is the memory we
452 * allocated
453 */
454 for (i = 1; i < MAX_BSETS; i++)
455 b->sets[i].data = NULL;
456}
457
458#define mca_reserve(c) (((c->root && c->root->level) \
459 ? c->root->level : 1) * 8 + 16)
460#define mca_can_free(c) \
461 max_t(int, 0, c->bucket_cache_used - mca_reserve(c))
462
463static void mca_data_free(struct btree *b)
464{
465 struct bset_tree *t = b->sets;
466 BUG_ON(!closure_is_unlocked(&b->io.cl));
467
468 if (bset_prev_bytes(b) < PAGE_SIZE)
469 kfree(t->prev);
470 else
471 free_pages((unsigned long) t->prev,
472 get_order(bset_prev_bytes(b)));
473
474 if (bset_tree_bytes(b) < PAGE_SIZE)
475 kfree(t->tree);
476 else
477 free_pages((unsigned long) t->tree,
478 get_order(bset_tree_bytes(b)));
479
480 free_pages((unsigned long) t->data, b->page_order);
481
482 t->prev = NULL;
483 t->tree = NULL;
484 t->data = NULL;
485 list_move(&b->list, &b->c->btree_cache_freed);
486 b->c->bucket_cache_used--;
487}
488
489static void mca_bucket_free(struct btree *b)
490{
491 BUG_ON(btree_node_dirty(b));
492
493 b->key.ptr[0] = 0;
494 hlist_del_init_rcu(&b->hash);
495 list_move(&b->list, &b->c->btree_cache_freeable);
496}
497
498static unsigned btree_order(struct bkey *k)
499{
500 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
501}
502
503static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
504{
505 struct bset_tree *t = b->sets;
506 BUG_ON(t->data);
507
508 b->page_order = max_t(unsigned,
509 ilog2(b->c->btree_pages),
510 btree_order(k));
511
512 t->data = (void *) __get_free_pages(gfp, b->page_order);
513 if (!t->data)
514 goto err;
515
516 t->tree = bset_tree_bytes(b) < PAGE_SIZE
517 ? kmalloc(bset_tree_bytes(b), gfp)
518 : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
519 if (!t->tree)
520 goto err;
521
522 t->prev = bset_prev_bytes(b) < PAGE_SIZE
523 ? kmalloc(bset_prev_bytes(b), gfp)
524 : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
525 if (!t->prev)
526 goto err;
527
528 list_move(&b->list, &b->c->btree_cache);
529 b->c->bucket_cache_used++;
530 return;
531err:
532 mca_data_free(b);
533}
534
535static struct btree *mca_bucket_alloc(struct cache_set *c,
536 struct bkey *k, gfp_t gfp)
537{
538 struct btree *b = kzalloc(sizeof(struct btree), gfp);
539 if (!b)
540 return NULL;
541
542 init_rwsem(&b->lock);
543 lockdep_set_novalidate_class(&b->lock);
544 INIT_LIST_HEAD(&b->list);
Kent Overstreet57943512013-04-25 13:58:35 -0700545 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700546 b->c = c;
547 closure_init_unlocked(&b->io);
548
549 mca_data_alloc(b, k, gfp);
550 return b;
551}
552
553static int mca_reap(struct btree *b, struct closure *cl, unsigned min_order)
554{
555 lockdep_assert_held(&b->c->bucket_lock);
556
557 if (!down_write_trylock(&b->lock))
558 return -ENOMEM;
559
560 if (b->page_order < min_order) {
561 rw_unlock(true, b);
562 return -ENOMEM;
563 }
564
565 BUG_ON(btree_node_dirty(b) && !b->sets[0].data);
566
567 if (cl && btree_node_dirty(b))
Kent Overstreet57943512013-04-25 13:58:35 -0700568 bch_btree_node_write(b, NULL);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700569
570 if (cl)
571 closure_wait_event_async(&b->io.wait, cl,
572 atomic_read(&b->io.cl.remaining) == -1);
573
574 if (btree_node_dirty(b) ||
575 !closure_is_unlocked(&b->io.cl) ||
576 work_pending(&b->work.work)) {
577 rw_unlock(true, b);
578 return -EAGAIN;
579 }
580
581 return 0;
582}
583
584static int bch_mca_shrink(struct shrinker *shrink, struct shrink_control *sc)
585{
586 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
587 struct btree *b, *t;
588 unsigned long i, nr = sc->nr_to_scan;
589
590 if (c->shrinker_disabled)
591 return 0;
592
593 if (c->try_harder)
594 return 0;
595
596 /*
597 * If nr == 0, we're supposed to return the number of items we have
598 * cached. Not allowed to return -1.
599 */
600 if (!nr)
601 return mca_can_free(c) * c->btree_pages;
602
603 /* Return -1 if we can't do anything right now */
604 if (sc->gfp_mask & __GFP_WAIT)
605 mutex_lock(&c->bucket_lock);
606 else if (!mutex_trylock(&c->bucket_lock))
607 return -1;
608
609 nr /= c->btree_pages;
610 nr = min_t(unsigned long, nr, mca_can_free(c));
611
612 i = 0;
613 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
614 if (!nr)
615 break;
616
617 if (++i > 3 &&
618 !mca_reap(b, NULL, 0)) {
619 mca_data_free(b);
620 rw_unlock(true, b);
621 --nr;
622 }
623 }
624
625 /*
626 * Can happen right when we first start up, before we've read in any
627 * btree nodes
628 */
629 if (list_empty(&c->btree_cache))
630 goto out;
631
632 for (i = 0; nr && i < c->bucket_cache_used; i++) {
633 b = list_first_entry(&c->btree_cache, struct btree, list);
634 list_rotate_left(&c->btree_cache);
635
636 if (!b->accessed &&
637 !mca_reap(b, NULL, 0)) {
638 mca_bucket_free(b);
639 mca_data_free(b);
640 rw_unlock(true, b);
641 --nr;
642 } else
643 b->accessed = 0;
644 }
645out:
646 nr = mca_can_free(c) * c->btree_pages;
647 mutex_unlock(&c->bucket_lock);
648 return nr;
649}
650
651void bch_btree_cache_free(struct cache_set *c)
652{
653 struct btree *b;
654 struct closure cl;
655 closure_init_stack(&cl);
656
657 if (c->shrink.list.next)
658 unregister_shrinker(&c->shrink);
659
660 mutex_lock(&c->bucket_lock);
661
662#ifdef CONFIG_BCACHE_DEBUG
663 if (c->verify_data)
664 list_move(&c->verify_data->list, &c->btree_cache);
665#endif
666
667 list_splice(&c->btree_cache_freeable,
668 &c->btree_cache);
669
670 while (!list_empty(&c->btree_cache)) {
671 b = list_first_entry(&c->btree_cache, struct btree, list);
672
673 if (btree_node_dirty(b))
674 btree_complete_write(b, btree_current_write(b));
675 clear_bit(BTREE_NODE_dirty, &b->flags);
676
677 mca_data_free(b);
678 }
679
680 while (!list_empty(&c->btree_cache_freed)) {
681 b = list_first_entry(&c->btree_cache_freed,
682 struct btree, list);
683 list_del(&b->list);
684 cancel_delayed_work_sync(&b->work);
685 kfree(b);
686 }
687
688 mutex_unlock(&c->bucket_lock);
689}
690
691int bch_btree_cache_alloc(struct cache_set *c)
692{
693 unsigned i;
694
695 /* XXX: doesn't check for errors */
696
697 closure_init_unlocked(&c->gc);
698
699 for (i = 0; i < mca_reserve(c); i++)
700 mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
701
702 list_splice_init(&c->btree_cache,
703 &c->btree_cache_freeable);
704
705#ifdef CONFIG_BCACHE_DEBUG
706 mutex_init(&c->verify_lock);
707
708 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
709
710 if (c->verify_data &&
711 c->verify_data->sets[0].data)
712 list_del_init(&c->verify_data->list);
713 else
714 c->verify_data = NULL;
715#endif
716
717 c->shrink.shrink = bch_mca_shrink;
718 c->shrink.seeks = 4;
719 c->shrink.batch = c->btree_pages * 2;
720 register_shrinker(&c->shrink);
721
722 return 0;
723}
724
725/* Btree in memory cache - hash table */
726
727static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
728{
729 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
730}
731
732static struct btree *mca_find(struct cache_set *c, struct bkey *k)
733{
734 struct btree *b;
735
736 rcu_read_lock();
737 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
738 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
739 goto out;
740 b = NULL;
741out:
742 rcu_read_unlock();
743 return b;
744}
745
746static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k,
747 int level, struct closure *cl)
748{
749 int ret = -ENOMEM;
750 struct btree *i;
751
Kent Overstreetc37511b82013-04-26 15:39:55 -0700752 trace_bcache_btree_cache_cannibalize(c);
753
Kent Overstreetcafe5632013-03-23 16:11:31 -0700754 if (!cl)
755 return ERR_PTR(-ENOMEM);
756
757 /*
758 * Trying to free up some memory - i.e. reuse some btree nodes - may
759 * require initiating IO to flush the dirty part of the node. If we're
760 * running under generic_make_request(), that IO will never finish and
761 * we would deadlock. Returning -EAGAIN causes the cache lookup code to
762 * punt to workqueue and retry.
