blob: c8a6136bfdc0d20484d98dfd76ca813067f8165b [file] [log] [blame]
/*
* Copyright 2005-2011 Freescale Semiconductor, Inc. All Rights Reserved.
*/
/*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
/*!
* @file ipu_common.c
*
* @brief This file contains the IPU driver common API functions.
*
* @ingroup IPU
*/
#include <linux/types.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/irqdesc.h>
#include <linux/ipu.h>
#include <linux/clk.h>
#include <mach/clock.h>
#include <mach/hardware.h>
#include <mach/ipu-v3.h>
#include <mach/devices-common.h>
#include <asm/cacheflush.h>
#include <linux/delay.h>
#include "ipu_prv.h"
#include "ipu_regs.h"
#include "ipu_param_mem.h"
static struct ipu_soc ipu_array[MXC_IPU_MAX_NUM];
int g_ipu_hw_rev;
/* Static functions */
static irqreturn_t ipu_irq_handler(int irq, void *desc);
static inline uint32_t channel_2_dma(ipu_channel_t ch, ipu_buffer_t type)
{
return ((uint32_t) ch >> (6 * type)) & 0x3F;
};
static inline int _ipu_is_ic_chan(uint32_t dma_chan)
{
return ((dma_chan >= 11) && (dma_chan <= 22) && (dma_chan != 17) && (dma_chan != 18));
}
static inline int _ipu_is_ic_graphic_chan(uint32_t dma_chan)
{
return (dma_chan == 14 || dma_chan == 15);
}
/* Either DP BG or DP FG can be graphic window */
static inline int _ipu_is_dp_graphic_chan(uint32_t dma_chan)
{
return (dma_chan == 23 || dma_chan == 27);
}
static inline int _ipu_is_irt_chan(uint32_t dma_chan)
{
return ((dma_chan >= 45) && (dma_chan <= 50));
}
static inline int _ipu_is_dmfc_chan(uint32_t dma_chan)
{
return ((dma_chan >= 23) && (dma_chan <= 29));
}
static inline int _ipu_is_smfc_chan(uint32_t dma_chan)
{
return ((dma_chan >= 0) && (dma_chan <= 3));
}
static inline int _ipu_is_trb_chan(uint32_t dma_chan)
{
return (((dma_chan == 8) || (dma_chan == 9) ||
(dma_chan == 10) || (dma_chan == 13) ||
(dma_chan == 21) || (dma_chan == 23) ||
(dma_chan == 27) || (dma_chan == 28)) &&
(g_ipu_hw_rev >= 2));
}
#define idma_is_valid(ch) (ch != NO_DMA)
#define idma_mask(ch) (idma_is_valid(ch) ? (1UL << (ch & 0x1F)) : 0)
#define idma_is_set(ipu, reg, dma) (ipu_idmac_read(ipu, reg(dma)) & idma_mask(dma))
#define tri_cur_buf_mask(ch) (idma_mask(ch*2) * 3)
#define tri_cur_buf_shift(ch) (ffs(idma_mask(ch*2)) - 1)
static int ipu_reset(struct ipu_soc *ipu)
{
int timeout = 1000;
ipu_cm_write(ipu, 0x807FFFFF, IPU_MEM_RST);
while (ipu_cm_read(ipu, IPU_MEM_RST) & 0x80000000) {
if (!timeout--)
return -ETIME;
msleep(1);
}
return 0;
}
static int __devinit ipu_clk_setup_enable(struct ipu_soc *ipu,
struct platform_device *pdev)
{
struct imx_ipuv3_platform_data *plat_data = pdev->dev.platform_data;
char ipu_clk[] = "ipu1_clk";
char di0_clk[] = "ipu1_di0_clk";
char di1_clk[] = "ipu1_di1_clk";
ipu_clk[3] += pdev->id;
di0_clk[3] += pdev->id;
di1_clk[3] += pdev->id;
ipu->ipu_clk = clk_get(ipu->dev, ipu_clk);
if (IS_ERR(ipu->ipu_clk)) {
dev_err(ipu->dev, "clk_get failed");
return PTR_ERR(ipu->ipu_clk);
}
dev_dbg(ipu->dev, "ipu_clk = %lu\n", clk_get_rate(ipu->ipu_clk));
ipu->pixel_clk[0] = ipu_pixel_clk[0];
ipu->pixel_clk[1] = ipu_pixel_clk[1];
ipu_lookups[0].clk = &ipu->pixel_clk[0];
ipu_lookups[1].clk = &ipu->pixel_clk[1];
clkdev_add(&ipu_lookups[0]);
clkdev_add(&ipu_lookups[1]);
clk_debug_register(&ipu->pixel_clk[0]);
clk_debug_register(&ipu->pixel_clk[1]);
clk_enable(ipu->ipu_clk);
clk_set_parent(&ipu->pixel_clk[0], ipu->ipu_clk);
clk_set_parent(&ipu->pixel_clk[1], ipu->ipu_clk);
ipu->di_clk[0] = clk_get(ipu->dev, di0_clk);
ipu->di_clk[1] = clk_get(ipu->dev, di1_clk);
ipu->csi_clk[0] = clk_get(ipu->dev, plat_data->csi_clk[0]);
ipu->csi_clk[1] = clk_get(ipu->dev, plat_data->csi_clk[1]);
return 0;
}
#if 0
static void ipu_irq_handler(unsigned int irq, struct irq_desc *desc)
{
struct ipu_soc *ipu = irq_desc_get_handler_data(desc);
const int int_reg[] = { 1, 2, 3, 4, 11, 12, 13, 14, 15, 0 };
u32 status;
int i, line;
for (i = 0;; i++) {
if (int_reg[i] == 0)
break;
status = ipu_cm_read(ipu, IPU_INT_STAT(int_reg[i]));
status &= ipu_cm_read(ipu, IPU_INT_CTRL(int_reg[i]));
while ((line = ffs(status))) {
line--;
status &= ~(1UL << line);
line += ipu->irq_start + (int_reg[i] - 1) * 32;
generic_handle_irq(line);
}
}
}
static void ipu_err_irq_handler(unsigned int irq, struct irq_desc *desc)
{
struct ipu_soc *ipu = irq_desc_get_handler_data(desc);
const int int_reg[] = { 5, 6, 9, 10, 0 };
u32 status;
int i, line;
for (i = 0;; i++) {
if (int_reg[i] == 0)
break;
status = ipu_cm_read(ipu, IPU_INT_STAT(int_reg[i]));
status &= ipu_cm_read(ipu, IPU_INT_CTRL(int_reg[i]));
while ((line = ffs(status))) {
line--;
status &= ~(1UL << line);
line += ipu->irq_start + (int_reg[i] - 1) * 32;
generic_handle_irq(line);
}
}
}
static void ipu_ack_irq(struct irq_data *d)
{
struct ipu_soc *ipu = irq_data_get_irq_chip_data(d);
unsigned int irq = d->irq - ipu->irq_start;
unsigned long flags;
spin_lock_irqsave(&ipu->ipu_lock, flags);
ipu_cm_write(ipu, 1 << (irq % 32), IPU_INT_STAT(irq / 32 + 1));
spin_unlock_irqrestore(&ipu->ipu_lock, flags);
}
static void ipu_unmask_irq(struct irq_data *d)
{
struct ipu_soc *ipu = irq_data_get_irq_chip_data(d);
unsigned int irq = d->irq - ipu->irq_start;
unsigned long flags;
u32 reg;
spin_lock_irqsave(&ipu->ipu_lock, flags);
reg = ipu_cm_read(ipu, IPU_INT_CTRL(irq / 32 + 1));
reg |= 1 << (irq % 32);
ipu_cm_write(ipu, reg, IPU_INT_CTRL(irq / 32 + 1));
spin_unlock_irqrestore(&ipu->ipu_lock, flags);
}
static void ipu_mask_irq(struct irq_data *d)
