| /* |
| * CCI cache coherent interconnect driver |
| * |
| * Copyright (C) 2013 ARM Ltd. |
| * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed "as is" WITHOUT ANY WARRANTY of any |
| * kind, whether express or implied; without even the implied warranty |
| * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/arm-cci.h> |
| #include <linux/io.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/of_address.h> |
| #include <linux/slab.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/irq_regs.h> |
| #include <asm/pmu.h> |
| #include <asm/smp_plat.h> |
| |
| #define DRIVER_NAME "CCI" |
| |
| #define CCI_PORT_CTRL 0x0 |
| #define CCI_CTRL_STATUS 0xc |
| |
| #define CCI_ENABLE_SNOOP_REQ 0x1 |
| #define CCI_ENABLE_DVM_REQ 0x2 |
| #define CCI_ENABLE_REQ (CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ) |
| |
| struct cci_nb_ports { |
| unsigned int nb_ace; |
| unsigned int nb_ace_lite; |
| }; |
| |
| enum cci_ace_port_type { |
| ACE_INVALID_PORT = 0x0, |
| ACE_PORT, |
| ACE_LITE_PORT, |
| }; |
| |
| struct cci_ace_port { |
| void __iomem *base; |
| unsigned long phys; |
| enum cci_ace_port_type type; |
| struct device_node *dn; |
| }; |
| |
| static struct cci_ace_port *ports; |
| static unsigned int nb_cci_ports; |
| |
| static void __iomem *cci_ctrl_base; |
| static unsigned long cci_ctrl_phys; |
| |
| #ifdef CONFIG_HW_PERF_EVENTS |
| |
| static void __iomem *cci_pmu_base; |
| |
| #define CCI400_PMCR 0x0100 |
| |
| #define CCI400_PMU_CYCLE_CNTR_BASE 0x0000 |
| #define CCI400_PMU_CNTR_BASE(idx) (CCI400_PMU_CYCLE_CNTR_BASE + (idx) * 0x1000) |
| |
| #define CCI400_PMCR_CEN 0x00000001 |
| #define CCI400_PMCR_RST 0x00000002 |
| #define CCI400_PMCR_CCR 0x00000004 |
| #define CCI400_PMCR_CCD 0x00000008 |
| #define CCI400_PMCR_EX 0x00000010 |
| #define CCI400_PMCR_DP 0x00000020 |
| #define CCI400_PMCR_NCNT_MASK 0x0000F800 |
| #define CCI400_PMCR_NCNT_SHIFT 11 |
| |
| #define CCI400_PMU_EVT_SEL 0x000 |
| #define CCI400_PMU_CNTR 0x004 |
| #define CCI400_PMU_CNTR_CTRL 0x008 |
| #define CCI400_PMU_OVERFLOW 0x00C |
| |
| #define CCI400_PMU_OVERFLOW_FLAG 1 |
| |
| enum cci400_perf_events { |
| CCI400_PMU_CYCLES = 0xFF |
| }; |
| |
| #define CCI400_PMU_EVENT_MASK 0xff |
| #define CCI400_PMU_EVENT_SOURCE(event) ((event >> 5) & 0x7) |
| #define CCI400_PMU_EVENT_CODE(event) (event & 0x1f) |
| |
| #define CCI400_PMU_EVENT_SOURCE_S0 0 |
| #define CCI400_PMU_EVENT_SOURCE_S4 4 |
| #define CCI400_PMU_EVENT_SOURCE_M0 5 |
| #define CCI400_PMU_EVENT_SOURCE_M2 7 |
| |
| #define CCI400_PMU_EVENT_SLAVE_MIN 0x0 |
| #define CCI400_PMU_EVENT_SLAVE_MAX 0x13 |
| |
| #define CCI400_PMU_EVENT_MASTER_MIN 0x14 |
| #define CCI400_PMU_EVENT_MASTER_MAX 0x1A |
| |
| #define CCI400_PMU_MAX_HW_EVENTS 5 /* CCI PMU has 4 counters + 1 cycle counter */ |
| |
| #define CCI400_PMU_CYCLE_COUNTER_IDX 0 |
| #define CCI400_PMU_COUNTER0_IDX 1 |
| #define CCI400_PMU_COUNTER_LAST(cci_pmu) (CCI400_PMU_CYCLE_COUNTER_IDX + cci_pmu->num_events - 1) |
| |
| |
| static struct perf_event *events[CCI400_PMU_MAX_HW_EVENTS]; |
| static unsigned long used_mask[BITS_TO_LONGS(CCI400_PMU_MAX_HW_EVENTS)]; |
| static struct pmu_hw_events cci_hw_events = { |
| .events = events, |
| .used_mask = used_mask, |
| }; |
| |
| static int cci_pmu_validate_hw_event(u8 hw_event) |
| { |
| u8 ev_source = CCI400_PMU_EVENT_SOURCE(hw_event); |
| u8 ev_code = CCI400_PMU_EVENT_CODE(hw_event); |
| |
| if (ev_source <= CCI400_PMU_EVENT_SOURCE_S4 && |
| ev_code <= CCI400_PMU_EVENT_SLAVE_MAX) |
| return hw_event; |