763 */
764 if (current->bio_list)
765 return ERR_PTR(-EAGAIN);
766
767 if (c->try_harder && c->try_harder != cl) {
768 closure_wait_event_async(&c->try_wait, cl, !c->try_harder);
769 return ERR_PTR(-EAGAIN);
770 }
771
Kent Overstreetcafe5632013-03-23 16:11:31 -0700772 c->try_harder = cl;
773 c->try_harder_start = local_clock();
774retry:
775 list_for_each_entry_reverse(i, &c->btree_cache, list) {
776 int r = mca_reap(i, cl, btree_order(k));
777 if (!r)
778 return i;
779 if (r != -ENOMEM)
780 ret = r;
781 }
782
783 if (ret == -EAGAIN &&
784 closure_blocking(cl)) {
785 mutex_unlock(&c->bucket_lock);
786 closure_sync(cl);
787 mutex_lock(&c->bucket_lock);
788 goto retry;
789 }
790
791 return ERR_PTR(ret);
792}
793
794/*
795 * We can only have one thread cannibalizing other cached btree nodes at a time,
796 * or we'll deadlock. We use an open coded mutex to ensure that, which a
797 * cannibalize_bucket() will take. This means every time we unlock the root of
798 * the btree, we need to release this lock if we have it held.
799 */
800void bch_cannibalize_unlock(struct cache_set *c, struct closure *cl)
801{
802 if (c->try_harder == cl) {
Kent Overstreet169ef1c2013-03-28 12:50:55 -0600803 bch_time_stats_update(&c->try_harder_time, c->try_harder_start);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700804 c->try_harder = NULL;
805 __closure_wake_up(&c->try_wait);
806 }
807}
808
809static struct btree *mca_alloc(struct cache_set *c, struct bkey *k,
810 int level, struct closure *cl)
811{
812 struct btree *b;
813
814 lockdep_assert_held(&c->bucket_lock);
815
816 if (mca_find(c, k))
817 return NULL;
818
819 /* btree_free() doesn't free memory; it sticks the node on the end of
820 * the list. Check if there's any freed nodes there:
821 */
822 list_for_each_entry(b, &c->btree_cache_freeable, list)
823 if (!mca_reap(b, NULL, btree_order(k)))
824 goto out;
825
826 /* We never free struct btree itself, just the memory that holds the on
827 * disk node. Check the freed list before allocating a new one:
828 */
829 list_for_each_entry(b, &c->btree_cache_freed, list)
830 if (!mca_reap(b, NULL, 0)) {
831 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
832 if (!b->sets[0].data)
833 goto err;
834 else
835 goto out;
836 }
837
838 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
839 if (!b)
840 goto err;
841
842 BUG_ON(!down_write_trylock(&b->lock));
843 if (!b->sets->data)
844 goto err;
845out:
846 BUG_ON(!closure_is_unlocked(&b->io.cl));
847
848 bkey_copy(&b->key, k);
849 list_move(&b->list, &c->btree_cache);
850 hlist_del_init_rcu(&b->hash);
851 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
852
853 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
854 b->level = level;
855
856 mca_reinit(b);
857
858 return b;
859err:
860 if (b)
861 rw_unlock(true, b);
862
863 b = mca_cannibalize(c, k, level, cl);
864 if (!IS_ERR(b))
865 goto out;
866
867 return b;
868}
869
870/**
871 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
872 * in from disk if necessary.
873 *
874 * If IO is necessary, it uses the closure embedded in struct btree_op to wait;
875 * if that closure is in non blocking mode, will return -EAGAIN.
876 *
877 * The btree node will have either a read or a write lock held, depending on
878 * level and op->lock.
879 */
880struct btree *bch_btree_node_get(struct cache_set *c, struct bkey *k,
881 int level, struct btree_op *op)
882{
883 int i = 0;
884 bool write = level <= op->lock;
885 struct btree *b;
886
887 BUG_ON(level < 0);
888retry:
889 b = mca_find(c, k);
890
891 if (!b) {
Kent Overstreet57943512013-04-25 13:58:35 -0700892 if (current->bio_list)
893 return ERR_PTR(-EAGAIN);
894
Kent Overstreetcafe5632013-03-23 16:11:31 -0700895 mutex_lock(&c->bucket_lock);
896 b = mca_alloc(c, k, level, &op->cl);
897 mutex_unlock(&c->bucket_lock);
898
899 if (!b)
900 goto retry;
901 if (IS_ERR(b))
902 return b;
903
Kent Overstreet57943512013-04-25 13:58:35 -0700904 bch_btree_node_read(b);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700905
906 if (!write)
907 downgrade_write(&b->lock);
908 } else {
909 rw_lock(write, b, level);
910 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
911 rw_unlock(write, b);
912 goto retry;
913 }
914 BUG_ON(b->level != level);
915 }
916
917 b->accessed = 1;
918
919 for (; i <= b->nsets && b->sets[i].size; i++) {
920 prefetch(b->sets[i].tree);
921 prefetch(b->sets[i].data);
922 }
923
924 for (; i <= b->nsets; i++)
925 prefetch(b->sets[i].data);
926
Kent Overstreet57943512013-04-25 13:58:35 -0700927 if (btree_node_io_error(b)) {
Kent Overstreetcafe5632013-03-23 16:11:31 -0700928 rw_unlock(write, b);
Kent Overstreet57943512013-04-25 13:58:35 -0700929 return ERR_PTR(-EIO);
930 }
931
932 BUG_ON(!b->written);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700933
934 return b;
935}
936
937static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level)
938{
939 struct btree *b;
940
941 mutex_lock(&c->bucket_lock);
942 b = mca_alloc(c, k, level, NULL);
943 mutex_unlock(&c->bucket_lock);
944
945 if (!IS_ERR_OR_NULL(b)) {
Kent Overstreet57943512013-04-25 13:58:35 -0700946 bch_btree_node_read(b);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700947 rw_unlock(true, b);
948 }
949}
950
951/* Btree alloc */
952
953static void btree_node_free(struct btree *b, struct btree_op *op)
954{
955 unsigned i;
956
Kent Overstreetc37511b82013-04-26 15:39:55 -0700957 trace_bcache_btree_node_free(b);
958
Kent Overstreetcafe5632013-03-23 16:11:31 -0700959 /*
960 * The BUG_ON() in btree_node_get() implies that we must have a write
961 * lock on parent to free or even invalidate a node
962 */
963 BUG_ON(op->lock <= b->level);
964 BUG_ON(b == b->c->root);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700965
966 if (btree_node_dirty(b))
967 btree_complete_write(b, btree_current_write(b));
968 clear_bit(BTREE_NODE_dirty, &b->flags);
969
Kent Overstreetcafe5632013-03-23 16:11:31 -0700970 cancel_delayed_work(&b->work);
971
972 mutex_lock(&b->c->bucket_lock);
973
974 for (i = 0; i < KEY_PTRS(&b->key); i++) {
975 BUG_ON(atomic_read(&PTR_BUCKET(b->c, &b->key, i)->pin));
976
977 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
978 PTR_BUCKET(b->c, &b->key, i));
979 }
980
981 bch_bucket_free(b->c, &b->key);
982 mca_bucket_free(b);
983 mutex_unlock(&b->c->bucket_lock);
984}
985
986struct btree *bch_btree_node_alloc(struct cache_set *c, int level,
987 struct closure *cl)
988{
989 BKEY_PADDED(key) k;
990 struct btree *b = ERR_PTR(-EAGAIN);
991
992 mutex_lock(&c->bucket_lock);
993retry:
994 if (__bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, cl))
995 goto err;
996
997 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
998
999 b = mca_alloc(c, &k.key, level, cl);
1000 if (IS_ERR(b))
1001 goto err_free;
1002
1003 if (!b) {
Kent Overstreetb1a67b02013-03-25 11:46:44 -07001004 cache_bug(c,
1005 "Tried to allocate bucket that was in btree cache");
Kent Overstreetcafe5632013-03-23 16:11:31 -07001006 __bkey_put(c, &k.key);
1007 goto retry;
1008 }
1009
Kent Overstreetcafe5632013-03-23 16:11:31 -07001010 b->accessed = 1;
1011 bch_bset_init_next(b);
1012
1013 mutex_unlock(&c->bucket_lock);
Kent Overstreetc37511b82013-04-26 15:39:55 -07001014
1015 trace_bcache_btree_node_alloc(b);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001016 return b;
1017err_free:
1018 bch_bucket_free(c, &k.key);
1019 __bkey_put(c, &k.key);
1020err:
1021 mutex_unlock(&c->bucket_lock);
Kent Overstreetc37511b82013-04-26 15:39:55 -07001022
1023 trace_bcache_btree_node_alloc_fail(b);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001024 return b;
1025}
1026
1027static struct btree *btree_node_alloc_replacement(struct btree *b,
1028 struct closure *cl)
1029{
1030 struct btree *n = bch_btree_node_alloc(b->c, b->level, cl);
1031 if (!IS_ERR_OR_NULL(n))
1032 bch_btree_sort_into(b, n);
1033
1034 return n;
1035}
1036
1037/* Garbage collection */
1038
1039uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k)
1040{
1041 uint8_t stale = 0;
1042 unsigned i;
1043 struct bucket *g;
1044
1045 /*
1046 * ptr_invalid() can't return true for the keys that mark btree nodes as
1047 * freed, but since ptr_bad() returns true we'll never actually use them
1048 * for anything and thus we don't want mark their pointers here
1049 */
1050 if (!bkey_cmp(k, &ZERO_KEY))
1051 return stale;
1052
1053 for (i = 0; i < KEY_PTRS(k); i++) {
1054 if (!ptr_available(c, k, i))
1055 continue;
1056
1057 g = PTR_BUCKET(c, k, i);
1058
1059 if (gen_after(g->gc_gen, PTR_GEN(k, i)))
1060 g->gc_gen = PTR_GEN(k, i);
1061
1062 if (ptr_stale(c, k, i)) {
1063 stale = max(stale, ptr_stale(c, k, i));
1064 continue;
1065 }
1066
1067 cache_bug_on(GC_MARK(g) &&
1068 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1069 c, "inconsistent ptrs: mark = %llu, level = %i",
1070 GC_MARK(g), level);
1071
1072 if (level)
1073 SET_GC_MARK(g, GC_MARK_METADATA);
1074 else if (KEY_DIRTY(k))
1075 SET_GC_MARK(g, GC_MARK_DIRTY);
1076
1077 /* guard against overflow */
1078 SET_GC_SECTORS_USED(g, min_t(unsigned,
1079 GC_SECTORS_USED(g) + KEY_SIZE(k),
1080 (1 << 14) - 1));
1081
1082 BUG_ON(!GC_SECTORS_USED(g));
1083 }
1084
1085 return stale;
1086}
1087
1088#define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1089
1090static int btree_gc_mark_node(struct btree *b, unsigned *keys,
1091 struct gc_stat *gc)
1092{
1093 uint8_t stale = 0;
1094 unsigned last_dev = -1;
1095 struct bcache_device *d = NULL;
1096 struct bkey *k;
1097 struct btree_iter iter;
1098 struct bset_tree *t;
1099
1100 gc->nodes++;
1101
1102 for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
1103 if (last_dev != KEY_INODE(k)) {
1104 last_dev = KEY_INODE(k);
1105
1106 d = KEY_INODE(k) < b->c->nr_uuids
1107 ? b->c->devices[last_dev]
1108 : NULL;
1109 }
1110
1111 stale = max(stale, btree_mark_key(b, k));
1112
1113 if (bch_ptr_bad(b, k))
1114 continue;
1115
1116 *keys += bkey_u64s(k);
1117
1118 gc->key_bytes += bkey_u64s(k);
1119 gc->nkeys++;
1120
1121 gc->data += KEY_SIZE(k);
1122 if (KEY_DIRTY(k)) {
1123 gc->dirty += KEY_SIZE(k);
1124 if (d)
1125 d->sectors_dirty_gc += KEY_SIZE(k);
1126 }
1127 }
1128
1129 for (t = b->sets; t <= &b->sets[b->nsets]; t++)
1130 btree_bug_on(t->size &&
1131 bset_written(b, t) &&
1132 bkey_cmp(&b->key, &t->end) < 0,
1133 b, "found short btree key in gc");
1134
1135 return stale;
1136}
1137
1138static struct btree *btree_gc_alloc(struct btree *b, struct bkey *k,
1139 struct btree_op *op)
1140{
1141 /*
1142 * We block priorities from being written for the duration of garbage
1143 * collection, so we can't sleep in btree_alloc() ->
1144 * bch_bucket_alloc_set(), or we'd risk deadlock - so we don't pass it
1145 * our closure.
1146 */
1147 struct btree *n = btree_node_alloc_replacement(b, NULL);
1148
1149 if (!IS_ERR_OR_NULL(n)) {
1150 swap(b, n);
Kent Overstreet57943512013-04-25 13:58:35 -07001151 __bkey_put(b->c, &b->key);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001152
1153 memcpy(k->ptr, b->key.ptr,
1154 sizeof(uint64_t) * KEY_PTRS(&b->key));
1155
Kent Overstreetcafe5632013-03-23 16:11:31 -07001156 btree_node_free(n, op);
1157 up_write(&n->lock);
1158 }
1159
1160 return b;
1161}
1162
1163/*
1164 * Leaving this at 2 until we've got incremental garbage collection done; it
1165 * could be higher (and has been tested with 4) except that garbage collection
1166 * could take much longer, adversely affecting latency.
1167 */
1168#define GC_MERGE_NODES 2U
1169
1170struct gc_merge_info {
1171 struct btree *b;
1172 struct bkey *k;
1173 unsigned keys;
1174};
1175
1176static void btree_gc_coalesce(struct btree *b, struct btree_op *op,
1177 struct gc_stat *gc, struct gc_merge_info *r)
1178{
1179 unsigned nodes = 0, keys = 0, blocks;
1180 int i;
1181
1182 while (nodes < GC_MERGE_NODES && r[nodes].b)
1183 keys += r[nodes++].keys;
1184
1185 blocks = btree_default_blocks(b->c) * 2 / 3;
1186
1187 if (nodes < 2 ||
1188 __set_blocks(b->sets[0].data, keys, b->c) > blocks * (nodes - 1))
1189 return;
1190
1191 for (i = nodes - 1; i >= 0; --i) {
1192 if (r[i].b->written)
1193 r[i].b = btree_gc_alloc(r[i].b, r[i].k, op);
1194
1195 if (r[i].b->written)
1196 return;
1197 }
1198
1199 for (i = nodes - 1; i > 0; --i) {
1200 struct bset *n1 = r[i].b->sets->data;
1201 struct bset *n2 = r[i - 1].b->sets->data;
1202 struct bkey *k, *last = NULL;
1203
1204 keys = 0;
1205
1206 if (i == 1) {
1207 /*
1208 * Last node we're not getting rid of - we're getting
1209 * rid of the node at r[0]. Have to try and fit all of
1210 * the remaining keys into this node; we can't ensure
1211 * they will always fit due to rounding and variable
1212 * length keys (shouldn't be possible in practice,
1213 * though)
1214 */
1215 if (__set_blocks(n1, n1->keys + r->keys,
1216 b->c) > btree_blocks(r[i].b))
1217 return;
1218
1219 keys = n2->keys;
1220 last = &r->b->key;
1221 } else
1222 for (k = n2->start;
1223 k < end(n2);
1224 k = bkey_next(k)) {
1225 if (__set_blocks(n1, n1->keys + keys +
1226 bkey_u64s(k), b->c) > blocks)
1227 break;
1228
1229 last = k;
1230 keys += bkey_u64s(k);
1231 }
1232
1233 BUG_ON(__set_blocks(n1, n1->keys + keys,
