blob: 03a77f4740c124484821b0f6567c82c02d45bd5f [file] [log] [blame]
David Howells3cb98952013-09-24 10:35:17 +01001/* Generic associative array implementation.
2 *
3 * See Documentation/assoc_array.txt for information.
4 *
5 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
6 * Written by David Howells (dhowells@redhat.com)
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public Licence
10 * as published by the Free Software Foundation; either version
11 * 2 of the Licence, or (at your option) any later version.
12 */
13//#define DEBUG
14#include <linux/slab.h>
David Howellsb2a4df22013-09-24 10:35:18 +010015#include <linux/err.h>
David Howells3cb98952013-09-24 10:35:17 +010016#include <linux/assoc_array_priv.h>
17
18/*
19 * Iterate over an associative array. The caller must hold the RCU read lock
20 * or better.
21 */
22static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
23 const struct assoc_array_ptr *stop,
24 int (*iterator)(const void *leaf,
25 void *iterator_data),
26 void *iterator_data)
27{
28 const struct assoc_array_shortcut *shortcut;
29 const struct assoc_array_node *node;
30 const struct assoc_array_ptr *cursor, *ptr, *parent;
31 unsigned long has_meta;
32 int slot, ret;
33
34 cursor = root;
35
36begin_node:
37 if (assoc_array_ptr_is_shortcut(cursor)) {
38 /* Descend through a shortcut */
39 shortcut = assoc_array_ptr_to_shortcut(cursor);
40 smp_read_barrier_depends();
41 cursor = ACCESS_ONCE(shortcut->next_node);
42 }
43
44 node = assoc_array_ptr_to_node(cursor);
45 smp_read_barrier_depends();
46 slot = 0;
47
48 /* We perform two passes of each node.
49 *
50 * The first pass does all the leaves in this node. This means we
51 * don't miss any leaves if the node is split up by insertion whilst
52 * we're iterating over the branches rooted here (we may, however, see
53 * some leaves twice).
54 */
55 has_meta = 0;
56 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
57 ptr = ACCESS_ONCE(node->slots[slot]);
58 has_meta |= (unsigned long)ptr;
59 if (ptr && assoc_array_ptr_is_leaf(ptr)) {
60 /* We need a barrier between the read of the pointer
61 * and dereferencing the pointer - but only if we are
62 * actually going to dereference it.
63 */
64 smp_read_barrier_depends();
65
66 /* Invoke the callback */
67 ret = iterator(assoc_array_ptr_to_leaf(ptr),
68 iterator_data);
69 if (ret)
70 return ret;
71 }
72 }
73
74 /* The second pass attends to all the metadata pointers. If we follow
75 * one of these we may find that we don't come back here, but rather go
76 * back to a replacement node with the leaves in a different layout.
77 *
78 * We are guaranteed to make progress, however, as the slot number for
79 * a particular portion of the key space cannot change - and we
80 * continue at the back pointer + 1.
81 */
82 if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
83 goto finished_node;
84 slot = 0;
85
86continue_node:
87 node = assoc_array_ptr_to_node(cursor);
88 smp_read_barrier_depends();
89
90 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
91 ptr = ACCESS_ONCE(node->slots[slot]);
92 if (assoc_array_ptr_is_meta(ptr)) {
93 cursor = ptr;
94 goto begin_node;
95 }
96 }
97
98finished_node:
99 /* Move up to the parent (may need to skip back over a shortcut) */
100 parent = ACCESS_ONCE(node->back_pointer);
101 slot = node->parent_slot;
102 if (parent == stop)
103 return 0;
104
105 if (assoc_array_ptr_is_shortcut(parent)) {
106 shortcut = assoc_array_ptr_to_shortcut(parent);
107 smp_read_barrier_depends();
108 cursor = parent;
109 parent = ACCESS_ONCE(shortcut->back_pointer);
110 slot = shortcut->parent_slot;
111 if (parent == stop)
112 return 0;
113 }
114
115 /* Ascend to next slot in parent node */
116 cursor = parent;
117 slot++;
118 goto continue_node;
119}
120
121/**
122 * assoc_array_iterate - Pass all objects in the array to a callback
123 * @array: The array to iterate over.
124 * @iterator: The callback function.
125 * @iterator_data: Private data for the callback function.
126 *
127 * Iterate over all the objects in an associative array. Each one will be
128 * presented to the iterator function.
129 *
130 * If the array is being modified concurrently with the iteration then it is
131 * possible that some objects in the array will be passed to the iterator
132 * callback more than once - though every object should be passed at least
133 * once. If this is undesirable then the caller must lock against modification
134 * for the duration of this function.
135 *
136 * The function will return 0 if no objects were in the array or else it will
137 * return the result of the last iterator function called. Iteration stops
138 * immediately if any call to the iteration function results in a non-zero
139 * return.
140 *
141 * The caller should hold the RCU read lock or better if concurrent
142 * modification is possible.
143 */
144int assoc_array_iterate(const struct assoc_array *array,
145 int (*iterator)(const void *object,
146 void *iterator_data),
147 void *iterator_data)
148{
149 struct assoc_array_ptr *root = ACCESS_ONCE(array->root);
150
151 if (!root)
152 return 0;
153 return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
154}
155
156enum assoc_array_walk_status {
157 assoc_array_walk_tree_empty,
158 assoc_array_walk_found_terminal_node,
159 assoc_array_walk_found_wrong_shortcut,
Stephen Hemminger30b02c42014-01-23 13:24:09 +0000160};
David Howells3cb98952013-09-24 10:35:17 +0100161
162struct assoc_array_walk_result {
163 struct {
164 struct assoc_array_node *node; /* Node in which leaf might be found */
165 int level;
166 int slot;
167 } terminal_node;
168 struct {
169 struct assoc_array_shortcut *shortcut;
170 int level;
171 int sc_level;
172 unsigned long sc_segments;
173 unsigned long dissimilarity;
174 } wrong_shortcut;
175};
176
177/*
178 * Navigate through the internal tree looking for the closest node to the key.
179 */
180static enum assoc_array_walk_status
181assoc_array_walk(const struct assoc_array *array,
182 const struct assoc_array_ops *ops,
183 const void *index_key,
184 struct assoc_array_walk_result *result)
185{
186 struct assoc_array_shortcut *shortcut;
187 struct assoc_array_node *node;
188 struct assoc_array_ptr *cursor, *ptr;
189 unsigned long sc_segments, dissimilarity;
190 unsigned long segments;
191 int level, sc_level, next_sc_level;
192 int slot;
193
194 pr_devel("-->%s()\n", __func__);
195
196 cursor = ACCESS_ONCE(array->root);
197 if (!cursor)
198 return assoc_array_walk_tree_empty;
199
200 level = 0;
201
202 /* Use segments from the key for the new leaf to navigate through the
203 * internal tree, skipping through nodes and shortcuts that are on
204 * route to the destination. Eventually we'll come to a slot that is
205 * either empty or contains a leaf at which point we've found a node in
206 * which the leaf we're looking for might be found or into which it
207 * should be inserted.
208 */
209jumped:
210 segments = ops->get_key_chunk(index_key, level);
211 pr_devel("segments[%d]: %lx\n", level, segments);
212
213 if (assoc_array_ptr_is_shortcut(cursor))
214 goto follow_shortcut;
215
216consider_node:
217 node = assoc_array_ptr_to_node(cursor);
218 smp_read_barrier_depends();
219
220 slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
221 slot &= ASSOC_ARRAY_FAN_MASK;
222 ptr = ACCESS_ONCE(node->slots[slot]);
223
224 pr_devel("consider slot %x [ix=%d type=%lu]\n",
225 slot, level, (unsigned long)ptr & 3);
226
227 if (!assoc_array_ptr_is_meta(ptr)) {
228 /* The node doesn't have a node/shortcut pointer in the slot
229 * corresponding to the index key that we have to follow.