{
struct ipu_soc *ipu = irq_data_get_irq_chip_data(d);
unsigned int irq = d->irq - ipu->irq_start;
unsigned long flags;
u32 reg;
spin_lock_irqsave(&ipu->ipu_lock, flags);
reg = ipu_cm_read(ipu, IPU_INT_CTRL(irq / 32 + 1));
reg &= ~(1 << (irq % 32));
ipu_cm_write(ipu, reg, IPU_INT_CTRL(irq / 32 + 1));
spin_unlock_irqrestore(&ipu->ipu_lock, flags);
}
static struct irq_chip ipu_irq_chip = {
.name = "IPU",
.irq_ack = ipu_ack_irq,
.irq_mask = ipu_mask_irq,
.irq_unmask = ipu_unmask_irq,
};
static void __devinit ipu_irq_setup(struct ipu_soc *ipu)
{
int i;
for (i = ipu->irq_start; i < ipu->irq_start + MX5_IPU_IRQS; i++) {
irq_set_chip_and_handler(i, &ipu_irq_chip, handle_level_irq);
set_irq_flags(i, IRQF_VALID);
irq_set_chip_data(i, ipu);
}
irq_set_chained_handler(ipu->irq_sync, ipu_irq_handler);
irq_set_handler_data(ipu->irq_sync, ipu);
irq_set_chained_handler(ipu->irq_err, ipu_err_irq_handler);
irq_set_handler_data(ipu->irq_err, ipu);
}
int ipu_request_irq(struct ipu_soc *ipu, unsigned int irq,
irq_handler_t handler, unsigned long flags,
const char *name, void *dev)
{
return request_irq(ipu->irq_start + irq, handler, flags, name, dev);
}
EXPORT_SYMBOL_GPL(ipu_request_irq);
void ipu_enable_irq(struct ipu_soc *ipu, unsigned int irq)
{
return enable_irq(ipu->irq_start + irq);
}
EXPORT_SYMBOL_GPL(ipu_disable_irq);
void ipu_disable_irq(struct ipu_soc *ipu, unsigned int irq)
{
return disable_irq(ipu->irq_start + irq);
}
EXPORT_SYMBOL_GPL(ipu_disable_irq);
void ipu_free_irq(struct ipu_soc *ipu, unsigned int irq, void *dev_id)
{
free_irq(ipu->irq_start + irq, dev_id);
}
EXPORT_SYMBOL_GPL(ipu_free_irq);
static irqreturn_t ipu_completion_handler(int irq, void *dev)
{
struct completion *completion = dev;
complete(completion);
return IRQ_HANDLED;
}
int ipu_wait_for_interrupt(struct ipu_soc *ipu, int interrupt, int timeout_ms)
{
DECLARE_COMPLETION_ONSTACK(completion);
int ret;
ret = ipu_request_irq(ipu, interrupt, ipu_completion_handler,
0, NULL, &completion);
if (ret) {
dev_err(ipu->dev,
"ipu request irq %d fail\n", interrupt);
return ret;
}
ret = wait_for_completion_timeout(&completion,
msecs_to_jiffies(timeout_ms));
ipu_free_irq(ipu, interrupt, &completion);
return ret > 0 ? 0 : -ETIMEDOUT;
}
EXPORT_SYMBOL_GPL(ipu_wait_for_interrupt);
#endif
struct ipu_soc *ipu_get_soc(int id)
{
if (id >= MXC_IPU_MAX_NUM)
return ERR_PTR(-ENODEV);
else if (!ipu_array[id].online)
return ERR_PTR(-ENODEV);
else
return &(ipu_array[id]);
}
EXPORT_SYMBOL_GPL(ipu_get_soc);
void _ipu_lock(struct ipu_soc *ipu)
{
/*TODO:remove in_irq() condition after v4l2 driver rewrite*/
if (!in_irq() && !in_softirq())
mutex_lock(&ipu->mutex_lock);
}
void _ipu_unlock(struct ipu_soc *ipu)
{
/*TODO:remove in_irq() condition after v4l2 driver rewrite*/
if (!in_irq() && !in_softirq())
mutex_unlock(&ipu->mutex_lock);
}
void _ipu_get(struct ipu_soc *ipu)
{
if (atomic_inc_return(&ipu->ipu_use_count) == 1)
clk_enable(ipu->ipu_clk);
}
void _ipu_put(struct ipu_soc *ipu)
{
if (atomic_dec_return(&ipu->ipu_use_count) == 0)
clk_disable(ipu->ipu_clk);
}
/*!
* This function is called by the driver framework to initialize the IPU
* hardware.
*
* @param dev The device structure for the IPU passed in by the
* driver framework.
*
* @return Returns 0 on success or negative error code on error
*/
static int __devinit ipu_probe(struct platform_device *pdev)
{
struct imx_ipuv3_platform_data *plat_data = pdev->dev.platform_data;
struct ipu_soc *ipu;
struct resource *res;
unsigned long ipu_base;
int ret = 0;
if (pdev->id >= MXC_IPU_MAX_NUM)
return -ENODEV;
ipu = &ipu_array[pdev->id];
memset(ipu, 0, sizeof(struct ipu_soc));
spin_lock_init(&ipu->spin_lock);
mutex_init(&ipu->mutex_lock);
atomic_set(&ipu->ipu_use_count, 0);
g_ipu_hw_rev = plat_data->rev;
ipu->dev = &pdev->dev;
if (plat_data->init)
plat_data->init(pdev->id);
ipu->irq_sync = platform_get_irq(pdev, 0);
ipu->irq_err = platform_get_irq(pdev, 1);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res || ipu->irq_sync < 0 || ipu->irq_err < 0) {
ret = -ENODEV;
goto failed_get_res;
}
if (request_irq(ipu->irq_sync, ipu_irq_handler, 0, pdev->name, ipu) != 0) {
dev_err(ipu->dev, "request SYNC interrupt failed\n");
ret = -EBUSY;
goto failed_req_irq_sync;
}
/* Some platforms have 2 IPU interrupts */
if (ipu->irq_err >= 0) {
if (request_irq
(ipu->irq_err, ipu_irq_handler, 0, pdev->name, ipu) != 0) {
dev_err(ipu->dev, "request ERR interrupt failed\n");
ret = -EBUSY;
goto failed_req_irq_err;
}
}
ipu_base = res->start;
/* base fixup */
if (g_ipu_hw_rev == 4) /* IPUv3H */
ipu_base += IPUV3H_REG_BASE;
else if (g_ipu_hw_rev == 3) /* IPUv3M */
ipu_base += IPUV3M_REG_BASE;
else /* IPUv3D, v3E, v3EX */
ipu_base += IPUV3DEX_REG_BASE;
ipu->cm_reg = ioremap(ipu_base + IPU_CM_REG_BASE, PAGE_SIZE);
ipu->ic_reg = ioremap(ipu_base + IPU_IC_REG_BASE, PAGE_SIZE);
ipu->idmac_reg = ioremap(ipu_base + IPU_IDMAC_REG_BASE, PAGE_SIZE);
/* DP Registers are accessed thru the SRM */
ipu->dp_reg = ioremap(ipu_base + IPU_SRM_REG_BASE, PAGE_SIZE);
ipu->dc_reg = ioremap(ipu_base + IPU_DC_REG_BASE, PAGE_SIZE);
ipu->dmfc_reg = ioremap(ipu_base + IPU_DMFC_REG_BASE, PAGE_SIZE);
ipu->di_reg[0] = ioremap(ipu_base + IPU_DI0_REG_BASE, PAGE_SIZE);
ipu->di_reg[1] = ioremap(ipu_base + IPU_DI1_REG_BASE, PAGE_SIZE);
ipu->smfc_reg = ioremap(ipu_base + IPU_SMFC_REG_BASE, PAGE_SIZE);
ipu->csi_reg[0] = ioremap(ipu_base + IPU_CSI0_REG_BASE, PAGE_SIZE);