1234 b->c) > btree_blocks(r[i].b));
1235
1236 if (last) {
1237 bkey_copy_key(&r[i].b->key, last);
1238 bkey_copy_key(r[i].k, last);
1239 }
1240
1241 memcpy(end(n1),
1242 n2->start,
1243 (void *) node(n2, keys) - (void *) n2->start);
1244
1245 n1->keys += keys;
1246
1247 memmove(n2->start,
1248 node(n2, keys),
1249 (void *) end(n2) - (void *) node(n2, keys));
1250
1251 n2->keys -= keys;
1252
1253 r[i].keys = n1->keys;
1254 r[i - 1].keys = n2->keys;
1255 }
1256
1257 btree_node_free(r->b, op);
1258 up_write(&r->b->lock);
1259
Kent Overstreetc37511b82013-04-26 15:39:55 -07001260 trace_bcache_btree_gc_coalesce(nodes);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001261
1262 gc->nodes--;
1263 nodes--;
1264
1265 memmove(&r[0], &r[1], sizeof(struct gc_merge_info) * nodes);
1266 memset(&r[nodes], 0, sizeof(struct gc_merge_info));
1267}
1268
1269static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1270 struct closure *writes, struct gc_stat *gc)
1271{
1272 void write(struct btree *r)
1273 {
1274 if (!r->written)
Kent Overstreet57943512013-04-25 13:58:35 -07001275 bch_btree_node_write(r, &op->cl);
1276 else if (btree_node_dirty(r))
1277 bch_btree_node_write(r, writes);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001278
1279 up_write(&r->lock);
1280 }
1281
1282 int ret = 0, stale;
1283 unsigned i;
1284 struct gc_merge_info r[GC_MERGE_NODES];
1285
1286 memset(r, 0, sizeof(r));
1287
1288 while ((r->k = bch_next_recurse_key(b, &b->c->gc_done))) {
1289 r->b = bch_btree_node_get(b->c, r->k, b->level - 1, op);
1290
1291 if (IS_ERR(r->b)) {
1292 ret = PTR_ERR(r->b);
1293 break;
1294 }
1295
1296 r->keys = 0;
1297 stale = btree_gc_mark_node(r->b, &r->keys, gc);
1298
1299 if (!b->written &&
1300 (r->b->level || stale > 10 ||
1301 b->c->gc_always_rewrite))
1302 r->b = btree_gc_alloc(r->b, r->k, op);
1303
1304 if (r->b->level)
1305 ret = btree_gc_recurse(r->b, op, writes, gc);
1306
1307 if (ret) {
1308 write(r->b);
1309 break;
1310 }
1311
1312 bkey_copy_key(&b->c->gc_done, r->k);
1313
1314 if (!b->written)
1315 btree_gc_coalesce(b, op, gc, r);
1316
1317 if (r[GC_MERGE_NODES - 1].b)
1318 write(r[GC_MERGE_NODES - 1].b);
1319
1320 memmove(&r[1], &r[0],
1321 sizeof(struct gc_merge_info) * (GC_MERGE_NODES - 1));
1322
1323 /* When we've got incremental GC working, we'll want to do
1324 * if (should_resched())
1325 * return -EAGAIN;
1326 */
1327 cond_resched();
1328#if 0
1329 if (need_resched()) {
1330 ret = -EAGAIN;
1331 break;
1332 }
1333#endif
1334 }
1335
1336 for (i = 1; i < GC_MERGE_NODES && r[i].b; i++)
1337 write(r[i].b);
1338
1339 /* Might have freed some children, must remove their keys */
1340 if (!b->written)
1341 bch_btree_sort(b);
1342
1343 return ret;
1344}
1345
1346static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1347 struct closure *writes, struct gc_stat *gc)
1348{
1349 struct btree *n = NULL;
1350 unsigned keys = 0;
1351 int ret = 0, stale = btree_gc_mark_node(b, &keys, gc);
1352
1353 if (b->level || stale > 10)
1354 n = btree_node_alloc_replacement(b, NULL);
1355
1356 if (!IS_ERR_OR_NULL(n))
1357 swap(b, n);
1358
1359 if (b->level)
1360 ret = btree_gc_recurse(b, op, writes, gc);
1361
1362 if (!b->written || btree_node_dirty(b)) {
Kent Overstreet57943512013-04-25 13:58:35 -07001363 bch_btree_node_write(b, n ? &op->cl : NULL);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001364 }
1365
1366 if (!IS_ERR_OR_NULL(n)) {
1367 closure_sync(&op->cl);
1368 bch_btree_set_root(b);
1369 btree_node_free(n, op);
1370 rw_unlock(true, b);
1371 }
1372
1373 return ret;
1374}
1375
1376static void btree_gc_start(struct cache_set *c)
1377{
1378 struct cache *ca;
1379 struct bucket *b;
1380 struct bcache_device **d;
1381 unsigned i;
1382
1383 if (!c->gc_mark_valid)
1384 return;
1385
1386 mutex_lock(&c->bucket_lock);
1387
1388 c->gc_mark_valid = 0;
1389 c->gc_done = ZERO_KEY;
1390
1391 for_each_cache(ca, c, i)
1392 for_each_bucket(b, ca) {
1393 b->gc_gen = b->gen;
1394 if (!atomic_read(&b->pin))
1395 SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
1396 }
1397
1398 for (d = c->devices;
1399 d < c->devices + c->nr_uuids;
1400 d++)
1401 if (*d)
1402 (*d)->sectors_dirty_gc = 0;
1403
1404 mutex_unlock(&c->bucket_lock);
1405}
1406
1407size_t bch_btree_gc_finish(struct cache_set *c)
1408{
1409 size_t available = 0;
1410 struct bucket *b;
1411 struct cache *ca;
1412 struct bcache_device **d;
1413 unsigned i;
1414
1415 mutex_lock(&c->bucket_lock);
1416
1417 set_gc_sectors(c);
1418 c->gc_mark_valid = 1;
1419 c->need_gc = 0;
1420
1421 if (c->root)
1422 for (i = 0; i < KEY_PTRS(&c->root->key); i++)
1423 SET_GC_MARK(PTR_BUCKET(c, &c->root->key, i),
1424 GC_MARK_METADATA);
1425
1426 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1427 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1428 GC_MARK_METADATA);
1429
1430 for_each_cache(ca, c, i) {
1431 uint64_t *i;
1432
1433 ca->invalidate_needs_gc = 0;
1434
1435 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1436 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1437
1438 for (i = ca->prio_buckets;
1439 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1440 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1441
1442 for_each_bucket(b, ca) {
1443 b->last_gc = b->gc_gen;
1444 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1445
1446 if (!atomic_read(&b->pin) &&
1447 GC_MARK(b) == GC_MARK_RECLAIMABLE) {
1448 available++;
1449 if (!GC_SECTORS_USED(b))
1450 bch_bucket_add_unused(ca, b);
1451 }
1452 }
1453 }
1454
1455 for (d = c->devices;
1456 d < c->devices + c->nr_uuids;
1457 d++)
1458 if (*d) {
1459 unsigned long last =
1460 atomic_long_read(&((*d)->sectors_dirty));
1461 long difference = (*d)->sectors_dirty_gc - last;
1462
1463 pr_debug("sectors dirty off by %li", difference);
1464
1465 (*d)->sectors_dirty_last += difference;
1466
1467 atomic_long_set(&((*d)->sectors_dirty),
1468 (*d)->sectors_dirty_gc);
1469 }
1470
1471 mutex_unlock(&c->bucket_lock);
1472 return available;
1473}
1474
1475static void bch_btree_gc(struct closure *cl)
1476{
1477 struct cache_set *c = container_of(cl, struct cache_set, gc.cl);
1478 int ret;
1479 unsigned long available;
1480 struct gc_stat stats;
1481 struct closure writes;
1482 struct btree_op op;
Kent Overstreetcafe5632013-03-23 16:11:31 -07001483 uint64_t start_time = local_clock();
Kent Overstreet57943512013-04-25 13:58:35 -07001484
Kent Overstreetc37511b82013-04-26 15:39:55 -07001485 trace_bcache_gc_start(c);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001486
1487 memset(&stats, 0, sizeof(struct gc_stat));
