blob: 6d98ab72f38b075c707d5a78cc7d231cc919aa02 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30#include <linux/module.h>
31#include <linux/timex.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080032#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070033#include <linux/errno.h>
34#include <linux/smp_lock.h>
35#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
38#include <linux/module.h>
39
40#include <asm/uaccess.h>
41#include <asm/unistd.h>
42
43/*
44 * The timezone where the local system is located. Used as a default by some
45 * programs who obtain this value by using gettimeofday.
46 */
47struct timezone sys_tz;
48
49EXPORT_SYMBOL(sys_tz);
50
51#ifdef __ARCH_WANT_SYS_TIME
52
53/*
54 * sys_time() can be implemented in user-level using
55 * sys_gettimeofday(). Is this for backwards compatibility? If so,
56 * why not move it into the appropriate arch directory (for those
57 * architectures that need it).
58 */
59asmlinkage long sys_time(time_t __user * tloc)
60{
61 time_t i;
62 struct timeval tv;
63
64 do_gettimeofday(&tv);
65 i = tv.tv_sec;
66
67 if (tloc) {
68 if (put_user(i,tloc))
69 i = -EFAULT;
70 }
71 return i;
72}
73
74/*
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
79 */
80
81asmlinkage long sys_stime(time_t __user *tptr)
82{
83 struct timespec tv;
84 int err;
85
86 if (get_user(tv.tv_sec, tptr))
87 return -EFAULT;
88
89 tv.tv_nsec = 0;
90
91 err = security_settime(&tv, NULL);
92 if (err)
93 return err;
94
95 do_settimeofday(&tv);
96 return 0;
97}
98
99#endif /* __ARCH_WANT_SYS_TIME */
100
101asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
102{
103 if (likely(tv != NULL)) {
104 struct timeval ktv;
105 do_gettimeofday(&ktv);
106 if (copy_to_user(tv, &ktv, sizeof(ktv)))
107 return -EFAULT;
108 }
109 if (unlikely(tz != NULL)) {
110 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
111 return -EFAULT;
112 }
113 return 0;
114}
115
116/*
117 * Adjust the time obtained from the CMOS to be UTC time instead of
118 * local time.
119 *
120 * This is ugly, but preferable to the alternatives. Otherwise we
121 * would either need to write a program to do it in /etc/rc (and risk
122 * confusion if the program gets run more than once; it would also be
123 * hard to make the program warp the clock precisely n hours) or
124 * compile in the timezone information into the kernel. Bad, bad....
125 *
126 * - TYT, 1992-01-01
127 *
128 * The best thing to do is to keep the CMOS clock in universal time (UTC)
129 * as real UNIX machines always do it. This avoids all headaches about
130 * daylight saving times and warping kernel clocks.
131 */
Jesper Juhl77933d72005-07-27 11:46:09 -0700132static inline void warp_clock(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700133{
134 write_seqlock_irq(&xtime_lock);
135 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
136 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
137 time_interpolator_reset();
138 write_sequnlock_irq(&xtime_lock);
139 clock_was_set();
140}
141
142/*
143 * In case for some reason the CMOS clock has not already been running
144 * in UTC, but in some local time: The first time we set the timezone,
145 * we will warp the clock so that it is ticking UTC time instead of
146 * local time. Presumably, if someone is setting the timezone then we
147 * are running in an environment where the programs understand about
148 * timezones. This should be done at boot time in the /etc/rc script,
149 * as soon as possible, so that the clock can be set right. Otherwise,
150 * various programs will get confused when the clock gets warped.
151 */
152
153int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
154{
155 static int firsttime = 1;
156 int error = 0;
157
Linus Torvalds951069e2006-01-31 10:16:55 -0800158 if (tv && !timespec_valid(tv))
Thomas Gleixner718bcce2006-01-09 20:52:29 -0800159 return -EINVAL;
160
Linus Torvalds1da177e2005-04-16 15:20:36 -0700161 error = security_settime(tv, tz);
162 if (error)
163 return error;
164
165 if (tz) {
166 /* SMP safe, global irq locking makes it work. */
167 sys_tz = *tz;
168 if (firsttime) {
169 firsttime = 0;
170 if (!tv)
171 warp_clock();
172 }
173 }
174 if (tv)
175 {
176 /* SMP safe, again the code in arch/foo/time.c should
177 * globally block out interrupts when it runs.
