blob: 492ba301e10c13b412f5ad8c7b42500d144454b2 [file] [log] [blame]
Marc Zyngier068d8032012-12-10 16:15:34 +00001/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <linux/mm.h>
24#include <linux/kvm_host.h>
25#include <linux/uaccess.h>
26#include <asm/kvm_arm.h>
27#include <asm/kvm_host.h>
28#include <asm/kvm_emulate.h>
29#include <asm/kvm_coproc.h>
Marc Zyngier5ac10a82014-01-15 12:50:23 +000030#include <asm/kvm_mmu.h>
Marc Zyngier068d8032012-12-10 16:15:34 +000031#include <asm/cacheflush.h>
32#include <asm/cputype.h>
33#include <trace/events/kvm.h>
34
35#include "sys_regs.h"
36
37/*
38 * All of this file is extremly similar to the ARM coproc.c, but the
39 * types are different. My gut feeling is that it should be pretty
40 * easy to merge, but that would be an ABI breakage -- again. VFP
41 * would also need to be abstracted.
Marc Zyngier33056d32013-02-07 10:32:33 +000042 *
43 * For AArch32, we only take care of what is being trapped. Anything
44 * that has to do with init and userspace access has to go via the
45 * 64bit interface.
Marc Zyngier068d8032012-12-10 16:15:34 +000046 */
47
48/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
49static u32 cache_levels;
50
51/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
52#define CSSELR_MAX 12
53
54/* Which cache CCSIDR represents depends on CSSELR value. */
55static u32 get_ccsidr(u32 csselr)
56{
57 u32 ccsidr;
58
59 /* Make sure noone else changes CSSELR during this! */
60 local_irq_disable();
61 /* Put value into CSSELR */
62 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
63 isb();
64 /* Read result out of CCSIDR */
65 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
66 local_irq_enable();
67
68 return ccsidr;
69}
70
71static void do_dc_cisw(u32 val)
72{
73 asm volatile("dc cisw, %x0" : : "r" (val));
Will Deaconccc916d2014-05-02 16:24:10 +010074 dsb(ish);
Marc Zyngier068d8032012-12-10 16:15:34 +000075}
76
77static void do_dc_csw(u32 val)
78{
79 asm volatile("dc csw, %x0" : : "r" (val));
Will Deaconccc916d2014-05-02 16:24:10 +010080 dsb(ish);
Marc Zyngier068d8032012-12-10 16:15:34 +000081}
82
83/* See note at ARM ARM B1.14.4 */
84static bool access_dcsw(struct kvm_vcpu *vcpu,
85 const struct sys_reg_params *p,
86 const struct sys_reg_desc *r)
87{
88 unsigned long val;
89 int cpu;
90
91 if (!p->is_write)
92 return read_from_write_only(vcpu, p);
93
94 cpu = get_cpu();
95
96 cpumask_setall(&vcpu->arch.require_dcache_flush);
97 cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
98
99 /* If we were already preempted, take the long way around */
100 if (cpu != vcpu->arch.last_pcpu) {
101 flush_cache_all();
102 goto done;
103 }
104
105 val = *vcpu_reg(vcpu, p->Rt);
106
107 switch (p->CRm) {
108 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
109 case 14: /* DCCISW */
110 do_dc_cisw(val);
111 break;
112
113 case 10: /* DCCSW */
114 do_dc_csw(val);
115 break;
116 }
117
118done:
119 put_cpu();
120
121 return true;
122}
123
124/*
Marc Zyngier8d8d8cd2014-01-14 18:00:55 +0000125 * Generic accessor for VM registers. Only called as long as HCR_TVM
126 * is set.
127 */
128static bool access_vm_reg(struct kvm_vcpu *vcpu,
129 const struct sys_reg_params *p,
130 const struct sys_reg_desc *r)
131{
132 unsigned long val;
133
134 BUG_ON(!p->is_write);
135
136 val = *vcpu_reg(vcpu, p->Rt);
Victor Kamensky5208e0f2014-07-02 17:19:30 +0100137 if (!p->is_aarch32 || !p->is_32bit)
Marc Zyngier8d8d8cd2014-01-14 18:00:55 +0000138 vcpu_sys_reg(vcpu, r->reg) = val;
Victor Kamensky5208e0f2014-07-02 17:19:30 +0100139 else
140 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
141
Marc Zyngier8d8d8cd2014-01-14 18:00:55 +0000142 return true;
143}
144
145/*
146 * SCTLR_EL1 accessor. Only called as long as HCR_TVM is set. If the
147 * guest enables the MMU, we stop trapping the VM sys_regs and leave
148 * it in complete control of the caches.
