blob: 11e2b999cce24554eac76a69bb74af13a22413b7 [file] [log] [blame]
Mika Westerberg011f23a2010-05-06 04:47:04 +00001/*
2 * Driver for Cirrus Logic EP93xx SPI controller.
3 *
Mika Westerberg626a96d2011-05-29 13:10:06 +03004 * Copyright (C) 2010-2011 Mika Westerberg
Mika Westerberg011f23a2010-05-06 04:47:04 +00005 *
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
7 *
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9 *
10 * For more information about the SPI controller see documentation on Cirrus
11 * Logic web site:
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19#include <linux/io.h>
20#include <linux/clk.h>
21#include <linux/err.h>
22#include <linux/delay.h>
23#include <linux/device.h>
Mika Westerberg626a96d2011-05-29 13:10:06 +030024#include <linux/dmaengine.h>
Mika Westerberg011f23a2010-05-06 04:47:04 +000025#include <linux/bitops.h>
26#include <linux/interrupt.h>
Mika Westerberg5bdb76132011-10-15 21:40:09 +030027#include <linux/module.h>
Mika Westerberg011f23a2010-05-06 04:47:04 +000028#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/sched.h>
Mika Westerberg626a96d2011-05-29 13:10:06 +030031#include <linux/scatterlist.h>
Mika Westerberg011f23a2010-05-06 04:47:04 +000032#include <linux/spi/spi.h>
33
Arnd Bergmanna3b292452012-08-24 15:12:11 +020034#include <linux/platform_data/dma-ep93xx.h>
35#include <linux/platform_data/spi-ep93xx.h>
Mika Westerberg011f23a2010-05-06 04:47:04 +000036
37#define SSPCR0 0x0000
38#define SSPCR0_MODE_SHIFT 6
39#define SSPCR0_SCR_SHIFT 8
40
41#define SSPCR1 0x0004
42#define SSPCR1_RIE BIT(0)
43#define SSPCR1_TIE BIT(1)
44#define SSPCR1_RORIE BIT(2)
45#define SSPCR1_LBM BIT(3)
46#define SSPCR1_SSE BIT(4)
47#define SSPCR1_MS BIT(5)
48#define SSPCR1_SOD BIT(6)
49
50#define SSPDR 0x0008
51
52#define SSPSR 0x000c
53#define SSPSR_TFE BIT(0)
54#define SSPSR_TNF BIT(1)
55#define SSPSR_RNE BIT(2)
56#define SSPSR_RFF BIT(3)
57#define SSPSR_BSY BIT(4)
58#define SSPCPSR 0x0010
59
60#define SSPIIR 0x0014
61#define SSPIIR_RIS BIT(0)
62#define SSPIIR_TIS BIT(1)
63#define SSPIIR_RORIS BIT(2)
64#define SSPICR SSPIIR
65
66/* timeout in milliseconds */
67#define SPI_TIMEOUT 5
68/* maximum depth of RX/TX FIFO */
69#define SPI_FIFO_SIZE 8
70
71/**
72 * struct ep93xx_spi - EP93xx SPI controller structure
73 * @lock: spinlock that protects concurrent accesses to fields @running,
74 * @current_msg and @msg_queue
75 * @pdev: pointer to platform device
76 * @clk: clock for the controller
77 * @regs_base: pointer to ioremap()'d registers
Mika Westerberg626a96d2011-05-29 13:10:06 +030078 * @sspdr_phys: physical address of the SSPDR register
Mika Westerberg011f23a2010-05-06 04:47:04 +000079 * @min_rate: minimum clock rate (in Hz) supported by the controller
80 * @max_rate: maximum clock rate (in Hz) supported by the controller
81 * @running: is the queue running
82 * @wq: workqueue used by the driver
83 * @msg_work: work that is queued for the driver
84 * @wait: wait here until given transfer is completed
85 * @msg_queue: queue for the messages
86 * @current_msg: message that is currently processed (or %NULL if none)
87 * @tx: current byte in transfer to transmit
88 * @rx: current byte in transfer to receive
89 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
90 * frame decreases this level and sending one frame increases it.
Mika Westerberg626a96d2011-05-29 13:10:06 +030091 * @dma_rx: RX DMA channel
92 * @dma_tx: TX DMA channel
93 * @dma_rx_data: RX parameters passed to the DMA engine
94 * @dma_tx_data: TX parameters passed to the DMA engine
95 * @rx_sgt: sg table for RX transfers
96 * @tx_sgt: sg table for TX transfers
97 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
98 * the client
Mika Westerberg011f23a2010-05-06 04:47:04 +000099 *
100 * This structure holds EP93xx SPI controller specific information. When
101 * @running is %true, driver accepts transfer requests from protocol drivers.
102 * @current_msg is used to hold pointer to the message that is currently
103 * processed. If @current_msg is %NULL, it means that no processing is going
104 * on.