| else if (CCI400_PMU_EVENT_SOURCE_M0 <= ev_source && |
| ev_source <= CCI400_PMU_EVENT_SOURCE_M2 && |
| CCI400_PMU_EVENT_MASTER_MIN <= ev_code && |
| ev_code <= CCI400_PMU_EVENT_MASTER_MAX) |
| return hw_event; |
| |
| return -EINVAL; |
| } |
| |
| static inline int cci_pmu_counter_is_valid(struct arm_pmu *cci_pmu, int idx) |
| { |
| return CCI400_PMU_CYCLE_COUNTER_IDX <= idx && |
| idx <= CCI400_PMU_COUNTER_LAST(cci_pmu); |
| } |
| |
| static inline u32 cci_pmu_read_register(int idx, unsigned int offset) |
| { |
| return readl_relaxed(cci_pmu_base + CCI400_PMU_CNTR_BASE(idx) + offset); |
| } |
| |
| static inline void cci_pmu_write_register(u32 value, int idx, unsigned int offset) |
| { |
| return writel_relaxed(value, cci_pmu_base + CCI400_PMU_CNTR_BASE(idx) + offset); |
| } |
| |
| static inline void cci_pmu_disable_counter(int idx) |
| { |
| cci_pmu_write_register(0, idx, CCI400_PMU_CNTR_CTRL); |
| } |
| |
| static inline void cci_pmu_enable_counter(int idx) |
| { |
| cci_pmu_write_register(1, idx, CCI400_PMU_CNTR_CTRL); |
| } |
| |
| static inline void cci_pmu_select_event(int idx, unsigned long event) |
| { |
| event &= CCI400_PMU_EVENT_MASK; |
| cci_pmu_write_register(event, idx, CCI400_PMU_EVT_SEL); |
| } |
| |
| static u32 cci_pmu_get_max_counters(void) |
| { |
| u32 n_cnts = (readl_relaxed(cci_ctrl_base + CCI400_PMCR) & |
| CCI400_PMCR_NCNT_MASK) >> CCI400_PMCR_NCNT_SHIFT; |
| |
| /* add 1 for cycle counter */ |
| return n_cnts + 1; |
| } |
| |
| static struct pmu_hw_events *cci_pmu_get_hw_events(void) |
| { |
| return &cci_hw_events; |
| } |
| |
| static int cci_pmu_get_event_idx(struct pmu_hw_events *hw, struct perf_event *event) |
| { |
| struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu); |
| struct hw_perf_event *hw_event = &event->hw; |
| unsigned long cci_event = hw_event->config_base & CCI400_PMU_EVENT_MASK; |
| int idx; |
| |
| if (cci_event == CCI400_PMU_CYCLES) { |
| if (test_and_set_bit(CCI400_PMU_CYCLE_COUNTER_IDX, hw->used_mask)) |
| return -EAGAIN; |
| |
| return CCI400_PMU_CYCLE_COUNTER_IDX; |
| } |
| |
| for (idx = CCI400_PMU_COUNTER0_IDX; idx <= CCI400_PMU_COUNTER_LAST(cci_pmu); ++idx) { |
| if (!test_and_set_bit(idx, hw->used_mask)) |
| return idx; |
| } |
| |
| /* No counters available */ |
| return -EAGAIN; |
| } |
| |
| static int cci_pmu_map_event(struct perf_event *event) |
| { |
| int mapping; |
| u8 config = event->attr.config & CCI400_PMU_EVENT_MASK; |
| |
| if (event->attr.type < PERF_TYPE_MAX) |
| return -ENOENT; |
| |
| /* 0xff is used to represent CCI Cycles */ |
| if (config == 0xff) |
| mapping = config; |
| else |
| mapping = cci_pmu_validate_hw_event(config); |
| |
| return mapping; |
| } |
| |
| static int cci_pmu_request_irq(struct arm_pmu *cci_pmu, irq_handler_t handler) |
| { |
| int irq, err, i = 0; |
| struct platform_device *pmu_device = cci_pmu->plat_device; |
| |
| if (unlikely(!pmu_device)) |
| return -ENODEV; |
| |
| /* CCI exports 6 interrupts - 1 nERRORIRQ + 5 nEVNTCNTOVERFLOW (PMU) |
| nERRORIRQ will be handled by secure firmware on TC2. So we |
| assume that all CCI interrupts listed in the linux device |
| tree are PMU interrupts. |
| |
| The following code should then be able to handle different routing |
| of the CCI PMU interrupts. |
| */ |
| while ((irq = platform_get_irq(pmu_device, i)) > 0) { |
| err = request_irq(irq, handler, 0, "arm-cci-pmu", cci_pmu); |
| if (err) { |
| dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n", |
| irq); |
| return err; |
| } |
| i++; |
| } |