230 */
231 result->terminal_node.node = node;
232 result->terminal_node.level = level;
233 result->terminal_node.slot = slot;
234 pr_devel("<--%s() = terminal_node\n", __func__);
235 return assoc_array_walk_found_terminal_node;
236 }
237
238 if (assoc_array_ptr_is_node(ptr)) {
239 /* There is a pointer to a node in the slot corresponding to
240 * this index key segment, so we need to follow it.
241 */
242 cursor = ptr;
243 level += ASSOC_ARRAY_LEVEL_STEP;
244 if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
245 goto consider_node;
246 goto jumped;
247 }
248
249 /* There is a shortcut in the slot corresponding to the index key
250 * segment. We follow the shortcut if its partial index key matches
251 * this leaf's. Otherwise we need to split the shortcut.
252 */
253 cursor = ptr;
254follow_shortcut:
255 shortcut = assoc_array_ptr_to_shortcut(cursor);
256 smp_read_barrier_depends();
257 pr_devel("shortcut to %d\n", shortcut->skip_to_level);
258 sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
259 BUG_ON(sc_level > shortcut->skip_to_level);
260
261 do {
262 /* Check the leaf against the shortcut's index key a word at a
263 * time, trimming the final word (the shortcut stores the index
264 * key completely from the root to the shortcut's target).
265 */
266 if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
267 segments = ops->get_key_chunk(index_key, sc_level);
268
269 sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
270 dissimilarity = segments ^ sc_segments;
271
272 if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
273 /* Trim segments that are beyond the shortcut */
274 int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
275 dissimilarity &= ~(ULONG_MAX << shift);
276 next_sc_level = shortcut->skip_to_level;
277 } else {
278 next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
279 next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
280 }
281
282 if (dissimilarity != 0) {
283 /* This shortcut points elsewhere */
284 result->wrong_shortcut.shortcut = shortcut;
285 result->wrong_shortcut.level = level;
286 result->wrong_shortcut.sc_level = sc_level;
287 result->wrong_shortcut.sc_segments = sc_segments;
288 result->wrong_shortcut.dissimilarity = dissimilarity;
289 return assoc_array_walk_found_wrong_shortcut;
290 }
291
292 sc_level = next_sc_level;
293 } while (sc_level < shortcut->skip_to_level);
294
295 /* The shortcut matches the leaf's index to this point. */
296 cursor = ACCESS_ONCE(shortcut->next_node);
297 if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
298 level = sc_level;
299 goto jumped;
300 } else {
301 level = sc_level;
302 goto consider_node;
303 }
304}
305
306/**
307 * assoc_array_find - Find an object by index key
308 * @array: The associative array to search.
309 * @ops: The operations to use.
310 * @index_key: The key to the object.
311 *
312 * Find an object in an associative array by walking through the internal tree
313 * to the node that should contain the object and then searching the leaves
314 * there. NULL is returned if the requested object was not found in the array.
315 *
316 * The caller must hold the RCU read lock or better.
317 */
318void *assoc_array_find(const struct assoc_array *array,
319 const struct assoc_array_ops *ops,
320 const void *index_key)
321{
322 struct assoc_array_walk_result result;
323 const struct assoc_array_node *node;
324 const struct assoc_array_ptr *ptr;
325 const void *leaf;
326 int slot;
327
328 if (assoc_array_walk(array, ops, index_key, &result) !=
329 assoc_array_walk_found_terminal_node)
330 return NULL;
331
332 node = result.terminal_node.node;
333 smp_read_barrier_depends();
334
335 /* If the target key is available to us, it's has to be pointed to by
336 * the terminal node.
337 */
338 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
339 ptr = ACCESS_ONCE(node->slots[slot]);
340 if (ptr && assoc_array_ptr_is_leaf(ptr)) {
341 /* We need a barrier between the read of the pointer
342 * and dereferencing the pointer - but only if we are
343 * actually going to dereference it.
344 */
345 leaf = assoc_array_ptr_to_leaf(ptr);
346 smp_read_barrier_depends();
347 if (ops->compare_object(leaf, index_key))
348 return (void *)leaf;
349 }
350 }
351
352 return NULL;
353}
354
355/*
356 * Destructively iterate over an associative array. The caller must prevent
357 * other simultaneous accesses.
358 */
359static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
360 const struct assoc_array_ops *ops)
361{
362 struct assoc_array_shortcut *shortcut;
363 struct assoc_array_node *node;
364 struct assoc_array_ptr *cursor, *parent = NULL;
365 int slot = -1;
366
367 pr_devel("-->%s()\n", __func__);
368
369 cursor = root;
370 if (!cursor) {
371 pr_devel("empty\n");
372 return;
373 }
374
375move_to_meta:
376 if (assoc_array_ptr_is_shortcut(cursor)) {
377 /* Descend through a shortcut */
378 pr_devel("[%d] shortcut\n", slot);
379 BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
380 shortcut = assoc_array_ptr_to_shortcut(cursor);
381 BUG_ON(shortcut->back_pointer != parent);
382 BUG_ON(slot != -1 && shortcut->parent_slot != slot);
383 parent = cursor;
384 cursor = shortcut->next_node;
385 slot = -1;
386 BUG_ON(!assoc_array_ptr_is_node(cursor));
387 }
388
389 pr_devel("[%d] node\n", slot);
390 node = assoc_array_ptr_to_node(cursor);
391 BUG_ON(node->back_pointer != parent);
392 BUG_ON(slot != -1 && node->parent_slot != slot);
393 slot = 0;
394
395continue_node:
396 pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
397 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
398 struct assoc_array_ptr *ptr = node->slots[slot];
399 if (!ptr)
400 continue;
401 if (assoc_array_ptr_is_meta(ptr)) {
402 parent = cursor;
403 cursor = ptr;
404 goto move_to_meta;
405 }
406
407 if (ops) {
408 pr_devel("[%d] free leaf\n", slot);
409 ops->free_object(assoc_array_ptr_to_leaf(ptr));
410 }
411 }
412
413 parent = node->back_pointer;
414 slot = node->parent_slot;
415 pr_devel("free node\n");
416 kfree(node);
417 if (!parent)
418 return; /* Done */
419
420 /* Move back up to the parent (may need to free a shortcut on
421 * the way up) */
422 if (assoc_array_ptr_is_shortcut(parent)) {
423 shortcut = assoc_array_ptr_to_shortcut(parent);
424 BUG_ON(shortcut->next_node != cursor);
425 cursor = parent;
426 parent = shortcut->back_pointer;
427 slot = shortcut->parent_slot;
428 pr_devel("free shortcut\n");
429 kfree(shortcut);
430 if (!parent)
431 return;
432
433 BUG_ON(!assoc_array_ptr_is_node(parent));
434 }
435
436 /* Ascend to next slot in parent node */
437 pr_devel("ascend to %p[%d]\n", parent, slot);
438 cursor = parent;
439 node = assoc_array_ptr_to_node(cursor);
440 slot++;
441 goto continue_node;
442}
443
444/**
445 * assoc_array_destroy - Destroy an associative array
446 * @array: The array to destroy.
447 * @ops: The operations to use.