ipu->csi_reg[1] = ioremap(ipu_base + IPU_CSI1_REG_BASE, PAGE_SIZE);
ipu->cpmem_base = ioremap(ipu_base + IPU_CPMEM_REG_BASE, SZ_128K);
ipu->tpmem_base = ioremap(ipu_base + IPU_TPM_REG_BASE, SZ_64K);
ipu->dc_tmpl_reg = ioremap(ipu_base + IPU_DC_TMPL_REG_BASE, SZ_128K);
ipu->vdi_reg = ioremap(ipu_base + IPU_VDI_REG_BASE, PAGE_SIZE);
ipu->disp_base[1] = ioremap(ipu_base + IPU_DISP1_BASE, SZ_4K);
if (!ipu->cm_reg || !ipu->ic_reg || !ipu->idmac_reg ||
!ipu->dp_reg || !ipu->dc_reg || !ipu->dmfc_reg ||
!ipu->di_reg[0] || !ipu->di_reg[1] || !ipu->smfc_reg ||
!ipu->csi_reg[0] || !ipu->csi_reg[1] || !ipu->cpmem_base ||
!ipu->tpmem_base || !ipu->dc_tmpl_reg || !ipu->disp_base[1]
|| !ipu->vdi_reg) {
ret = -ENOMEM;
goto failed_ioremap;
}
dev_dbg(ipu->dev, "IPU CM Regs = %p\n", ipu->cm_reg);
dev_dbg(ipu->dev, "IPU IC Regs = %p\n", ipu->ic_reg);
dev_dbg(ipu->dev, "IPU IDMAC Regs = %p\n", ipu->idmac_reg);
dev_dbg(ipu->dev, "IPU DP Regs = %p\n", ipu->dp_reg);
dev_dbg(ipu->dev, "IPU DC Regs = %p\n", ipu->dc_reg);
dev_dbg(ipu->dev, "IPU DMFC Regs = %p\n", ipu->dmfc_reg);
dev_dbg(ipu->dev, "IPU DI0 Regs = %p\n", ipu->di_reg[0]);
dev_dbg(ipu->dev, "IPU DI1 Regs = %p\n", ipu->di_reg[1]);
dev_dbg(ipu->dev, "IPU SMFC Regs = %p\n", ipu->smfc_reg);
dev_dbg(ipu->dev, "IPU CSI0 Regs = %p\n", ipu->csi_reg[0]);
dev_dbg(ipu->dev, "IPU CSI1 Regs = %p\n", ipu->csi_reg[1]);
dev_dbg(ipu->dev, "IPU CPMem = %p\n", ipu->cpmem_base);
dev_dbg(ipu->dev, "IPU TPMem = %p\n", ipu->tpmem_base);
dev_dbg(ipu->dev, "IPU DC Template Mem = %p\n", ipu->dc_tmpl_reg);
dev_dbg(ipu->dev, "IPU Display Region 1 Mem = %p\n", ipu->disp_base[1]);
dev_dbg(ipu->dev, "IPU VDI Regs = %p\n", ipu->vdi_reg);
ret = ipu_clk_setup_enable(ipu, pdev);
if (ret < 0) {
dev_err(ipu->dev, "ipu clk setup failed\n");
goto failed_clk_setup;
}
platform_set_drvdata(pdev, ipu);
ipu_reset(ipu);
ipu_disp_init(ipu);
/* Set sync refresh channels and CSI->mem channel as high priority */
ipu_idmac_write(ipu, 0x18800001L, IDMAC_CHA_PRI(0));
/* Set MCU_T to divide MCU access window into 2 */
ipu_cm_write(ipu, 0x00400000L | (IPU_MCU_T_DEFAULT << 18), IPU_DISP_GEN);
clk_disable(ipu->ipu_clk);
register_ipu_device(ipu, pdev->id);
ipu->online = true;
return ret;
failed_clk_setup:
iounmap(ipu->cm_reg);
iounmap(ipu->ic_reg);
iounmap(ipu->idmac_reg);
iounmap(ipu->dc_reg);
iounmap(ipu->dp_reg);
iounmap(ipu->dmfc_reg);
iounmap(ipu->di_reg[0]);
iounmap(ipu->di_reg[1]);
iounmap(ipu->smfc_reg);
iounmap(ipu->csi_reg[0]);
iounmap(ipu->csi_reg[1]);
iounmap(ipu->cpmem_base);
iounmap(ipu->tpmem_base);
iounmap(ipu->dc_tmpl_reg);
iounmap(ipu->disp_base[1]);
iounmap(ipu->vdi_reg);
failed_ioremap:
if (ipu->irq_sync)
free_irq(ipu->irq_err, ipu);
failed_req_irq_err:
free_irq(ipu->irq_sync, ipu);
failed_req_irq_sync:
failed_get_res:
return ret;
}
int __devexit ipu_remove(struct platform_device *pdev)
{
struct ipu_soc *ipu = platform_get_drvdata(pdev);
unregister_ipu_device(ipu, pdev->id);
if (ipu->irq_sync)
free_irq(ipu->irq_sync, ipu);
if (ipu->irq_err)
free_irq(ipu->irq_err, ipu);
clk_put(ipu->ipu_clk);
iounmap(ipu->cm_reg);
iounmap(ipu->ic_reg);
iounmap(ipu->idmac_reg);
iounmap(ipu->dc_reg);
iounmap(ipu->dp_reg);
iounmap(ipu->dmfc_reg);
iounmap(ipu->di_reg[0]);
iounmap(ipu->di_reg[1]);
iounmap(ipu->smfc_reg);
iounmap(ipu->csi_reg[0]);
iounmap(ipu->csi_reg[1]);
iounmap(ipu->cpmem_base);
iounmap(ipu->tpmem_base);
iounmap(ipu->dc_tmpl_reg);
iounmap(ipu->disp_base[1]);
iounmap(ipu->vdi_reg);
return 0;
}
void ipu_dump_registers(struct ipu_soc *ipu)
{
dev_dbg(ipu->dev, "IPU_CONF = \t0x%08X\n", ipu_cm_read(ipu, IPU_CONF));
dev_dbg(ipu->dev, "IDMAC_CONF = \t0x%08X\n", ipu_idmac_read(ipu, IDMAC_CONF));
dev_dbg(ipu->dev, "IDMAC_CHA_EN1 = \t0x%08X\n",
ipu_idmac_read(ipu, IDMAC_CHA_EN(0)));
dev_dbg(ipu->dev, "IDMAC_CHA_EN2 = \t0x%08X\n",
ipu_idmac_read(ipu, IDMAC_CHA_EN(32)));
dev_dbg(ipu->dev, "IDMAC_CHA_PRI1 = \t0x%08X\n",
ipu_idmac_read(ipu, IDMAC_CHA_PRI(0)));
dev_dbg(ipu->dev, "IDMAC_CHA_PRI2 = \t0x%08X\n",
ipu_idmac_read(ipu, IDMAC_CHA_PRI(32)));
dev_dbg(ipu->dev, "IDMAC_BAND_EN1 = \t0x%08X\n",
ipu_idmac_read(ipu, IDMAC_BAND_EN(0)));
dev_dbg(ipu->dev, "IDMAC_BAND_EN2 = \t0x%08X\n",
ipu_idmac_read(ipu, IDMAC_BAND_EN(32)));
dev_dbg(ipu->dev, "IPU_CHA_DB_MODE_SEL0 = \t0x%08X\n",
ipu_cm_read(ipu, IPU_CHA_DB_MODE_SEL(0)));
dev_dbg(ipu->dev, "IPU_CHA_DB_MODE_SEL1 = \t0x%08X\n",
ipu_cm_read(ipu, IPU_CHA_DB_MODE_SEL(32)));
if (g_ipu_hw_rev >= 2) {
dev_dbg(ipu->dev, "IPU_CHA_TRB_MODE_SEL0 = \t0x%08X\n",
ipu_cm_read(ipu, IPU_CHA_TRB_MODE_SEL(0)));
dev_dbg(ipu->dev, "IPU_CHA_TRB_MODE_SEL1 = \t0x%08X\n",
ipu_cm_read(ipu, IPU_CHA_TRB_MODE_SEL(32)));
}
dev_dbg(ipu->dev, "DMFC_WR_CHAN = \t0x%08X\n",
ipu_dmfc_read(ipu, DMFC_WR_CHAN));
dev_dbg(ipu->dev, "DMFC_WR_CHAN_DEF = \t0x%08X\n",
ipu_dmfc_read(ipu, DMFC_WR_CHAN_DEF));
dev_dbg(ipu->dev, "DMFC_DP_CHAN = \t0x%08X\n",
ipu_dmfc_read(ipu, DMFC_DP_CHAN));
dev_dbg(ipu->dev, "DMFC_DP_CHAN_DEF = \t0x%08X\n",
ipu_dmfc_read(ipu, DMFC_DP_CHAN_DEF));
dev_dbg(ipu->dev, "DMFC_IC_CTRL = \t0x%08X\n",
ipu_dmfc_read(ipu, DMFC_IC_CTRL));
dev_dbg(ipu->dev, "IPU_FS_PROC_FLOW1 = \t0x%08X\n",
ipu_cm_read(ipu, IPU_FS_PROC_FLOW1));
dev_dbg(ipu->dev, "IPU_FS_PROC_FLOW2 = \t0x%08X\n",
ipu_cm_read(ipu, IPU_FS_PROC_FLOW2));
dev_dbg(ipu->dev, "IPU_FS_PROC_FLOW3 = \t0x%08X\n",
ipu_cm_read(ipu, IPU_FS_PROC_FLOW3));
dev_dbg(ipu->dev, "IPU_FS_DISP_FLOW1 = \t0x%08X\n",
ipu_cm_read(ipu, IPU_FS_DISP_FLOW1));
}
/*!