149 */
150static bool access_sctlr(struct kvm_vcpu *vcpu,
151 const struct sys_reg_params *p,
152 const struct sys_reg_desc *r)
153{
154 access_vm_reg(vcpu, p, r);
155
Marc Zyngier5ac10a82014-01-15 12:50:23 +0000156 if (vcpu_has_cache_enabled(vcpu)) { /* MMU+Caches enabled? */
Marc Zyngier8d8d8cd2014-01-14 18:00:55 +0000157 vcpu->arch.hcr_el2 &= ~HCR_TVM;
Marc Zyngier5ac10a82014-01-15 12:50:23 +0000158 stage2_flush_vm(vcpu->kvm);
159 }
Marc Zyngier8d8d8cd2014-01-14 18:00:55 +0000160
161 return true;
162}
163
Marc Zyngier129fb6b2014-04-24 10:21:16 +0100164static bool trap_raz_wi(struct kvm_vcpu *vcpu,
165 const struct sys_reg_params *p,
166 const struct sys_reg_desc *r)
Marc Zyngier068d8032012-12-10 16:15:34 +0000167{
168 if (p->is_write)
169 return ignore_write(vcpu, p);
170 else
171 return read_zero(vcpu, p);
172}
173
174static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
175{
176 u64 amair;
177
178 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
179 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
180}
181
182static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
183{
184 /*
185 * Simply map the vcpu_id into the Aff0 field of the MPIDR.
186 */
187 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
188}
189
190/*
191 * Architected system registers.
192 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
Marc Zyngier129fb6b2014-04-24 10:21:16 +0100193 *
194 * We could trap ID_DFR0 and tell the guest we don't support performance
195 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
196 * NAKed, so it will read the PMCR anyway.
197 *
198 * Therefore we tell the guest we have 0 counters. Unfortunately, we
199 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
200 * all PM registers, which doesn't crash the guest kernel at least.
201 *
202 * Same goes for the whole debug infrastructure, which probably breaks
203 * some guest functionnality. This should be fixed.
Marc Zyngier068d8032012-12-10 16:15:34 +0000204 */
205static const struct sys_reg_desc sys_reg_descs[] = {
206 /* DC ISW */
207 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
208 access_dcsw },
209 /* DC CSW */
210 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
211 access_dcsw },
212 /* DC CISW */
213 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
214 access_dcsw },
215
Marc Zyngier33056d32013-02-07 10:32:33 +0000216 /* TEECR32_EL1 */
217 { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
218 NULL, reset_val, TEECR32_EL1, 0 },
219 /* TEEHBR32_EL1 */
220 { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
221 NULL, reset_val, TEEHBR32_EL1, 0 },
222 /* DBGVCR32_EL2 */
223 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
224 NULL, reset_val, DBGVCR32_EL2, 0 },
225
Marc Zyngier068d8032012-12-10 16:15:34 +0000226 /* MPIDR_EL1 */
227 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
228 NULL, reset_mpidr, MPIDR_EL1 },
229 /* SCTLR_EL1 */
230 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
Marc Zyngier8d8d8cd2014-01-14 18:00:55 +0000231 access_sctlr, reset_val, SCTLR_EL1, 0x00C50078 },
Marc Zyngier068d8032012-12-10 16:15:34 +0000232 /* CPACR_EL1 */
233 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
234 NULL, reset_val, CPACR_EL1, 0 },
235 /* TTBR0_EL1 */
236 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
Marc Zyngier8d8d8cd2014-01-14 18:00:55 +0000237 access_vm_reg, reset_unknown, TTBR0_EL1 },
Marc Zyngier068d8032012-12-10 16:15:34 +0000238 /* TTBR1_EL1 */
239 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
Marc Zyngier8d8d8cd2014-01-14 18:00:55 +0000240 access_vm_reg, reset_unknown, TTBR1_EL1 },
Marc Zyngier068d8032012-12-10 16:15:34 +0000241 /* TCR_EL1 */
242 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
Marc Zyngier8d8d8cd2014-01-14 18:00:55 +0000243 access_vm_reg, reset_val, TCR_EL1, 0 },
Marc Zyngier068d8032012-12-10 16:15:34 +0000244
245 /* AFSR0_EL1 */
246 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
Marc Zyngier8d8d8cd2014-01-14 18:00:55 +0000247 access_vm_reg, reset_unknown, AFSR0_EL1 },
Marc Zyngier068d8032012-12-10 16:15:34 +0000248 /* AFSR1_EL1 */
249 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
Marc Zyngier8d8d8cd2014-01-14 18:00:55 +0000250 access_vm_reg, reset_unknown, AFSR1_EL1 },
Marc Zyngier068d8032012-12-10 16:15:34 +0000251 /* ESR_EL1 */
252 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
Marc Zyngier8d8d8cd2014-01-14 18:00:55 +0000253 access_vm_reg, reset_unknown, ESR_EL1 },
Marc Zyngier068d8032012-12-10 16:15:34 +0000254 /* FAR_EL1 */
255 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
Marc Zyngier8d8d8cd2014-01-14 18:00:55 +0000256 access_vm_reg, reset_unknown, FAR_EL1 },
Marc Zyngierebd362b2013-06-07 11:02:34 +0100257 /* PAR_EL1 */
258 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
259 NULL, reset_unknown, PAR_EL1 },
Marc Zyngier068d8032012-12-10 16:15:34 +0000260