1488 closure_init_stack(&writes);
1489 bch_btree_op_init_stack(&op);
1490 op.lock = SHRT_MAX;
1491
1492 btree_gc_start(c);
1493
Kent Overstreet57943512013-04-25 13:58:35 -07001494 atomic_inc(&c->prio_blocked);
1495
Kent Overstreetcafe5632013-03-23 16:11:31 -07001496 ret = btree_root(gc_root, c, &op, &writes, &stats);
1497 closure_sync(&op.cl);
1498 closure_sync(&writes);
1499
1500 if (ret) {
Kent Overstreetcafe5632013-03-23 16:11:31 -07001501 pr_warn("gc failed!");
Kent Overstreetcafe5632013-03-23 16:11:31 -07001502 continue_at(cl, bch_btree_gc, bch_gc_wq);
1503 }
1504
1505 /* Possibly wait for new UUIDs or whatever to hit disk */
1506 bch_journal_meta(c, &op.cl);
1507 closure_sync(&op.cl);
1508
1509 available = bch_btree_gc_finish(c);
1510
Kent Overstreet57943512013-04-25 13:58:35 -07001511 atomic_dec(&c->prio_blocked);
1512 wake_up_allocators(c);
1513
Kent Overstreet169ef1c2013-03-28 12:50:55 -06001514 bch_time_stats_update(&c->btree_gc_time, start_time);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001515
1516 stats.key_bytes *= sizeof(uint64_t);
1517 stats.dirty <<= 9;
1518 stats.data <<= 9;
1519 stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
1520 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
Kent Overstreetcafe5632013-03-23 16:11:31 -07001521
Kent Overstreetc37511b82013-04-26 15:39:55 -07001522 trace_bcache_gc_end(c);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001523
1524 continue_at(cl, bch_moving_gc, bch_gc_wq);
1525}
1526
1527void bch_queue_gc(struct cache_set *c)
1528{
1529 closure_trylock_call(&c->gc.cl, bch_btree_gc, bch_gc_wq, &c->cl);
1530}
1531
1532/* Initial partial gc */
1533
1534static int bch_btree_check_recurse(struct btree *b, struct btree_op *op,
1535 unsigned long **seen)
1536{
1537 int ret;
1538 unsigned i;
1539 struct bkey *k;
1540 struct bucket *g;
1541 struct btree_iter iter;
1542
1543 for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
1544 for (i = 0; i < KEY_PTRS(k); i++) {
1545 if (!ptr_available(b->c, k, i))
1546 continue;
1547
1548 g = PTR_BUCKET(b->c, k, i);
1549
1550 if (!__test_and_set_bit(PTR_BUCKET_NR(b->c, k, i),
1551 seen[PTR_DEV(k, i)]) ||
1552 !ptr_stale(b->c, k, i)) {
1553 g->gen = PTR_GEN(k, i);
1554
1555 if (b->level)
1556 g->prio = BTREE_PRIO;
1557 else if (g->prio == BTREE_PRIO)
1558 g->prio = INITIAL_PRIO;
1559 }
1560 }
1561
1562 btree_mark_key(b, k);
1563 }
1564
1565 if (b->level) {
1566 k = bch_next_recurse_key(b, &ZERO_KEY);
1567
1568 while (k) {
1569 struct bkey *p = bch_next_recurse_key(b, k);
1570 if (p)
1571 btree_node_prefetch(b->c, p, b->level - 1);
1572
1573 ret = btree(check_recurse, k, b, op, seen);
1574 if (ret)
1575 return ret;
1576
1577 k = p;
1578 }
1579 }
1580
1581 return 0;
1582}
1583
1584int bch_btree_check(struct cache_set *c, struct btree_op *op)
1585{
1586 int ret = -ENOMEM;
1587 unsigned i;
1588 unsigned long *seen[MAX_CACHES_PER_SET];
1589
1590 memset(seen, 0, sizeof(seen));
1591
1592 for (i = 0; c->cache[i]; i++) {
1593 size_t n = DIV_ROUND_UP(c->cache[i]->sb.nbuckets, 8);
1594 seen[i] = kmalloc(n, GFP_KERNEL);
1595 if (!seen[i])
1596 goto err;
1597
1598 /* Disables the seen array until prio_read() uses it too */
1599 memset(seen[i], 0xFF, n);
1600 }
1601
1602 ret = btree_root(check_recurse, c, op, seen);
1603err:
1604 for (i = 0; i < MAX_CACHES_PER_SET; i++)
1605 kfree(seen[i]);
1606 return ret;
1607}
1608
1609/* Btree insertion */
1610
1611static void shift_keys(struct btree *b, struct bkey *where, struct bkey *insert)
1612{
1613 struct bset *i = b->sets[b->nsets].data;
1614
1615 memmove((uint64_t *) where + bkey_u64s(insert),
1616 where,
1617 (void *) end(i) - (void *) where);
1618
1619 i->keys += bkey_u64s(insert);
1620 bkey_copy(where, insert);
1621 bch_bset_fix_lookup_table(b, where);
1622}
1623
1624static bool fix_overlapping_extents(struct btree *b,
1625 struct bkey *insert,
1626 struct btree_iter *iter,
1627 struct btree_op *op)
1628{
1629 void subtract_dirty(struct bkey *k, int sectors)
1630 {
1631 struct bcache_device *d = b->c->devices[KEY_INODE(k)];
1632
1633 if (KEY_DIRTY(k) && d)
1634 atomic_long_sub(sectors, &d->sectors_dirty);
1635 }
1636
1637 unsigned old_size, sectors_found = 0;
1638
1639 while (1) {
1640 struct bkey *k = bch_btree_iter_next(iter);
1641 if (!k ||
1642 bkey_cmp(&START_KEY(k), insert) >= 0)
1643 break;
1644
1645 if (bkey_cmp(k, &START_KEY(insert)) <= 0)
1646 continue;
1647
1648 old_size = KEY_SIZE(k);
1649
1650 /*
1651 * We might overlap with 0 size extents; we can't skip these
1652 * because if they're in the set we're inserting to we have to
1653 * adjust them so they don't overlap with the key we're
1654 * inserting. But we don't want to check them for BTREE_REPLACE
1655 * operations.
1656 */
1657
1658 if (op->type == BTREE_REPLACE &&
1659 KEY_SIZE(k)) {
1660 /*
1661 * k might have been split since we inserted/found the
1662 * key we're replacing
1663 */
1664 unsigned i;
1665 uint64_t offset = KEY_START(k) -
1666 KEY_START(&op->replace);
1667
1668 /* But it must be a subset of the replace key */
1669 if (KEY_START(k) < KEY_START(&op->replace) ||
1670 KEY_OFFSET(k) > KEY_OFFSET(&op->replace))
1671 goto check_failed;
1672
1673 /* We didn't find a key that we were supposed to */
1674 if (KEY_START(k) > KEY_START(insert) + sectors_found)
1675 goto check_failed;
1676
1677 if (KEY_PTRS(&op->replace) != KEY_PTRS(k))
1678 goto check_failed;
1679
1680 /* skip past gen */
1681 offset <<= 8;
1682
1683 BUG_ON(!KEY_PTRS(&op->replace));
1684
1685 for (i = 0; i < KEY_PTRS(&op->replace); i++)
1686 if (k->ptr[i] != op->replace.ptr[i] + offset)
1687 goto check_failed;
1688
1689 sectors_found = KEY_OFFSET(k) - KEY_START(insert);
1690 }
1691
1692 if (bkey_cmp(insert, k) < 0 &&
1693 bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
1694 /*
1695 * We overlapped in the middle of an existing key: that
1696 * means we have to split the old key. But we have to do
1697 * slightly different things depending on whether the
1698 * old key has been written out yet.
1699 */
1700
1701 struct bkey *top;
1702
1703 subtract_dirty(k, KEY_SIZE(insert));
1704
1705 if (bkey_written(b, k)) {
1706 /*
1707 * We insert a new key to cover the top of the
1708 * old key, and the old key is modified in place
1709 * to represent the bottom split.
1710 *
1711 * It's completely arbitrary whether the new key
1712 * is the top or the bottom, but it has to match
1713 * up with what btree_sort_fixup() does - it
1714 * doesn't check for this kind of overlap, it
1715 * depends on us inserting a new key for the top
1716 * here.