448 *
449 * Discard all metadata and free all objects in an associative array. The
450 * array will be empty and ready to use again upon completion. This function
451 * cannot fail.
452 *
453 * The caller must prevent all other accesses whilst this takes place as no
454 * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
455 * accesses to continue. On the other hand, no memory allocation is required.
456 */
457void assoc_array_destroy(struct assoc_array *array,
458 const struct assoc_array_ops *ops)
459{
460 assoc_array_destroy_subtree(array->root, ops);
461 array->root = NULL;
462}
463
464/*
465 * Handle insertion into an empty tree.
466 */
467static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
468{
469 struct assoc_array_node *new_n0;
470
471 pr_devel("-->%s()\n", __func__);
472
473 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
474 if (!new_n0)
475 return false;
476
477 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
478 edit->leaf_p = &new_n0->slots[0];
479 edit->adjust_count_on = new_n0;
480 edit->set[0].ptr = &edit->array->root;
481 edit->set[0].to = assoc_array_node_to_ptr(new_n0);
482
483 pr_devel("<--%s() = ok [no root]\n", __func__);
484 return true;
485}
486
487/*
488 * Handle insertion into a terminal node.
489 */
490static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
491 const struct assoc_array_ops *ops,
492 const void *index_key,
493 struct assoc_array_walk_result *result)
494{
495 struct assoc_array_shortcut *shortcut, *new_s0;
496 struct assoc_array_node *node, *new_n0, *new_n1, *side;
497 struct assoc_array_ptr *ptr;
498 unsigned long dissimilarity, base_seg, blank;
499 size_t keylen;
500 bool have_meta;
501 int level, diff;
502 int slot, next_slot, free_slot, i, j;
503
504 node = result->terminal_node.node;
505 level = result->terminal_node.level;
506 edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;
507
508 pr_devel("-->%s()\n", __func__);
509
510 /* We arrived at a node which doesn't have an onward node or shortcut
511 * pointer that we have to follow. This means that (a) the leaf we
512 * want must go here (either by insertion or replacement) or (b) we
513 * need to split this node and insert in one of the fragments.
514 */
515 free_slot = -1;
516
517 /* Firstly, we have to check the leaves in this node to see if there's
518 * a matching one we should replace in place.
519 */
520 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
521 ptr = node->slots[i];
522 if (!ptr) {
523 free_slot = i;
524 continue;
525 }
Jerome Marchand34caf1d2016-04-06 14:06:48 +0100526 if (assoc_array_ptr_is_leaf(ptr) &&
527 ops->compare_object(assoc_array_ptr_to_leaf(ptr),
528 index_key)) {
David Howells3cb98952013-09-24 10:35:17 +0100529 pr_devel("replace in slot %d\n", i);
530 edit->leaf_p = &node->slots[i];
531 edit->dead_leaf = node->slots[i];
532 pr_devel("<--%s() = ok [replace]\n", __func__);
533 return true;
534 }
535 }
536
537 /* If there is a free slot in this node then we can just insert the
538 * leaf here.
539 */
540 if (free_slot >= 0) {
541 pr_devel("insert in free slot %d\n", free_slot);
542 edit->leaf_p = &node->slots[free_slot];
543 edit->adjust_count_on = node;
544 pr_devel("<--%s() = ok [insert]\n", __func__);
545 return true;
546 }
547
548 /* The node has no spare slots - so we're either going to have to split
549 * it or insert another node before it.
550 *
551 * Whatever, we're going to need at least two new nodes - so allocate
552 * those now. We may also need a new shortcut, but we deal with that
553 * when we need it.
554 */
555 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
556 if (!new_n0)
557 return false;
558 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
559 new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
560 if (!new_n1)
561 return false;
562 edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);
563
564 /* We need to find out how similar the leaves are. */
565 pr_devel("no spare slots\n");
566 have_meta = false;
567 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
568 ptr = node->slots[i];
569 if (assoc_array_ptr_is_meta(ptr)) {
570 edit->segment_cache[i] = 0xff;
571 have_meta = true;
572 continue;
573 }
574 base_seg = ops->get_object_key_chunk(
575 assoc_array_ptr_to_leaf(ptr), level);
576 base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
577 edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
578 }
579
580 if (have_meta) {
581 pr_devel("have meta\n");
582 goto split_node;
583 }
584
585 /* The node contains only leaves */
586 dissimilarity = 0;
587 base_seg = edit->segment_cache[0];
588 for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
589 dissimilarity |= edit->segment_cache[i] ^ base_seg;
590
591 pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);
592
593 if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
594 /* The old leaves all cluster in the same slot. We will need
595 * to insert a shortcut if the new node wants to cluster with them.
596 */
597 if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
598 goto all_leaves_cluster_together;
599
600 /* Otherwise we can just insert a new node ahead of the old
601 * one.
602 */
603 goto present_leaves_cluster_but_not_new_leaf;
604 }
605
606split_node:
607 pr_devel("split node\n");
608
609 /* We need to split the current node; we know that the node doesn't
610 * simply contain a full set of leaves that cluster together (it
611 * contains meta pointers and/or non-clustering leaves).
612 *
613 * We need to expel at least two leaves out of a set consisting of the
614 * leaves in the node and the new leaf.
615 *
616 * We need a new node (n0) to replace the current one and a new node to
617 * take the expelled nodes (n1).
618 */
619 edit->set[0].to = assoc_array_node_to_ptr(new_n0);
620 new_n0->back_pointer = node->back_pointer;
621 new_n0->parent_slot = node->parent_slot;
622 new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
623 new_n1->parent_slot = -1; /* Need to calculate this */
624
625do_split_node:
626 pr_devel("do_split_node\n");
627
628 new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
629 new_n1->nr_leaves_on_branch = 0;
630
631 /* Begin by finding two matching leaves. There have to be at least two
632 * that match - even if there are meta pointers - because any leaf that
633 * would match a slot with a meta pointer in it must be somewhere
634 * behind that meta pointer and cannot be here. Further, given N
635 * remaining leaf slots, we now have N+1 leaves to go in them.
636 */
637 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
638 slot = edit->segment_cache[i];
639 if (slot != 0xff)
640 for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
641 if (edit->segment_cache[j] == slot)
642 goto found_slot_for_multiple_occupancy;
643 }
644found_slot_for_multiple_occupancy:
645 pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
646 BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
647 BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
648 BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);
649
650 new_n1->parent_slot = slot;
651
652 /* Metadata pointers cannot change slot */
653 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
654 if (assoc_array_ptr_is_meta(node->slots[i]))
655 new_n0->slots[i] = node->slots[i];
656 else
657 new_n0->slots[i] = NULL;
658 BUG_ON(new_n0->slots[slot] != NULL);
659 new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);
660
661 /* Filter the leaf pointers between the new nodes */
662 free_slot = -1;
663 next_slot = 0;
664 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
665 if (assoc_array_ptr_is_meta(node->slots[i]))
666 continue;
667 if (edit->segment_cache[i] == slot) {
668 new_n1->slots[next_slot++] = node->slots[i];
669 new_n1->nr_leaves_on_branch++;
670 } else {
671 do {
672 free_slot++;
673 } while (new_n0->slots[free_slot] != NULL);
674 new_n0->slots[free_slot] = node->slots[i];
675 }
676 }
677
678 pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);
679
680 if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
681 do {
682 free_slot++;
683 } while (new_n0->slots[free_slot] != NULL);
684 edit->leaf_p = &new_n0->slots[free_slot];
685 edit->adjust_count_on = new_n0;
686 } else {
687 edit->leaf_p = &new_n1->slots[next_slot++];
688 edit->adjust_count_on = new_n1;
689 }
690
691 BUG_ON(next_slot <= 1);
692
693 edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
694 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
695 if (edit->segment_cache[i] == 0xff) {
696 ptr = node->slots[i];
697 BUG_ON(assoc_array_ptr_is_leaf(ptr));
698 if (assoc_array_ptr_is_node(ptr)) {
699 side = assoc_array_ptr_to_node(ptr);
700 edit->set_backpointers[i] = &side->back_pointer;
701 } else {
702 shortcut = assoc_array_ptr_to_shortcut(ptr);
703 edit->set_backpointers[i] = &shortcut->back_pointer;
704 }
705 }
706 }
707
708 ptr = node->back_pointer;
709 if (!ptr)
710 edit->set[0].ptr = &edit->array->root;
711 else if (assoc_array_ptr_is_node(ptr))
712 edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
713 else
714 edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
715 edit->excised_meta[0] = assoc_array_node_to_ptr(node);
716 pr_devel("<--%s() = ok [split node]\n", __func__);
717 return true;
718
719present_leaves_cluster_but_not_new_leaf:
720 /* All the old leaves cluster in the same slot, but the new leaf wants
721 * to go into a different slot, so we create a new node to hold the new
722 * leaf and a pointer to a new node holding all the old leaves.