261 /* PMINTENSET_EL1 */
262 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
Marc Zyngier129fb6b2014-04-24 10:21:16 +0100263 trap_raz_wi },
Marc Zyngier068d8032012-12-10 16:15:34 +0000264 /* PMINTENCLR_EL1 */
265 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
Marc Zyngier129fb6b2014-04-24 10:21:16 +0100266 trap_raz_wi },
Marc Zyngier068d8032012-12-10 16:15:34 +0000267
268 /* MAIR_EL1 */
269 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
Marc Zyngier8d8d8cd2014-01-14 18:00:55 +0000270 access_vm_reg, reset_unknown, MAIR_EL1 },
Marc Zyngier068d8032012-12-10 16:15:34 +0000271 /* AMAIR_EL1 */
272 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
Marc Zyngier8d8d8cd2014-01-14 18:00:55 +0000273 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
Marc Zyngier068d8032012-12-10 16:15:34 +0000274
275 /* VBAR_EL1 */
276 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
277 NULL, reset_val, VBAR_EL1, 0 },
278 /* CONTEXTIDR_EL1 */
279 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
Marc Zyngier8d8d8cd2014-01-14 18:00:55 +0000280 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
Marc Zyngier068d8032012-12-10 16:15:34 +0000281 /* TPIDR_EL1 */
282 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
283 NULL, reset_unknown, TPIDR_EL1 },
284
285 /* CNTKCTL_EL1 */
286 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
287 NULL, reset_val, CNTKCTL_EL1, 0},
288
289 /* CSSELR_EL1 */
290 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
291 NULL, reset_unknown, CSSELR_EL1 },
292
293 /* PMCR_EL0 */
294 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
Marc Zyngier129fb6b2014-04-24 10:21:16 +0100295 trap_raz_wi },
Marc Zyngier068d8032012-12-10 16:15:34 +0000296 /* PMCNTENSET_EL0 */
297 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
Marc Zyngier129fb6b2014-04-24 10:21:16 +0100298 trap_raz_wi },
Marc Zyngier068d8032012-12-10 16:15:34 +0000299 /* PMCNTENCLR_EL0 */
300 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
Marc Zyngier129fb6b2014-04-24 10:21:16 +0100301 trap_raz_wi },
Marc Zyngier068d8032012-12-10 16:15:34 +0000302 /* PMOVSCLR_EL0 */
303 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
Marc Zyngier129fb6b2014-04-24 10:21:16 +0100304 trap_raz_wi },
Marc Zyngier068d8032012-12-10 16:15:34 +0000305 /* PMSWINC_EL0 */
306 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
Marc Zyngier129fb6b2014-04-24 10:21:16 +0100307 trap_raz_wi },
Marc Zyngier068d8032012-12-10 16:15:34 +0000308 /* PMSELR_EL0 */
309 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
Marc Zyngier129fb6b2014-04-24 10:21:16 +0100310 trap_raz_wi },
Marc Zyngier068d8032012-12-10 16:15:34 +0000311 /* PMCEID0_EL0 */
312 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
Marc Zyngier129fb6b2014-04-24 10:21:16 +0100313 trap_raz_wi },
Marc Zyngier068d8032012-12-10 16:15:34 +0000314 /* PMCEID1_EL0 */
315 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
Marc Zyngier129fb6b2014-04-24 10:21:16 +0100316 trap_raz_wi },
Marc Zyngier068d8032012-12-10 16:15:34 +0000317 /* PMCCNTR_EL0 */
318 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
Marc Zyngier129fb6b2014-04-24 10:21:16 +0100319 trap_raz_wi },
Marc Zyngier068d8032012-12-10 16:15:34 +0000320 /* PMXEVTYPER_EL0 */
321 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
Marc Zyngier129fb6b2014-04-24 10:21:16 +0100322 trap_raz_wi },
Marc Zyngier068d8032012-12-10 16:15:34 +0000323 /* PMXEVCNTR_EL0 */
324 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
Marc Zyngier129fb6b2014-04-24 10:21:16 +0100325 trap_raz_wi },
Marc Zyngier068d8032012-12-10 16:15:34 +0000326 /* PMUSERENR_EL0 */
327 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
Marc Zyngier129fb6b2014-04-24 10:21:16 +0100328 trap_raz_wi },
Marc Zyngier068d8032012-12-10 16:15:34 +0000329 /* PMOVSSET_EL0 */
330 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
Marc Zyngier129fb6b2014-04-24 10:21:16 +0100331 trap_raz_wi },
Marc Zyngier068d8032012-12-10 16:15:34 +0000332
333 /* TPIDR_EL0 */
334 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
335 NULL, reset_unknown, TPIDR_EL0 },
336 /* TPIDRRO_EL0 */
337 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
338 NULL, reset_unknown, TPIDRRO_EL0 },
Marc Zyngier33056d32013-02-07 10:32:33 +0000339
340 /* DACR32_EL2 */
341 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
342 NULL, reset_unknown, DACR32_EL2 },
343 /* IFSR32_EL2 */
344 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
345 NULL, reset_unknown, IFSR32_EL2 },
346 /* FPEXC32_EL2 */
347 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
348 NULL, reset_val, FPEXC32_EL2, 0x70 },
349};
350
Marc Zyngier8d8d8cd2014-01-14 18:00:55 +0000351/*
352 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
353 * depending on the way they are accessed (as a 32bit or a 64bit
354 * register).
