blob: 2c45de8e06e9bdf6beb72130eb74796f184388ea [file] [log] [blame]
/**
* Copyright (C) ARM Limited 2010-2015. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include "PerfSource.h"
#include <dirent.h>
#include <errno.h>
#include <signal.h>
#include <string.h>
#include <sys/prctl.h>
#include <sys/resource.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>
#include "Child.h"
#include "DynBuf.h"
#include "Logging.h"
#include "PerfDriver.h"
#include "Proc.h"
#include "SessionData.h"
#ifndef SCHED_RESET_ON_FORK
#define SCHED_RESET_ON_FORK 0x40000000
#endif
extern Child *child;
static const int cpuIdleKey = getEventKey();
static bool sendTracepointFormat(const uint64_t currTime, Buffer *const buffer, const char *const name, DynBuf *const printb, DynBuf *const b) {
if (!printb->printf(EVENTS_PATH "/%s/format", name)) {
logg->logMessage("DynBuf::printf failed");
return false;
}
if (!b->read(printb->getBuf())) {
logg->logMessage("DynBuf::read failed");
return false;
}
buffer->marshalFormat(currTime, b->getLength(), b->getBuf());
return true;
}
static void *syncFunc(void *arg)
{
struct timespec ts;
int64_t nextTime = gSessionData->mMonotonicStarted;
int err;
(void)arg;
prctl(PR_SET_NAME, (unsigned long)&"gatord-sync", 0, 0, 0);
// Mask all signals so that this thread will not be woken up
{
sigset_t set;
if (sigfillset(&set) != 0) {
logg->logError("sigfillset failed");
handleException();
}
if ((err = pthread_sigmask(SIG_SETMASK, &set, NULL)) != 0) {
logg->logError("pthread_sigmask failed");
handleException();
}
}
for (;;) {
if (clock_gettime(CLOCK_MONOTONIC_RAW, &ts) != 0) {
logg->logError("clock_gettime failed");
handleException();
}
const int64_t currTime = ts.tv_sec * NS_PER_S + ts.tv_nsec;
// Wake up once a second
nextTime += NS_PER_S;
// Always sleep more than 1 ms, hopefully things will line up better next time
const int64_t sleepTime = max(nextTime - currTime, (int64_t)(NS_PER_MS + 1));
ts.tv_sec = sleepTime/NS_PER_S;
ts.tv_nsec = sleepTime % NS_PER_S;
err = nanosleep(&ts, NULL);
if (err != 0) {
fprintf(stderr, "clock_nanosleep failed: %s\n", strerror(err));
return NULL;
}
}
return NULL;
}
static long getMaxCoreNum() {
DIR *dir = opendir("/sys/devices/system/cpu");
if (dir == NULL) {
logg->logError("Unable to determine the number of cores on the target, opendir failed");
handleException();
}
long maxCoreNum = -1;
struct dirent *dirent;
while ((dirent = readdir(dir)) != NULL) {
if (strncmp(dirent->d_name, "cpu", 3) == 0) {
char *endptr;
errno = 0;
long coreNum = strtol(dirent->d_name + 3, &endptr, 10);
if ((errno == 0) && (*endptr == '\0') && (coreNum >= maxCoreNum)) {
maxCoreNum = coreNum + 1;
}
}
}
closedir(dir);
if (maxCoreNum < 1) {
logg->logError("Unable to determine the number of cores on the target, no cpu# directories found");
handleException();
}
if (maxCoreNum >= NR_CPUS) {
logg->logError("Too many cores on the target, please increase NR_CPUS in Config.h");
handleException();
}
return maxCoreNum;
}
PerfSource::PerfSource(sem_t *senderSem, sem_t *startProfile) : mSummary(0, FRAME_SUMMARY, 1024, senderSem), mBuffer(NULL), mCountersBuf(), mCountersGroup(&mCountersBuf), mMonitor(), mUEvent(), mSenderSem(senderSem), mStartProfile(startProfile), mInterruptFd(-1), mIsDone(false) {
long l = sysconf(_SC_PAGE_SIZE);
if (l < 0) {
logg->logError("Unable to obtain the page size");
handleException();
}
gSessionData->mPageSize = static_cast<int>(l);
gSessionData->mCores = static_cast<int>(getMaxCoreNum());
}
PerfSource::~PerfSource() {
delete mBuffer;
}
bool PerfSource::prepare() {
DynBuf printb;
DynBuf b1;
long long cpuIdleId;
// MonotonicStarted has not yet been assigned!