* This function is called to initialize a logical IPU channel.
*
* @param ipu ipu handler
* @param channel Input parameter for the logical channel ID to init.
*
* @param params Input parameter containing union of channel
* initialization parameters.
*
* @return Returns 0 on success or negative error code on fail
*/
int32_t ipu_init_channel(struct ipu_soc *ipu, ipu_channel_t channel, ipu_channel_params_t *params)
{
int ret = 0;
uint32_t ipu_conf;
uint32_t reg;
dev_dbg(ipu->dev, "init channel = %d\n", IPU_CHAN_ID(channel));
_ipu_get(ipu);
_ipu_lock(ipu);
if (ipu->channel_init_mask & (1L << IPU_CHAN_ID(channel))) {
dev_warn(ipu->dev, "Warning: channel already initialized %d\n",
IPU_CHAN_ID(channel));
}
ipu_conf = ipu_cm_read(ipu, IPU_CONF);
switch (channel) {
case CSI_MEM0:
case CSI_MEM1:
case CSI_MEM2:
case CSI_MEM3:
if (params->csi_mem.csi > 1) {
ret = -EINVAL;
goto err;
}
if (params->csi_mem.interlaced)
ipu->chan_is_interlaced[channel_2_dma(channel,
IPU_OUTPUT_BUFFER)] = true;
else
ipu->chan_is_interlaced[channel_2_dma(channel,
IPU_OUTPUT_BUFFER)] = false;
ipu->smfc_use_count++;
ipu->csi_channel[params->csi_mem.csi] = channel;
/*SMFC setting*/
if (params->csi_mem.mipi_en) {
ipu_conf |= (1 << (IPU_CONF_CSI0_DATA_SOURCE_OFFSET +
params->csi_mem.csi));
_ipu_smfc_init(ipu, channel, params->csi_mem.mipi_id,
params->csi_mem.csi);
} else {
ipu_conf &= ~(1 << (IPU_CONF_CSI0_DATA_SOURCE_OFFSET +
params->csi_mem.csi));
_ipu_smfc_init(ipu, channel, 0, params->csi_mem.csi);
}
/*CSI data (include compander) dest*/
_ipu_csi_init(ipu, channel, params->csi_mem.csi);
break;
case CSI_PRP_ENC_MEM:
if (params->csi_prp_enc_mem.csi > 1) {
ret = -EINVAL;
goto err;
}
if (ipu->using_ic_dirct_ch == MEM_VDI_PRP_VF_MEM) {
ret = -EINVAL;
goto err;
}
ipu->using_ic_dirct_ch = CSI_PRP_ENC_MEM;
ipu->ic_use_count++;
ipu->csi_channel[params->csi_prp_enc_mem.csi] = channel;
/*Without SMFC, CSI only support parallel data source*/
ipu_conf &= ~(1 << (IPU_CONF_CSI0_DATA_SOURCE_OFFSET +
params->csi_prp_enc_mem.csi));
/*CSI0/1 feed into IC*/
ipu_conf &= ~IPU_CONF_IC_INPUT;
if (params->csi_prp_enc_mem.csi)
ipu_conf |= IPU_CONF_CSI_SEL;
else
ipu_conf &= ~IPU_CONF_CSI_SEL;
/*PRP skip buffer in memory, only valid when RWS_EN is true*/
reg = ipu_cm_read(ipu, IPU_FS_PROC_FLOW1);
ipu_cm_write(ipu, reg & ~FS_ENC_IN_VALID, IPU_FS_PROC_FLOW1);
/*CSI data (include compander) dest*/
_ipu_csi_init(ipu, channel, params->csi_prp_enc_mem.csi);
_ipu_ic_init_prpenc(ipu, params, true);
break;
case CSI_PRP_VF_MEM:
if (params->csi_prp_vf_mem.csi > 1) {
ret = -EINVAL;
goto err;
}
if (ipu->using_ic_dirct_ch == MEM_VDI_PRP_VF_MEM) {
ret = -EINVAL;
goto err;
}
ipu->using_ic_dirct_ch = CSI_PRP_VF_MEM;
ipu->ic_use_count++;
ipu->csi_channel[params->csi_prp_vf_mem.csi] = channel;
/*Without SMFC, CSI only support parallel data source*/
ipu_conf &= ~(1 << (IPU_CONF_CSI0_DATA_SOURCE_OFFSET +
params->csi_prp_vf_mem.csi));
/*CSI0/1 feed into IC*/
ipu_conf &= ~IPU_CONF_IC_INPUT;
if (params->csi_prp_vf_mem.csi)
ipu_conf |= IPU_CONF_CSI_SEL;
else
ipu_conf &= ~IPU_CONF_CSI_SEL;
/*PRP skip buffer in memory, only valid when RWS_EN is true*/
reg = ipu_cm_read(ipu, IPU_FS_PROC_FLOW1);
ipu_cm_write(ipu, reg & ~FS_VF_IN_VALID, IPU_FS_PROC_FLOW1);
/*CSI data (include compander) dest*/
_ipu_csi_init(ipu, channel, params->csi_prp_vf_mem.csi);
_ipu_ic_init_prpvf(ipu, params, true);
break;
case MEM_PRP_VF_MEM:
ipu->ic_use_count++;
reg = ipu_cm_read(ipu, IPU_FS_PROC_FLOW1);
ipu_cm_write(ipu, reg | FS_VF_IN_VALID, IPU_FS_PROC_FLOW1);
if (params->mem_prp_vf_mem.graphics_combine_en)
ipu->sec_chan_en[IPU_CHAN_ID(channel)] = true;
if (params->mem_prp_vf_mem.alpha_chan_en)
ipu->thrd_chan_en[IPU_CHAN_ID(channel)] = true;
_ipu_ic_init_prpvf(ipu, params, false);
break;
case MEM_VDI_PRP_VF_MEM:
if ((ipu->using_ic_dirct_ch == CSI_PRP_VF_MEM) ||
(ipu->using_ic_dirct_ch == CSI_PRP_ENC_MEM)) {
ret = -EINVAL;
goto err;
}
ipu->using_ic_dirct_ch = MEM_VDI_PRP_VF_MEM;
ipu->ic_use_count++;
ipu->vdi_use_count++;
reg = ipu_cm_read(ipu, IPU_FS_PROC_FLOW1);
reg &= ~FS_VDI_SRC_SEL_MASK;
ipu_cm_write(ipu, reg , IPU_FS_PROC_FLOW1);
if (params->mem_prp_vf_mem.graphics_combine_en)
ipu->sec_chan_en[IPU_CHAN_ID(channel)] = true;
_ipu_ic_init_prpvf(ipu, params, false);
_ipu_vdi_init(ipu, channel, params);
break;
case MEM_VDI_PRP_VF_MEM_P:
_ipu_vdi_init(ipu, channel, params);
break;
case MEM_VDI_PRP_VF_MEM_N:
_ipu_vdi_init(ipu, channel, params);
break;
case MEM_ROT_VF_MEM:
ipu->ic_use_count++;
ipu->rot_use_count++;
_ipu_ic_init_rotate_vf(ipu, params);
break;
case MEM_PRP_ENC_MEM:
ipu->ic_use_count++;
reg = ipu_cm_read(ipu, IPU_FS_PROC_FLOW1);