1717 */
1718 top = bch_bset_search(b, &b->sets[b->nsets],
1719 insert);
1720 shift_keys(b, top, k);
1721 } else {
1722 BKEY_PADDED(key) temp;
1723 bkey_copy(&temp.key, k);
1724 shift_keys(b, k, &temp.key);
1725 top = bkey_next(k);
1726 }
1727
1728 bch_cut_front(insert, top);
1729 bch_cut_back(&START_KEY(insert), k);
1730 bch_bset_fix_invalidated_key(b, k);
1731 return false;
1732 }
1733
1734 if (bkey_cmp(insert, k) < 0) {
1735 bch_cut_front(insert, k);
1736 } else {
1737 if (bkey_written(b, k) &&
1738 bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
1739 /*
1740 * Completely overwrote, so we don't have to
1741 * invalidate the binary search tree
1742 */
1743 bch_cut_front(k, k);
1744 } else {
1745 __bch_cut_back(&START_KEY(insert), k);
1746 bch_bset_fix_invalidated_key(b, k);
1747 }
1748 }
1749
1750 subtract_dirty(k, old_size - KEY_SIZE(k));
1751 }
1752
1753check_failed:
1754 if (op->type == BTREE_REPLACE) {
1755 if (!sectors_found) {
1756 op->insert_collision = true;
1757 return true;
1758 } else if (sectors_found < KEY_SIZE(insert)) {
1759 SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
1760 (KEY_SIZE(insert) - sectors_found));
1761 SET_KEY_SIZE(insert, sectors_found);
1762 }
1763 }
1764
1765 return false;
1766}
1767
1768static bool btree_insert_key(struct btree *b, struct btree_op *op,
1769 struct bkey *k)
1770{
1771 struct bset *i = b->sets[b->nsets].data;
1772 struct bkey *m, *prev;
Kent Overstreet85b14922013-05-14 20:33:16 -07001773 unsigned status = BTREE_INSERT_STATUS_INSERT;
Kent Overstreetcafe5632013-03-23 16:11:31 -07001774
1775 BUG_ON(bkey_cmp(k, &b->key) > 0);
1776 BUG_ON(b->level && !KEY_PTRS(k));
1777 BUG_ON(!b->level && !KEY_OFFSET(k));
1778
1779 if (!b->level) {
1780 struct btree_iter iter;
1781 struct bkey search = KEY(KEY_INODE(k), KEY_START(k), 0);
1782
1783 /*
1784 * bset_search() returns the first key that is strictly greater
1785 * than the search key - but for back merging, we want to find
1786 * the first key that is greater than or equal to KEY_START(k) -
1787 * unless KEY_START(k) is 0.
1788 */
1789 if (KEY_OFFSET(&search))
1790 SET_KEY_OFFSET(&search, KEY_OFFSET(&search) - 1);
1791
1792 prev = NULL;
1793 m = bch_btree_iter_init(b, &iter, &search);
1794
1795 if (fix_overlapping_extents(b, k, &iter, op))
1796 return false;
1797
1798 while (m != end(i) &&
1799 bkey_cmp(k, &START_KEY(m)) > 0)
1800 prev = m, m = bkey_next(m);
1801
1802 if (key_merging_disabled(b->c))
1803 goto insert;
1804
1805 /* prev is in the tree, if we merge we're done */
Kent Overstreet85b14922013-05-14 20:33:16 -07001806 status = BTREE_INSERT_STATUS_BACK_MERGE;
Kent Overstreetcafe5632013-03-23 16:11:31 -07001807 if (prev &&
1808 bch_bkey_try_merge(b, prev, k))
1809 goto merged;
1810
Kent Overstreet85b14922013-05-14 20:33:16 -07001811 status = BTREE_INSERT_STATUS_OVERWROTE;
Kent Overstreetcafe5632013-03-23 16:11:31 -07001812 if (m != end(i) &&
1813 KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
1814 goto copy;
1815
Kent Overstreet85b14922013-05-14 20:33:16 -07001816 status = BTREE_INSERT_STATUS_FRONT_MERGE;
Kent Overstreetcafe5632013-03-23 16:11:31 -07001817 if (m != end(i) &&
1818 bch_bkey_try_merge(b, k, m))
1819 goto copy;
1820 } else
1821 m = bch_bset_search(b, &b->sets[b->nsets], k);
1822
1823insert: shift_keys(b, m, k);
1824copy: bkey_copy(m, k);
1825merged:
Kent Overstreet85b14922013-05-14 20:33:16 -07001826 bch_check_keys(b, "%u for %s", status, op_type(op));
Kent Overstreetcafe5632013-03-23 16:11:31 -07001827
1828 if (b->level && !KEY_OFFSET(k))
Kent Overstreet57943512013-04-25 13:58:35 -07001829 btree_current_write(b)->prio_blocked++;
Kent Overstreetcafe5632013-03-23 16:11:31 -07001830
Kent Overstreet85b14922013-05-14 20:33:16 -07001831 trace_bcache_btree_insert_key(b, k, op->type, status);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001832
1833 return true;
1834}
1835
1836bool bch_btree_insert_keys(struct btree *b, struct btree_op *op)
1837{
1838 bool ret = false;
1839 struct bkey *k;
1840 unsigned oldsize = bch_count_data(b);
1841
1842 while ((k = bch_keylist_pop(&op->keys))) {
1843 bkey_put(b->c, k, b->level);
1844 ret |= btree_insert_key(b, op, k);
1845 }
1846
1847 BUG_ON(bch_count_data(b) < oldsize);
1848 return ret;
1849}
1850
1851bool bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
1852 struct bio *bio)
1853{
1854 bool ret = false;
1855 uint64_t btree_ptr = b->key.ptr[0];
1856 unsigned long seq = b->seq;
1857 BKEY_PADDED(k) tmp;
1858
1859 rw_unlock(false, b);
1860 rw_lock(true, b, b->level);
1861
1862 if (b->key.ptr[0] != btree_ptr ||
1863 b->seq != seq + 1 ||
1864 should_split(b))
1865 goto out;
1866
1867 op->replace = KEY(op->inode, bio_end(bio), bio_sectors(bio));
1868
1869 SET_KEY_PTRS(&op->replace, 1);
1870 get_random_bytes(&op->replace.ptr[0], sizeof(uint64_t));
1871
1872 SET_PTR_DEV(&op->replace, 0, PTR_CHECK_DEV);
1873
1874 bkey_copy(&tmp.k, &op->replace);
1875
1876 BUG_ON(op->type != BTREE_INSERT);
1877 BUG_ON(!btree_insert_key(b, op, &tmp.k));
Kent Overstreetcafe5632013-03-23 16:11:31 -07001878 ret = true;
1879out:
1880 downgrade_write(&b->lock);
1881 return ret;
1882}
1883
1884static int btree_split(struct btree *b, struct btree_op *op)
1885{
1886 bool split, root = b == b->c->root;
1887 struct btree *n1, *n2 = NULL, *n3 = NULL;
1888 uint64_t start_time = local_clock();
1889
1890 if (b->level)
1891 set_closure_blocking(&op->cl);
1892
1893 n1 = btree_node_alloc_replacement(b, &op->cl);
1894 if (IS_ERR(n1))
1895 goto err;
1896
1897 split = set_blocks(n1->sets[0].data, n1->c) > (btree_blocks(b) * 4) / 5;
1898
Kent Overstreetcafe5632013-03-23 16:11:31 -07001899 if (split) {
1900 unsigned keys = 0;
1901
Kent Overstreetc37511b82013-04-26 15:39:55 -07001902 trace_bcache_btree_node_split(b, n1->sets[0].data->keys);
1903
Kent Overstreetcafe5632013-03-23 16:11:31 -07001904 n2 = bch_btree_node_alloc(b->c, b->level, &op->cl);
1905 if (IS_ERR(n2))
1906 goto err_free1;
1907
1908 if (root) {
1909 n3 = bch_btree_node_alloc(b->c, b->level + 1, &op->cl);
1910 if (IS_ERR(n3))
1911 goto err_free2;
1912 }
1913
1914 bch_btree_insert_keys(n1, op);
1915
1916 /* Has to be a linear search because we don't have an auxiliary
1917 * search tree yet
1918 */
1919
1920 while (keys < (n1->sets[0].data->keys * 3) / 5)
1921 keys += bkey_u64s(node(n1->sets[0].data, keys));
1922
1923 bkey_copy_key(&n1->key, node(n1->sets[0].data, keys));
1924 keys += bkey_u64s(node(n1->sets[0].data, keys));
1925
1926 n2->sets[0].data->keys = n1->sets[0].data->keys - keys;
1927 n1->sets[0].data->keys = keys;
1928
1929 memcpy(n2->sets[0].data->start,
1930 end(n1->sets[0].data),
1931 n2->sets[0].data->keys * sizeof(uint64_t));
1932
1933 bkey_copy_key(&n2->key, &b->key);
1934
1935 bch_keylist_add(&op->keys, &n2->key);
Kent Overstreet57943512013-04-25 13:58:35 -07001936 bch_btree_node_write(n2, &op->cl);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001937 rw_unlock(true, n2);
Kent Overstreetc37511b82013-04-26 15:39:55 -07001938 } else {
1939 trace_bcache_btree_node_compact(b, n1->sets[0].data->keys);
1940
Kent Overstreetcafe5632013-03-23 16:11:31 -07001941 bch_btree_insert_keys(n1, op);