105 *
106 * Most of the fields are only written once and they can be accessed without
107 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
108 * @running, and @msg_queue.
109 */
110struct ep93xx_spi {
111 spinlock_t lock;
112 const struct platform_device *pdev;
113 struct clk *clk;
114 void __iomem *regs_base;
Mika Westerberg626a96d2011-05-29 13:10:06 +0300115 unsigned long sspdr_phys;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000116 unsigned long min_rate;
117 unsigned long max_rate;
118 bool running;
119 struct workqueue_struct *wq;
120 struct work_struct msg_work;
121 struct completion wait;
122 struct list_head msg_queue;
123 struct spi_message *current_msg;
124 size_t tx;
125 size_t rx;
126 size_t fifo_level;
Mika Westerberg626a96d2011-05-29 13:10:06 +0300127 struct dma_chan *dma_rx;
128 struct dma_chan *dma_tx;
129 struct ep93xx_dma_data dma_rx_data;
130 struct ep93xx_dma_data dma_tx_data;
131 struct sg_table rx_sgt;
132 struct sg_table tx_sgt;
133 void *zeropage;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000134};
135
136/**
137 * struct ep93xx_spi_chip - SPI device hardware settings
138 * @spi: back pointer to the SPI device
139 * @rate: max rate in hz this chip supports
140 * @div_cpsr: cpsr (pre-scaler) divider
141 * @div_scr: scr divider
142 * @dss: bits per word (4 - 16 bits)
143 * @ops: private chip operations
144 *
145 * This structure is used to store hardware register specific settings for each
146 * SPI device. Settings are written to hardware by function
147 * ep93xx_spi_chip_setup().
148 */
149struct ep93xx_spi_chip {
150 const struct spi_device *spi;
151 unsigned long rate;
152 u8 div_cpsr;
153 u8 div_scr;
154 u8 dss;
155 struct ep93xx_spi_chip_ops *ops;
156};
157
158/* converts bits per word to CR0.DSS value */
159#define bits_per_word_to_dss(bpw) ((bpw) - 1)
160
161static inline void
162ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value)
163{
164 __raw_writeb(value, espi->regs_base + reg);
165}
166
167static inline u8
168ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
169{
170 return __raw_readb(spi->regs_base + reg);
171}
172
173static inline void
174ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value)
175{
176 __raw_writew(value, espi->regs_base + reg);
177}
178
179static inline u16
180ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
181{
182 return __raw_readw(spi->regs_base + reg);
183}
184
185static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
186{
187 u8 regval;
188 int err;
189
190 err = clk_enable(espi->clk);
191 if (err)
192 return err;
193
194 regval = ep93xx_spi_read_u8(espi, SSPCR1);
195 regval |= SSPCR1_SSE;
196 ep93xx_spi_write_u8(espi, SSPCR1, regval);
197
198 return 0;
199}
200
201static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
202{
203 u8 regval;
204
205 regval = ep93xx_spi_read_u8(espi, SSPCR1);
206 regval &= ~SSPCR1_SSE;
207 ep93xx_spi_write_u8(espi, SSPCR1, regval);
208
209 clk_disable(espi->clk);
210}
211
212static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
213{
214 u8 regval;
215
216 regval = ep93xx_spi_read_u8(espi, SSPCR1);
217 regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
218 ep93xx_spi_write_u8(espi, SSPCR1, regval);
219}
220
221static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
222{
223 u8 regval;
224
225 regval = ep93xx_spi_read_u8(espi, SSPCR1);
226 regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
227 ep93xx_spi_write_u8(espi, SSPCR1, regval);
228}
229
230/**
231 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
232 * @espi: ep93xx SPI controller struct
233 * @chip: divisors are calculated for this chip
234 * @rate: desired SPI output clock rate
235 *
236 * Function calculates cpsr (clock pre-scaler) and scr divisors based on
237 * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
238 * for some reason, divisors cannot be calculated nothing is stored and
239 * %-EINVAL is returned.
240 */
241static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
242 struct ep93xx_spi_chip *chip,
243 unsigned long rate)
244{
245 unsigned long spi_clk_rate = clk_get_rate(espi->clk);
246 int cpsr, scr;
247
248 /*
249 * Make sure that max value is between values supported by the
250 * controller. Note that minimum value is already checked in
251 * ep93xx_spi_transfer().
252 */
253 rate = clamp(rate, espi->min_rate, espi->max_rate);
254
255 /*
256 * Calculate divisors so that we can get speed according the
257 * following formula:
258 * rate = spi_clock_rate / (cpsr * (1 + scr))
259 *
260 * cpsr must be even number and starts from 2, scr can be any number
261 * between 0 and 255.