ipu_cm_write(ipu, reg | FS_ENC_IN_VALID, IPU_FS_PROC_FLOW1);
_ipu_ic_init_prpenc(ipu, params, false);
break;
case MEM_ROT_ENC_MEM:
ipu->ic_use_count++;
ipu->rot_use_count++;
_ipu_ic_init_rotate_enc(ipu, params);
break;
case MEM_PP_MEM:
if (params->mem_pp_mem.graphics_combine_en)
ipu->sec_chan_en[IPU_CHAN_ID(channel)] = true;
if (params->mem_pp_mem.alpha_chan_en)
ipu->thrd_chan_en[IPU_CHAN_ID(channel)] = true;
_ipu_ic_init_pp(ipu, params);
ipu->ic_use_count++;
break;
case MEM_ROT_PP_MEM:
_ipu_ic_init_rotate_pp(ipu, params);
ipu->ic_use_count++;
ipu->rot_use_count++;
break;
case MEM_DC_SYNC:
if (params->mem_dc_sync.di > 1) {
ret = -EINVAL;
goto err;
}
ipu->dc_di_assignment[1] = params->mem_dc_sync.di;
_ipu_dc_init(ipu, 1, params->mem_dc_sync.di,
params->mem_dc_sync.interlaced,
params->mem_dc_sync.out_pixel_fmt);
ipu->di_use_count[params->mem_dc_sync.di]++;
ipu->dc_use_count++;
ipu->dmfc_use_count++;
break;
case MEM_BG_SYNC:
if (params->mem_dp_bg_sync.di > 1) {
ret = -EINVAL;
goto err;
}
if (params->mem_dp_bg_sync.alpha_chan_en)
ipu->thrd_chan_en[IPU_CHAN_ID(channel)] = true;
ipu->dc_di_assignment[5] = params->mem_dp_bg_sync.di;
_ipu_dp_init(ipu, channel, params->mem_dp_bg_sync.in_pixel_fmt,
params->mem_dp_bg_sync.out_pixel_fmt);
_ipu_dc_init(ipu, 5, params->mem_dp_bg_sync.di,
params->mem_dp_bg_sync.interlaced,
params->mem_dp_bg_sync.out_pixel_fmt);
ipu->di_use_count[params->mem_dp_bg_sync.di]++;
ipu->dc_use_count++;
ipu->dp_use_count++;
ipu->dmfc_use_count++;
break;
case MEM_FG_SYNC:
_ipu_dp_init(ipu, channel, params->mem_dp_fg_sync.in_pixel_fmt,
params->mem_dp_fg_sync.out_pixel_fmt);
if (params->mem_dp_fg_sync.alpha_chan_en)
ipu->thrd_chan_en[IPU_CHAN_ID(channel)] = true;
ipu->dc_use_count++;
ipu->dp_use_count++;
ipu->dmfc_use_count++;
break;
case DIRECT_ASYNC0:
if (params->direct_async.di > 1) {
ret = -EINVAL;
goto err;
}
ipu->dc_di_assignment[8] = params->direct_async.di;
_ipu_dc_init(ipu, 8, params->direct_async.di, false, IPU_PIX_FMT_GENERIC);
ipu->di_use_count[params->direct_async.di]++;
ipu->dc_use_count++;
break;
case DIRECT_ASYNC1:
if (params->direct_async.di > 1) {
ret = -EINVAL;
goto err;
}
ipu->dc_di_assignment[9] = params->direct_async.di;
_ipu_dc_init(ipu, 9, params->direct_async.di, false, IPU_PIX_FMT_GENERIC);
ipu->di_use_count[params->direct_async.di]++;
ipu->dc_use_count++;
break;
default:
dev_err(ipu->dev, "Missing channel initialization\n");
break;
}
ipu->channel_init_mask |= 1L << IPU_CHAN_ID(channel);
ipu_cm_write(ipu, ipu_conf, IPU_CONF);
err:
_ipu_unlock(ipu);
return ret;
}
EXPORT_SYMBOL(ipu_init_channel);
/*!
* This function is called to uninitialize a logical IPU channel.
*
* @param ipu ipu handler
* @param channel Input parameter for the logical channel ID to uninit.
*/
void ipu_uninit_channel(struct ipu_soc *ipu, ipu_channel_t channel)
{
uint32_t reg;
uint32_t in_dma, out_dma = 0;
uint32_t ipu_conf;
_ipu_lock(ipu);
if ((ipu->channel_init_mask & (1L << IPU_CHAN_ID(channel))) == 0) {
dev_err(ipu->dev, "Channel already uninitialized %d\n",
IPU_CHAN_ID(channel));
_ipu_unlock(ipu);
return;
}
/* Make sure channel is disabled */
/* Get input and output dma channels */
in_dma = channel_2_dma(channel, IPU_VIDEO_IN_BUFFER);
out_dma = channel_2_dma(channel, IPU_OUTPUT_BUFFER);
if (idma_is_set(ipu, IDMAC_CHA_EN, in_dma) ||
idma_is_set(ipu, IDMAC_CHA_EN, out_dma)) {
dev_err(ipu->dev,
"Channel %d is not disabled, disable first\n",
IPU_CHAN_ID(channel));
_ipu_unlock(ipu);
return;
}
ipu_conf = ipu_cm_read(ipu, IPU_CONF);
/* Reset the double buffer */
reg = ipu_cm_read(ipu, IPU_CHA_DB_MODE_SEL(in_dma));
ipu_cm_write(ipu, reg & ~idma_mask(in_dma), IPU_CHA_DB_MODE_SEL(in_dma));
reg = ipu_cm_read(ipu, IPU_CHA_DB_MODE_SEL(out_dma));
ipu_cm_write(ipu, reg & ~idma_mask(out_dma), IPU_CHA_DB_MODE_SEL(out_dma));
/* Reset the triple buffer */
reg = ipu_cm_read(ipu, IPU_CHA_TRB_MODE_SEL(in_dma));
ipu_cm_write(ipu, reg & ~idma_mask(in_dma), IPU_CHA_TRB_MODE_SEL(in_dma));
reg = ipu_cm_read(ipu, IPU_CHA_TRB_MODE_SEL(out_dma));
ipu_cm_write(ipu, reg & ~idma_mask(out_dma), IPU_CHA_TRB_MODE_SEL(out_dma));
if (_ipu_is_ic_chan(in_dma) || _ipu_is_dp_graphic_chan(in_dma)) {
ipu->sec_chan_en[IPU_CHAN_ID(channel)] = false;
ipu->thrd_chan_en[IPU_CHAN_ID(channel)] = false;
}
switch (channel) {
case CSI_MEM0:
case CSI_MEM1:
case CSI_MEM2:
case CSI_MEM3:
ipu->smfc_use_count--;
if (ipu->csi_channel[0] == channel) {
ipu->csi_channel[0] = CHAN_NONE;
} else if (ipu->csi_channel[1] == channel) {
ipu->csi_channel[1] = CHAN_NONE;
}
break;
case CSI_PRP_ENC_MEM:
ipu->ic_use_count--;
if (ipu->using_ic_dirct_ch == CSI_PRP_ENC_MEM)
