Christoffer Dall | 749cf76c | 2013-01-20 18:28:06 -0500 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| 3 | * Authors: Rusty Russell <rusty@rustcorp.com.au> |
| 4 | * Christoffer Dall <c.dall@virtualopensystems.com> |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License, version 2, as |
| 8 | * published by the Free Software Foundation. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | * GNU General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License |
| 16 | * along with this program; if not, write to the Free Software |
| 17 | * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| 18 | */ |
Christoffer Dall | 5b3e5e5 | 2013-01-20 18:28:09 -0500 | [diff] [blame] | 19 | #include <linux/mm.h> |
Christoffer Dall | 749cf76c | 2013-01-20 18:28:06 -0500 | [diff] [blame] | 20 | #include <linux/kvm_host.h> |
Christoffer Dall | 1138245 | 2013-01-20 18:28:10 -0500 | [diff] [blame^] | 21 | #include <linux/uaccess.h> |
Christoffer Dall | 5b3e5e5 | 2013-01-20 18:28:09 -0500 | [diff] [blame] | 22 | #include <asm/kvm_arm.h> |
| 23 | #include <asm/kvm_host.h> |
| 24 | #include <asm/kvm_emulate.h> |
| 25 | #include <asm/kvm_coproc.h> |
| 26 | #include <asm/cacheflush.h> |
| 27 | #include <asm/cputype.h> |
| 28 | #include <trace/events/kvm.h> |
Christoffer Dall | 749cf76c | 2013-01-20 18:28:06 -0500 | [diff] [blame] | 29 | |
Christoffer Dall | 5b3e5e5 | 2013-01-20 18:28:09 -0500 | [diff] [blame] | 30 | #include "trace.h" |
| 31 | #include "coproc.h" |
| 32 | |
| 33 | |
| 34 | /****************************************************************************** |
| 35 | * Co-processor emulation |
| 36 | *****************************************************************************/ |
| 37 | |
| 38 | int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| 39 | { |
| 40 | kvm_inject_undefined(vcpu); |
| 41 | return 1; |
| 42 | } |
| 43 | |
| 44 | int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| 45 | { |
| 46 | /* |
| 47 | * We can get here, if the host has been built without VFPv3 support, |
| 48 | * but the guest attempted a floating point operation. |
| 49 | */ |
| 50 | kvm_inject_undefined(vcpu); |
| 51 | return 1; |
| 52 | } |
| 53 | |
| 54 | int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| 55 | { |
| 56 | kvm_inject_undefined(vcpu); |
| 57 | return 1; |
| 58 | } |
| 59 | |
| 60 | int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| 61 | { |
| 62 | kvm_inject_undefined(vcpu); |
| 63 | return 1; |
| 64 | } |
| 65 | |
| 66 | /* See note at ARM ARM B1.14.4 */ |
| 67 | static bool access_dcsw(struct kvm_vcpu *vcpu, |
| 68 | const struct coproc_params *p, |
| 69 | const struct coproc_reg *r) |
| 70 | { |
| 71 | u32 val; |
| 72 | int cpu; |
| 73 | |
| 74 | cpu = get_cpu(); |
| 75 | |
| 76 | if (!p->is_write) |
| 77 | return read_from_write_only(vcpu, p); |
| 78 | |
| 79 | cpumask_setall(&vcpu->arch.require_dcache_flush); |
| 80 | cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush); |
| 81 | |
| 82 | /* If we were already preempted, take the long way around */ |
| 83 | if (cpu != vcpu->arch.last_pcpu) { |
| 84 | flush_cache_all(); |
| 85 | goto done; |
| 86 | } |
| 87 | |
| 88 | val = *vcpu_reg(vcpu, p->Rt1); |
| 89 | |
| 90 | switch (p->CRm) { |
| 91 | case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */ |
| 92 | case 14: /* DCCISW */ |
| 93 | asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val)); |
| 94 | break; |
| 95 | |
| 96 | case 10: /* DCCSW */ |
| 97 | asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val)); |
| 98 | break; |
| 99 | } |
| 100 | |
| 101 | done: |
| 102 | put_cpu(); |
| 103 | |
| 104 | return true; |
| 105 | } |
| 106 | |
| 107 | /* |
| 108 | * We could trap ID_DFR0 and tell the guest we don't support performance |
| 109 | * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was |
| 110 | * NAKed, so it will read the PMCR anyway. |
| 111 | * |
| 112 | * Therefore we tell the guest we have 0 counters. Unfortunately, we |