178 */
179 return do_settimeofday(tv);
180 }
181 return 0;
182}
183
184asmlinkage long sys_settimeofday(struct timeval __user *tv,
185 struct timezone __user *tz)
186{
187 struct timeval user_tv;
188 struct timespec new_ts;
189 struct timezone new_tz;
190
191 if (tv) {
192 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
193 return -EFAULT;
194 new_ts.tv_sec = user_tv.tv_sec;
195 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
196 }
197 if (tz) {
198 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
199 return -EFAULT;
200 }
201
202 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
203}
204
Linus Torvalds1da177e2005-04-16 15:20:36 -0700205asmlinkage long sys_adjtimex(struct timex __user *txc_p)
206{
207 struct timex txc; /* Local copy of parameter */
208 int ret;
209
210 /* Copy the user data space into the kernel copy
211 * structure. But bear in mind that the structures
212 * may change
213 */
214 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
215 return -EFAULT;
216 ret = do_adjtimex(&txc);
217 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
218}
219
220inline struct timespec current_kernel_time(void)
221{
222 struct timespec now;
223 unsigned long seq;
224
225 do {
226 seq = read_seqbegin(&xtime_lock);
227
228 now = xtime;
229 } while (read_seqretry(&xtime_lock, seq));
230
231 return now;
232}
233
234EXPORT_SYMBOL(current_kernel_time);
235
236/**
237 * current_fs_time - Return FS time
238 * @sb: Superblock.
239 *
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200240 * Return the current time truncated to the time granularity supported by
Linus Torvalds1da177e2005-04-16 15:20:36 -0700241 * the fs.
242 */
243struct timespec current_fs_time(struct super_block *sb)
244{
245 struct timespec now = current_kernel_time();
246 return timespec_trunc(now, sb->s_time_gran);
247}
248EXPORT_SYMBOL(current_fs_time);
249
Eric Dumazet753e9c52007-05-08 00:25:32 -0700250/*
251 * Convert jiffies to milliseconds and back.
252 *
253 * Avoid unnecessary multiplications/divisions in the
254 * two most common HZ cases:
255 */
256unsigned int inline jiffies_to_msecs(const unsigned long j)
257{
258#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
259 return (MSEC_PER_SEC / HZ) * j;
260#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
261 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
262#else
263 return (j * MSEC_PER_SEC) / HZ;
264#endif
265}
266EXPORT_SYMBOL(jiffies_to_msecs);
267
268unsigned int inline jiffies_to_usecs(const unsigned long j)
269{
270#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
271 return (USEC_PER_SEC / HZ) * j;
272#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
273 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
274#else
275 return (j * USEC_PER_SEC) / HZ;
276#endif
277}
278EXPORT_SYMBOL(jiffies_to_usecs);
279
Linus Torvalds1da177e2005-04-16 15:20:36 -0700280/**
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200281 * timespec_trunc - Truncate timespec to a granularity
Linus Torvalds1da177e2005-04-16 15:20:36 -0700282 * @t: Timespec
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200283 * @gran: Granularity in ns.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700284 *
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200285 * Truncate a timespec to a granularity. gran must be smaller than a second.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700286 * Always rounds down.
287 *
288 * This function should be only used for timestamps returned by
289 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
290 * it doesn't handle the better resolution of the later.
291 */
292struct timespec timespec_trunc(struct timespec t, unsigned gran)
293{
294 /*
295 * Division is pretty slow so avoid it for common cases.
296 * Currently current_kernel_time() never returns better than
297 * jiffies resolution. Exploit that.