| |
| return 0; |
| } |
| |
| static irqreturn_t cci_pmu_handle_irq(int irq_num, void *dev) |
| { |
| struct arm_pmu *cci_pmu = (struct arm_pmu *)dev; |
| struct pmu_hw_events *events = cci_pmu->get_hw_events(); |
| struct perf_sample_data data; |
| struct pt_regs *regs; |
| int idx; |
| |
| regs = get_irq_regs(); |
| |
| /* Iterate over counters and update the corresponding perf events. |
| This should work regardless of whether we have per-counter overflow |
| interrupt or a combined overflow interrupt. */ |
| for (idx = CCI400_PMU_CYCLE_COUNTER_IDX; idx <= CCI400_PMU_COUNTER_LAST(cci_pmu); idx++) { |
| struct perf_event *event = events->events[idx]; |
| struct hw_perf_event *hw_counter; |
| |
| if (!event) |
| continue; |
| |
| hw_counter = &event->hw; |
| |
| /* Did this counter overflow? */ |
| if (!(cci_pmu_read_register(idx, CCI400_PMU_OVERFLOW) & CCI400_PMU_OVERFLOW_FLAG)) |
| continue; |
| cci_pmu_write_register(CCI400_PMU_OVERFLOW_FLAG, idx, CCI400_PMU_OVERFLOW); |
| |
| armpmu_event_update(event); |
| perf_sample_data_init(&data, 0, hw_counter->last_period); |
| if (!armpmu_event_set_period(event)) |
| continue; |
| |
| if (perf_event_overflow(event, &data, regs)) |
| cci_pmu->disable(event); |
| } |
| |
| irq_work_run(); |
| return IRQ_HANDLED; |
| } |
| |
| static void cci_pmu_free_irq(struct arm_pmu *cci_pmu) |
| { |
| int irq, i = 0; |
| struct platform_device *pmu_device = cci_pmu->plat_device; |
| |
| while ((irq = platform_get_irq(pmu_device, i)) > 0) { |
| free_irq(irq, cci_pmu); |
| i++; |
| } |
| } |
| |
| static void cci_pmu_enable_event(struct perf_event *event) |
| { |
| unsigned long flags; |
| struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu); |
| struct pmu_hw_events *events = cci_pmu->get_hw_events(); |
| struct hw_perf_event *hw_counter = &event->hw; |
| int idx = hw_counter->idx; |
| |
| if (unlikely(!cci_pmu_counter_is_valid(cci_pmu, idx))) { |
| dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); |
| return; |
| } |
| |
| raw_spin_lock_irqsave(&events->pmu_lock, flags); |
| |
| /* Configure the event to count, unless you are counting cycles */ |
| if (idx != CCI400_PMU_CYCLE_COUNTER_IDX) |
| cci_pmu_select_event(idx, hw_counter->config_base); |
| |
| cci_pmu_enable_counter(idx); |
| |
| raw_spin_unlock_irqrestore(&events->pmu_lock, flags); |
| } |
| |
| static void cci_pmu_disable_event(struct perf_event *event) |
| { |
| unsigned long flags; |
| struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu); |
| struct pmu_hw_events *events = cci_pmu->get_hw_events(); |
| struct hw_perf_event *hw_counter = &event->hw; |
| int idx = hw_counter->idx; |
| |
| if (unlikely(!cci_pmu_counter_is_valid(cci_pmu, idx))) { |
| dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); |
| return; |
| } |
| |
| raw_spin_lock_irqsave(&events->pmu_lock, flags); |
| |
| cci_pmu_disable_counter(idx); |
| |
| raw_spin_unlock_irqrestore(&events->pmu_lock, flags); |
| } |
| |
| static void cci_pmu_start(struct arm_pmu *cci_pmu) |
| { |
| u32 val; |
| unsigned long flags; |
| struct pmu_hw_events *events = cci_pmu->get_hw_events(); |
| |
| raw_spin_lock_irqsave(&events->pmu_lock, flags); |
| |
| /* Enable all the PMU counters. */ |
| val = readl(cci_ctrl_base + CCI400_PMCR) | CCI400_PMCR_CEN; |
| writel(val, cci_ctrl_base + CCI400_PMCR); |
| |
| raw_spin_unlock_irqrestore(&events->pmu_lock, flags); |
| } |
| |
| static void cci_pmu_stop(struct arm_pmu *cci_pmu) |
| { |
| u32 val; |
| unsigned long flags; |