| 113 | * must always support PMCCNTR (the cycle counter): we just RAZ/WI for |
| 114 | * all PM registers, which doesn't crash the guest kernel at least. |
| 115 | */ |
| 116 | static bool pm_fake(struct kvm_vcpu *vcpu, |
| 117 | const struct coproc_params *p, |
| 118 | const struct coproc_reg *r) |
| 119 | { |
| 120 | if (p->is_write) |
| 121 | return ignore_write(vcpu, p); |
| 122 | else |
| 123 | return read_zero(vcpu, p); |
| 124 | } |
| 125 | |
| 126 | #define access_pmcr pm_fake |
| 127 | #define access_pmcntenset pm_fake |
| 128 | #define access_pmcntenclr pm_fake |
| 129 | #define access_pmovsr pm_fake |
| 130 | #define access_pmselr pm_fake |
| 131 | #define access_pmceid0 pm_fake |
| 132 | #define access_pmceid1 pm_fake |
| 133 | #define access_pmccntr pm_fake |
| 134 | #define access_pmxevtyper pm_fake |
| 135 | #define access_pmxevcntr pm_fake |
| 136 | #define access_pmuserenr pm_fake |
| 137 | #define access_pmintenset pm_fake |
| 138 | #define access_pmintenclr pm_fake |
| 139 | |
| 140 | /* Architected CP15 registers. |
| 141 | * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 |
| 142 | */ |
| 143 | static const struct coproc_reg cp15_regs[] = { |
| 144 | /* CSSELR: swapped by interrupt.S. */ |
| 145 | { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32, |
| 146 | NULL, reset_unknown, c0_CSSELR }, |
| 147 | |
| 148 | /* TTBR0/TTBR1: swapped by interrupt.S. */ |
| 149 | { CRm( 2), Op1( 0), is64, NULL, reset_unknown64, c2_TTBR0 }, |
| 150 | { CRm( 2), Op1( 1), is64, NULL, reset_unknown64, c2_TTBR1 }, |
| 151 | |
| 152 | /* TTBCR: swapped by interrupt.S. */ |
| 153 | { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32, |
| 154 | NULL, reset_val, c2_TTBCR, 0x00000000 }, |
| 155 | |
| 156 | /* DACR: swapped by interrupt.S. */ |
| 157 | { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32, |
| 158 | NULL, reset_unknown, c3_DACR }, |
| 159 | |
| 160 | /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */ |
| 161 | { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32, |
| 162 | NULL, reset_unknown, c5_DFSR }, |
| 163 | { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32, |
| 164 | NULL, reset_unknown, c5_IFSR }, |
| 165 | { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32, |
| 166 | NULL, reset_unknown, c5_ADFSR }, |
| 167 | { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32, |
| 168 | NULL, reset_unknown, c5_AIFSR }, |
| 169 | |
| 170 | /* DFAR/IFAR: swapped by interrupt.S. */ |
| 171 | { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32, |
| 172 | NULL, reset_unknown, c6_DFAR }, |
| 173 | { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32, |
| 174 | NULL, reset_unknown, c6_IFAR }, |
| 175 | /* |
| 176 | * DC{C,I,CI}SW operations: |
| 177 | */ |
| 178 | { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw}, |
| 179 | { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw}, |
| 180 | { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw}, |
| 181 | /* |
| 182 | * Dummy performance monitor implementation. |
| 183 | */ |
| 184 | { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr}, |
| 185 | { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset}, |
| 186 | { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr}, |
| 187 | { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr}, |
| 188 | { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr}, |
| 189 | { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0}, |
| 190 | { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1}, |
| 191 | { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr}, |
| 192 | { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper}, |
| 193 | { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr}, |
| 194 | { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr}, |
| 195 | { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset}, |
| 196 | { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr}, |
| 197 | |