262 */
263 for (cpsr = 2; cpsr <= 254; cpsr += 2) {
264 for (scr = 0; scr <= 255; scr++) {
265 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
266 chip->div_scr = (u8)scr;
267 chip->div_cpsr = (u8)cpsr;
268 return 0;
269 }
270 }
271 }
272
273 return -EINVAL;
274}
275
276static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
277{
278 struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
279 int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
280
281 if (chip->ops && chip->ops->cs_control)
282 chip->ops->cs_control(spi, value);
283}
284
285/**
286 * ep93xx_spi_setup() - setup an SPI device
287 * @spi: SPI device to setup
288 *
289 * This function sets up SPI device mode, speed etc. Can be called multiple
290 * times for a single device. Returns %0 in case of success, negative error in
291 * case of failure. When this function returns success, the device is
292 * deselected.
293 */
294static int ep93xx_spi_setup(struct spi_device *spi)
295{
296 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
297 struct ep93xx_spi_chip *chip;
298
Mika Westerberg011f23a2010-05-06 04:47:04 +0000299 chip = spi_get_ctldata(spi);
300 if (!chip) {
301 dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
302 spi->modalias);
303
304 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
305 if (!chip)
306 return -ENOMEM;
307
308 chip->spi = spi;
309 chip->ops = spi->controller_data;
310
311 if (chip->ops && chip->ops->setup) {
312 int ret = chip->ops->setup(spi);
313 if (ret) {
314 kfree(chip);
315 return ret;
316 }
317 }
318
319 spi_set_ctldata(spi, chip);
320 }
321
322 if (spi->max_speed_hz != chip->rate) {
323 int err;
324
325 err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
326 if (err != 0) {
327 spi_set_ctldata(spi, NULL);
328 kfree(chip);
329 return err;
330 }
331 chip->rate = spi->max_speed_hz;
332 }
333
334 chip->dss = bits_per_word_to_dss(spi->bits_per_word);
335
336 ep93xx_spi_cs_control(spi, false);
337 return 0;
338}
339
340/**
341 * ep93xx_spi_transfer() - queue message to be transferred
342 * @spi: target SPI device
343 * @msg: message to be transferred
344 *
345 * This function is called by SPI device drivers when they are going to transfer
346 * a new message. It simply puts the message in the queue and schedules
347 * workqueue to perform the actual transfer later on.
348 *
349 * Returns %0 on success and negative error in case of failure.
350 */
351static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
352{
353 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
354 struct spi_transfer *t;
355 unsigned long flags;
356
357 if (!msg || !msg->complete)
358 return -EINVAL;
359
360 /* first validate each transfer */
361 list_for_each_entry(t, &msg->transfers, transfer_list) {
Mika Westerberg011f23a2010-05-06 04:47:04 +0000362 if (t->speed_hz && t->speed_hz < espi->min_rate)
363 return -EINVAL;
364 }
365
366 /*
367 * Now that we own the message, let's initialize it so that it is
368 * suitable for us. We use @msg->status to signal whether there was
369 * error in transfer and @msg->state is used to hold pointer to the
370 * current transfer (or %NULL if no active current transfer).
371 */
372 msg->state = NULL;
373 msg->status = 0;
374 msg->actual_length = 0;
375
376 spin_lock_irqsave(&espi->lock, flags);
377 if (!espi->running) {
378 spin_unlock_irqrestore(&espi->lock, flags);
379 return -ESHUTDOWN;
380 }
381 list_add_tail(&msg->queue, &espi->msg_queue);
382 queue_work(espi->wq, &espi->msg_work);
383 spin_unlock_irqrestore(&espi->lock, flags);
384
385 return 0;
386}
387
388/**
389 * ep93xx_spi_cleanup() - cleans up master controller specific state
390 * @spi: SPI device to cleanup
391 *
392 * This function releases master controller specific state for given @spi
393 * device.
394 */
395static void ep93xx_spi_cleanup(struct spi_device *spi)
396{
397 struct ep93xx_spi_chip *chip;
398
399 chip = spi_get_ctldata(spi);
400 if (chip) {
401 if (chip->ops && chip->ops->cleanup)
402 chip->ops->cleanup(spi);
403 spi_set_ctldata(spi, NULL);
404 kfree(chip);
405 }
406}
407
408/**
409 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
410 * @espi: ep93xx SPI controller struct
411 * @chip: chip specific settings
412 *
413 * This function sets up the actual hardware registers with settings given in
414 * @chip. Note that no validation is done so make sure that callers validate
415 * settings before calling this.