| struct pmu_hw_events *events = cci_pmu->get_hw_events(); |
| |
| raw_spin_lock_irqsave(&events->pmu_lock, flags); |
| |
| /* Disable all the PMU counters. */ |
| val = readl(cci_ctrl_base + CCI400_PMCR) & ~CCI400_PMCR_CEN; |
| writel(val, cci_ctrl_base + CCI400_PMCR); |
| |
| raw_spin_unlock_irqrestore(&events->pmu_lock, flags); |
| } |
| |
| static u32 cci_pmu_read_counter(struct perf_event *event) |
| { |
| struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu); |
| struct hw_perf_event *hw_counter = &event->hw; |
| int idx = hw_counter->idx; |
| u32 value; |
| |
| if (unlikely(!cci_pmu_counter_is_valid(cci_pmu, idx))) { |
| dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); |
| return 0; |
| } |
| value = cci_pmu_read_register(idx, CCI400_PMU_CNTR); |
| |
| return value; |
| } |
| |
| static void cci_pmu_write_counter(struct perf_event *event, u32 value) |
| { |
| struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu); |
| struct hw_perf_event *hw_counter = &event->hw; |
| int idx = hw_counter->idx; |
| |
| if (unlikely(!cci_pmu_counter_is_valid(cci_pmu, idx))) |
| dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); |
| else |
| cci_pmu_write_register(value, idx, CCI400_PMU_CNTR); |
| } |
| |
| static struct arm_pmu cci_pmu = { |
| .name = DRIVER_NAME, |
| .max_period = (1LLU << 32) - 1, |
| .get_hw_events = cci_pmu_get_hw_events, |
| .get_event_idx = cci_pmu_get_event_idx, |
| .map_event = cci_pmu_map_event, |
| .request_irq = cci_pmu_request_irq, |
| .handle_irq = cci_pmu_handle_irq, |
| .free_irq = cci_pmu_free_irq, |
| .enable = cci_pmu_enable_event, |
| .disable = cci_pmu_disable_event, |
| .start = cci_pmu_start, |
| .stop = cci_pmu_stop, |
| .read_counter = cci_pmu_read_counter, |
| .write_counter = cci_pmu_write_counter, |
| }; |
| |
| static int cci_pmu_probe(struct platform_device *pdev) |
| { |
| struct resource *res; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| cci_pmu_base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(cci_pmu_base)) |
| return PTR_ERR(cci_pmu_base); |
| |
| cci_pmu.plat_device = pdev; |
| cci_pmu.num_events = cci_pmu_get_max_counters(); |
| raw_spin_lock_init(&cci_hw_events.pmu_lock); |
| cpumask_setall(&cci_pmu.valid_cpus); |
| |
| return armpmu_register(&cci_pmu, -1); |
| } |
| |
| static const struct of_device_id arm_cci_pmu_matches[] = { |
| {.compatible = "arm,cci-400-pmu"}, |
| {}, |
| }; |
| |
| static struct platform_driver cci_pmu_platform_driver = { |
| .driver = { |
| .name = DRIVER_NAME, |
| .of_match_table = arm_cci_pmu_matches, |
| }, |
| .probe = cci_pmu_probe, |
| }; |
| |
| static int __init cci_pmu_init(void) |
| { |
| if (platform_driver_register(&cci_pmu_platform_driver)) |
| WARN(1, "unable to register CCI platform driver\n"); |
| return 0; |
| } |
| |
| #else |
| |
| static int __init cci_pmu_init(void) |
| { |
| return 0; |
| } |
| |
| #endif /* CONFIG_HW_PERF_EVENTS */ |
| |
| struct cpu_port { |
| u64 mpidr; |
| u32 port; |
| }; |
| |
| /* |
| * Use the port MSB as valid flag, shift can be made dynamic |
| * by computing number of bits required for port indexes. |
| * Code disabling CCI cpu ports runs with D-cache invalidated |
| * and SCTLR bit clear so data accesses must be kept to a minimum |
| * to improve performance; for now shift is left static to |
| * avoid one more data access while disabling the CCI port. |
| */ |
| #define PORT_VALID_SHIFT 31 |
| #define PORT_VALID (0x1 << PORT_VALID_SHIFT) |
| |
| static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr) |