Kent Overstreetc37511b82013-04-26 15:39:55 -07001942 }
Kent Overstreetcafe5632013-03-23 16:11:31 -07001943
1944 bch_keylist_add(&op->keys, &n1->key);
Kent Overstreet57943512013-04-25 13:58:35 -07001945 bch_btree_node_write(n1, &op->cl);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001946
1947 if (n3) {
1948 bkey_copy_key(&n3->key, &MAX_KEY);
1949 bch_btree_insert_keys(n3, op);
Kent Overstreet57943512013-04-25 13:58:35 -07001950 bch_btree_node_write(n3, &op->cl);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001951
1952 closure_sync(&op->cl);
1953 bch_btree_set_root(n3);
1954 rw_unlock(true, n3);
1955 } else if (root) {
1956 op->keys.top = op->keys.bottom;
1957 closure_sync(&op->cl);
1958 bch_btree_set_root(n1);
1959 } else {
1960 unsigned i;
1961
1962 bkey_copy(op->keys.top, &b->key);
1963 bkey_copy_key(op->keys.top, &ZERO_KEY);
1964
1965 for (i = 0; i < KEY_PTRS(&b->key); i++) {
1966 uint8_t g = PTR_BUCKET(b->c, &b->key, i)->gen + 1;
1967
1968 SET_PTR_GEN(op->keys.top, i, g);
1969 }
1970
1971 bch_keylist_push(&op->keys);
1972 closure_sync(&op->cl);
1973 atomic_inc(&b->c->prio_blocked);
1974 }
1975
1976 rw_unlock(true, n1);
1977 btree_node_free(b, op);
1978
Kent Overstreet169ef1c2013-03-28 12:50:55 -06001979 bch_time_stats_update(&b->c->btree_split_time, start_time);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001980
1981 return 0;
1982err_free2:
1983 __bkey_put(n2->c, &n2->key);
1984 btree_node_free(n2, op);
1985 rw_unlock(true, n2);
1986err_free1:
1987 __bkey_put(n1->c, &n1->key);
1988 btree_node_free(n1, op);
1989 rw_unlock(true, n1);
1990err:
1991 if (n3 == ERR_PTR(-EAGAIN) ||
1992 n2 == ERR_PTR(-EAGAIN) ||
1993 n1 == ERR_PTR(-EAGAIN))
1994 return -EAGAIN;
1995
1996 pr_warn("couldn't split");
1997 return -ENOMEM;
1998}
1999
2000static int bch_btree_insert_recurse(struct btree *b, struct btree_op *op,
2001 struct keylist *stack_keys)
2002{
2003 if (b->level) {
2004 int ret;
2005 struct bkey *insert = op->keys.bottom;
2006 struct bkey *k = bch_next_recurse_key(b, &START_KEY(insert));
2007
2008 if (!k) {
2009 btree_bug(b, "no key to recurse on at level %i/%i",
2010 b->level, b->c->root->level);
2011
2012 op->keys.top = op->keys.bottom;
2013 return -EIO;
2014 }
2015
2016 if (bkey_cmp(insert, k) > 0) {
2017 unsigned i;
2018
2019 if (op->type == BTREE_REPLACE) {
2020 __bkey_put(b->c, insert);
2021 op->keys.top = op->keys.bottom;
2022 op->insert_collision = true;
2023 return 0;
2024 }
2025
2026 for (i = 0; i < KEY_PTRS(insert); i++)
2027 atomic_inc(&PTR_BUCKET(b->c, insert, i)->pin);
2028
2029 bkey_copy(stack_keys->top, insert);
2030
2031 bch_cut_back(k, insert);
2032 bch_cut_front(k, stack_keys->top);
2033
2034 bch_keylist_push(stack_keys);
2035 }
2036
2037 ret = btree(insert_recurse, k, b, op, stack_keys);
2038 if (ret)
2039 return ret;
2040 }
2041
2042 if (!bch_keylist_empty(&op->keys)) {
2043 if (should_split(b)) {
2044 if (op->lock <= b->c->root->level) {
2045 BUG_ON(b->level);
2046 op->lock = b->c->root->level + 1;
2047 return -EINTR;
2048 }
2049 return btree_split(b, op);
2050 }
2051
2052 BUG_ON(write_block(b) != b->sets[b->nsets].data);
2053
Kent Overstreet57943512013-04-25 13:58:35 -07002054 if (bch_btree_insert_keys(b, op)) {
2055 if (!b->level)
2056 bch_btree_leaf_dirty(b, op);
2057 else
2058 bch_btree_node_write(b, &op->cl);
2059 }
Kent Overstreetcafe5632013-03-23 16:11:31 -07002060 }
2061
2062 return 0;
2063}
2064
2065int bch_btree_insert(struct btree_op *op, struct cache_set *c)
2066{
2067 int ret = 0;
2068 struct keylist stack_keys;
2069
2070 /*
2071 * Don't want to block with the btree locked unless we have to,
2072 * otherwise we get deadlocks with try_harder and between split/gc
2073 */
2074 clear_closure_blocking(&op->cl);
2075
2076 BUG_ON(bch_keylist_empty(&op->keys));
2077 bch_keylist_copy(&stack_keys, &op->keys);
2078 bch_keylist_init(&op->keys);
2079
2080 while (!bch_keylist_empty(&stack_keys) ||
2081 !bch_keylist_empty(&op->keys)) {
2082 if (bch_keylist_empty(&op->keys)) {
2083 bch_keylist_add(&op->keys,
2084 bch_keylist_pop(&stack_keys));
2085 op->lock = 0;
2086 }
2087
2088 ret = btree_root(insert_recurse, c, op, &stack_keys);
2089
2090 if (ret == -EAGAIN) {
2091 ret = 0;
2092 closure_sync(&op->cl);
2093 } else if (ret) {
2094 struct bkey *k;
2095
2096 pr_err("error %i trying to insert key for %s",
2097 ret, op_type(op));
2098
2099 while ((k = bch_keylist_pop(&stack_keys) ?:
2100 bch_keylist_pop(&op->keys)))
2101 bkey_put(c, k, 0);
2102 }
2103 }
2104
2105 bch_keylist_free(&stack_keys);
2106
2107 if (op->journal)
2108 atomic_dec_bug(op->journal);
2109 op->journal = NULL;
2110 return ret;
2111}
2112
2113void bch_btree_set_root(struct btree *b)
2114{
2115 unsigned i;
2116
Kent Overstreetc37511b82013-04-26 15:39:55 -07002117 trace_bcache_btree_set_root(b);
2118
Kent Overstreetcafe5632013-03-23 16:11:31 -07002119 BUG_ON(!b->written);
2120
2121 for (i = 0; i < KEY_PTRS(&b->key); i++)
2122 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2123
2124 mutex_lock(&b->c->bucket_lock);
2125 list_del_init(&b->list);
2126 mutex_unlock(&b->c->bucket_lock);
2127
2128 b->c->root = b;
2129 __bkey_put(b->c, &b->key);
2130
2131 bch_journal_meta(b->c, NULL);
Kent Overstreetcafe5632013-03-23 16:11:31 -07002132}
2133
2134/* Cache lookup */
2135
2136static int submit_partial_cache_miss(struct btree *b, struct btree_op *op,
2137 struct bkey *k)
2138{
2139 struct search *s = container_of(op, struct search, op);
2140 struct bio *bio = &s->bio.bio;
2141 int ret = 0;
2142
2143 while (!ret &&
2144 !op->lookup_done) {
2145 unsigned sectors = INT_MAX;
2146
2147 if (KEY_INODE(k) == op->inode) {
2148 if (KEY_START(k) <= bio->bi_sector)
2149 break;
2150
2151 sectors = min_t(uint64_t, sectors,
2152 KEY_START(k) - bio->bi_sector);
2153 }
2154
2155 ret = s->d->cache_miss(b, s, bio, sectors);
2156 }
2157
2158 return ret;
2159}
2160
2161/*
2162 * Read from a single key, handling the initial cache miss if the key starts in
2163 * the middle of the bio
2164 */
2165static int submit_partial_cache_hit(struct btree *b, struct btree_op *op,
2166 struct bkey *k)
2167{
2168 struct search *s = container_of(op, struct search, op);
2169 struct bio *bio = &s->bio.bio;
2170 unsigned ptr;
2171 struct bio *n;
2172
2173 int ret = submit_partial_cache_miss(b, op, k);
2174 if (ret || op->lookup_done)
2175 return ret;
2176
2177 /* XXX: figure out best pointer - for multiple cache devices */
2178 ptr = 0;
2179
2180 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
2181
2182 while (!op->lookup_done &&
2183 KEY_INODE(k) == op->inode &&
2184 bio->bi_sector < KEY_OFFSET(k)) {
2185 struct bkey *bio_key;
2186 sector_t sector = PTR_OFFSET(k, ptr) +
2187 (bio->bi_sector - KEY_START(k));
2188 unsigned sectors = min_t(uint64_t, INT_MAX,
2189 KEY_OFFSET(k) - bio->bi_sector);
2190
2191 n = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
2192 if (!n)
2193 return -EAGAIN;
2194
2195 if (n == bio)
2196 op->lookup_done = true;
2197
2198 bio_key = &container_of(n, struct bbio, bio)->key;
2199
2200 /*
2201 * The bucket we're reading from might be reused while our bio
2202 * is in flight, and we could then end up reading the wrong
2203 * data.