416 */
417static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
418 const struct ep93xx_spi_chip *chip)
419{
420 u16 cr0;
421
422 cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
423 cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
424 cr0 |= chip->dss;
425
426 dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
427 chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss);
428 dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
429
430 ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
431 ep93xx_spi_write_u16(espi, SSPCR0, cr0);
432}
433
434static inline int bits_per_word(const struct ep93xx_spi *espi)
435{
436 struct spi_message *msg = espi->current_msg;
437 struct spi_transfer *t = msg->state;
438
Laxman Dewangan766ed702012-12-18 14:25:43 +0530439 return t->bits_per_word;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000440}
441
442static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
443{
444 if (bits_per_word(espi) > 8) {
445 u16 tx_val = 0;
446
447 if (t->tx_buf)
448 tx_val = ((u16 *)t->tx_buf)[espi->tx];
449 ep93xx_spi_write_u16(espi, SSPDR, tx_val);
450 espi->tx += sizeof(tx_val);
451 } else {
452 u8 tx_val = 0;
453
454 if (t->tx_buf)
455 tx_val = ((u8 *)t->tx_buf)[espi->tx];
456 ep93xx_spi_write_u8(espi, SSPDR, tx_val);
457 espi->tx += sizeof(tx_val);
458 }
459}
460
461static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
462{
463 if (bits_per_word(espi) > 8) {
464 u16 rx_val;
465
466 rx_val = ep93xx_spi_read_u16(espi, SSPDR);
467 if (t->rx_buf)
468 ((u16 *)t->rx_buf)[espi->rx] = rx_val;
469 espi->rx += sizeof(rx_val);
470 } else {
471 u8 rx_val;
472
473 rx_val = ep93xx_spi_read_u8(espi, SSPDR);
474 if (t->rx_buf)
475 ((u8 *)t->rx_buf)[espi->rx] = rx_val;
476 espi->rx += sizeof(rx_val);
477 }
478}
479
480/**
481 * ep93xx_spi_read_write() - perform next RX/TX transfer
482 * @espi: ep93xx SPI controller struct
483 *
484 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
485 * called several times, the whole transfer will be completed. Returns
486 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
487 *
488 * When this function is finished, RX FIFO should be empty and TX FIFO should be
489 * full.
490 */
491static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
492{
493 struct spi_message *msg = espi->current_msg;
494 struct spi_transfer *t = msg->state;
495
496 /* read as long as RX FIFO has frames in it */
497 while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
498 ep93xx_do_read(espi, t);
499 espi->fifo_level--;
500 }
501
502 /* write as long as TX FIFO has room */
503 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
504 ep93xx_do_write(espi, t);
505 espi->fifo_level++;
506 }
507
Mika Westerberg626a96d2011-05-29 13:10:06 +0300508 if (espi->rx == t->len)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000509 return 0;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000510
511 return -EINPROGRESS;
512}
513
Mika Westerberg626a96d2011-05-29 13:10:06 +0300514static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
515{
516 /*
517 * Now everything is set up for the current transfer. We prime the TX
518 * FIFO, enable interrupts, and wait for the transfer to complete.
519 */
520 if (ep93xx_spi_read_write(espi)) {
521 ep93xx_spi_enable_interrupts(espi);
522 wait_for_completion(&espi->wait);
523 }
524}
525
526/**
527 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
528 * @espi: ep93xx SPI controller struct
529 * @dir: DMA transfer direction
530 *
531 * Function configures the DMA, maps the buffer and prepares the DMA
532 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
533 * in case of failure.
534 */
535static struct dma_async_tx_descriptor *
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700536ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
Mika Westerberg626a96d2011-05-29 13:10:06 +0300537{
538 struct spi_transfer *t = espi->current_msg->state;
539 struct dma_async_tx_descriptor *txd;
540 enum dma_slave_buswidth buswidth;
541 struct dma_slave_config conf;
542 struct scatterlist *sg;
543 struct sg_table *sgt;
544 struct dma_chan *chan;
545 const void *buf, *pbuf;
546 size_t len = t->len;
547 int i, ret, nents;
548
549 if (bits_per_word(espi) > 8)
550 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
551 else
552 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
553
554 memset(&conf, 0, sizeof(conf));
555 conf.direction = dir;
556
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700557 if (dir == DMA_DEV_TO_MEM) {
Mika Westerberg626a96d2011-05-29 13:10:06 +0300558 chan = espi->dma_rx;
559 buf = t->rx_buf;
560 sgt = &espi->rx_sgt;
561
562 conf.src_addr = espi->sspdr_phys;
563 conf.src_addr_width = buswidth;
564 } else {
565 chan = espi->dma_tx;
566 buf = t->tx_buf;
567 sgt = &espi->tx_sgt;
568
569 conf.dst_addr = espi->sspdr_phys;
570 conf.dst_addr_width = buswidth;
571 }
572
573 ret = dmaengine_slave_config(chan, &conf);
574 if (ret)
575 return ERR_PTR(ret);
576
577 /*
578 * We need to split the transfer into PAGE_SIZE'd chunks. This is
579 * because we are using @espi->zeropage to provide a zero RX buffer
580 * for the TX transfers and we have only allocated one page for that.
581 *
582 * For performance reasons we allocate a new sg_table only when
583 * needed. Otherwise we will re-use the current one. Eventually the
584 * last sg_table is released in ep93xx_spi_release_dma().