| { |
| port->port = PORT_VALID | index; |
| port->mpidr = mpidr; |
| } |
| |
| static inline bool cpu_port_is_valid(struct cpu_port *port) |
| { |
| return !!(port->port & PORT_VALID); |
| } |
| |
| static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr) |
| { |
| return port->mpidr == (mpidr & MPIDR_HWID_BITMASK); |
| } |
| |
| static struct cpu_port cpu_port[NR_CPUS]; |
| |
| /** |
| * __cci_ace_get_port - Function to retrieve the port index connected to |
| * a cpu or device. |
| * |
| * @dn: device node of the device to look-up |
| * @type: port type |
| * |
| * Return value: |
| * - CCI port index if success |
| * - -ENODEV if failure |
| */ |
| static int __cci_ace_get_port(struct device_node *dn, int type) |
| { |
| int i; |
| bool ace_match; |
| struct device_node *cci_portn; |
| |
| cci_portn = of_parse_phandle(dn, "cci-control-port", 0); |
| for (i = 0; i < nb_cci_ports; i++) { |
| ace_match = ports[i].type == type; |
| if (ace_match && cci_portn == ports[i].dn) |
| return i; |
| } |
| return -ENODEV; |
| } |
| |
| int cci_ace_get_port(struct device_node *dn) |
| { |
| return __cci_ace_get_port(dn, ACE_LITE_PORT); |
| } |
| EXPORT_SYMBOL_GPL(cci_ace_get_port); |
| |
| static void __init cci_ace_init_ports(void) |
| { |
| int port, ac, cpu; |
| u64 hwid; |
| const u32 *cell; |
| struct device_node *cpun, *cpus; |
| |
| cpus = of_find_node_by_path("/cpus"); |
| if (WARN(!cpus, "Missing cpus node, bailing out\n")) |
| return; |
| |
| if (WARN_ON(of_property_read_u32(cpus, "#address-cells", &ac))) |
| ac = of_n_addr_cells(cpus); |
| |
| /* |
| * Port index look-up speeds up the function disabling ports by CPU, |
| * since the logical to port index mapping is done once and does |
| * not change after system boot. |
| * The stashed index array is initialized for all possible CPUs |
| * at probe time. |
| */ |
| for_each_child_of_node(cpus, cpun) { |
| if (of_node_cmp(cpun->type, "cpu")) |
| continue; |
| cell = of_get_property(cpun, "reg", NULL); |
| if (WARN(!cell, "%s: missing reg property\n", cpun->full_name)) |
| continue; |
| |
| hwid = of_read_number(cell, ac); |
| cpu = get_logical_index(hwid & MPIDR_HWID_BITMASK); |
| |
| if (cpu < 0 || !cpu_possible(cpu)) |
| continue; |
| port = __cci_ace_get_port(cpun, ACE_PORT); |
| if (port < 0) |
| continue; |
| |
| init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu)); |
| } |
| |
| for_each_possible_cpu(cpu) { |
| WARN(!cpu_port_is_valid(&cpu_port[cpu]), |
| "CPU %u does not have an associated CCI port\n", |
| cpu); |
| } |
| } |
| /* |
| * Functions to enable/disable a CCI interconnect slave port |
| * |
| * They are called by low-level power management code to disable slave |
| * interfaces snoops and DVM broadcast. |
| * Since they may execute with cache data allocation disabled and |
| * after the caches have been cleaned and invalidated the functions provide |
| * no explicit locking since they may run with D-cache disabled, so normal |
| * cacheable kernel locks based on ldrex/strex may not work. |
| * Locking has to be provided by BSP implementations to ensure proper |
| * operations. |
| */ |
| |
| /** |
| * cci_port_control() - function to control a CCI port |
| * |
| * @port: index of the port to setup |
| * @enable: if true enables the port, if false disables it |
| */ |
| static void notrace cci_port_control(unsigned int port, bool enable) |
| { |
| void __iomem *base = ports[port].base; |
| |
| writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL); |
| /* |