const uint64_t currTime = 0;//getTime() - gSessionData->mMonotonicStarted;
mBuffer = new Buffer(0, FRAME_PERF_ATTRS, gSessionData->mTotalBufferSize*1024*1024, mSenderSem);
// Reread cpuinfo since cores may have changed since startup
gSessionData->readCpuInfo();
if (0
|| !mMonitor.init()
|| !mUEvent.init()
|| !mMonitor.add(mUEvent.getFd())
|| !sendTracepointFormat(currTime, mBuffer, SCHED_SWITCH, &printb, &b1)
|| (cpuIdleId = PerfDriver::getTracepointId(CPU_IDLE, &printb)) < 0
|| !sendTracepointFormat(currTime, mBuffer, CPU_IDLE, &printb, &b1)
|| !sendTracepointFormat(currTime, mBuffer, CPU_FREQUENCY, &printb, &b1)
|| !mCountersGroup.createCpuGroup(currTime, mBuffer)
|| !mCountersGroup.add(currTime, mBuffer, cpuIdleKey, PERF_TYPE_TRACEPOINT, cpuIdleId, 1, PERF_SAMPLE_RAW, PERF_GROUP_LEADER | PERF_GROUP_PER_CPU)
|| !gSessionData->perf.enable(currTime, &mCountersGroup, mBuffer)
|| 0) {
logg->logMessage("perf setup failed, are you running Linux 3.4 or later?");
return false;
}
for (int cpu = 0; cpu < gSessionData->mCores; ++cpu) {
const int result = mCountersGroup.prepareCPU(cpu, &mMonitor);
if ((result != PG_SUCCESS) && (result != PG_CPU_OFFLINE)) {
logg->logError("PerfGroup::prepareCPU on mCountersGroup failed");
handleException();
}
}
int numEvents = 0;
for (int cpu = 0; cpu < gSessionData->mCores; ++cpu) {
numEvents += mCountersGroup.onlineCPU(currTime, cpu, false, mBuffer);
}
if (numEvents <= 0) {
logg->logMessage("PerfGroup::onlineCPU failed on all cores");
return false;
}
// Send the summary right before the start so that the monotonic delta is close to the start time
if (!gSessionData->perf.summary(&mSummary)) {
logg->logError("PerfDriver::summary failed");
handleException();
}
// Start the timer thread to used to sync perf and monotonic raw times
pthread_t syncThread;
if (pthread_create(&syncThread, NULL, syncFunc, NULL)) {
logg->logError("pthread_create failed");
handleException();
}
struct sched_param param;
param.sched_priority = sched_get_priority_max(SCHED_FIFO);
if (pthread_setschedparam(syncThread, SCHED_FIFO | SCHED_RESET_ON_FORK, &param) != 0) {
logg->logError("pthread_setschedparam failed");
handleException();
}
mBuffer->commit(currTime);
return true;
}
struct ProcThreadArgs {
Buffer *mBuffer;
uint64_t mCurrTime;
bool mIsDone;
};
void *procFunc(void *arg) {
DynBuf printb;
DynBuf b;
const ProcThreadArgs *const args = (ProcThreadArgs *)arg;
prctl(PR_SET_NAME, (unsigned long)&"gatord-proc", 0, 0, 0);
// Gator runs at a high priority, reset the priority to the default
if (setpriority(PRIO_PROCESS, syscall(__NR_gettid), 0) == -1) {
logg->logError("setpriority failed");
handleException();
}
if (!readProcMaps(args->mCurrTime, args->mBuffer, &printb, &b)) {
logg->logError("readProcMaps failed");
handleException();
}
if (!readKallsyms(args->mCurrTime, args->mBuffer, &args->mIsDone)) {
logg->logError("readKallsyms failed");
handleException();
}
args->mBuffer->commit(args->mCurrTime);
return NULL;
}
static const char CPU_DEVPATH[] = "/devices/system/cpu/cpu";
void PerfSource::run() {
int pipefd[2];
pthread_t procThread;
ProcThreadArgs procThreadArgs;
if (pipe_cloexec(pipefd) != 0) {
logg->logError("pipe failed");
handleException();
}
mInterruptFd = pipefd[1];
if (!mMonitor.add(pipefd[0])) {
logg->logError("Monitor::add failed");
handleException();
}
{
DynBuf printb;
DynBuf b1;
DynBuf b2;
const uint64_t currTime = getTime() - gSessionData->mMonotonicStarted;
// Start events before reading proc to avoid race conditions
if (!mCountersGroup.start()) {
logg->logError("PerfGroup::start failed");
handleException();
}
mBuffer->perfCounterHeader(currTime);
for (int cpu = 0; cpu < gSessionData->mCores; ++cpu) {
gSessionData->perf.read(mBuffer, cpu);
}
mBuffer->perfCounterFooter(currTime);
if (!readProcComms(currTime, mBuffer, &printb, &b1, &b2)) {
logg->logError("readProcComms failed");
handleException();
}
mBuffer->commit(currTime);
// Postpone reading kallsyms as on android adb gets too backed up and data is lost