| 198 | /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */ |
| 199 | { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32, |
| 200 | NULL, reset_unknown, c10_PRRR}, |
| 201 | { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32, |
| 202 | NULL, reset_unknown, c10_NMRR}, |
| 203 | |
| 204 | /* VBAR: swapped by interrupt.S. */ |
| 205 | { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32, |
| 206 | NULL, reset_val, c12_VBAR, 0x00000000 }, |
| 207 | |
| 208 | /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */ |
| 209 | { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32, |
| 210 | NULL, reset_val, c13_CID, 0x00000000 }, |
| 211 | { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32, |
| 212 | NULL, reset_unknown, c13_TID_URW }, |
| 213 | { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32, |
| 214 | NULL, reset_unknown, c13_TID_URO }, |
| 215 | { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32, |
| 216 | NULL, reset_unknown, c13_TID_PRIV }, |
| 217 | }; |
| 218 | |
| 219 | /* Target specific emulation tables */ |
| 220 | static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS]; |
| 221 | |
| 222 | void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table) |
| 223 | { |
| 224 | target_tables[table->target] = table; |
| 225 | } |
| 226 | |
| 227 | /* Get specific register table for this target. */ |
| 228 | static const struct coproc_reg *get_target_table(unsigned target, size_t *num) |
| 229 | { |
| 230 | struct kvm_coproc_target_table *table; |
| 231 | |
| 232 | table = target_tables[target]; |
| 233 | *num = table->num; |
| 234 | return table->table; |
| 235 | } |
| 236 | |
| 237 | static const struct coproc_reg *find_reg(const struct coproc_params *params, |
| 238 | const struct coproc_reg table[], |
| 239 | unsigned int num) |
| 240 | { |
| 241 | unsigned int i; |
| 242 | |
| 243 | for (i = 0; i < num; i++) { |
| 244 | const struct coproc_reg *r = &table[i]; |
| 245 | |
| 246 | if (params->is_64bit != r->is_64) |
| 247 | continue; |
| 248 | if (params->CRn != r->CRn) |
| 249 | continue; |
| 250 | if (params->CRm != r->CRm) |
| 251 | continue; |
| 252 | if (params->Op1 != r->Op1) |
| 253 | continue; |
| 254 | if (params->Op2 != r->Op2) |
| 255 | continue; |
| 256 | |
| 257 | return r; |
| 258 | } |
| 259 | return NULL; |
| 260 | } |
| 261 | |
| 262 | static int emulate_cp15(struct kvm_vcpu *vcpu, |
| 263 | const struct coproc_params *params) |
| 264 | { |
| 265 | size_t num; |
| 266 | const struct coproc_reg *table, *r; |
| 267 | |
| 268 | trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn, |
| 269 | params->CRm, params->Op2, params->is_write); |
| 270 | |
| 271 | table = get_target_table(vcpu->arch.target, &num); |
| 272 | |
| 273 | /* Search target-specific then generic table. */ |
| 274 | r = find_reg(params, table, num); |
| 275 | if (!r) |
| 276 | r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs)); |
| 277 | |
| 278 | if (likely(r)) { |
| 279 | /* If we don't have an accessor, we should never get here! */ |
| 280 | BUG_ON(!r->access); |
| 281 | |
| 282 | if (likely(r->access(vcpu, params, r))) { |
| 283 | /* Skip instruction, since it was emulated */ |
| 284 | kvm_skip_instr(vcpu, (vcpu->arch.hsr >> 25) & 1); |
| 285 | return 1; |
| 286 | } |
| 287 | /* If access function fails, it should complain. */ |
| 288 | } else { |
| 289 | kvm_err("Unsupported guest CP15 access at: %08x\n", |
| 290 | *vcpu_pc(vcpu)); |
| 291 | print_cp_instr(params); |
| 292 | } |
| 293 | kvm_inject_undefined(vcpu); |
| 294 | return 1; |
| 295 | } |
| 296 | |
| 297 | /** |
| 298 | * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access |
| 299 | * @vcpu: The VCPU pointer |
| 300 | * @run: The kvm_run struct |
| 301 | */ |
| 302 | int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| 303 | { |
| 304 | struct coproc_params params; |
| 305 | |
| 306 | params.CRm = (vcpu->arch.hsr >> 1) & 0xf; |
| 307 | params.Rt1 = (vcpu->arch.hsr >> 5) & 0xf; |