723 */
724 pr_devel("present leaves cluster but not new leaf\n");
725
726 new_n0->back_pointer = node->back_pointer;
727 new_n0->parent_slot = node->parent_slot;
728 new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
729 new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
730 new_n1->parent_slot = edit->segment_cache[0];
731 new_n1->nr_leaves_on_branch = node->nr_leaves_on_branch;
732 edit->adjust_count_on = new_n0;
733
734 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
735 new_n1->slots[i] = node->slots[i];
736
737 new_n0->slots[edit->segment_cache[0]] = assoc_array_node_to_ptr(new_n0);
738 edit->leaf_p = &new_n0->slots[edit->segment_cache[ASSOC_ARRAY_FAN_OUT]];
739
740 edit->set[0].ptr = &assoc_array_ptr_to_node(node->back_pointer)->slots[node->parent_slot];
741 edit->set[0].to = assoc_array_node_to_ptr(new_n0);
742 edit->excised_meta[0] = assoc_array_node_to_ptr(node);
743 pr_devel("<--%s() = ok [insert node before]\n", __func__);
744 return true;
745
746all_leaves_cluster_together:
747 /* All the leaves, new and old, want to cluster together in this node
748 * in the same slot, so we have to replace this node with a shortcut to
749 * skip over the identical parts of the key and then place a pair of
750 * nodes, one inside the other, at the end of the shortcut and
751 * distribute the keys between them.
752 *
753 * Firstly we need to work out where the leaves start diverging as a
754 * bit position into their keys so that we know how big the shortcut
755 * needs to be.
756 *
757 * We only need to make a single pass of N of the N+1 leaves because if
758 * any keys differ between themselves at bit X then at least one of
759 * them must also differ with the base key at bit X or before.
760 */
761 pr_devel("all leaves cluster together\n");
762 diff = INT_MAX;
763 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
David Howells23fd78d2013-12-02 11:24:18 +0000764 int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
765 index_key);
David Howells3cb98952013-09-24 10:35:17 +0100766 if (x < diff) {
767 BUG_ON(x < 0);
768 diff = x;
769 }
770 }
771 BUG_ON(diff == INT_MAX);
772 BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);
773
774 keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
775 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
776
777 new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
778 keylen * sizeof(unsigned long), GFP_KERNEL);
779 if (!new_s0)
780 return false;
781 edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
782
783 edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
784 new_s0->back_pointer = node->back_pointer;
785 new_s0->parent_slot = node->parent_slot;
786 new_s0->next_node = assoc_array_node_to_ptr(new_n0);
787 new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
788 new_n0->parent_slot = 0;
789 new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
790 new_n1->parent_slot = -1; /* Need to calculate this */
791
792 new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
793 pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
794 BUG_ON(level <= 0);
795
796 for (i = 0; i < keylen; i++)
797 new_s0->index_key[i] =
798 ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);
799
800 blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
801 pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
802 new_s0->index_key[keylen - 1] &= ~blank;
803
804 /* This now reduces to a node splitting exercise for which we'll need
805 * to regenerate the disparity table.
806 */
807 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
808 ptr = node->slots[i];
809 base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
810 level);
811 base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
812 edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
813 }
814
815 base_seg = ops->get_key_chunk(index_key, level);
816 base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
817 edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
818 goto do_split_node;
819}
820
821/*
822 * Handle insertion into the middle of a shortcut.
823 */
824static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
825 const struct assoc_array_ops *ops,
826 struct assoc_array_walk_result *result)
827{
828 struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
829 struct assoc_array_node *node, *new_n0, *side;
830 unsigned long sc_segments, dissimilarity, blank;
831 size_t keylen;
832 int level, sc_level, diff;
833 int sc_slot;
834
835 shortcut = result->wrong_shortcut.shortcut;
836 level = result->wrong_shortcut.level;
837 sc_level = result->wrong_shortcut.sc_level;
838 sc_segments = result->wrong_shortcut.sc_segments;
839 dissimilarity = result->wrong_shortcut.dissimilarity;
840
841 pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
842 __func__, level, dissimilarity, sc_level);
843
844 /* We need to split a shortcut and insert a node between the two
845 * pieces. Zero-length pieces will be dispensed with entirely.
846 *
847 * First of all, we need to find out in which level the first
848 * difference was.
849 */
850 diff = __ffs(dissimilarity);
851 diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
852 diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
853 pr_devel("diff=%d\n", diff);
854
855 if (!shortcut->back_pointer) {
856 edit->set[0].ptr = &edit->array->root;
857 } else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
858 node = assoc_array_ptr_to_node(shortcut->back_pointer);
859 edit->set[0].ptr = &node->slots[shortcut->parent_slot];
860 } else {
861 BUG();
862 }
863
864 edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);
865
866 /* Create a new node now since we're going to need it anyway */
867 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
868 if (!new_n0)
869 return false;
870 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
871 edit->adjust_count_on = new_n0;
872
873 /* Insert a new shortcut before the new node if this segment isn't of
874 * zero length - otherwise we just connect the new node directly to the
875 * parent.
876 */
877 level += ASSOC_ARRAY_LEVEL_STEP;
878 if (diff > level) {
879 pr_devel("pre-shortcut %d...%d\n", level, diff);
880 keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
881 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
882
883 new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
884 keylen * sizeof(unsigned long), GFP_KERNEL);
885 if (!new_s0)
886 return false;
887 edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
888 edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
889 new_s0->back_pointer = shortcut->back_pointer;
890 new_s0->parent_slot = shortcut->parent_slot;
891 new_s0->next_node = assoc_array_node_to_ptr(new_n0);
892 new_s0->skip_to_level = diff;
893
894 new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
895 new_n0->parent_slot = 0;
896
897 memcpy(new_s0->index_key, shortcut->index_key,
898 keylen * sizeof(unsigned long));
899
900 blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
901 pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
902 new_s0->index_key[keylen - 1] &= ~blank;
903 } else {
904 pr_devel("no pre-shortcut\n");
905 edit->set[0].to = assoc_array_node_to_ptr(new_n0);
906 new_n0->back_pointer = shortcut->back_pointer;
907 new_n0->parent_slot = shortcut->parent_slot;
908 }
909
910 side = assoc_array_ptr_to_node(shortcut->next_node);
911 new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;
912
913 /* We need to know which slot in the new node is going to take a
914 * metadata pointer.