298 */
299 if (gran <= jiffies_to_usecs(1) * 1000) {
300 /* nothing */
301 } else if (gran == 1000000000) {
302 t.tv_nsec = 0;
303 } else {
304 t.tv_nsec -= t.tv_nsec % gran;
305 }
306 return t;
307}
308EXPORT_SYMBOL(timespec_trunc);
309
310#ifdef CONFIG_TIME_INTERPOLATION
311void getnstimeofday (struct timespec *tv)
312{
313 unsigned long seq,sec,nsec;
314
315 do {
316 seq = read_seqbegin(&xtime_lock);
317 sec = xtime.tv_sec;
318 nsec = xtime.tv_nsec+time_interpolator_get_offset();
319 } while (unlikely(read_seqretry(&xtime_lock, seq)));
320
321 while (unlikely(nsec >= NSEC_PER_SEC)) {
322 nsec -= NSEC_PER_SEC;
323 ++sec;
324 }
325 tv->tv_sec = sec;
326 tv->tv_nsec = nsec;
327}
328EXPORT_SYMBOL_GPL(getnstimeofday);
329
330int do_settimeofday (struct timespec *tv)
331{
332 time_t wtm_sec, sec = tv->tv_sec;
333 long wtm_nsec, nsec = tv->tv_nsec;
334
335 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
336 return -EINVAL;
337
338 write_seqlock_irq(&xtime_lock);
339 {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700340 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
341 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
342
343 set_normalized_timespec(&xtime, sec, nsec);
344 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
345
346 time_adjust = 0; /* stop active adjtime() */
347 time_status |= STA_UNSYNC;
348 time_maxerror = NTP_PHASE_LIMIT;
349 time_esterror = NTP_PHASE_LIMIT;
350 time_interpolator_reset();
351 }
352 write_sequnlock_irq(&xtime_lock);
353 clock_was_set();
354 return 0;
355}
Al Viro943eae02005-10-29 07:32:07 +0100356EXPORT_SYMBOL(do_settimeofday);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700357
358void do_gettimeofday (struct timeval *tv)
359{
360 unsigned long seq, nsec, usec, sec, offset;
361 do {
362 seq = read_seqbegin(&xtime_lock);
363 offset = time_interpolator_get_offset();
364 sec = xtime.tv_sec;
365 nsec = xtime.tv_nsec;
366 } while (unlikely(read_seqretry(&xtime_lock, seq)));
367
368 usec = (nsec + offset) / 1000;
369
370 while (unlikely(usec >= USEC_PER_SEC)) {
371 usec -= USEC_PER_SEC;
372 ++sec;
373 }
374
375 tv->tv_sec = sec;
376 tv->tv_usec = usec;
377}
378
379EXPORT_SYMBOL(do_gettimeofday);
380
381
382#else
john stultzcf3c7692006-06-26 00:25:08 -0700383#ifndef CONFIG_GENERIC_TIME
Linus Torvalds1da177e2005-04-16 15:20:36 -0700384/*
385 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
386 * and therefore only yields usec accuracy
387 */
388void getnstimeofday(struct timespec *tv)
389{
390 struct timeval x;
391
392 do_gettimeofday(&x);
393 tv->tv_sec = x.tv_sec;
394 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
395}
Takashi Iwaic6ecf7e2005-10-14 15:59:03 -0700396EXPORT_SYMBOL_GPL(getnstimeofday);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700397#endif
john stultzcf3c7692006-06-26 00:25:08 -0700398#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700399
Thomas Gleixner753be622006-01-09 20:52:22 -0800400/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
401 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
402 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
403 *
404 * [For the Julian calendar (which was used in Russia before 1917,
405 * Britain & colonies before 1752, anywhere else before 1582,
406 * and is still in use by some communities) leave out the
407 * -year/100+year/400 terms, and add 10.]
408 *
409 * This algorithm was first published by Gauss (I think).
410 *
411 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
412 * machines were long is 32-bit! (However, as time_t is signed, we
413 * will already get problems at other places on 2038-01-19 03:14:08)
414 */
415unsigned long
Ingo Molnarf4818902006-01-09 20:52:23 -0800416mktime(const unsigned int year0, const unsigned int mon0,
417 const unsigned int day, const unsigned int hour,
418 const unsigned int min, const unsigned int sec)
Thomas Gleixner753be622006-01-09 20:52:22 -0800419{
Ingo Molnarf4818902006-01-09 20:52:23 -0800420 unsigned int mon = mon0, year = year0;
421
422 /* 1..12 -> 11,12,1..10 */
423 if (0 >= (int) (mon -= 2)) {
424 mon += 12; /* Puts Feb last since it has leap day */
Thomas Gleixner753be622006-01-09 20:52:22 -0800425 year -= 1;
426 }
427
428 return ((((unsigned long)
429 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
430 year*365 - 719499
431 )*24 + hour /* now have hours */
432 )*60 + min /* now have minutes */
433 )*60 + sec; /* finally seconds */
434}
435
Andrew Morton199e7052006-01-09 20:52:24 -0800436EXPORT_SYMBOL(mktime);
437
Thomas Gleixner753be622006-01-09 20:52:22 -0800438/**
439 * set_normalized_timespec - set timespec sec and nsec parts and normalize
440 *
441 * @ts: pointer to timespec variable to be set
442 * @sec: seconds to set
443 * @nsec: nanoseconds to set
444 *
445 * Set seconds and nanoseconds field of a timespec variable and
446 * normalize to the timespec storage format
447 *
448 * Note: The tv_nsec part is always in the range of
449 * 0 <= tv_nsec < NSEC_PER_SEC
450 * For negative values only the tv_sec field is negative !