585 */
586
587 nents = DIV_ROUND_UP(len, PAGE_SIZE);
588 if (nents != sgt->nents) {
589 sg_free_table(sgt);
590
591 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
592 if (ret)
593 return ERR_PTR(ret);
594 }
595
596 pbuf = buf;
597 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
598 size_t bytes = min_t(size_t, len, PAGE_SIZE);
599
600 if (buf) {
601 sg_set_page(sg, virt_to_page(pbuf), bytes,
602 offset_in_page(pbuf));
603 } else {
604 sg_set_page(sg, virt_to_page(espi->zeropage),
605 bytes, 0);
606 }
607
608 pbuf += bytes;
609 len -= bytes;
610 }
611
612 if (WARN_ON(len)) {
613 dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
614 return ERR_PTR(-EINVAL);
615 }
616
617 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
618 if (!nents)
619 return ERR_PTR(-ENOMEM);
620
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700621 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300622 if (!txd) {
623 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
624 return ERR_PTR(-ENOMEM);
625 }
626 return txd;
627}
628
629/**
630 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
631 * @espi: ep93xx SPI controller struct
632 * @dir: DMA transfer direction
633 *
634 * Function finishes with the DMA transfer. After this, the DMA buffer is
635 * unmapped.
636 */
637static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700638 enum dma_transfer_direction dir)
Mika Westerberg626a96d2011-05-29 13:10:06 +0300639{
640 struct dma_chan *chan;
641 struct sg_table *sgt;
642
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700643 if (dir == DMA_DEV_TO_MEM) {
Mika Westerberg626a96d2011-05-29 13:10:06 +0300644 chan = espi->dma_rx;
645 sgt = &espi->rx_sgt;
646 } else {
647 chan = espi->dma_tx;
648 sgt = &espi->tx_sgt;
649 }
650
651 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
652}
653
654static void ep93xx_spi_dma_callback(void *callback_param)
655{
656 complete(callback_param);
657}
658
659static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
660{
661 struct spi_message *msg = espi->current_msg;
662 struct dma_async_tx_descriptor *rxd, *txd;
663
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700664 rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300665 if (IS_ERR(rxd)) {
666 dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
667 msg->status = PTR_ERR(rxd);
668 return;
669 }
670
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700671 txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300672 if (IS_ERR(txd)) {
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700673 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300674 dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
675 msg->status = PTR_ERR(txd);
676 return;
677 }
678
679 /* We are ready when RX is done */
680 rxd->callback = ep93xx_spi_dma_callback;
681 rxd->callback_param = &espi->wait;
682
683 /* Now submit both descriptors and wait while they finish */
684 dmaengine_submit(rxd);
685 dmaengine_submit(txd);
686
687 dma_async_issue_pending(espi->dma_rx);
688 dma_async_issue_pending(espi->dma_tx);
689
690 wait_for_completion(&espi->wait);
691
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700692 ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
693 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300694}
695
Mika Westerberg011f23a2010-05-06 04:47:04 +0000696/**
697 * ep93xx_spi_process_transfer() - processes one SPI transfer
698 * @espi: ep93xx SPI controller struct
699 * @msg: current message
700 * @t: transfer to process
701 *
702 * This function processes one SPI transfer given in @t. Function waits until
703 * transfer is complete (may sleep) and updates @msg->status based on whether
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300704 * transfer was successfully processed or not.
Mika Westerberg011f23a2010-05-06 04:47:04 +0000705 */
706static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
707 struct spi_message *msg,
708 struct spi_transfer *t)
709{
710 struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
H Hartley Sweeten4870c212013-06-28 11:43:34 -0700711 int err;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000712
713 msg->state = t;
714
H Hartley Sweeten4870c212013-06-28 11:43:34 -0700715 err = ep93xx_spi_calc_divisors(espi, chip, t->speed_hz);
716 if (err) {
717 dev_err(&espi->pdev->dev, "failed to adjust speed\n");
718 msg->status = err;
719 return;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000720 }
721
H Hartley Sweeten4870c212013-06-28 11:43:34 -0700722 chip->dss = bits_per_word_to_dss(t->bits_per_word);
723
724 ep93xx_spi_chip_setup(espi, chip);
725
Mika Westerberg011f23a2010-05-06 04:47:04 +0000726 espi->rx = 0;
727 espi->tx = 0;
728
729 /*
Mika Westerberg626a96d2011-05-29 13:10:06 +0300730 * There is no point of setting up DMA for the transfers which will
731 * fit into the FIFO and can be transferred with a single interrupt.
732 * So in these cases we will be using PIO and don't bother for DMA.
Mika Westerberg011f23a2010-05-06 04:47:04 +0000733 */
Mika Westerberg626a96d2011-05-29 13:10:06 +0300734 if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
735 ep93xx_spi_dma_transfer(espi);
736 else
737 ep93xx_spi_pio_transfer(espi);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000738
739 /*
740 * In case of error during transmit, we bail out from processing
741 * the message.