915 */
916 sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
917 sc_slot &= ASSOC_ARRAY_FAN_MASK;
918
919 pr_devel("new slot %lx >> %d -> %d\n",
920 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);
921
922 /* Determine whether we need to follow the new node with a replacement
923 * for the current shortcut. We could in theory reuse the current
924 * shortcut if its parent slot number doesn't change - but that's a
925 * 1-in-16 chance so not worth expending the code upon.
926 */
927 level = diff + ASSOC_ARRAY_LEVEL_STEP;
928 if (level < shortcut->skip_to_level) {
929 pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
930 keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
931 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
932
933 new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) +
934 keylen * sizeof(unsigned long), GFP_KERNEL);
935 if (!new_s1)
936 return false;
937 edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
938
939 new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
940 new_s1->parent_slot = sc_slot;
941 new_s1->next_node = shortcut->next_node;
942 new_s1->skip_to_level = shortcut->skip_to_level;
943
944 new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
945
946 memcpy(new_s1->index_key, shortcut->index_key,
947 keylen * sizeof(unsigned long));
948
949 edit->set[1].ptr = &side->back_pointer;
950 edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
951 } else {
952 pr_devel("no post-shortcut\n");
953
954 /* We don't have to replace the pointed-to node as long as we
955 * use memory barriers to make sure the parent slot number is
956 * changed before the back pointer (the parent slot number is
957 * irrelevant to the old parent shortcut).
958 */
959 new_n0->slots[sc_slot] = shortcut->next_node;
960 edit->set_parent_slot[0].p = &side->parent_slot;
961 edit->set_parent_slot[0].to = sc_slot;
962 edit->set[1].ptr = &side->back_pointer;
963 edit->set[1].to = assoc_array_node_to_ptr(new_n0);
964 }
965
966 /* Install the new leaf in a spare slot in the new node. */
967 if (sc_slot == 0)
968 edit->leaf_p = &new_n0->slots[1];
969 else
970 edit->leaf_p = &new_n0->slots[0];
971
972 pr_devel("<--%s() = ok [split shortcut]\n", __func__);
973 return edit;
974}
975
976/**
977 * assoc_array_insert - Script insertion of an object into an associative array
978 * @array: The array to insert into.
979 * @ops: The operations to use.
980 * @index_key: The key to insert at.
981 * @object: The object to insert.
982 *
983 * Precalculate and preallocate a script for the insertion or replacement of an
984 * object in an associative array. This results in an edit script that can
985 * either be applied or cancelled.
986 *
987 * The function returns a pointer to an edit script or -ENOMEM.
988 *
989 * The caller should lock against other modifications and must continue to hold
990 * the lock until assoc_array_apply_edit() has been called.
991 *
992 * Accesses to the tree may take place concurrently with this function,
993 * provided they hold the RCU read lock.
994 */
995struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
996 const struct assoc_array_ops *ops,
997 const void *index_key,
998 void *object)
999{
1000 struct assoc_array_walk_result result;
1001 struct assoc_array_edit *edit;
1002
1003 pr_devel("-->%s()\n", __func__);
1004
1005 /* The leaf pointer we're given must not have the bottom bit set as we
1006 * use those for type-marking the pointer. NULL pointers are also not
1007 * allowed as they indicate an empty slot but we have to allow them
1008 * here as they can be updated later.
1009 */
1010 BUG_ON(assoc_array_ptr_is_meta(object));
1011
1012 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1013 if (!edit)
1014 return ERR_PTR(-ENOMEM);
1015 edit->array = array;
1016 edit->ops = ops;
1017 edit->leaf = assoc_array_leaf_to_ptr(object);
1018 edit->adjust_count_by = 1;
1019
1020 switch (assoc_array_walk(array, ops, index_key, &result)) {
1021 case assoc_array_walk_tree_empty:
1022 /* Allocate a root node if there isn't one yet */
1023 if (!assoc_array_insert_in_empty_tree(edit))
1024 goto enomem;
1025 return edit;
1026
1027 case assoc_array_walk_found_terminal_node:
1028 /* We found a node that doesn't have a node/shortcut pointer in
1029 * the slot corresponding to the index key that we have to
1030 * follow.
1031 */
1032 if (!assoc_array_insert_into_terminal_node(edit, ops, index_key,
1033 &result))
1034 goto enomem;
1035 return edit;
1036
1037 case assoc_array_walk_found_wrong_shortcut:
1038 /* We found a shortcut that didn't match our key in a slot we
1039 * needed to follow.
1040 */
1041 if (!assoc_array_insert_mid_shortcut(edit, ops, &result))
1042 goto enomem;
1043 return edit;
1044 }
1045
1046enomem:
1047 /* Clean up after an out of memory error */
1048 pr_devel("enomem\n");
1049 assoc_array_cancel_edit(edit);
1050 return ERR_PTR(-ENOMEM);
1051}
1052
1053/**
1054 * assoc_array_insert_set_object - Set the new object pointer in an edit script
1055 * @edit: The edit script to modify.
1056 * @object: The object pointer to set.
1057 *
1058 * Change the object to be inserted in an edit script. The object pointed to
1059 * by the old object is not freed. This must be done prior to applying the
1060 * script.
1061 */
1062void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object)
1063{
1064 BUG_ON(!object);
1065 edit->leaf = assoc_array_leaf_to_ptr(object);
1066}
1067
1068struct assoc_array_delete_collapse_context {
1069 struct assoc_array_node *node;
1070 const void *skip_leaf;
1071 int slot;
1072};
1073
1074/*
1075 * Subtree collapse to node iterator.
1076 */
1077static int assoc_array_delete_collapse_iterator(const void *leaf,
1078 void *iterator_data)
1079{
1080 struct assoc_array_delete_collapse_context *collapse = iterator_data;
1081
1082 if (leaf == collapse->skip_leaf)
1083 return 0;
1084
1085 BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT);
1086
1087 collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf);
1088 return 0;
1089}
1090
1091/**
1092 * assoc_array_delete - Script deletion of an object from an associative array
1093 * @array: The array to search.
1094 * @ops: The operations to use.
1095 * @index_key: The key to the object.
1096 *
1097 * Precalculate and preallocate a script for the deletion of an object from an
1098 * associative array. This results in an edit script that can either be
1099 * applied or cancelled.
1100 *
1101 * The function returns a pointer to an edit script if the object was found,
1102 * NULL if the object was not found or -ENOMEM.
1103 *
1104 * The caller should lock against other modifications and must continue to hold
1105 * the lock until assoc_array_apply_edit() has been called.
1106 *
1107 * Accesses to the tree may take place concurrently with this function,
1108 * provided they hold the RCU read lock.
1109 */
1110struct assoc_array_edit *assoc_array_delete(struct assoc_array *array,
1111 const struct assoc_array_ops *ops,
1112 const void *index_key)
1113{
1114 struct assoc_array_delete_collapse_context collapse;
1115 struct assoc_array_walk_result result;
1116 struct assoc_array_node *node, *new_n0;
1117 struct assoc_array_edit *edit;
1118 struct assoc_array_ptr *ptr;
1119 bool has_meta;
1120 int slot, i;
1121
1122 pr_devel("-->%s()\n", __func__);
1123
1124 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1125 if (!edit)
1126 return ERR_PTR(-ENOMEM);
1127 edit->array = array;
1128 edit->ops = ops;
1129 edit->adjust_count_by = -1;
1130
1131 switch (assoc_array_walk(array, ops, index_key, &result)) {
1132 case assoc_array_walk_found_terminal_node:
1133 /* We found a node that should contain the leaf we've been
1134 * asked to remove - *if* it's in the tree.