procThreadArgs.mBuffer = mBuffer;
procThreadArgs.mCurrTime = currTime;
procThreadArgs.mIsDone = false;
if (pthread_create(&procThread, NULL, procFunc, &procThreadArgs)) {
logg->logError("pthread_create failed");
handleException();
}
}
sem_post(mStartProfile);
const uint64_t NO_RATE = ~0ULL;
const uint64_t rate = gSessionData->mLiveRate > 0 && gSessionData->mSampleRate > 0 ? gSessionData->mLiveRate : NO_RATE;
uint64_t nextTime = 0;
int timeout = rate != NO_RATE ? 0 : -1;
while (gSessionData->mSessionIsActive) {
// +1 for uevents, +1 for pipe
struct epoll_event events[NR_CPUS + 2];
int ready = mMonitor.wait(events, ARRAY_LENGTH(events), timeout);
if (ready < 0) {
logg->logError("Monitor::wait failed");
handleException();
}
const uint64_t currTime = getTime() - gSessionData->mMonotonicStarted;
for (int i = 0; i < ready; ++i) {
if (events[i].data.fd == mUEvent.getFd()) {
if (!handleUEvent(currTime)) {
logg->logError("PerfSource::handleUEvent failed");
handleException();
}
break;
}
}
// send a notification that data is ready
sem_post(mSenderSem);
// In one shot mode, stop collection once all the buffers are filled
if (gSessionData->mOneShot && gSessionData->mSessionIsActive && ((mSummary.bytesAvailable() <= 0) || (mBuffer->bytesAvailable() <= 0) || mCountersBuf.isFull())) {
logg->logMessage("One shot (perf)");
child->endSession();
}
if (rate != NO_RATE) {
while (currTime > nextTime) {
nextTime += rate;
}
// + NS_PER_MS - 1 to ensure always rounding up
timeout = max(0, (int)((nextTime + NS_PER_MS - 1 - getTime() + gSessionData->mMonotonicStarted)/NS_PER_MS));
}
}
procThreadArgs.mIsDone = true;
pthread_join(procThread, NULL);
mCountersGroup.stop();
mBuffer->setDone();
mIsDone = true;
// send a notification that data is ready
sem_post(mSenderSem);
mInterruptFd = -1;
close(pipefd[0]);
close(pipefd[1]);
}
bool PerfSource::handleUEvent(const uint64_t currTime) {
UEventResult result;
if (!mUEvent.read(&result)) {
logg->logMessage("UEvent::Read failed");
return false;
}
if (strcmp(result.mSubsystem, "cpu") == 0) {
if (strncmp(result.mDevPath, CPU_DEVPATH, sizeof(CPU_DEVPATH) - 1) != 0) {
logg->logMessage("Unexpected cpu DEVPATH format");
return false;
}
char *endptr;
errno = 0;
int cpu = strtol(result.mDevPath + sizeof(CPU_DEVPATH) - 1, &endptr, 10);
if (errno != 0 || *endptr != '\0') {
logg->logMessage("strtol failed");
return false;
}
if (cpu >= gSessionData->mCores) {
logg->logError("Only %i cores are expected but core %i reports %s", gSessionData->mCores, cpu, result.mAction);
handleException();
}
if (strcmp(result.mAction, "online") == 0) {
mBuffer->onlineCPU(currTime, cpu);
// Only call onlineCPU if prepareCPU succeeded
bool ret = false;
int err = mCountersGroup.prepareCPU(cpu, &mMonitor);
if (err == PG_CPU_OFFLINE) {
ret = true;
} else if (err == PG_SUCCESS) {
if (mCountersGroup.onlineCPU(currTime, cpu, true, mBuffer) > 0) {
mBuffer->perfCounterHeader(currTime);
gSessionData->perf.read(mBuffer, cpu);
mBuffer->perfCounterFooter(currTime);
ret = true;
}
}
mBuffer->commit(currTime);
gSessionData->readCpuInfo();
gSessionData->perf.coreName(currTime, &mSummary, cpu);
mSummary.commit(currTime);
return ret;
} else if (strcmp(result.mAction, "offline") == 0) {
const bool ret = mCountersGroup.offlineCPU(cpu);
mBuffer->offlineCPU(currTime, cpu);
return ret;
}
}
return true;
}
void PerfSource::interrupt() {
if (mInterruptFd >= 0) {
int8_t c = 0;
// Write to the pipe to wake the monitor which will cause mSessionIsActive to be reread
if (::write(mInterruptFd, &c, sizeof(c)) != sizeof(c)) {
logg->logError("write failed");
handleException();
}
}
}
bool PerfSource::isDone () {
return mBuffer->isDone() && mIsDone && mCountersBuf.isEmpty();
}
void PerfSource::write (Sender *sender) {
if (!mSummary.isDone()) {
mSummary.write(sender);
gSessionData->mSentSummary = true;
}
if (!mBuffer->isDone()) {
mBuffer->write(sender);
}
if (!mCountersBuf.send(sender)) {
logg->logError("PerfBuffer::send failed");
handleException();
}
}