| 308 | params.is_write = ((vcpu->arch.hsr & 1) == 0); |
| 309 | params.is_64bit = true; |
| 310 | |
| 311 | params.Op1 = (vcpu->arch.hsr >> 16) & 0xf; |
| 312 | params.Op2 = 0; |
| 313 | params.Rt2 = (vcpu->arch.hsr >> 10) & 0xf; |
| 314 | params.CRn = 0; |
| 315 | |
| 316 | return emulate_cp15(vcpu, ¶ms); |
| 317 | } |
| 318 | |
| 319 | static void reset_coproc_regs(struct kvm_vcpu *vcpu, |
| 320 | const struct coproc_reg *table, size_t num) |
| 321 | { |
| 322 | unsigned long i; |
| 323 | |
| 324 | for (i = 0; i < num; i++) |
| 325 | if (table[i].reset) |
| 326 | table[i].reset(vcpu, &table[i]); |
| 327 | } |
| 328 | |
| 329 | /** |
| 330 | * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access |
| 331 | * @vcpu: The VCPU pointer |
| 332 | * @run: The kvm_run struct |
| 333 | */ |
| 334 | int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| 335 | { |
| 336 | struct coproc_params params; |
| 337 | |
| 338 | params.CRm = (vcpu->arch.hsr >> 1) & 0xf; |
| 339 | params.Rt1 = (vcpu->arch.hsr >> 5) & 0xf; |
| 340 | params.is_write = ((vcpu->arch.hsr & 1) == 0); |
| 341 | params.is_64bit = false; |
| 342 | |
| 343 | params.CRn = (vcpu->arch.hsr >> 10) & 0xf; |
| 344 | params.Op1 = (vcpu->arch.hsr >> 14) & 0x7; |
| 345 | params.Op2 = (vcpu->arch.hsr >> 17) & 0x7; |
| 346 | params.Rt2 = 0; |
| 347 | |
| 348 | return emulate_cp15(vcpu, ¶ms); |
| 349 | } |
| 350 | |
Christoffer Dall | 1138245 | 2013-01-20 18:28:10 -0500 | [diff] [blame^] | 351 | /****************************************************************************** |
| 352 | * Userspace API |
| 353 | *****************************************************************************/ |
| 354 | |
| 355 | static bool index_to_params(u64 id, struct coproc_params *params) |
| 356 | { |
| 357 | switch (id & KVM_REG_SIZE_MASK) { |
| 358 | case KVM_REG_SIZE_U32: |
| 359 | /* Any unused index bits means it's not valid. */ |
| 360 | if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK |
| 361 | | KVM_REG_ARM_COPROC_MASK |
| 362 | | KVM_REG_ARM_32_CRN_MASK |
| 363 | | KVM_REG_ARM_CRM_MASK |
| 364 | | KVM_REG_ARM_OPC1_MASK |
| 365 | | KVM_REG_ARM_32_OPC2_MASK)) |
| 366 | return false; |
| 367 | |
| 368 | params->is_64bit = false; |
| 369 | params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK) |
| 370 | >> KVM_REG_ARM_32_CRN_SHIFT); |
| 371 | params->CRm = ((id & KVM_REG_ARM_CRM_MASK) |
| 372 | >> KVM_REG_ARM_CRM_SHIFT); |
| 373 | params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK) |
| 374 | >> KVM_REG_ARM_OPC1_SHIFT); |
| 375 | params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK) |
| 376 | >> KVM_REG_ARM_32_OPC2_SHIFT); |
| 377 | return true; |
| 378 | case KVM_REG_SIZE_U64: |
| 379 | /* Any unused index bits means it's not valid. */ |
| 380 | if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK |
| 381 | | KVM_REG_ARM_COPROC_MASK |
| 382 | | KVM_REG_ARM_CRM_MASK |
| 383 | | KVM_REG_ARM_OPC1_MASK)) |
| 384 | return false; |
| 385 | params->is_64bit = true; |
| 386 | params->CRm = ((id & KVM_REG_ARM_CRM_MASK) |
| 387 | >> KVM_REG_ARM_CRM_SHIFT); |
| 388 | params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK) |
| 389 | >> KVM_REG_ARM_OPC1_SHIFT); |
| 390 | params->Op2 = 0; |
| 391 | params->CRn = 0; |
| 392 | return true; |
| 393 | default: |
| 394 | return false; |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | /* Decode an index value, and find the cp15 coproc_reg entry. */ |
| 399 | static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu, |
| 400 | u64 id) |
| 401 | { |
| 402 | size_t num; |
| 403 | const struct coproc_reg *table, *r; |
| 404 | struct coproc_params params; |
| 405 | |
| 406 | /* We only do cp15 for now. */ |
| 407 | if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15) |
| 408 | return NULL; |
| 409 | |
| 410 | if (!index_to_params(id, ¶ms)) |
| 411 | return NULL; |
| 412 | |
| 413 | table = get_target_table(vcpu->arch.target, &num); |