| * This function is called from power down procedures |
| * and must not execute any instruction that might |
| * cause the processor to be put in a quiescent state |
| * (eg wfi). Hence, cpu_relax() can not be added to this |
| * read loop to optimize power, since it might hide possibly |
| * disruptive operations. |
| */ |
| while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1) |
| ; |
| } |
| |
| /** |
| * cci_disable_port_by_cpu() - function to disable a CCI port by CPU |
| * reference |
| * |
| * @mpidr: mpidr of the CPU whose CCI port should be disabled |
| * |
| * Disabling a CCI port for a CPU implies disabling the CCI port |
| * controlling that CPU cluster. Code disabling CPU CCI ports |
| * must make sure that the CPU running the code is the last active CPU |
| * in the cluster ie all other CPUs are quiescent in a low power state. |
| * |
| * Return: |
| * 0 on success |
| * -ENODEV on port look-up failure |
| */ |
| int notrace cci_disable_port_by_cpu(u64 mpidr) |
| { |
| int cpu; |
| bool is_valid; |
| for (cpu = 0; cpu < nr_cpu_ids; cpu++) { |
| is_valid = cpu_port_is_valid(&cpu_port[cpu]); |
| if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) { |
| cci_port_control(cpu_port[cpu].port, false); |
| return 0; |
| } |
| } |
| return -ENODEV; |
| } |
| EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu); |
| |
| /** |
| * cci_enable_port_for_self() - enable a CCI port for calling CPU |
| * |
| * Enabling a CCI port for the calling CPU implies enabling the CCI |
| * port controlling that CPU's cluster. Caller must make sure that the |
| * CPU running the code is the first active CPU in the cluster and all |
| * other CPUs are quiescent in a low power state or waiting for this CPU |
| * to complete the CCI initialization. |
| * |
| * Because this is called when the MMU is still off and with no stack, |
| * the code must be position independent and ideally rely on callee |
| * clobbered registers only. To achieve this we must code this function |
| * entirely in assembler. |
| * |
| * On success this returns with the proper CCI port enabled. In case of |
| * any failure this never returns as the inability to enable the CCI is |
| * fatal and there is no possible recovery at this stage. |
| */ |
| asmlinkage void __naked cci_enable_port_for_self(void) |
| { |
| asm volatile ("\n" |
| |
| " mrc p15, 0, r0, c0, c0, 5 @ get MPIDR value \n" |
| " and r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n" |
| " adr r1, 5f \n" |
| " ldr r2, [r1] \n" |
| " add r1, r1, r2 @ &cpu_port \n" |
| " add ip, r1, %[sizeof_cpu_port] \n" |
| |
| /* Loop over the cpu_port array looking for a matching MPIDR */ |
| "1: ldr r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n" |
| " cmp r2, r0 @ compare MPIDR \n" |
| " bne 2f \n" |
| |
| /* Found a match, now test port validity */ |
| " ldr r3, [r1, %[offsetof_cpu_port_port]] \n" |
| " tst r3, #"__stringify(PORT_VALID)" \n" |
| " bne 3f \n" |
| |
| /* no match, loop with the next cpu_port entry */ |
| "2: add r1, r1, %[sizeof_struct_cpu_port] \n" |
| " cmp r1, ip @ done? \n" |
| " blo 1b \n" |
| |
| /* CCI port not found -- cheaply try to stall this CPU */ |
| "cci_port_not_found: \n" |
| " wfi \n" |
| " wfe \n" |
| " b cci_port_not_found \n" |
| |
| /* Use matched port index to look up the corresponding ports entry */ |
| "3: bic r3, r3, #"__stringify(PORT_VALID)" \n" |
| " adr r0, 6f \n" |
| " ldmia r0, {r1, r2} \n" |
| " sub r1, r1, r0 @ virt - phys \n" |
| " ldr r0, [r0, r2] @ *(&ports) \n" |