2204 *
2205 * We guard against this by checking (in cache_read_endio()) if
2206 * the pointer is stale again; if so, we treat it as an error
2207 * and reread from the backing device (but we don't pass that
2208 * error up anywhere).
2209 */
2210
2211 bch_bkey_copy_single_ptr(bio_key, k, ptr);
2212 SET_PTR_OFFSET(bio_key, 0, sector);
2213
2214 n->bi_end_io = bch_cache_read_endio;
2215 n->bi_private = &s->cl;
2216
Kent Overstreetcafe5632013-03-23 16:11:31 -07002217 __bch_submit_bbio(n, b->c);
2218 }
2219
2220 return 0;
2221}
2222
2223int bch_btree_search_recurse(struct btree *b, struct btree_op *op)
2224{
2225 struct search *s = container_of(op, struct search, op);
2226 struct bio *bio = &s->bio.bio;
2227
2228 int ret = 0;
2229 struct bkey *k;
2230 struct btree_iter iter;
2231 bch_btree_iter_init(b, &iter, &KEY(op->inode, bio->bi_sector, 0));
2232
Kent Overstreetcafe5632013-03-23 16:11:31 -07002233 do {
2234 k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
2235 if (!k) {
2236 /*
2237 * b->key would be exactly what we want, except that
2238 * pointers to btree nodes have nonzero size - we
2239 * wouldn't go far enough
2240 */
2241
2242 ret = submit_partial_cache_miss(b, op,
2243 &KEY(KEY_INODE(&b->key),
2244 KEY_OFFSET(&b->key), 0));
2245 break;
2246 }
2247
2248 ret = b->level
2249 ? btree(search_recurse, k, b, op)
2250 : submit_partial_cache_hit(b, op, k);
2251 } while (!ret &&
2252 !op->lookup_done);
2253
2254 return ret;
2255}
2256
2257/* Keybuf code */
2258
2259static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2260{
2261 /* Overlapping keys compare equal */
2262 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2263 return -1;
2264 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2265 return 1;
2266 return 0;
2267}
2268
2269static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2270 struct keybuf_key *r)
2271{
2272 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2273}
2274
2275static int bch_btree_refill_keybuf(struct btree *b, struct btree_op *op,
2276 struct keybuf *buf, struct bkey *end)
2277{
2278 struct btree_iter iter;
2279 bch_btree_iter_init(b, &iter, &buf->last_scanned);
2280
2281 while (!array_freelist_empty(&buf->freelist)) {
2282 struct bkey *k = bch_btree_iter_next_filter(&iter, b,
2283 bch_ptr_bad);
2284
2285 if (!b->level) {
2286 if (!k) {
2287 buf->last_scanned = b->key;
2288 break;
2289 }
2290
2291 buf->last_scanned = *k;
2292 if (bkey_cmp(&buf->last_scanned, end) >= 0)
2293 break;
2294
2295 if (buf->key_predicate(buf, k)) {
2296 struct keybuf_key *w;
2297
Kent Overstreetcafe5632013-03-23 16:11:31 -07002298 spin_lock(&buf->lock);
2299
2300 w = array_alloc(&buf->freelist);
2301
2302 w->private = NULL;
2303 bkey_copy(&w->key, k);
2304
2305 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2306 array_free(&buf->freelist, w);
2307
2308 spin_unlock(&buf->lock);
2309 }
2310 } else {
2311 if (!k)
2312 break;
2313
2314 btree(refill_keybuf, k, b, op, buf, end);
2315 /*
2316 * Might get an error here, but can't really do anything
2317 * and it'll get logged elsewhere. Just read what we
2318 * can.
2319 */
2320
2321 if (bkey_cmp(&buf->last_scanned, end) >= 0)
2322 break;
2323
2324 cond_resched();
2325 }
2326 }
2327
2328 return 0;
2329}
2330
2331void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2332 struct bkey *end)
2333{
2334 struct bkey start = buf->last_scanned;
2335 struct btree_op op;
2336 bch_btree_op_init_stack(&op);
2337
2338 cond_resched();
2339
2340 btree_root(refill_keybuf, c, &op, buf, end);
2341 closure_sync(&op.cl);
2342
2343 pr_debug("found %s keys from %llu:%llu to %llu:%llu",
2344 RB_EMPTY_ROOT(&buf->keys) ? "no" :
2345 array_freelist_empty(&buf->freelist) ? "some" : "a few",
2346 KEY_INODE(&start), KEY_OFFSET(&start),
2347 KEY_INODE(&buf->last_scanned), KEY_OFFSET(&buf->last_scanned));
2348
2349 spin_lock(&buf->lock);
2350
2351 if (!RB_EMPTY_ROOT(&buf->keys)) {
2352 struct keybuf_key *w;
2353 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2354 buf->start = START_KEY(&w->key);
2355
2356 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2357 buf->end = w->key;
2358 } else {
2359 buf->start = MAX_KEY;
2360 buf->end = MAX_KEY;
2361 }
2362
2363 spin_unlock(&buf->lock);
2364}
2365
2366static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2367{
2368 rb_erase(&w->node, &buf->keys);
2369 array_free(&buf->freelist, w);
2370}
2371
2372void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2373{
2374 spin_lock(&buf->lock);
2375 __bch_keybuf_del(buf, w);
2376 spin_unlock(&buf->lock);
2377}
2378
2379bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2380 struct bkey *end)
2381{
2382 bool ret = false;
2383 struct keybuf_key *p, *w, s;
2384 s.key = *start;
2385
2386 if (bkey_cmp(end, &buf->start) <= 0 ||
2387 bkey_cmp(start, &buf->end) >= 0)
2388 return false;
2389
2390 spin_lock(&buf->lock);
2391 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2392
2393 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2394 p = w;
2395 w = RB_NEXT(w, node);
2396
2397 if (p->private)
2398 ret = true;
2399 else
2400 __bch_keybuf_del(buf, p);
2401 }
2402
2403 spin_unlock(&buf->lock);
2404 return ret;
2405}
2406
2407struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2408{
2409 struct keybuf_key *w;
2410 spin_lock(&buf->lock);
2411
2412 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2413
2414 while (w && w->private)
2415 w = RB_NEXT(w, node);
2416
2417 if (w)
2418 w->private = ERR_PTR(-EINTR);
2419
2420 spin_unlock(&buf->lock);
2421 return w;
2422}
2423
2424struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2425 struct keybuf *buf,
2426 struct bkey *end)
2427{
2428 struct keybuf_key *ret;
2429
2430 while (1) {
2431 ret = bch_keybuf_next(buf);
2432 if (ret)
2433 break;
2434
2435 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2436 pr_debug("scan finished");
2437 break;
2438 }
2439
2440 bch_refill_keybuf(c, buf, end);
2441 }
2442
2443 return ret;
2444}
2445
2446void bch_keybuf_init(struct keybuf *buf, keybuf_pred_fn *fn)
2447{
2448 buf->key_predicate = fn;
2449 buf->last_scanned = MAX_KEY;
2450 buf->keys = RB_ROOT;
2451
2452 spin_lock_init(&buf->lock);
2453 array_allocator_init(&buf->freelist);
2454}
2455
2456void bch_btree_exit(void)
2457{
2458 if (btree_io_wq)
2459 destroy_workqueue(btree_io_wq);
2460 if (bch_gc_wq)
2461 destroy_workqueue(bch_gc_wq);
2462}
2463
2464int __init bch_btree_init(void)
2465{
2466 if (!(bch_gc_wq = create_singlethread_workqueue("bch_btree_gc")) ||
2467 !(btree_io_wq = create_singlethread_workqueue("bch_btree_io")))
2468 return -ENOMEM;
2469
2470 return 0;
2471}