355 */
Marc Zyngier33056d32013-02-07 10:32:33 +0000356static const struct sys_reg_desc cp15_regs[] = {
Marc Zyngier8d8d8cd2014-01-14 18:00:55 +0000357 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
358 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR },
359 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
360 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
361 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
362 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
363 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
364 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
365 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
366 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
367 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
368 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
369
Marc Zyngier33056d32013-02-07 10:32:33 +0000370 /*
371 * DC{C,I,CI}SW operations:
372 */
373 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
374 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
375 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
Marc Zyngier8d8d8cd2014-01-14 18:00:55 +0000376
Marc Zyngier129fb6b2014-04-24 10:21:16 +0100377 /* PMU */
378 { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
379 { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
380 { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
381 { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
382 { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
383 { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
384 { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
385 { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
386 { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
387 { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
388 { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
389 { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
390 { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
Marc Zyngier8d8d8cd2014-01-14 18:00:55 +0000391
392 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
393 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
394 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
395 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
396 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
397
398 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
Marc Zyngier068d8032012-12-10 16:15:34 +0000399};
400
401/* Target specific emulation tables */
402static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
403
404void kvm_register_target_sys_reg_table(unsigned int target,
405 struct kvm_sys_reg_target_table *table)
406{
407 target_tables[target] = table;
408}
409
410/* Get specific register table for this target. */
Marc Zyngier33056d32013-02-07 10:32:33 +0000411static const struct sys_reg_desc *get_target_table(unsigned target,
412 bool mode_is_64,
413 size_t *num)
Marc Zyngier068d8032012-12-10 16:15:34 +0000414{
415 struct kvm_sys_reg_target_table *table;
416
417 table = target_tables[target];
Marc Zyngier33056d32013-02-07 10:32:33 +0000418 if (mode_is_64) {
419 *num = table->table64.num;
420 return table->table64.table;
421 } else {
422 *num = table->table32.num;
423 return table->table32.table;
424 }
Marc Zyngier068d8032012-12-10 16:15:34 +0000425}
426
427static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
428 const struct sys_reg_desc table[],
429 unsigned int num)
430{
431 unsigned int i;
432
433 for (i = 0; i < num; i++) {
434 const struct sys_reg_desc *r = &table[i];
435
436 if (params->Op0 != r->Op0)
437 continue;
438 if (params->Op1 != r->Op1)
439 continue;
440 if (params->CRn != r->CRn)
441 continue;
442 if (params->CRm != r->CRm)
443 continue;
444 if (params->Op2 != r->Op2)
445 continue;
446
447 return r;
448 }
449 return NULL;
450}
451
Marc Zyngier33056d32013-02-07 10:32:33 +0000452int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
453{
454 kvm_inject_undefined(vcpu);
455 return 1;
456}
457
458int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
459{
460 kvm_inject_undefined(vcpu);
461 return 1;
462}
463
464static void emulate_cp15(struct kvm_vcpu *vcpu,
465 const struct sys_reg_params *params)
466{
467 size_t num;
468 const struct sys_reg_desc *table, *r;
469
470 table = get_target_table(vcpu->arch.target, false, &num);
471
472 /* Search target-specific then generic table. */
473 r = find_reg(params, table, num);
474 if (!r)
475 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
476
477 if (likely(r)) {
478 /*
479 * Not having an accessor means that we have
480 * configured a trap that we don't know how to
481 * handle. This certainly qualifies as a gross bug
482 * that should be fixed right away.