451 */
Ingo Molnarf4818902006-01-09 20:52:23 -0800452void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
Thomas Gleixner753be622006-01-09 20:52:22 -0800453{
454 while (nsec >= NSEC_PER_SEC) {
455 nsec -= NSEC_PER_SEC;
456 ++sec;
457 }
458 while (nsec < 0) {
459 nsec += NSEC_PER_SEC;
460 --sec;
461 }
462 ts->tv_sec = sec;
463 ts->tv_nsec = nsec;
464}
465
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800466/**
467 * ns_to_timespec - Convert nanoseconds to timespec
468 * @nsec: the nanoseconds value to be converted
469 *
470 * Returns the timespec representation of the nsec parameter.
471 */
Roman Zippeldf869b62006-03-26 01:38:11 -0800472struct timespec ns_to_timespec(const s64 nsec)
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800473{
474 struct timespec ts;
475
George Anzinger88fc3892006-02-03 03:04:20 -0800476 if (!nsec)
477 return (struct timespec) {0, 0};
478
479 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
480 if (unlikely(nsec < 0))
481 set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800482
483 return ts;
484}
Stephen Hemminger85795d62007-03-24 21:35:33 -0700485EXPORT_SYMBOL(ns_to_timespec);
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800486
487/**
488 * ns_to_timeval - Convert nanoseconds to timeval
489 * @nsec: the nanoseconds value to be converted
490 *
491 * Returns the timeval representation of the nsec parameter.
492 */
Roman Zippeldf869b62006-03-26 01:38:11 -0800493struct timeval ns_to_timeval(const s64 nsec)
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800494{
495 struct timespec ts = ns_to_timespec(nsec);
496 struct timeval tv;
497
498 tv.tv_sec = ts.tv_sec;
499 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
500
501 return tv;
502}
Eric Dumazetb7aa0bf2007-04-19 16:16:32 -0700503EXPORT_SYMBOL(ns_to_timeval);
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800504
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800505/*
Ingo Molnar41cf5442007-02-16 01:27:28 -0800506 * When we convert to jiffies then we interpret incoming values
507 * the following way:
508 *
509 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
510 *
511 * - 'too large' values [that would result in larger than
512 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
513 *
514 * - all other values are converted to jiffies by either multiplying
515 * the input value by a factor or dividing it with a factor
516 *
517 * We must also be careful about 32-bit overflows.
518 */
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800519unsigned long msecs_to_jiffies(const unsigned int m)
520{
Ingo Molnar41cf5442007-02-16 01:27:28 -0800521 /*
522 * Negative value, means infinite timeout:
523 */
524 if ((int)m < 0)
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800525 return MAX_JIFFY_OFFSET;
Ingo Molnar41cf5442007-02-16 01:27:28 -0800526
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800527#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
Ingo Molnar41cf5442007-02-16 01:27:28 -0800528 /*
529 * HZ is equal to or smaller than 1000, and 1000 is a nice
530 * round multiple of HZ, divide with the factor between them,
531 * but round upwards:
532 */
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800533 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
534#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
Ingo Molnar41cf5442007-02-16 01:27:28 -0800535 /*
536 * HZ is larger than 1000, and HZ is a nice round multiple of
537 * 1000 - simply multiply with the factor between them.
538 *
539 * But first make sure the multiplication result cannot
540 * overflow:
541 */
542 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
543 return MAX_JIFFY_OFFSET;
544
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800545 return m * (HZ / MSEC_PER_SEC);
546#else
Ingo Molnar41cf5442007-02-16 01:27:28 -0800547 /*
548 * Generic case - multiply, round and divide. But first
549 * check that if we are doing a net multiplication, that
550 * we wouldnt overflow:
551 */
552 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
553 return MAX_JIFFY_OFFSET;
554
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800555 return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
556#endif
557}
558EXPORT_SYMBOL(msecs_to_jiffies);
559
560unsigned long usecs_to_jiffies(const unsigned int u)
561{
562 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
563 return MAX_JIFFY_OFFSET;
564#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
565 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
566#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
567 return u * (HZ / USEC_PER_SEC);
568#else
569 return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
570#endif
571}
572EXPORT_SYMBOL(usecs_to_jiffies);
573
574/*
575 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
576 * that a remainder subtract here would not do the right thing as the
577 * resolution values don't fall on second boundries. I.e. the line:
578 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
579 *
580 * Rather, we just shift the bits off the right.
581 *
582 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
583 * value to a scaled second value.
584 */
585unsigned long
586timespec_to_jiffies(const struct timespec *value)
587{
588 unsigned long sec = value->tv_sec;
589 long nsec = value->tv_nsec + TICK_NSEC - 1;
590
591 if (sec >= MAX_SEC_IN_JIFFIES){
592 sec = MAX_SEC_IN_JIFFIES;
593 nsec = 0;
594 }
595 return (((u64)sec * SEC_CONVERSION) +
596 (((u64)nsec * NSEC_CONVERSION) >>
597 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
598
599}
600EXPORT_SYMBOL(timespec_to_jiffies);
601
602void
603jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
604{
605 /*
606 * Convert jiffies to nanoseconds and separate with
607 * one divide.