742 */
743 if (msg->status)
744 return;
745
Mika Westerberg626a96d2011-05-29 13:10:06 +0300746 msg->actual_length += t->len;
747
Mika Westerberg011f23a2010-05-06 04:47:04 +0000748 /*
749 * After this transfer is finished, perform any possible
750 * post-transfer actions requested by the protocol driver.
751 */
752 if (t->delay_usecs) {
753 set_current_state(TASK_UNINTERRUPTIBLE);
754 schedule_timeout(usecs_to_jiffies(t->delay_usecs));
755 }
756 if (t->cs_change) {
757 if (!list_is_last(&t->transfer_list, &msg->transfers)) {
758 /*
759 * In case protocol driver is asking us to drop the
760 * chipselect briefly, we let the scheduler to handle
761 * any "delay" here.
762 */
763 ep93xx_spi_cs_control(msg->spi, false);
764 cond_resched();
765 ep93xx_spi_cs_control(msg->spi, true);
766 }
767 }
Mika Westerberg011f23a2010-05-06 04:47:04 +0000768}
769
770/*
771 * ep93xx_spi_process_message() - process one SPI message
772 * @espi: ep93xx SPI controller struct
773 * @msg: message to process
774 *
775 * This function processes a single SPI message. We go through all transfers in
776 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
777 * asserted during the whole message (unless per transfer cs_change is set).
778 *
779 * @msg->status contains %0 in case of success or negative error code in case of
780 * failure.
781 */
782static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
783 struct spi_message *msg)
784{
785 unsigned long timeout;
786 struct spi_transfer *t;
787 int err;
788
789 /*
790 * Enable the SPI controller and its clock.
791 */
792 err = ep93xx_spi_enable(espi);
793 if (err) {
794 dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
795 msg->status = err;
796 return;
797 }
798
799 /*
800 * Just to be sure: flush any data from RX FIFO.
801 */
802 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
803 while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
804 if (time_after(jiffies, timeout)) {
805 dev_warn(&espi->pdev->dev,
806 "timeout while flushing RX FIFO\n");
807 msg->status = -ETIMEDOUT;
808 return;
809 }
810 ep93xx_spi_read_u16(espi, SSPDR);
811 }
812
813 /*
814 * We explicitly handle FIFO level. This way we don't have to check TX
815 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
816 */
817 espi->fifo_level = 0;
818
819 /*
H Hartley Sweeten4870c212013-06-28 11:43:34 -0700820 * Assert the chipselect.
Mika Westerberg011f23a2010-05-06 04:47:04 +0000821 */
Mika Westerberg011f23a2010-05-06 04:47:04 +0000822 ep93xx_spi_cs_control(msg->spi, true);
823
824 list_for_each_entry(t, &msg->transfers, transfer_list) {
825 ep93xx_spi_process_transfer(espi, msg, t);
826 if (msg->status)
827 break;
828 }
829
830 /*
831 * Now the whole message is transferred (or failed for some reason). We
832 * deselect the device and disable the SPI controller.
833 */
834 ep93xx_spi_cs_control(msg->spi, false);
835 ep93xx_spi_disable(espi);
836}
837
838#define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
839
840/**
841 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
842 * @work: work struct
843 *
844 * Workqueue worker function. This function is called when there are new
845 * SPI messages to be processed. Message is taken out from the queue and then
846 * passed to ep93xx_spi_process_message().
847 *
848 * After message is transferred, protocol driver is notified by calling
849 * @msg->complete(). In case of error, @msg->status is set to negative error
850 * number, otherwise it contains zero (and @msg->actual_length is updated).
851 */
852static void ep93xx_spi_work(struct work_struct *work)
853{
854 struct ep93xx_spi *espi = work_to_espi(work);
855 struct spi_message *msg;
856
857 spin_lock_irq(&espi->lock);
858 if (!espi->running || espi->current_msg ||
859 list_empty(&espi->msg_queue)) {
860 spin_unlock_irq(&espi->lock);
861 return;
862 }
863 msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
864 list_del_init(&msg->queue);
865 espi->current_msg = msg;
866 spin_unlock_irq(&espi->lock);
867
868 ep93xx_spi_process_message(espi, msg);
869
870 /*
871 * Update the current message and re-schedule ourselves if there are
872 * more messages in the queue.
873 */
874 spin_lock_irq(&espi->lock);
875 espi->current_msg = NULL;
876 if (espi->running && !list_empty(&espi->msg_queue))
877 queue_work(espi->wq, &espi->msg_work);
878 spin_unlock_irq(&espi->lock);
879
880 /* notify the protocol driver that we are done with this message */
881 msg->complete(msg->context);
882}
883
884static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
885{
886 struct ep93xx_spi *espi = dev_id;
887 u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
888
889 /*
890 * If we got ROR (receive overrun) interrupt we know that something is
891 * wrong. Just abort the message.