| " mov r2, %[sizeof_struct_ace_port] \n" |
| " mla r0, r2, r3, r0 @ &ports[index] \n" |
| " sub r0, r0, r1 @ virt_to_phys() \n" |
| |
| /* Enable the CCI port */ |
| " ldr r0, [r0, %[offsetof_port_phys]] \n" |
| " mov r3, %[cci_enable_req]\n" |
| " str r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n" |
| |
| /* poll the status reg for completion */ |
| " adr r1, 7f \n" |
| " ldr r0, [r1] \n" |
| " ldr r0, [r0, r1] @ cci_ctrl_base \n" |
| "4: ldr r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n" |
| " tst r1, %[cci_control_status_bits] \n" |
| " bne 4b \n" |
| |
| " mov r0, #0 \n" |
| " bx lr \n" |
| |
| " .align 2 \n" |
| "5: .word cpu_port - . \n" |
| "6: .word . \n" |
| " .word ports - 6b \n" |
| "7: .word cci_ctrl_phys - . \n" |
| : : |
| [sizeof_cpu_port] "i" (sizeof(cpu_port)), |
| [cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ), |
| [cci_control_status_bits] "i" cpu_to_le32(1), |
| #ifndef __ARMEB__ |
| [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)), |
| #else |
| [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4), |
| #endif |
| [offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)), |
| [sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)), |
| [sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)), |
| [offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) ); |
| |
| unreachable(); |
| } |
| |
| /** |
| * __cci_control_port_by_device() - function to control a CCI port by device |
| * reference |
| * |
| * @dn: device node pointer of the device whose CCI port should be |
| * controlled |
| * @enable: if true enables the port, if false disables it |
| * |
| * Return: |
| * 0 on success |
| * -ENODEV on port look-up failure |
| */ |
| int notrace __cci_control_port_by_device(struct device_node *dn, bool enable) |
| { |
| int port; |
| |
| if (!dn) |
| return -ENODEV; |
| |
| port = __cci_ace_get_port(dn, ACE_LITE_PORT); |
| if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n", |
| dn->full_name)) |
| return -ENODEV; |
| cci_port_control(port, enable); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(__cci_control_port_by_device); |
| |
| /** |
| * __cci_control_port_by_index() - function to control a CCI port by port index |
| * |
| * @port: port index previously retrieved with cci_ace_get_port() |
| * @enable: if true enables the port, if false disables it |
| * |
| * Return: |
| * 0 on success |
| * -ENODEV on port index out of range |
| * -EPERM if operation carried out on an ACE PORT |
| */ |
| int notrace __cci_control_port_by_index(u32 port, bool enable) |
| { |
| if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT) |
| return -ENODEV; |
| /* |
| * CCI control for ports connected to CPUS is extremely fragile |
| * and must be made to go through a specific and controlled |
| * interface (ie cci_disable_port_by_cpu(); control by general purpose |
| * indexing is therefore disabled for ACE ports. |
| */ |
| if (ports[port].type == ACE_PORT) |
| return -EPERM; |
| |
| cci_port_control(port, enable); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(__cci_control_port_by_index); |
| |
| static const struct cci_nb_ports cci400_ports = { |
| .nb_ace = 2, |
| .nb_ace_lite = 3 |
| }; |
| |
| static const struct of_device_id arm_cci_matches[] = { |
| {.compatible = "arm,cci-400", .data = &cci400_ports }, |
| {}, |
| }; |
| |
| static const struct of_device_id arm_cci_ctrl_if_matches[] = { |
| {.compatible = "arm,cci-400-ctrl-if", }, |
| {}, |
| }; |
| |