ipu->using_ic_dirct_ch = 0;
_ipu_ic_uninit_prpenc(ipu);
if (ipu->csi_channel[0] == channel) {
ipu->csi_channel[0] = CHAN_NONE;
} else if (ipu->csi_channel[1] == channel) {
ipu->csi_channel[1] = CHAN_NONE;
}
break;
case CSI_PRP_VF_MEM:
ipu->ic_use_count--;
if (ipu->using_ic_dirct_ch == CSI_PRP_VF_MEM)
ipu->using_ic_dirct_ch = 0;
_ipu_ic_uninit_prpvf(ipu);
if (ipu->csi_channel[0] == channel) {
ipu->csi_channel[0] = CHAN_NONE;
} else if (ipu->csi_channel[1] == channel) {
ipu->csi_channel[1] = CHAN_NONE;
}
break;
case MEM_PRP_VF_MEM:
ipu->ic_use_count--;
_ipu_ic_uninit_prpvf(ipu);
reg = ipu_cm_read(ipu, IPU_FS_PROC_FLOW1);
ipu_cm_write(ipu, reg & ~FS_VF_IN_VALID, IPU_FS_PROC_FLOW1);
break;
case MEM_VDI_PRP_VF_MEM:
ipu->ic_use_count--;
ipu->vdi_use_count--;
if (ipu->using_ic_dirct_ch == MEM_VDI_PRP_VF_MEM)
ipu->using_ic_dirct_ch = 0;
_ipu_ic_uninit_prpvf(ipu);
_ipu_vdi_uninit(ipu);
reg = ipu_cm_read(ipu, IPU_FS_PROC_FLOW1);
ipu_cm_write(ipu, reg & ~FS_VF_IN_VALID, IPU_FS_PROC_FLOW1);
break;
case MEM_VDI_PRP_VF_MEM_P:
case MEM_VDI_PRP_VF_MEM_N:
break;
case MEM_ROT_VF_MEM:
ipu->rot_use_count--;
ipu->ic_use_count--;
_ipu_ic_uninit_rotate_vf(ipu);
break;
case MEM_PRP_ENC_MEM:
ipu->ic_use_count--;
_ipu_ic_uninit_prpenc(ipu);
reg = ipu_cm_read(ipu, IPU_FS_PROC_FLOW1);
ipu_cm_write(ipu, reg & ~FS_ENC_IN_VALID, IPU_FS_PROC_FLOW1);
break;
case MEM_ROT_ENC_MEM:
ipu->rot_use_count--;
ipu->ic_use_count--;
_ipu_ic_uninit_rotate_enc(ipu);
break;
case MEM_PP_MEM:
ipu->ic_use_count--;
_ipu_ic_uninit_pp(ipu);
break;
case MEM_ROT_PP_MEM:
ipu->rot_use_count--;
ipu->ic_use_count--;
_ipu_ic_uninit_rotate_pp(ipu);
break;
case MEM_DC_SYNC:
_ipu_dc_uninit(ipu, 1);
ipu->di_use_count[ipu->dc_di_assignment[1]]--;
ipu->dc_use_count--;
ipu->dmfc_use_count--;
break;
case MEM_BG_SYNC:
_ipu_dp_uninit(ipu, channel);
_ipu_dc_uninit(ipu, 5);
ipu->di_use_count[ipu->dc_di_assignment[5]]--;
ipu->dc_use_count--;
ipu->dp_use_count--;
ipu->dmfc_use_count--;
break;
case MEM_FG_SYNC:
_ipu_dp_uninit(ipu, channel);
ipu->dc_use_count--;
ipu->dp_use_count--;
ipu->dmfc_use_count--;
break;
case DIRECT_ASYNC0:
_ipu_dc_uninit(ipu, 8);
ipu->di_use_count[ipu->dc_di_assignment[8]]--;
ipu->dc_use_count--;
break;
case DIRECT_ASYNC1:
_ipu_dc_uninit(ipu, 9);
ipu->di_use_count[ipu->dc_di_assignment[9]]--;
ipu->dc_use_count--;
break;
default:
break;
}
if (ipu->ic_use_count == 0)
ipu_conf &= ~IPU_CONF_IC_EN;
if (ipu->vdi_use_count == 0) {
ipu_conf &= ~IPU_CONF_ISP_EN;
ipu_conf &= ~IPU_CONF_VDI_EN;
ipu_conf &= ~IPU_CONF_IC_INPUT;
}
if (ipu->rot_use_count == 0)
ipu_conf &= ~IPU_CONF_ROT_EN;
if (ipu->dc_use_count == 0)
ipu_conf &= ~IPU_CONF_DC_EN;
if (ipu->dp_use_count == 0)
ipu_conf &= ~IPU_CONF_DP_EN;
if (ipu->dmfc_use_count == 0)
ipu_conf &= ~IPU_CONF_DMFC_EN;
if (ipu->di_use_count[0] == 0) {
ipu_conf &= ~IPU_CONF_DI0_EN;
}
if (ipu->di_use_count[1] == 0) {
ipu_conf &= ~IPU_CONF_DI1_EN;
}
if (ipu->smfc_use_count == 0)
ipu_conf &= ~IPU_CONF_SMFC_EN;
ipu_cm_write(ipu, ipu_conf, IPU_CONF);
ipu->channel_init_mask &= ~(1L << IPU_CHAN_ID(channel));
_ipu_unlock(ipu);
_ipu_put(ipu);
WARN_ON(ipu->ic_use_count < 0);
WARN_ON(ipu->vdi_use_count < 0);
WARN_ON(ipu->rot_use_count < 0);
WARN_ON(ipu->dc_use_count < 0);
WARN_ON(ipu->dp_use_count < 0);
WARN_ON(ipu->dmfc_use_count < 0);
WARN_ON(ipu->smfc_use_count < 0);
}
EXPORT_SYMBOL(ipu_uninit_channel);
/*!
* This function is called to initialize buffer(s) for logical IPU channel.
*
* @param ipu ipu handler
*
* @param channel Input parameter for the logical channel ID.
*
* @param type Input parameter which buffer to initialize.
*
* @param pixel_fmt Input parameter for pixel format of buffer.
* Pixel format is a FOURCC ASCII code.
*
* @param width Input parameter for width of buffer in pixels.
*
* @param height Input parameter for height of buffer in pixels.
*
* @param stride Input parameter for stride length of buffer
* in pixels.
*
* @param rot_mode Input parameter for rotation setting of buffer.
* A rotation setting other than
* IPU_ROTATE_VERT_FLIP
* should only be used for input buffers of
* rotation channels.
*
* @param phyaddr_0 Input parameter buffer 0 physical address.
*
* @param phyaddr_1 Input parameter buffer 1 physical address.
* Setting this to a value other than NULL enables
* double buffering mode.
*
* @param phyaddr_2 Input parameter buffer 2 physical address.
* Setting this to a value other than NULL enables
* triple buffering mode, phyaddr_1 should not be
* NULL then.
*
* @param u private u offset for additional cropping,
* zero if not used.
*
* @param v private v offset for additional cropping,
* zero if not used.