483 */
484 BUG_ON(!r->access);
485
486 if (likely(r->access(vcpu, params, r))) {
487 /* Skip instruction, since it was emulated */
488 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
489 return;
490 }
491 /* If access function fails, it should complain. */
492 }
493
494 kvm_err("Unsupported guest CP15 access at: %08lx\n", *vcpu_pc(vcpu));
495 print_sys_reg_instr(params);
496 kvm_inject_undefined(vcpu);
497}
498
499/**
500 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
501 * @vcpu: The VCPU pointer
502 * @run: The kvm_run struct
503 */
504int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
505{
506 struct sys_reg_params params;
507 u32 hsr = kvm_vcpu_get_hsr(vcpu);
508 int Rt2 = (hsr >> 10) & 0xf;
509
Marc Zyngier96d03922014-01-21 10:55:17 +0000510 params.is_aarch32 = true;
511 params.is_32bit = false;
Marc Zyngier33056d32013-02-07 10:32:33 +0000512 params.CRm = (hsr >> 1) & 0xf;
513 params.Rt = (hsr >> 5) & 0xf;
514 params.is_write = ((hsr & 1) == 0);
515
516 params.Op0 = 0;
517 params.Op1 = (hsr >> 16) & 0xf;
518 params.Op2 = 0;
519 params.CRn = 0;
520
521 /*
522 * Massive hack here. Store Rt2 in the top 32bits so we only
523 * have one register to deal with. As we use the same trap
524 * backends between AArch32 and AArch64, we get away with it.
525 */
526 if (params.is_write) {
527 u64 val = *vcpu_reg(vcpu, params.Rt);
528 val &= 0xffffffff;
529 val |= *vcpu_reg(vcpu, Rt2) << 32;
530 *vcpu_reg(vcpu, params.Rt) = val;
531 }
532
533 emulate_cp15(vcpu, &params);
534
535 /* Do the opposite hack for the read side */
536 if (!params.is_write) {
537 u64 val = *vcpu_reg(vcpu, params.Rt);
538 val >>= 32;
539 *vcpu_reg(vcpu, Rt2) = val;
540 }
541
542 return 1;
543}
544
545/**
546 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
547 * @vcpu: The VCPU pointer
548 * @run: The kvm_run struct
549 */
550int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
551{
552 struct sys_reg_params params;
553 u32 hsr = kvm_vcpu_get_hsr(vcpu);
554
Marc Zyngier96d03922014-01-21 10:55:17 +0000555 params.is_aarch32 = true;
556 params.is_32bit = true;
Marc Zyngier33056d32013-02-07 10:32:33 +0000557 params.CRm = (hsr >> 1) & 0xf;
558 params.Rt = (hsr >> 5) & 0xf;
559 params.is_write = ((hsr & 1) == 0);
560 params.CRn = (hsr >> 10) & 0xf;
561 params.Op0 = 0;
562 params.Op1 = (hsr >> 14) & 0x7;
563 params.Op2 = (hsr >> 17) & 0x7;
564
565 emulate_cp15(vcpu, &params);
566 return 1;
567}
568
Marc Zyngier068d8032012-12-10 16:15:34 +0000569static int emulate_sys_reg(struct kvm_vcpu *vcpu,
570 const struct sys_reg_params *params)
571{
572 size_t num;
573 const struct sys_reg_desc *table, *r;
574
Marc Zyngier33056d32013-02-07 10:32:33 +0000575 table = get_target_table(vcpu->arch.target, true, &num);
Marc Zyngier068d8032012-12-10 16:15:34 +0000576
577 /* Search target-specific then generic table. */
578 r = find_reg(params, table, num);
579 if (!r)
580 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
581
582 if (likely(r)) {
583 /*
584 * Not having an accessor means that we have
585 * configured a trap that we don't know how to
586 * handle. This certainly qualifies as a gross bug
587 * that should be fixed right away.
588 */
589 BUG_ON(!r->access);
590
591 if (likely(r->access(vcpu, params, r))) {
592 /* Skip instruction, since it was emulated */
593 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
594 return 1;
595 }
596 /* If access function fails, it should complain. */
597 } else {
598 kvm_err("Unsupported guest sys_reg access at: %lx\n",
599 *vcpu_pc(vcpu));
600 print_sys_reg_instr(params);
601 }
602 kvm_inject_undefined(vcpu);
603 return 1;
604}
605
606static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
607 const struct sys_reg_desc *table, size_t num)
608{
609 unsigned long i;
610
611 for (i = 0; i < num; i++)
612 if (table[i].reset)
613 table[i].reset(vcpu, &table[i]);
614}
615
616/**
617 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
618 * @vcpu: The VCPU pointer
619 * @run: The kvm_run struct
620 */
621int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
622{
623 struct sys_reg_params params;
624 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
625
Marc Zyngier96d03922014-01-21 10:55:17 +0000626 params.is_aarch32 = false;
627 params.is_32bit = false;
Marc Zyngier068d8032012-12-10 16:15:34 +0000628 params.Op0 = (esr >> 20) & 3;
629 params.Op1 = (esr >> 14) & 0x7;
630 params.CRn = (esr >> 10) & 0xf;
631 params.CRm = (esr >> 1) & 0xf;
632 params.Op2 = (esr >> 17) & 0x7;
633 params.Rt = (esr >> 5) & 0x1f;
634 params.is_write = !(esr & 1);
635
636 return emulate_sys_reg(vcpu, &params);
637}
638
639/******************************************************************************
640 * Userspace API
641 *****************************************************************************/
642
643static bool index_to_params(u64 id, struct sys_reg_params *params)
644{
645 switch (id & KVM_REG_SIZE_MASK) {
646 case KVM_REG_SIZE_U64:
647 /* Any unused index bits means it's not valid. */