1135 */
1136 pr_devel("terminal_node\n");
1137 node = result.terminal_node.node;
1138
1139 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1140 ptr = node->slots[slot];
1141 if (ptr &&
1142 assoc_array_ptr_is_leaf(ptr) &&
1143 ops->compare_object(assoc_array_ptr_to_leaf(ptr),
1144 index_key))
1145 goto found_leaf;
1146 }
1147 case assoc_array_walk_tree_empty:
1148 case assoc_array_walk_found_wrong_shortcut:
1149 default:
1150 assoc_array_cancel_edit(edit);
1151 pr_devel("not found\n");
1152 return NULL;
1153 }
1154
1155found_leaf:
1156 BUG_ON(array->nr_leaves_on_tree <= 0);
1157
1158 /* In the simplest form of deletion we just clear the slot and release
1159 * the leaf after a suitable interval.
1160 */
1161 edit->dead_leaf = node->slots[slot];
1162 edit->set[0].ptr = &node->slots[slot];
1163 edit->set[0].to = NULL;
1164 edit->adjust_count_on = node;
1165
1166 /* If that concludes erasure of the last leaf, then delete the entire
1167 * internal array.
1168 */
1169 if (array->nr_leaves_on_tree == 1) {
1170 edit->set[1].ptr = &array->root;
1171 edit->set[1].to = NULL;
1172 edit->adjust_count_on = NULL;
1173 edit->excised_subtree = array->root;
1174 pr_devel("all gone\n");
1175 return edit;
1176 }
1177
1178 /* However, we'd also like to clear up some metadata blocks if we
1179 * possibly can.
1180 *
1181 * We go for a simple algorithm of: if this node has FAN_OUT or fewer
1182 * leaves in it, then attempt to collapse it - and attempt to
1183 * recursively collapse up the tree.
1184 *
1185 * We could also try and collapse in partially filled subtrees to take
1186 * up space in this node.
1187 */
1188 if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1189 struct assoc_array_node *parent, *grandparent;
1190 struct assoc_array_ptr *ptr;
1191
1192 /* First of all, we need to know if this node has metadata so
1193 * that we don't try collapsing if all the leaves are already
1194 * here.
1195 */
1196 has_meta = false;
1197 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1198 ptr = node->slots[i];
1199 if (assoc_array_ptr_is_meta(ptr)) {
1200 has_meta = true;
1201 break;
1202 }
1203 }
1204
1205 pr_devel("leaves: %ld [m=%d]\n",
1206 node->nr_leaves_on_branch - 1, has_meta);
1207
1208 /* Look further up the tree to see if we can collapse this node
1209 * into a more proximal node too.
1210 */
1211 parent = node;
1212 collapse_up:
1213 pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch);
1214
1215 ptr = parent->back_pointer;
1216 if (!ptr)
1217 goto do_collapse;
1218 if (assoc_array_ptr_is_shortcut(ptr)) {
1219 struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr);
1220 ptr = s->back_pointer;
1221 if (!ptr)
1222 goto do_collapse;
1223 }
1224
1225 grandparent = assoc_array_ptr_to_node(ptr);
1226 if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1227 parent = grandparent;
1228 goto collapse_up;
1229 }
1230
1231 do_collapse:
1232 /* There's no point collapsing if the original node has no meta
1233 * pointers to discard and if we didn't merge into one of that
1234 * node's ancestry.
1235 */
1236 if (has_meta || parent != node) {
1237 node = parent;
1238
1239 /* Create a new node to collapse into */
1240 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1241 if (!new_n0)
1242 goto enomem;
1243 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
1244
1245 new_n0->back_pointer = node->back_pointer;
1246 new_n0->parent_slot = node->parent_slot;
1247 new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
1248 edit->adjust_count_on = new_n0;
1249
1250 collapse.node = new_n0;
1251 collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf);
1252 collapse.slot = 0;
1253 assoc_array_subtree_iterate(assoc_array_node_to_ptr(node),
1254 node->back_pointer,
1255 assoc_array_delete_collapse_iterator,
1256 &collapse);
1257 pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch);
1258 BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1);
1259
1260 if (!node->back_pointer) {
1261 edit->set[1].ptr = &array->root;
1262 } else if (assoc_array_ptr_is_leaf(node->back_pointer)) {
1263 BUG();
1264 } else if (assoc_array_ptr_is_node(node->back_pointer)) {
1265 struct assoc_array_node *p =
1266 assoc_array_ptr_to_node(node->back_pointer);
1267 edit->set[1].ptr = &p->slots[node->parent_slot];
1268 } else if (assoc_array_ptr_is_shortcut(node->back_pointer)) {
1269 struct assoc_array_shortcut *s =
1270 assoc_array_ptr_to_shortcut(node->back_pointer);
1271 edit->set[1].ptr = &s->next_node;
1272 }
1273 edit->set[1].to = assoc_array_node_to_ptr(new_n0);
1274 edit->excised_subtree = assoc_array_node_to_ptr(node);
1275 }
1276 }
1277
1278 return edit;
1279
1280enomem:
1281 /* Clean up after an out of memory error */
1282 pr_devel("enomem\n");
1283 assoc_array_cancel_edit(edit);
1284 return ERR_PTR(-ENOMEM);
1285}
1286
1287/**
1288 * assoc_array_clear - Script deletion of all objects from an associative array
1289 * @array: The array to clear.
1290 * @ops: The operations to use.
1291 *
1292 * Precalculate and preallocate a script for the deletion of all the objects
1293 * from an associative array. This results in an edit script that can either
1294 * be applied or cancelled.
1295 *
1296 * The function returns a pointer to an edit script if there are objects to be
1297 * deleted, NULL if there are no objects in the array or -ENOMEM.
1298 *
1299 * The caller should lock against other modifications and must continue to hold
1300 * the lock until assoc_array_apply_edit() has been called.
1301 *
1302 * Accesses to the tree may take place concurrently with this function,
1303 * provided they hold the RCU read lock.
1304 */
1305struct assoc_array_edit *assoc_array_clear(struct assoc_array *array,
1306 const struct assoc_array_ops *ops)
1307{
1308 struct assoc_array_edit *edit;
1309
1310 pr_devel("-->%s()\n", __func__);
1311
1312 if (!array->root)
1313 return NULL;
1314
1315 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1316 if (!edit)
1317 return ERR_PTR(-ENOMEM);
1318 edit->array = array;
1319 edit->ops = ops;
1320 edit->set[1].ptr = &array->root;
1321 edit->set[1].to = NULL;
1322 edit->excised_subtree = array->root;
1323 edit->ops_for_excised_subtree = ops;
1324 pr_devel("all gone\n");
1325 return edit;
1326}
1327
1328/*
1329 * Handle the deferred destruction after an applied edit.