| 414 | r = find_reg(¶ms, table, num); |
| 415 | if (!r) |
| 416 | r = find_reg(¶ms, cp15_regs, ARRAY_SIZE(cp15_regs)); |
| 417 | |
| 418 | /* Not saved in the cp15 array? */ |
| 419 | if (r && !r->reg) |
| 420 | r = NULL; |
| 421 | |
| 422 | return r; |
| 423 | } |
| 424 | |
| 425 | /* |
| 426 | * These are the invariant cp15 registers: we let the guest see the host |
| 427 | * versions of these, so they're part of the guest state. |
| 428 | * |
| 429 | * A future CPU may provide a mechanism to present different values to |
| 430 | * the guest, or a future kvm may trap them. |
| 431 | */ |
| 432 | /* Unfortunately, there's no register-argument for mrc, so generate. */ |
| 433 | #define FUNCTION_FOR32(crn, crm, op1, op2, name) \ |
| 434 | static void get_##name(struct kvm_vcpu *v, \ |
| 435 | const struct coproc_reg *r) \ |
| 436 | { \ |
| 437 | u32 val; \ |
| 438 | \ |
| 439 | asm volatile("mrc p15, " __stringify(op1) \ |
| 440 | ", %0, c" __stringify(crn) \ |
| 441 | ", c" __stringify(crm) \ |
| 442 | ", " __stringify(op2) "\n" : "=r" (val)); \ |
| 443 | ((struct coproc_reg *)r)->val = val; \ |
| 444 | } |
| 445 | |
| 446 | FUNCTION_FOR32(0, 0, 0, 0, MIDR) |
| 447 | FUNCTION_FOR32(0, 0, 0, 1, CTR) |
| 448 | FUNCTION_FOR32(0, 0, 0, 2, TCMTR) |
| 449 | FUNCTION_FOR32(0, 0, 0, 3, TLBTR) |
| 450 | FUNCTION_FOR32(0, 0, 0, 6, REVIDR) |
| 451 | FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0) |
| 452 | FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1) |
| 453 | FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0) |
| 454 | FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0) |
| 455 | FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0) |
| 456 | FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1) |
| 457 | FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2) |
| 458 | FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3) |
| 459 | FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0) |
| 460 | FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1) |
| 461 | FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2) |
| 462 | FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3) |
| 463 | FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4) |
| 464 | FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5) |
| 465 | FUNCTION_FOR32(0, 0, 1, 1, CLIDR) |
| 466 | FUNCTION_FOR32(0, 0, 1, 7, AIDR) |
| 467 | |
| 468 | /* ->val is filled in by kvm_invariant_coproc_table_init() */ |
| 469 | static struct coproc_reg invariant_cp15[] = { |
| 470 | { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR }, |
| 471 | { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR }, |
| 472 | { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR }, |
| 473 | { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR }, |
| 474 | { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR }, |
| 475 | |
| 476 | { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 }, |
| 477 | { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 }, |
| 478 | { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 }, |
| 479 | { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 }, |
| 480 | { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 }, |
| 481 | { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 }, |
| 482 | { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 }, |
| 483 | { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 }, |
| 484 | |
| 485 | { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 }, |
| 486 | { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 }, |
| 487 | { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 }, |
| 488 | { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 }, |
| 489 | { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 }, |
| 490 | { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 }, |
| 491 | |
| 492 | { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR }, |
| 493 | { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR }, |