892 */
893 if (unlikely(irq_status & SSPIIR_RORIS)) {
894 /* clear the overrun interrupt */
895 ep93xx_spi_write_u8(espi, SSPICR, 0);
896 dev_warn(&espi->pdev->dev,
897 "receive overrun, aborting the message\n");
898 espi->current_msg->status = -EIO;
899 } else {
900 /*
901 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
902 * simply execute next data transfer.
903 */
904 if (ep93xx_spi_read_write(espi)) {
905 /*
906 * In normal case, there still is some processing left
907 * for current transfer. Let's wait for the next
908 * interrupt then.
909 */
910 return IRQ_HANDLED;
911 }
912 }
913
914 /*
915 * Current transfer is finished, either with error or with success. In
916 * any case we disable interrupts and notify the worker to handle
917 * any post-processing of the message.
918 */
919 ep93xx_spi_disable_interrupts(espi);
920 complete(&espi->wait);
921 return IRQ_HANDLED;
922}
923
Mika Westerberg626a96d2011-05-29 13:10:06 +0300924static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
925{
926 if (ep93xx_dma_chan_is_m2p(chan))
927 return false;
928
929 chan->private = filter_param;
930 return true;
931}
932
933static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
934{
935 dma_cap_mask_t mask;
936 int ret;
937
938 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
939 if (!espi->zeropage)
940 return -ENOMEM;
941
942 dma_cap_zero(mask);
943 dma_cap_set(DMA_SLAVE, mask);
944
945 espi->dma_rx_data.port = EP93XX_DMA_SSP;
Vinod Koula485df42011-10-14 10:47:38 +0530946 espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
Mika Westerberg626a96d2011-05-29 13:10:06 +0300947 espi->dma_rx_data.name = "ep93xx-spi-rx";
948
949 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
950 &espi->dma_rx_data);
951 if (!espi->dma_rx) {
952 ret = -ENODEV;
953 goto fail_free_page;
954 }
955
956 espi->dma_tx_data.port = EP93XX_DMA_SSP;
Vinod Koula485df42011-10-14 10:47:38 +0530957 espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
Mika Westerberg626a96d2011-05-29 13:10:06 +0300958 espi->dma_tx_data.name = "ep93xx-spi-tx";
959
960 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
961 &espi->dma_tx_data);
962 if (!espi->dma_tx) {
963 ret = -ENODEV;
964 goto fail_release_rx;
965 }
966
967 return 0;
968
969fail_release_rx:
970 dma_release_channel(espi->dma_rx);
971 espi->dma_rx = NULL;
972fail_free_page:
973 free_page((unsigned long)espi->zeropage);
974
975 return ret;
976}
977
978static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
979{
980 if (espi->dma_rx) {
981 dma_release_channel(espi->dma_rx);
982 sg_free_table(&espi->rx_sgt);
983 }
984 if (espi->dma_tx) {
985 dma_release_channel(espi->dma_tx);
986 sg_free_table(&espi->tx_sgt);
987 }
988
989 if (espi->zeropage)
990 free_page((unsigned long)espi->zeropage);
991}
992
Grant Likelyfd4a3192012-12-07 16:57:14 +0000993static int ep93xx_spi_probe(struct platform_device *pdev)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000994{
995 struct spi_master *master;
996 struct ep93xx_spi_info *info;
997 struct ep93xx_spi *espi;
998 struct resource *res;
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +0300999 int irq;
Mika Westerberg011f23a2010-05-06 04:47:04 +00001000 int error;
1001
1002 info = pdev->dev.platform_data;
1003
1004 master = spi_alloc_master(&pdev->dev, sizeof(*espi));
1005 if (!master) {
1006 dev_err(&pdev->dev, "failed to allocate spi master\n");
1007 return -ENOMEM;
1008 }
1009
1010 master->setup = ep93xx_spi_setup;
1011 master->transfer = ep93xx_spi_transfer;
1012 master->cleanup = ep93xx_spi_cleanup;
1013 master->bus_num = pdev->id;
1014 master->num_chipselect = info->num_chipselect;
1015 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
Stephen Warren24778be2013-05-21 20:36:35 -06001016 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001017
1018 platform_set_drvdata(pdev, master);
1019
1020 espi = spi_master_get_devdata(master);
1021
1022 espi->clk = clk_get(&pdev->dev, NULL);
1023 if (IS_ERR(espi->clk)) {
1024 dev_err(&pdev->dev, "unable to get spi clock\n");
1025 error = PTR_ERR(espi->clk);
1026 goto fail_release_master;
1027 }
1028
1029 spin_lock_init(&espi->lock);
1030 init_completion(&espi->wait);
1031
1032 /*
1033 * Calculate maximum and minimum supported clock rates
1034 * for the controller.