648 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
649 | KVM_REG_ARM_COPROC_MASK
650 | KVM_REG_ARM64_SYSREG_OP0_MASK
651 | KVM_REG_ARM64_SYSREG_OP1_MASK
652 | KVM_REG_ARM64_SYSREG_CRN_MASK
653 | KVM_REG_ARM64_SYSREG_CRM_MASK
654 | KVM_REG_ARM64_SYSREG_OP2_MASK))
655 return false;
656 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
657 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
658 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
659 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
660 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
661 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
662 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
663 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
664 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
665 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
666 return true;
667 default:
668 return false;
669 }
670}
671
672/* Decode an index value, and find the sys_reg_desc entry. */
673static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
674 u64 id)
675{
676 size_t num;
677 const struct sys_reg_desc *table, *r;
678 struct sys_reg_params params;
679
680 /* We only do sys_reg for now. */
681 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
682 return NULL;
683
684 if (!index_to_params(id, &params))
685 return NULL;
686
Marc Zyngier33056d32013-02-07 10:32:33 +0000687 table = get_target_table(vcpu->arch.target, true, &num);
Marc Zyngier068d8032012-12-10 16:15:34 +0000688 r = find_reg(&params, table, num);
689 if (!r)
690 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
691
692 /* Not saved in the sys_reg array? */
693 if (r && !r->reg)
694 r = NULL;
695
696 return r;
697}
698
699/*
700 * These are the invariant sys_reg registers: we let the guest see the
701 * host versions of these, so they're part of the guest state.
702 *
703 * A future CPU may provide a mechanism to present different values to
704 * the guest, or a future kvm may trap them.
705 */
706
707#define FUNCTION_INVARIANT(reg) \
708 static void get_##reg(struct kvm_vcpu *v, \
709 const struct sys_reg_desc *r) \
710 { \
711 u64 val; \
712 \
713 asm volatile("mrs %0, " __stringify(reg) "\n" \
714 : "=r" (val)); \
715 ((struct sys_reg_desc *)r)->val = val; \
716 }
717
718FUNCTION_INVARIANT(midr_el1)
719FUNCTION_INVARIANT(ctr_el0)
720FUNCTION_INVARIANT(revidr_el1)
721FUNCTION_INVARIANT(id_pfr0_el1)
722FUNCTION_INVARIANT(id_pfr1_el1)
723FUNCTION_INVARIANT(id_dfr0_el1)
724FUNCTION_INVARIANT(id_afr0_el1)
725FUNCTION_INVARIANT(id_mmfr0_el1)
726FUNCTION_INVARIANT(id_mmfr1_el1)
727FUNCTION_INVARIANT(id_mmfr2_el1)
728FUNCTION_INVARIANT(id_mmfr3_el1)
729FUNCTION_INVARIANT(id_isar0_el1)
730FUNCTION_INVARIANT(id_isar1_el1)
731FUNCTION_INVARIANT(id_isar2_el1)
732FUNCTION_INVARIANT(id_isar3_el1)
733FUNCTION_INVARIANT(id_isar4_el1)
734FUNCTION_INVARIANT(id_isar5_el1)
735FUNCTION_INVARIANT(clidr_el1)
736FUNCTION_INVARIANT(aidr_el1)
737
738/* ->val is filled in by kvm_sys_reg_table_init() */
739static struct sys_reg_desc invariant_sys_regs[] = {
740 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
741 NULL, get_midr_el1 },
742 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
743 NULL, get_revidr_el1 },
744 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
745 NULL, get_id_pfr0_el1 },
746 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
747 NULL, get_id_pfr1_el1 },
748 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
749 NULL, get_id_dfr0_el1 },
750 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
751 NULL, get_id_afr0_el1 },
752 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
753 NULL, get_id_mmfr0_el1 },
754 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
755 NULL, get_id_mmfr1_el1 },
756 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
757 NULL, get_id_mmfr2_el1 },
758 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
759 NULL, get_id_mmfr3_el1 },
760 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
761 NULL, get_id_isar0_el1 },
762 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
763 NULL, get_id_isar1_el1 },
764 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
765 NULL, get_id_isar2_el1 },
766 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
767 NULL, get_id_isar3_el1 },
768 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
769 NULL, get_id_isar4_el1 },
770 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
771 NULL, get_id_isar5_el1 },
772 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
773 NULL, get_clidr_el1 },
774 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
775 NULL, get_aidr_el1 },
776 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
777 NULL, get_ctr_el0 },
778};
779
Victor Kamensky21c40b12014-06-12 09:30:12 -0700780static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
Marc Zyngier068d8032012-12-10 16:15:34 +0000781{
Marc Zyngier068d8032012-12-10 16:15:34 +0000782 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
783 return -EFAULT;