*
* @return Returns 0 on success or negative error code on fail
*/
int32_t ipu_init_channel_buffer(struct ipu_soc *ipu, ipu_channel_t channel,
ipu_buffer_t type,
uint32_t pixel_fmt,
uint16_t width, uint16_t height,
uint32_t stride,
ipu_rotate_mode_t rot_mode,
dma_addr_t phyaddr_0, dma_addr_t phyaddr_1,
dma_addr_t phyaddr_2,
uint32_t u, uint32_t v)
{
uint32_t reg;
uint32_t dma_chan;
uint32_t burst_size;
dma_chan = channel_2_dma(channel, type);
if (!idma_is_valid(dma_chan))
return -EINVAL;
if (stride < width * bytes_per_pixel(pixel_fmt))
stride = width * bytes_per_pixel(pixel_fmt);
if (stride % 4) {
dev_err(ipu->dev,
"Stride not 32-bit aligned, stride = %d\n", stride);
return -EINVAL;
}
/* IC & IRT channels' width must be multiple of 8 pixels */
if ((_ipu_is_ic_chan(dma_chan) || _ipu_is_irt_chan(dma_chan))
&& (width % 8)) {
dev_err(ipu->dev, "Width must be 8 pixel multiple\n");
return -EINVAL;
}
/* IPUv3EX and IPUv3M support triple buffer */
if ((!_ipu_is_trb_chan(dma_chan)) && phyaddr_2) {
dev_err(ipu->dev, "Chan%d doesn't support triple buffer "
"mode\n", dma_chan);
return -EINVAL;
}
if (!phyaddr_1 && phyaddr_2) {
dev_err(ipu->dev, "Chan%d's buf1 physical addr is NULL for "
"triple buffer mode\n", dma_chan);
return -EINVAL;
}
_ipu_lock(ipu);
/* Build parameter memory data for DMA channel */
_ipu_ch_param_init(ipu, dma_chan, pixel_fmt, width, height, stride, u, v, 0,
phyaddr_0, phyaddr_1, phyaddr_2);
/* Set correlative channel parameter of local alpha channel */
if ((_ipu_is_ic_graphic_chan(dma_chan) ||
_ipu_is_dp_graphic_chan(dma_chan)) &&
(ipu->thrd_chan_en[IPU_CHAN_ID(channel)] == true)) {
_ipu_ch_param_set_alpha_use_separate_channel(ipu, dma_chan, true);
_ipu_ch_param_set_alpha_buffer_memory(ipu, dma_chan);
_ipu_ch_param_set_alpha_condition_read(ipu, dma_chan);
/* fix alpha width as 8 and burst size as 16*/
_ipu_ch_params_set_alpha_width(ipu, dma_chan, 8);
_ipu_ch_param_set_burst_size(ipu, dma_chan, 16);
} else if (_ipu_is_ic_graphic_chan(dma_chan) &&
ipu_pixel_format_has_alpha(pixel_fmt))
_ipu_ch_param_set_alpha_use_separate_channel(ipu, dma_chan, false);
if (rot_mode)
_ipu_ch_param_set_rotation(ipu, dma_chan, rot_mode);
/* IC and ROT channels have restriction of 8 or 16 pix burst length */
if (_ipu_is_ic_chan(dma_chan)) {
if ((width % 16) == 0)
_ipu_ch_param_set_burst_size(ipu, dma_chan, 16);
else
_ipu_ch_param_set_burst_size(ipu, dma_chan, 8);
} else if (_ipu_is_irt_chan(dma_chan)) {
_ipu_ch_param_set_burst_size(ipu, dma_chan, 8);
_ipu_ch_param_set_block_mode(ipu, dma_chan);
} else if (_ipu_is_dmfc_chan(dma_chan)) {
burst_size = _ipu_ch_param_get_burst_size(ipu, dma_chan);
_ipu_dmfc_set_wait4eot(ipu, dma_chan, width);
_ipu_dmfc_set_burst_size(ipu, dma_chan, burst_size);
}
if (_ipu_disp_chan_is_interlaced(ipu, channel) ||
ipu->chan_is_interlaced[dma_chan])
_ipu_ch_param_set_interlaced_scan(ipu, dma_chan);
if (_ipu_is_ic_chan(dma_chan) || _ipu_is_irt_chan(dma_chan)) {
burst_size = _ipu_ch_param_get_burst_size(ipu, dma_chan);
_ipu_ic_idma_init(ipu, dma_chan, width, height, burst_size,
rot_mode);
} else if (_ipu_is_smfc_chan(dma_chan)) {
burst_size = _ipu_ch_param_get_burst_size(ipu, dma_chan);
if ((pixel_fmt == IPU_PIX_FMT_GENERIC) &&
((_ipu_ch_param_get_bpp(ipu, dma_chan) == 5) ||
(_ipu_ch_param_get_bpp(ipu, dma_chan) == 3)))
burst_size = burst_size >> 4;
else
burst_size = burst_size >> 2;
_ipu_smfc_set_burst_size(ipu, channel, burst_size-1);
}
/* AXI-id */
if (idma_is_set(ipu, IDMAC_CHA_PRI, dma_chan)) {
unsigned reg = IDMAC_CH_LOCK_EN_1;
uint32_t value = 0;
if (cpu_is_mx53() || cpu_is_mx6q()) {
_ipu_ch_param_set_axi_id(ipu, dma_chan, 0);
switch (dma_chan) {
case 5:
value = 0x3;
break;
case 11:
value = 0x3 << 2;
break;
case 12:
value = 0x3 << 4;
break;
case 14:
value = 0x3 << 6;
break;
case 15:
value = 0x3 << 8;
break;
case 20:
value = 0x3 << 10;
break;
case 21:
value = 0x3 << 12;
break;
case 22:
value = 0x3 << 14;
break;
case 23:
value = 0x3 << 16;
break;
case 27:
value = 0x3 << 18;
break;
case 28:
value = 0x3 << 20;
break;
case 45:
reg = IDMAC_CH_LOCK_EN_2;
value = 0x3 << 0;
break;
case 46:
reg = IDMAC_CH_LOCK_EN_2;
value = 0x3 << 2;
break;
case 47:
reg = IDMAC_CH_LOCK_EN_2;
value = 0x3 << 4;
break;
case 48:
reg = IDMAC_CH_LOCK_EN_2;
value = 0x3 << 6;
break;
case 49:
reg = IDMAC_CH_LOCK_EN_2;
value = 0x3 << 8;
break;
case 50:
reg = IDMAC_CH_LOCK_EN_2;
value = 0x3 << 10;
break;
default:
break;
}
value |= ipu_idmac_read(ipu, reg);
ipu_idmac_write(ipu, value, reg);
} else
_ipu_ch_param_set_axi_id(ipu, dma_chan, 1);
} else {
if (cpu_is_mx6q())
_ipu_ch_param_set_axi_id(ipu, dma_chan, 1);
}
_ipu_ch_param_dump(ipu, dma_chan);
if (phyaddr_2 && g_ipu_hw_rev >= 2) {
reg = ipu_cm_read(ipu, IPU_CHA_DB_MODE_SEL(dma_chan));
reg &= ~idma_mask(dma_chan);
ipu_cm_write(ipu, reg, IPU_CHA_DB_MODE_SEL(dma_chan));
reg = ipu_cm_read(ipu, IPU_CHA_TRB_MODE_SEL(dma_chan));
reg |= idma_mask(dma_chan);
ipu_cm_write(ipu, reg, IPU_CHA_TRB_MODE_SEL(dma_chan));
/* Set IDMAC third buffer's cpmem number */
/* See __ipu_ch_get_third_buf_cpmem_num() for mapping */
ipu_idmac_write(ipu, 0x00444047L, IDMAC_SUB_ADDR_4);
ipu_idmac_write(ipu, 0x46004241L, IDMAC_SUB_ADDR_3);
ipu_idmac_write(ipu, 0x00000045L, IDMAC_SUB_ADDR_1);
/* Reset to buffer 0 */
ipu_cm_write(ipu, tri_cur_buf_mask(dma_chan),
IPU_CHA_TRIPLE_CUR_BUF(dma_chan));
} else {
reg = ipu_cm_read(ipu, IPU_CHA_TRB_MODE_SEL(dma_chan));
reg &= ~idma_mask(dma_chan);
ipu_cm_write(ipu, reg, IPU_CHA_TRB_MODE_SEL(dma_chan));
reg = ipu_cm_read(ipu, IPU_CHA_DB_MODE_SEL(dma_chan));
if (phyaddr_1)
reg |= idma_mask(dma_chan);
else
reg &= ~idma_mask(dma_chan);
ipu_cm_write(ipu, reg, IPU_CHA_DB_MODE_SEL(dma_chan));
/* Reset to buffer 0 */
ipu_cm_write(ipu, idma_mask(dma_chan),
IPU_CHA_CUR_BUF(dma_chan));
}
_ipu_unlock(ipu);
return 0;
}
EXPORT_SYMBOL(ipu_init_channel_buffer);
/*!