1035 */
1036 espi->max_rate = clk_get_rate(espi->clk) / 2;
1037 espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1038 espi->pdev = pdev;
1039
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001040 irq = platform_get_irq(pdev, 0);
1041 if (irq < 0) {
Mika Westerberg011f23a2010-05-06 04:47:04 +00001042 error = -EBUSY;
1043 dev_err(&pdev->dev, "failed to get irq resources\n");
1044 goto fail_put_clock;
1045 }
1046
1047 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1048 if (!res) {
1049 dev_err(&pdev->dev, "unable to get iomem resource\n");
1050 error = -ENODEV;
1051 goto fail_put_clock;
1052 }
1053
Mika Westerberg626a96d2011-05-29 13:10:06 +03001054 espi->sspdr_phys = res->start + SSPDR;
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001055
Thierry Redingb0ee5602013-01-21 11:09:18 +01001056 espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
1057 if (IS_ERR(espi->regs_base)) {
1058 error = PTR_ERR(espi->regs_base);
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001059 goto fail_put_clock;
Mika Westerberg011f23a2010-05-06 04:47:04 +00001060 }
1061
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001062 error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
1063 0, "ep93xx-spi", espi);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001064 if (error) {
1065 dev_err(&pdev->dev, "failed to request irq\n");
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001066 goto fail_put_clock;
Mika Westerberg011f23a2010-05-06 04:47:04 +00001067 }
1068
Mika Westerberg626a96d2011-05-29 13:10:06 +03001069 if (info->use_dma && ep93xx_spi_setup_dma(espi))
1070 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1071
Mika Westerberg011f23a2010-05-06 04:47:04 +00001072 espi->wq = create_singlethread_workqueue("ep93xx_spid");
1073 if (!espi->wq) {
1074 dev_err(&pdev->dev, "unable to create workqueue\n");
Wei Yongjun27474d22013-05-16 12:08:56 +08001075 error = -ENOMEM;
Mika Westerberg626a96d2011-05-29 13:10:06 +03001076 goto fail_free_dma;
Mika Westerberg011f23a2010-05-06 04:47:04 +00001077 }
1078 INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1079 INIT_LIST_HEAD(&espi->msg_queue);
1080 espi->running = true;
1081
1082 /* make sure that the hardware is disabled */
1083 ep93xx_spi_write_u8(espi, SSPCR1, 0);
1084
1085 error = spi_register_master(master);
1086 if (error) {
1087 dev_err(&pdev->dev, "failed to register SPI master\n");
1088 goto fail_free_queue;
1089 }
1090
1091 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001092 (unsigned long)res->start, irq);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001093
1094 return 0;
1095
1096fail_free_queue:
1097 destroy_workqueue(espi->wq);
Mika Westerberg626a96d2011-05-29 13:10:06 +03001098fail_free_dma:
1099 ep93xx_spi_release_dma(espi);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001100fail_put_clock:
1101 clk_put(espi->clk);
1102fail_release_master:
1103 spi_master_put(master);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001104
1105 return error;
1106}
1107
Grant Likelyfd4a3192012-12-07 16:57:14 +00001108static int ep93xx_spi_remove(struct platform_device *pdev)
Mika Westerberg011f23a2010-05-06 04:47:04 +00001109{
1110 struct spi_master *master = platform_get_drvdata(pdev);
1111 struct ep93xx_spi *espi = spi_master_get_devdata(master);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001112
1113 spin_lock_irq(&espi->lock);
1114 espi->running = false;
1115 spin_unlock_irq(&espi->lock);
1116
1117 destroy_workqueue(espi->wq);
1118
1119 /*
1120 * Complete remaining messages with %-ESHUTDOWN status.
1121 */
1122 spin_lock_irq(&espi->lock);
1123 while (!list_empty(&espi->msg_queue)) {
1124 struct spi_message *msg;
1125
1126 msg = list_first_entry(&espi->msg_queue,
1127 struct spi_message, queue);
1128 list_del_init(&msg->queue);
1129 msg->status = -ESHUTDOWN;
1130 spin_unlock_irq(&espi->lock);
1131 msg->complete(msg->context);
1132 spin_lock_irq(&espi->lock);
1133 }
1134 spin_unlock_irq(&espi->lock);
1135
Mika Westerberg626a96d2011-05-29 13:10:06 +03001136 ep93xx_spi_release_dma(espi);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001137 clk_put(espi->clk);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001138
1139 spi_unregister_master(master);
1140 return 0;
1141}
1142
1143static struct platform_driver ep93xx_spi_driver = {
1144 .driver = {
1145 .name = "ep93xx-spi",
1146 .owner = THIS_MODULE,
1147 },
Grant Likely940ab882011-10-05 11:29:49 -06001148 .probe = ep93xx_spi_probe,
Grant Likelyfd4a3192012-12-07 16:57:14 +00001149 .remove = ep93xx_spi_remove,
Mika Westerberg011f23a2010-05-06 04:47:04 +00001150};
Grant Likely940ab882011-10-05 11:29:49 -06001151module_platform_driver(ep93xx_spi_driver);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001152
1153MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1154MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1155MODULE_LICENSE("GPL");
1156MODULE_ALIAS("platform:ep93xx-spi");