1330 */
1331static void assoc_array_rcu_cleanup(struct rcu_head *head)
1332{
1333 struct assoc_array_edit *edit =
1334 container_of(head, struct assoc_array_edit, rcu);
1335 int i;
1336
1337 pr_devel("-->%s()\n", __func__);
1338
1339 if (edit->dead_leaf)
1340 edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf));
1341 for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++)
1342 if (edit->excised_meta[i])
1343 kfree(assoc_array_ptr_to_node(edit->excised_meta[i]));
1344
1345 if (edit->excised_subtree) {
1346 BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree));
1347 if (assoc_array_ptr_is_node(edit->excised_subtree)) {
1348 struct assoc_array_node *n =
1349 assoc_array_ptr_to_node(edit->excised_subtree);
1350 n->back_pointer = NULL;
1351 } else {
1352 struct assoc_array_shortcut *s =
1353 assoc_array_ptr_to_shortcut(edit->excised_subtree);
1354 s->back_pointer = NULL;
1355 }
1356 assoc_array_destroy_subtree(edit->excised_subtree,
1357 edit->ops_for_excised_subtree);
1358 }
1359
1360 kfree(edit);
1361}
1362
1363/**
1364 * assoc_array_apply_edit - Apply an edit script to an associative array
1365 * @edit: The script to apply.
1366 *
1367 * Apply an edit script to an associative array to effect an insertion,
1368 * deletion or clearance. As the edit script includes preallocated memory,
1369 * this is guaranteed not to fail.
1370 *
1371 * The edit script, dead objects and dead metadata will be scheduled for
1372 * destruction after an RCU grace period to permit those doing read-only
1373 * accesses on the array to continue to do so under the RCU read lock whilst
1374 * the edit is taking place.
1375 */
1376void assoc_array_apply_edit(struct assoc_array_edit *edit)
1377{
1378 struct assoc_array_shortcut *shortcut;
1379 struct assoc_array_node *node;
1380 struct assoc_array_ptr *ptr;
1381 int i;
1382
1383 pr_devel("-->%s()\n", __func__);
1384
1385 smp_wmb();
1386 if (edit->leaf_p)
1387 *edit->leaf_p = edit->leaf;
1388
1389 smp_wmb();
1390 for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++)
1391 if (edit->set_parent_slot[i].p)
1392 *edit->set_parent_slot[i].p = edit->set_parent_slot[i].to;
1393
1394 smp_wmb();
1395 for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++)
1396 if (edit->set_backpointers[i])
1397 *edit->set_backpointers[i] = edit->set_backpointers_to;
1398
1399 smp_wmb();
1400 for (i = 0; i < ARRAY_SIZE(edit->set); i++)
1401 if (edit->set[i].ptr)
1402 *edit->set[i].ptr = edit->set[i].to;
1403
1404 if (edit->array->root == NULL) {
1405 edit->array->nr_leaves_on_tree = 0;
1406 } else if (edit->adjust_count_on) {
1407 node = edit->adjust_count_on;
1408 for (;;) {
1409 node->nr_leaves_on_branch += edit->adjust_count_by;
1410
1411 ptr = node->back_pointer;
1412 if (!ptr)
1413 break;
1414 if (assoc_array_ptr_is_shortcut(ptr)) {
1415 shortcut = assoc_array_ptr_to_shortcut(ptr);
1416 ptr = shortcut->back_pointer;
1417 if (!ptr)
1418 break;
1419 }
1420 BUG_ON(!assoc_array_ptr_is_node(ptr));
1421 node = assoc_array_ptr_to_node(ptr);
1422 }
1423
1424 edit->array->nr_leaves_on_tree += edit->adjust_count_by;
1425 }
1426
1427 call_rcu(&edit->rcu, assoc_array_rcu_cleanup);
1428}
1429
1430/**
1431 * assoc_array_cancel_edit - Discard an edit script.
1432 * @edit: The script to discard.
1433 *
1434 * Free an edit script and all the preallocated data it holds without making
1435 * any changes to the associative array it was intended for.
1436 *
1437 * NOTE! In the case of an insertion script, this does _not_ release the leaf
1438 * that was to be inserted. That is left to the caller.
1439 */
1440void assoc_array_cancel_edit(struct assoc_array_edit *edit)
1441{
1442 struct assoc_array_ptr *ptr;
1443 int i;
1444
1445 pr_devel("-->%s()\n", __func__);
1446
1447 /* Clean up after an out of memory error */
1448 for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) {
1449 ptr = edit->new_meta[i];
1450 if (ptr) {
1451 if (assoc_array_ptr_is_node(ptr))
1452 kfree(assoc_array_ptr_to_node(ptr));
1453 else
1454 kfree(assoc_array_ptr_to_shortcut(ptr));
1455 }
1456 }
1457 kfree(edit);
1458}
1459
1460/**
1461 * assoc_array_gc - Garbage collect an associative array.
1462 * @array: The array to clean.
1463 * @ops: The operations to use.
1464 * @iterator: A callback function to pass judgement on each object.
1465 * @iterator_data: Private data for the callback function.
1466 *
1467 * Collect garbage from an associative array and pack down the internal tree to
1468 * save memory.
1469 *
1470 * The iterator function is asked to pass judgement upon each object in the
1471 * array. If it returns false, the object is discard and if it returns true,
1472 * the object is kept. If it returns true, it must increment the object's
1473 * usage count (or whatever it needs to do to retain it) before returning.
1474 *
1475 * This function returns 0 if successful or -ENOMEM if out of memory. In the
1476 * latter case, the array is not changed.
1477 *
1478 * The caller should lock against other modifications and must continue to hold
1479 * the lock until assoc_array_apply_edit() has been called.
1480 *
1481 * Accesses to the tree may take place concurrently with this function,
1482 * provided they hold the RCU read lock.
1483 */
1484int assoc_array_gc(struct assoc_array *array,
1485 const struct assoc_array_ops *ops,
1486 bool (*iterator)(void *object, void *iterator_data),
1487 void *iterator_data)
1488{
1489 struct assoc_array_shortcut *shortcut, *new_s;
1490 struct assoc_array_node *node, *new_n;
1491 struct assoc_array_edit *edit;
1492 struct assoc_array_ptr *cursor, *ptr;
1493 struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp;
1494 unsigned long nr_leaves_on_tree;
1495 int keylen, slot, nr_free, next_slot, i;
1496
1497 pr_devel("-->%s()\n", __func__);
1498
1499 if (!array->root)
1500 return 0;
1501
1502 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1503 if (!edit)
1504 return -ENOMEM;
1505 edit->array = array;
1506 edit->ops = ops;
1507 edit->ops_for_excised_subtree = ops;
1508 edit->set[0].ptr = &array->root;
1509 edit->excised_subtree = array->root;
1510
1511 new_root = new_parent = NULL;
1512 new_ptr_pp = &new_root;
1513 cursor = array->root;
1514
1515descend:
1516 /* If this point is a shortcut, then we need to duplicate it and
1517 * advance the target cursor.
1518 */
1519 if (assoc_array_ptr_is_shortcut(cursor)) {
1520 shortcut = assoc_array_ptr_to_shortcut(cursor);
1521 keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
1522 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
1523 new_s = kmalloc(sizeof(struct assoc_array_shortcut) +
1524 keylen * sizeof(unsigned long), GFP_KERNEL);
1525 if (!new_s)
1526 goto enomem;
1527 pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
1528 memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) +
1529 keylen * sizeof(unsigned long)));
1530 new_s->back_pointer = new_parent;
1531 new_s->parent_slot = shortcut->parent_slot;
1532 *new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
1533 new_ptr_pp = &new_s->next_node;
1534 cursor = shortcut->next_node;
1535 }
1536
1537 /* Duplicate the node at this position */
1538 node = assoc_array_ptr_to_node(cursor);
1539 new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1540 if (!new_n)
1541 goto enomem;
1542 pr_devel("dup node %p -> %p\n", node, new_n);
1543 new_n->back_pointer = new_parent;
1544 new_n->parent_slot = node->parent_slot;
1545 *new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n);
1546 new_ptr_pp = NULL;
1547 slot = 0;
1548
1549continue_node:
1550 /* Filter across any leaves and gc any subtrees */
1551 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1552 ptr = node->slots[slot];
1553 if (!ptr)
1554 continue;
1555
1556 if (assoc_array_ptr_is_leaf(ptr)) {
1557 if (iterator(assoc_array_ptr_to_leaf(ptr),
1558 iterator_data))
1559 /* The iterator will have done any reference
1560 * counting on the object for us.