| static int __init cci_probe(void) |
| { |
| struct cci_nb_ports const *cci_config; |
| int ret, i, nb_ace = 0, nb_ace_lite = 0; |
| struct device_node *np, *cp; |
| struct resource res; |
| const char *match_str; |
| bool is_ace; |
| |
| np = of_find_matching_node(NULL, arm_cci_matches); |
| if (!np) |
| return -ENODEV; |
| |
| cci_config = of_match_node(arm_cci_matches, np)->data; |
| if (!cci_config) |
| return -ENODEV; |
| |
| nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite; |
| |
| ports = kcalloc(sizeof(*ports), nb_cci_ports, GFP_KERNEL); |
| if (!ports) |
| return -ENOMEM; |
| |
| ret = of_address_to_resource(np, 0, &res); |
| if (!ret) { |
| cci_ctrl_base = ioremap(res.start, resource_size(&res)); |
| cci_ctrl_phys = res.start; |
| } |
| if (ret || !cci_ctrl_base) { |
| WARN(1, "unable to ioremap CCI ctrl\n"); |
| ret = -ENXIO; |
| goto memalloc_err; |
| } |
| |
| for_each_child_of_node(np, cp) { |
| if (!of_match_node(arm_cci_ctrl_if_matches, cp)) |
| continue; |
| |
| i = nb_ace + nb_ace_lite; |
| |
| if (i >= nb_cci_ports) |
| break; |
| |
| if (of_property_read_string(cp, "interface-type", |
| &match_str)) { |
| WARN(1, "node %s missing interface-type property\n", |
| cp->full_name); |
| continue; |
| } |
| is_ace = strcmp(match_str, "ace") == 0; |
| if (!is_ace && strcmp(match_str, "ace-lite")) { |
| WARN(1, "node %s containing invalid interface-type property, skipping it\n", |
| cp->full_name); |
| continue; |
| } |
| |
| ret = of_address_to_resource(cp, 0, &res); |
| if (!ret) { |
| ports[i].base = ioremap(res.start, resource_size(&res)); |
| ports[i].phys = res.start; |
| } |
| if (ret || !ports[i].base) { |
| WARN(1, "unable to ioremap CCI port %d\n", i); |
| continue; |
| } |
| |
| if (is_ace) { |
| if (WARN_ON(nb_ace >= cci_config->nb_ace)) |
| continue; |
| ports[i].type = ACE_PORT; |
| ++nb_ace; |
| } else { |
| if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite)) |
| continue; |
| ports[i].type = ACE_LITE_PORT; |
| ++nb_ace_lite; |
| } |
| ports[i].dn = cp; |
| } |
| |
| /* initialize a stashed array of ACE ports to speed-up look-up */ |
| cci_ace_init_ports(); |
| |
| /* |
| * Multi-cluster systems may need this data when non-coherent, during |
| * cluster power-up/power-down. Make sure it reaches main memory. |
| */ |
| sync_cache_w(&cci_ctrl_base); |
| sync_cache_w(&cci_ctrl_phys); |
| sync_cache_w(&ports); |
| sync_cache_w(&cpu_port); |
| __sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports); |
| pr_info("ARM CCI driver probed\n"); |
| return 0; |
| |
| memalloc_err: |
| |
| kfree(ports); |
| return ret; |
| } |
| |
| static int cci_init_status = -EAGAIN; |
| static DEFINE_MUTEX(cci_probing); |
| |
| static int __init cci_init(void) |
| { |
| if (cci_init_status != -EAGAIN) |
| return cci_init_status; |
| |
| mutex_lock(&cci_probing); |
| if (cci_init_status == -EAGAIN) |
| cci_init_status = cci_probe(); |
| mutex_unlock(&cci_probing); |
| return cci_init_status; |
| } |
| |
| /* |
| * To sort out early init calls ordering a helper function is provided to |
| * check if the CCI driver has beed initialized. Function check if the driver |
| * has been initialized, if not it calls the init function that probes |
| * the driver and updates the return value. |
| */ |
| bool __init cci_probed(void) |
| { |
| return cci_init() == 0; |
| } |
| EXPORT_SYMBOL_GPL(cci_probed); |
| |
| early_initcall(cci_init); |
| core_initcall(cci_pmu_init); |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("ARM CCI support"); |