784 return 0;
785}
786
Victor Kamensky21c40b12014-06-12 09:30:12 -0700787static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
Marc Zyngier068d8032012-12-10 16:15:34 +0000788{
Marc Zyngier068d8032012-12-10 16:15:34 +0000789 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
790 return -EFAULT;
791 return 0;
792}
793
794static int get_invariant_sys_reg(u64 id, void __user *uaddr)
795{
796 struct sys_reg_params params;
797 const struct sys_reg_desc *r;
798
799 if (!index_to_params(id, &params))
800 return -ENOENT;
801
802 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
803 if (!r)
804 return -ENOENT;
805
806 return reg_to_user(uaddr, &r->val, id);
807}
808
809static int set_invariant_sys_reg(u64 id, void __user *uaddr)
810{
811 struct sys_reg_params params;
812 const struct sys_reg_desc *r;
813 int err;
814 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
815
816 if (!index_to_params(id, &params))
817 return -ENOENT;
818 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
819 if (!r)
820 return -ENOENT;
821
822 err = reg_from_user(&val, uaddr, id);
823 if (err)
824 return err;
825
826 /* This is what we mean by invariant: you can't change it. */
827 if (r->val != val)
828 return -EINVAL;
829
830 return 0;
831}
832
833static bool is_valid_cache(u32 val)
834{
835 u32 level, ctype;
836
837 if (val >= CSSELR_MAX)
838 return -ENOENT;
839
840 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
841 level = (val >> 1);
842 ctype = (cache_levels >> (level * 3)) & 7;
843
844 switch (ctype) {
845 case 0: /* No cache */
846 return false;
847 case 1: /* Instruction cache only */
848 return (val & 1);
849 case 2: /* Data cache only */
850 case 4: /* Unified cache */
851 return !(val & 1);
852 case 3: /* Separate instruction and data caches */
853 return true;
854 default: /* Reserved: we can't know instruction or data. */
855 return false;
856 }
857}
858
859static int demux_c15_get(u64 id, void __user *uaddr)
860{
861 u32 val;
862 u32 __user *uval = uaddr;
863
864 /* Fail if we have unknown bits set. */
865 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
866 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
867 return -ENOENT;
868
869 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
870 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
871 if (KVM_REG_SIZE(id) != 4)
872 return -ENOENT;
873 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
874 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
875 if (!is_valid_cache(val))
876 return -ENOENT;
877
878 return put_user(get_ccsidr(val), uval);
879 default:
880 return -ENOENT;
881 }
882}
883
884static int demux_c15_set(u64 id, void __user *uaddr)
885{
886 u32 val, newval;
887 u32 __user *uval = uaddr;
888
889 /* Fail if we have unknown bits set. */
890 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
891 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
892 return -ENOENT;
893
894 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
895 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
896 if (KVM_REG_SIZE(id) != 4)
897 return -ENOENT;
898 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
899 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
900 if (!is_valid_cache(val))
901 return -ENOENT;
902
903 if (get_user(newval, uval))
904 return -EFAULT;
905
906 /* This is also invariant: you can't change it. */
907 if (newval != get_ccsidr(val))
908 return -EINVAL;
909 return 0;
910 default:
911 return -ENOENT;
912 }
913}
914
915int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
916{
917 const struct sys_reg_desc *r;
918 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
919
920 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
921 return demux_c15_get(reg->id, uaddr);
922
923 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
924 return -ENOENT;
925
926 r = index_to_sys_reg_desc(vcpu, reg->id);
927 if (!r)
928 return get_invariant_sys_reg(reg->id, uaddr);
929
930 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
931}
932
933int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
934{
935 const struct sys_reg_desc *r;
936 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
937
938 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
939 return demux_c15_set(reg->id, uaddr);
940
941 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
942 return -ENOENT;
943
944 r = index_to_sys_reg_desc(vcpu, reg->id);
945 if (!r)
946 return set_invariant_sys_reg(reg->id, uaddr);
947
948 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
949}
950
951static unsigned int num_demux_regs(void)
952{
953 unsigned int i, count = 0;
954
955 for (i = 0; i < CSSELR_MAX; i++)
956 if (is_valid_cache(i))
957 count++;
958
959 return count;
960}
961
962static int write_demux_regids(u64 __user *uindices)
963{
Alex Bennée896f51b2014-07-01 16:53:13 +0100964 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
Marc Zyngier068d8032012-12-10 16:15:34 +0000965 unsigned int i;
966
967 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