1561 */
1562 new_n->slots[slot] = ptr;
1563 continue;
1564 }
1565
1566 new_ptr_pp = &new_n->slots[slot];
1567 cursor = ptr;
1568 goto descend;
1569 }
1570
1571 pr_devel("-- compress node %p --\n", new_n);
1572
1573 /* Count up the number of empty slots in this node and work out the
1574 * subtree leaf count.
1575 */
1576 new_n->nr_leaves_on_branch = 0;
1577 nr_free = 0;
1578 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1579 ptr = new_n->slots[slot];
1580 if (!ptr)
1581 nr_free++;
1582 else if (assoc_array_ptr_is_leaf(ptr))
1583 new_n->nr_leaves_on_branch++;
1584 }
1585 pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch);
1586
1587 /* See what we can fold in */
1588 next_slot = 0;
1589 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1590 struct assoc_array_shortcut *s;
1591 struct assoc_array_node *child;
1592
1593 ptr = new_n->slots[slot];
1594 if (!ptr || assoc_array_ptr_is_leaf(ptr))
1595 continue;
1596
1597 s = NULL;
1598 if (assoc_array_ptr_is_shortcut(ptr)) {
1599 s = assoc_array_ptr_to_shortcut(ptr);
1600 ptr = s->next_node;
1601 }
1602
1603 child = assoc_array_ptr_to_node(ptr);
1604 new_n->nr_leaves_on_branch += child->nr_leaves_on_branch;
1605
1606 if (child->nr_leaves_on_branch <= nr_free + 1) {
1607 /* Fold the child node into this one */
1608 pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1609 slot, child->nr_leaves_on_branch, nr_free + 1,
1610 next_slot);
1611
1612 /* We would already have reaped an intervening shortcut
1613 * on the way back up the tree.
1614 */
1615 BUG_ON(s);
1616
1617 new_n->slots[slot] = NULL;
1618 nr_free++;
1619 if (slot < next_slot)
1620 next_slot = slot;
1621 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1622 struct assoc_array_ptr *p = child->slots[i];
1623 if (!p)
1624 continue;
1625 BUG_ON(assoc_array_ptr_is_meta(p));
1626 while (new_n->slots[next_slot])
1627 next_slot++;
1628 BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT);
1629 new_n->slots[next_slot++] = p;
1630 nr_free--;
1631 }
1632 kfree(child);
1633 } else {
1634 pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1635 slot, child->nr_leaves_on_branch, nr_free + 1,
1636 next_slot);
1637 }
1638 }
1639
1640 pr_devel("after: %lu\n", new_n->nr_leaves_on_branch);
1641
1642 nr_leaves_on_tree = new_n->nr_leaves_on_branch;
1643
1644 /* Excise this node if it is singly occupied by a shortcut */
1645 if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) {
1646 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++)
1647 if ((ptr = new_n->slots[slot]))
1648 break;
1649
1650 if (assoc_array_ptr_is_meta(ptr) &&
1651 assoc_array_ptr_is_shortcut(ptr)) {
1652 pr_devel("excise node %p with 1 shortcut\n", new_n);
1653 new_s = assoc_array_ptr_to_shortcut(ptr);
1654 new_parent = new_n->back_pointer;
1655 slot = new_n->parent_slot;
1656 kfree(new_n);
1657 if (!new_parent) {
1658 new_s->back_pointer = NULL;
1659 new_s->parent_slot = 0;
1660 new_root = ptr;
1661 goto gc_complete;
1662 }
1663
1664 if (assoc_array_ptr_is_shortcut(new_parent)) {
1665 /* We can discard any preceding shortcut also */
1666 struct assoc_array_shortcut *s =
1667 assoc_array_ptr_to_shortcut(new_parent);
1668
1669 pr_devel("excise preceding shortcut\n");
1670
1671 new_parent = new_s->back_pointer = s->back_pointer;
1672 slot = new_s->parent_slot = s->parent_slot;
1673 kfree(s);
1674 if (!new_parent) {
1675 new_s->back_pointer = NULL;
1676 new_s->parent_slot = 0;
1677 new_root = ptr;
1678 goto gc_complete;
1679 }
1680 }
1681
1682 new_s->back_pointer = new_parent;
1683 new_s->parent_slot = slot;
1684 new_n = assoc_array_ptr_to_node(new_parent);
1685 new_n->slots[slot] = ptr;
1686 goto ascend_old_tree;
1687 }
1688 }
1689
1690 /* Excise any shortcuts we might encounter that point to nodes that
1691 * only contain leaves.
1692 */
1693 ptr = new_n->back_pointer;
1694 if (!ptr)
1695 goto gc_complete;
1696
1697 if (assoc_array_ptr_is_shortcut(ptr)) {
1698 new_s = assoc_array_ptr_to_shortcut(ptr);
1699 new_parent = new_s->back_pointer;
1700 slot = new_s->parent_slot;
1701
1702 if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
1703 struct assoc_array_node *n;
1704
1705 pr_devel("excise shortcut\n");
1706 new_n->back_pointer = new_parent;
1707 new_n->parent_slot = slot;
1708 kfree(new_s);
1709 if (!new_parent) {
1710 new_root = assoc_array_node_to_ptr(new_n);
1711 goto gc_complete;
1712 }
1713
1714 n = assoc_array_ptr_to_node(new_parent);
1715 n->slots[slot] = assoc_array_node_to_ptr(new_n);
1716 }
1717 } else {
1718 new_parent = ptr;
1719 }
1720 new_n = assoc_array_ptr_to_node(new_parent);
1721
1722ascend_old_tree:
1723 ptr = node->back_pointer;
1724 if (assoc_array_ptr_is_shortcut(ptr)) {
1725 shortcut = assoc_array_ptr_to_shortcut(ptr);
1726 slot = shortcut->parent_slot;
1727 cursor = shortcut->back_pointer;
David Howells95389b02014-09-10 22:22:00 +01001728 if (!cursor)
1729 goto gc_complete;
David Howells3cb98952013-09-24 10:35:17 +01001730 } else {
1731 slot = node->parent_slot;
1732 cursor = ptr;
1733 }
David Howells95389b02014-09-10 22:22:00 +01001734 BUG_ON(!cursor);
David Howells3cb98952013-09-24 10:35:17 +01001735 node = assoc_array_ptr_to_node(cursor);
1736 slot++;
1737 goto continue_node;
1738
1739gc_complete:
1740 edit->set[0].to = new_root;
1741 assoc_array_apply_edit(edit);
David Howells27419602014-09-02 13:52:20 +01001742 array->nr_leaves_on_tree = nr_leaves_on_tree;
David Howells3cb98952013-09-24 10:35:17 +01001743 return 0;
1744
1745enomem:
1746 pr_devel("enomem\n");
1747 assoc_array_destroy_subtree(new_root, edit->ops);
1748 kfree(edit);
1749 return -ENOMEM;
1750}