| 494 | }; |
| 495 | |
| 496 | static int reg_from_user(void *val, const void __user *uaddr, u64 id) |
| 497 | { |
| 498 | /* This Just Works because we are little endian. */ |
| 499 | if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0) |
| 500 | return -EFAULT; |
| 501 | return 0; |
| 502 | } |
| 503 | |
| 504 | static int reg_to_user(void __user *uaddr, const void *val, u64 id) |
| 505 | { |
| 506 | /* This Just Works because we are little endian. */ |
| 507 | if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0) |
| 508 | return -EFAULT; |
| 509 | return 0; |
| 510 | } |
| 511 | |
| 512 | static int get_invariant_cp15(u64 id, void __user *uaddr) |
| 513 | { |
| 514 | struct coproc_params params; |
| 515 | const struct coproc_reg *r; |
| 516 | |
| 517 | if (!index_to_params(id, ¶ms)) |
| 518 | return -ENOENT; |
| 519 | |
| 520 | r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15)); |
| 521 | if (!r) |
| 522 | return -ENOENT; |
| 523 | |
| 524 | return reg_to_user(uaddr, &r->val, id); |
| 525 | } |
| 526 | |
| 527 | static int set_invariant_cp15(u64 id, void __user *uaddr) |
| 528 | { |
| 529 | struct coproc_params params; |
| 530 | const struct coproc_reg *r; |
| 531 | int err; |
| 532 | u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */ |
| 533 | |
| 534 | if (!index_to_params(id, ¶ms)) |
| 535 | return -ENOENT; |
| 536 | r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15)); |
| 537 | if (!r) |
| 538 | return -ENOENT; |
| 539 | |
| 540 | err = reg_from_user(&val, uaddr, id); |
| 541 | if (err) |
| 542 | return err; |
| 543 | |
| 544 | /* This is what we mean by invariant: you can't change it. */ |
| 545 | if (r->val != val) |
| 546 | return -EINVAL; |
| 547 | |
| 548 | return 0; |
| 549 | } |
| 550 | |
| 551 | int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| 552 | { |
| 553 | const struct coproc_reg *r; |
| 554 | void __user *uaddr = (void __user *)(long)reg->addr; |
| 555 | |
| 556 | r = index_to_coproc_reg(vcpu, reg->id); |
| 557 | if (!r) |
| 558 | return get_invariant_cp15(reg->id, uaddr); |
| 559 | |
| 560 | /* Note: copies two regs if size is 64 bit. */ |
| 561 | return reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id); |
| 562 | } |
| 563 | |
| 564 | int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) |
| 565 | { |
| 566 | const struct coproc_reg *r; |
| 567 | void __user *uaddr = (void __user *)(long)reg->addr; |
| 568 | |
| 569 | r = index_to_coproc_reg(vcpu, reg->id); |
| 570 | if (!r) |
| 571 | return set_invariant_cp15(reg->id, uaddr); |
| 572 | |
| 573 | /* Note: copies two regs if size is 64 bit */ |
| 574 | return reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id); |
| 575 | } |
| 576 | |
| 577 | static u64 cp15_to_index(const struct coproc_reg *reg) |
| 578 | { |
| 579 | u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT); |
| 580 | if (reg->is_64) { |
| 581 | val |= KVM_REG_SIZE_U64; |
| 582 | val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT); |
| 583 | val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT); |
| 584 | } else { |
| 585 | val |= KVM_REG_SIZE_U32; |
| 586 | val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT); |
| 587 | val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT); |
| 588 | val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT); |
| 589 | val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT); |
| 590 | } |
| 591 | return val; |
| 592 | } |
| 593 | |
| 594 | static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind) |
| 595 | { |
| 596 | if (!*uind) |
| 597 | return true; |
| 598 | |
| 599 | if (put_user(cp15_to_index(reg), *uind)) |
| 600 | return false; |
| 601 | |
| 602 | (*uind)++; |
| 603 | return true; |
| 604 | } |
| 605 | |
| 606 | /* Assumed ordered tables, see kvm_coproc_table_init. */ |
| 607 | static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind) |
| 608 | { |
| 609 | const struct coproc_reg *i1, *i2, *end1, *end2; |