968 for (i = 0; i < CSSELR_MAX; i++) {
969 if (!is_valid_cache(i))
970 continue;
971 if (put_user(val | i, uindices))
972 return -EFAULT;
973 uindices++;
974 }
975 return 0;
976}
977
978static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
979{
980 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
981 KVM_REG_ARM64_SYSREG |
982 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
983 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
984 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
985 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
986 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
987}
988
989static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
990{
991 if (!*uind)
992 return true;
993
994 if (put_user(sys_reg_to_index(reg), *uind))
995 return false;
996
997 (*uind)++;
998 return true;
999}
1000
1001/* Assumed ordered tables, see kvm_sys_reg_table_init. */
1002static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1003{
1004 const struct sys_reg_desc *i1, *i2, *end1, *end2;
1005 unsigned int total = 0;
1006 size_t num;
1007
1008 /* We check for duplicates here, to allow arch-specific overrides. */
Marc Zyngier33056d32013-02-07 10:32:33 +00001009 i1 = get_target_table(vcpu->arch.target, true, &num);
Marc Zyngier068d8032012-12-10 16:15:34 +00001010 end1 = i1 + num;
1011 i2 = sys_reg_descs;
1012 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1013
1014 BUG_ON(i1 == end1 || i2 == end2);
1015
1016 /* Walk carefully, as both tables may refer to the same register. */
1017 while (i1 || i2) {
1018 int cmp = cmp_sys_reg(i1, i2);
1019 /* target-specific overrides generic entry. */
1020 if (cmp <= 0) {
1021 /* Ignore registers we trap but don't save. */
1022 if (i1->reg) {
1023 if (!copy_reg_to_user(i1, &uind))
1024 return -EFAULT;
1025 total++;
1026 }
1027 } else {
1028 /* Ignore registers we trap but don't save. */
1029 if (i2->reg) {
1030 if (!copy_reg_to_user(i2, &uind))
1031 return -EFAULT;
1032 total++;
1033 }
1034 }
1035
1036 if (cmp <= 0 && ++i1 == end1)
1037 i1 = NULL;
1038 if (cmp >= 0 && ++i2 == end2)
1039 i2 = NULL;
1040 }
1041 return total;
1042}
1043
1044unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1045{
1046 return ARRAY_SIZE(invariant_sys_regs)
1047 + num_demux_regs()
1048 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1049}
1050
1051int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1052{
1053 unsigned int i;
1054 int err;
1055
1056 /* Then give them all the invariant registers' indices. */
1057 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1058 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1059 return -EFAULT;
1060 uindices++;
1061 }
1062
1063 err = walk_sys_regs(vcpu, uindices);
1064 if (err < 0)
1065 return err;
1066 uindices += err;
1067
1068 return write_demux_regids(uindices);
1069}
1070
1071void kvm_sys_reg_table_init(void)
1072{
1073 unsigned int i;
1074 struct sys_reg_desc clidr;
1075
1076 /* Make sure tables are unique and in order. */
1077 for (i = 1; i < ARRAY_SIZE(sys_reg_descs); i++)
1078 BUG_ON(cmp_sys_reg(&sys_reg_descs[i-1], &sys_reg_descs[i]) >= 0);
1079
1080 /* We abuse the reset function to overwrite the table itself. */
1081 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1082 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1083
1084 /*
1085 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1086 *
1087 * If software reads the Cache Type fields from Ctype1
1088 * upwards, once it has seen a value of 0b000, no caches
1089 * exist at further-out levels of the hierarchy. So, for
1090 * example, if Ctype3 is the first Cache Type field with a
1091 * value of 0b000, the values of Ctype4 to Ctype7 must be
1092 * ignored.
1093 */
1094 get_clidr_el1(NULL, &clidr); /* Ugly... */
1095 cache_levels = clidr.val;
1096 for (i = 0; i < 7; i++)
1097 if (((cache_levels >> (i*3)) & 7) == 0)
1098 break;
1099 /* Clear all higher bits. */
1100 cache_levels &= (1 << (i*3))-1;
1101}
1102
1103/**
1104 * kvm_reset_sys_regs - sets system registers to reset value
1105 * @vcpu: The VCPU pointer
1106 *
1107 * This function finds the right table above and sets the registers on the
1108 * virtual CPU struct to their architecturally defined reset values.
1109 */
1110void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1111{
1112 size_t num;
1113 const struct sys_reg_desc *table;
1114
1115 /* Catch someone adding a register without putting in reset entry. */
1116 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1117
1118 /* Generic chip reset first (so target could override). */
1119 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1120
Marc Zyngier33056d32013-02-07 10:32:33 +00001121 table = get_target_table(vcpu->arch.target, true, &num);
Marc Zyngier068d8032012-12-10 16:15:34 +00001122 reset_sys_reg_descs(vcpu, table, num);
1123
1124 for (num = 1; num < NR_SYS_REGS; num++)
1125 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1126 panic("Didn't reset vcpu_sys_reg(%zi)", num);
1127}