608 */
609 u64 nsec = (u64)jiffies * TICK_NSEC;
610 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
611}
612EXPORT_SYMBOL(jiffies_to_timespec);
613
614/* Same for "timeval"
615 *
616 * Well, almost. The problem here is that the real system resolution is
617 * in nanoseconds and the value being converted is in micro seconds.
618 * Also for some machines (those that use HZ = 1024, in-particular),
619 * there is a LARGE error in the tick size in microseconds.
620
621 * The solution we use is to do the rounding AFTER we convert the
622 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
623 * Instruction wise, this should cost only an additional add with carry
624 * instruction above the way it was done above.
625 */
626unsigned long
627timeval_to_jiffies(const struct timeval *value)
628{
629 unsigned long sec = value->tv_sec;
630 long usec = value->tv_usec;
631
632 if (sec >= MAX_SEC_IN_JIFFIES){
633 sec = MAX_SEC_IN_JIFFIES;
634 usec = 0;
635 }
636 return (((u64)sec * SEC_CONVERSION) +
637 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
638 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
639}
Thomas Bittermann456a09d2007-04-04 22:20:54 +0200640EXPORT_SYMBOL(timeval_to_jiffies);
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800641
642void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
643{
644 /*
645 * Convert jiffies to nanoseconds and separate with
646 * one divide.
647 */
648 u64 nsec = (u64)jiffies * TICK_NSEC;
649 long tv_usec;
650
651 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
652 tv_usec /= NSEC_PER_USEC;
653 value->tv_usec = tv_usec;
654}
Thomas Bittermann456a09d2007-04-04 22:20:54 +0200655EXPORT_SYMBOL(jiffies_to_timeval);
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800656
657/*
658 * Convert jiffies/jiffies_64 to clock_t and back.
659 */
660clock_t jiffies_to_clock_t(long x)
661{
662#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
663 return x / (HZ / USER_HZ);
664#else
665 u64 tmp = (u64)x * TICK_NSEC;
666 do_div(tmp, (NSEC_PER_SEC / USER_HZ));
667 return (long)tmp;
668#endif
669}
670EXPORT_SYMBOL(jiffies_to_clock_t);
671
672unsigned long clock_t_to_jiffies(unsigned long x)
673{
674#if (HZ % USER_HZ)==0
675 if (x >= ~0UL / (HZ / USER_HZ))
676 return ~0UL;
677 return x * (HZ / USER_HZ);
678#else
679 u64 jif;
680
681 /* Don't worry about loss of precision here .. */
682 if (x >= ~0UL / HZ * USER_HZ)
683 return ~0UL;
684
685 /* .. but do try to contain it here */
686 jif = x * (u64) HZ;
687 do_div(jif, USER_HZ);
688 return jif;
689#endif
690}
691EXPORT_SYMBOL(clock_t_to_jiffies);
692
693u64 jiffies_64_to_clock_t(u64 x)
694{
695#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
696 do_div(x, HZ / USER_HZ);
697#else
698 /*
699 * There are better ways that don't overflow early,
700 * but even this doesn't overflow in hundreds of years
701 * in 64 bits, so..
702 */
703 x *= TICK_NSEC;
704 do_div(x, (NSEC_PER_SEC / USER_HZ));
705#endif
706 return x;
707}
708
709EXPORT_SYMBOL(jiffies_64_to_clock_t);
710
711u64 nsec_to_clock_t(u64 x)
712{
713#if (NSEC_PER_SEC % USER_HZ) == 0
714 do_div(x, (NSEC_PER_SEC / USER_HZ));
715#elif (USER_HZ % 512) == 0
716 x *= USER_HZ/512;
717 do_div(x, (NSEC_PER_SEC / 512));
718#else
719 /*
720 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
721 * overflow after 64.99 years.
722 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
723 */
724 x *= 9;
725 do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
726 USER_HZ));
727#endif
728 return x;
729}
730
Linus Torvalds1da177e2005-04-16 15:20:36 -0700731#if (BITS_PER_LONG < 64)
732u64 get_jiffies_64(void)
733{
734 unsigned long seq;
735 u64 ret;
736
737 do {
738 seq = read_seqbegin(&xtime_lock);
739 ret = jiffies_64;
740 } while (read_seqretry(&xtime_lock, seq));
741 return ret;
742}
743
744EXPORT_SYMBOL(get_jiffies_64);
745#endif
746
747EXPORT_SYMBOL(jiffies);