| 610 | unsigned int total = 0; |
| 611 | size_t num; |
| 612 | |
| 613 | /* We check for duplicates here, to allow arch-specific overrides. */ |
| 614 | i1 = get_target_table(vcpu->arch.target, &num); |
| 615 | end1 = i1 + num; |
| 616 | i2 = cp15_regs; |
| 617 | end2 = cp15_regs + ARRAY_SIZE(cp15_regs); |
| 618 | |
| 619 | BUG_ON(i1 == end1 || i2 == end2); |
| 620 | |
| 621 | /* Walk carefully, as both tables may refer to the same register. */ |
| 622 | while (i1 || i2) { |
| 623 | int cmp = cmp_reg(i1, i2); |
| 624 | /* target-specific overrides generic entry. */ |
| 625 | if (cmp <= 0) { |
| 626 | /* Ignore registers we trap but don't save. */ |
| 627 | if (i1->reg) { |
| 628 | if (!copy_reg_to_user(i1, &uind)) |
| 629 | return -EFAULT; |
| 630 | total++; |
| 631 | } |
| 632 | } else { |
| 633 | /* Ignore registers we trap but don't save. */ |
| 634 | if (i2->reg) { |
| 635 | if (!copy_reg_to_user(i2, &uind)) |
| 636 | return -EFAULT; |
| 637 | total++; |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | if (cmp <= 0 && ++i1 == end1) |
| 642 | i1 = NULL; |
| 643 | if (cmp >= 0 && ++i2 == end2) |
| 644 | i2 = NULL; |
| 645 | } |
| 646 | return total; |
| 647 | } |
| 648 | |
| 649 | unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu) |
| 650 | { |
| 651 | return ARRAY_SIZE(invariant_cp15) |
| 652 | + walk_cp15(vcpu, (u64 __user *)NULL); |
| 653 | } |
| 654 | |
| 655 | int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) |
| 656 | { |
| 657 | unsigned int i; |
| 658 | int err; |
| 659 | |
| 660 | /* Then give them all the invariant registers' indices. */ |
| 661 | for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) { |
| 662 | if (put_user(cp15_to_index(&invariant_cp15[i]), uindices)) |
| 663 | return -EFAULT; |
| 664 | uindices++; |
| 665 | } |
| 666 | |
| 667 | err = walk_cp15(vcpu, uindices); |
| 668 | if (err > 0) |
| 669 | err = 0; |
| 670 | return err; |
| 671 | } |
| 672 | |
Christoffer Dall | 5b3e5e5 | 2013-01-20 18:28:09 -0500 | [diff] [blame] | 673 | void kvm_coproc_table_init(void) |
| 674 | { |
| 675 | unsigned int i; |
| 676 | |
| 677 | /* Make sure tables are unique and in order. */ |
| 678 | for (i = 1; i < ARRAY_SIZE(cp15_regs); i++) |
| 679 | BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0); |
Christoffer Dall | 1138245 | 2013-01-20 18:28:10 -0500 | [diff] [blame^] | 680 | |
| 681 | /* We abuse the reset function to overwrite the table itself. */ |
| 682 | for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) |
| 683 | invariant_cp15[i].reset(NULL, &invariant_cp15[i]); |
Christoffer Dall | 5b3e5e5 | 2013-01-20 18:28:09 -0500 | [diff] [blame] | 684 | } |
| 685 | |
| 686 | /** |
| 687 | * kvm_reset_coprocs - sets cp15 registers to reset value |
| 688 | * @vcpu: The VCPU pointer |
| 689 | * |
| 690 | * This function finds the right table above and sets the registers on the |
| 691 | * virtual CPU struct to their architecturally defined reset values. |
| 692 | */ |
Christoffer Dall | 749cf76c | 2013-01-20 18:28:06 -0500 | [diff] [blame] | 693 | void kvm_reset_coprocs(struct kvm_vcpu *vcpu) |
| 694 | { |
Christoffer Dall | 5b3e5e5 | 2013-01-20 18:28:09 -0500 | [diff] [blame] | 695 | size_t num; |
| 696 | const struct coproc_reg *table; |
| 697 | |
| 698 | /* Catch someone adding a register without putting in reset entry. */ |
| 699 | memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15)); |
| 700 | |
| 701 | /* Generic chip reset first (so target could override). */ |
| 702 | reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs)); |
| 703 | |
| 704 | table = get_target_table(vcpu->arch.target, &num); |
| 705 | reset_coproc_regs(vcpu, table, num); |
| 706 | |
| 707 | for (num = 1; num < NR_CP15_REGS; num++) |
| 708 | if (vcpu->arch.cp15[num] == 0x42424242) |
| 709 | panic("Didn't reset vcpu->arch.cp15[%zi]", num); |
Christoffer Dall | 749cf76c | 2013-01-20 18:28:06 -0500 | [diff] [blame] | 710 | } |