* This function is called to update the physical address of a buffer for
* a logical IPU channel.
*
* @param ipu ipu handler
* @param channel Input parameter for the logical channel ID.
*
* @param type Input parameter which buffer to initialize.
*
* @param bufNum Input parameter for buffer number to update.
* 0 or 1 are the only valid values.
*
* @param phyaddr Input parameter buffer physical address.
*
* @return This function returns 0 on success or negative error code on
* fail. This function will fail if the buffer is set to ready.
*/
int32_t ipu_update_channel_buffer(struct ipu_soc *ipu, ipu_channel_t channel,
ipu_buffer_t type, uint32_t bufNum, dma_addr_t phyaddr)
{
uint32_t reg;
int ret = 0;
uint32_t dma_chan = channel_2_dma(channel, type);
if (dma_chan == IDMA_CHAN_INVALID)
return -EINVAL;
_ipu_lock(ipu);
if (bufNum == 0)
reg = ipu_cm_read(ipu, IPU_CHA_BUF0_RDY(dma_chan));
else if (bufNum == 1)
reg = ipu_cm_read(ipu, IPU_CHA_BUF1_RDY(dma_chan));
else
reg = ipu_cm_read(ipu, IPU_CHA_BUF2_RDY(dma_chan));
if ((reg & idma_mask(dma_chan)) == 0)
_ipu_ch_param_set_buffer(ipu, dma_chan, bufNum, phyaddr);
else
ret = -EACCES;
_ipu_unlock(ipu);
return ret;
}
EXPORT_SYMBOL(ipu_update_channel_buffer);
/*!
* This function is called to initialize a buffer for logical IPU channel.
*
* @param ipu ipu handler
* @param channel Input parameter for the logical channel ID.
*
* @param type Input parameter which buffer to initialize.
*
* @param pixel_fmt Input parameter for pixel format of buffer.
* Pixel format is a FOURCC ASCII code.
*
* @param width Input parameter for width of buffer in pixels.
*
* @param height Input parameter for height of buffer in pixels.
*
* @param stride Input parameter for stride length of buffer
* in pixels.
*
* @param u predefined private u offset for additional cropping,
* zero if not used.
*
* @param v predefined private v offset for additional cropping,
* zero if not used.
*
* @param vertical_offset vertical offset for Y coordinate
* in the existed frame
*
*
* @param horizontal_offset horizontal offset for X coordinate
* in the existed frame
*
*
* @return Returns 0 on success or negative error code on fail
* This function will fail if any buffer is set to ready.
*/
int32_t ipu_update_channel_offset(struct ipu_soc *ipu,
ipu_channel_t channel, ipu_buffer_t type,
uint32_t pixel_fmt,
uint16_t width, uint16_t height,
uint32_t stride,
uint32_t u, uint32_t v,
uint32_t vertical_offset, uint32_t horizontal_offset)
{
int ret = 0;
uint32_t dma_chan = channel_2_dma(channel, type);
if (dma_chan == IDMA_CHAN_INVALID)
return -EINVAL;
_ipu_lock(ipu);
if ((ipu_cm_read(ipu, IPU_CHA_BUF0_RDY(dma_chan)) & idma_mask(dma_chan)) ||
(ipu_cm_read(ipu, IPU_CHA_BUF1_RDY(dma_chan)) & idma_mask(dma_chan)) ||
((ipu_cm_read(ipu, IPU_CHA_BUF2_RDY(dma_chan)) & idma_mask(dma_chan)) &&
(ipu_cm_read(ipu, IPU_CHA_TRB_MODE_SEL(dma_chan)) & idma_mask(dma_chan)) &&
_ipu_is_trb_chan(dma_chan)))
ret = -EACCES;
else
_ipu_ch_offset_update(ipu, dma_chan, pixel_fmt, width, height, stride,
u, v, 0, vertical_offset, horizontal_offset);
_ipu_unlock(ipu);
return ret;
}
EXPORT_SYMBOL(ipu_update_channel_offset);
/*!
* This function is called to set a channel's buffer as ready.
*
* @param ipu ipu handler
* @param channel Input parameter for the logical channel ID.
*
* @param type Input parameter which buffer to initialize.
*
* @param bufNum Input parameter for which buffer number set to
* ready state.
*
* @return Returns 0 on success or negative error code on fail
*/
int32_t ipu_select_buffer(struct ipu_soc *ipu, ipu_channel_t channel,
ipu_buffer_t type, uint32_t bufNum)
{
uint32_t dma_chan = channel_2_dma(channel, type);
if (dma_chan == IDMA_CHAN_INVALID)
return -EINVAL;
/* Mark buffer to be ready. */
_ipu_lock(ipu);
if (bufNum == 0)
ipu_cm_write(ipu, idma_mask(dma_chan),
IPU_CHA_BUF0_RDY(dma_chan));
else if (bufNum == 1)
ipu_cm_write(ipu, idma_mask(dma_chan),
IPU_CHA_BUF1_RDY(dma_chan));
else
ipu_cm_write(ipu, idma_mask(dma_chan),
IPU_CHA_BUF2_RDY(dma_chan));
_ipu_unlock(ipu);
return 0;
}
EXPORT_SYMBOL(ipu_select_buffer);
/*!
* This function is called to set a channel's buffer as ready.
*
* @param ipu ipu handler
* @param bufNum Input parameter for which buffer number set to
* ready state.
*
* @return Returns 0 on success or negative error code on fail
*/
int32_t ipu_select_multi_vdi_buffer(struct ipu_soc *ipu, uint32_t bufNum)
{
uint32_t dma_chan = channel_2_dma(MEM_VDI_PRP_VF_MEM, IPU_INPUT_BUFFER);
uint32_t mask_bit =
idma_mask(channel_2_dma(MEM_VDI_PRP_VF_MEM_P, IPU_INPUT_BUFFER))|
idma_mask(dma_chan)|
idma_mask(channel_2_dma(MEM_VDI_PRP_VF_MEM_N, IPU_INPUT_BUFFER));
/* Mark buffers to be ready. */
_ipu_lock(ipu);
if (bufNum == 0)
ipu_cm_write(ipu, mask_bit, IPU_CHA_BUF0_RDY(dma_chan));
else
ipu_cm_write(ipu, mask_bit, IPU_CHA_BUF1_RDY(dma_chan));
_ipu_unlock(ipu);
return 0;
}
EXPORT_SYMBOL(ipu_select_multi_vdi_buffer);
#define NA -1
static int proc_dest_sel[] = {
0, 1, 1, 3, 5, 5, 4, 7, 8, 9, 10, 11, 12, 14, 15, 16,
0, 1, 1, 5, 5, 5, 5, 5, 7, 8, 9, 10, 11, 12, 14, 31 };
static int proc_src_sel[] = { 0, 6, 7, 6, 7, 8, 5, NA, NA, NA,
NA, NA, NA, NA, NA, 1, 2, 3, 4, 7, 8, NA, 8, NA };
static int disp_src_sel[] = { 0, 6, 7, 8, 3, 4, 5, NA, NA, NA,
NA, NA, NA, NA, NA, 1, NA, 2, NA, 3, 4, 4, 4, 4 };
/*!
* This function links 2 channels together for automatic frame
* synchronization. The output of the source channel is linked to the input of
* the destination channel.
*
* @param ipu ipu handler
* @param src_ch Input parameter for the logical channel ID of
* the source channel.
*
* @param dest_ch Input parameter for the logical channel ID of
* the destination channel.
*
* @return This function returns 0 on success or negative error code on
* fail.
*/
int32_t ipu_link_channels(struct ipu_soc *ipu, ipu_channel_t src_ch, ipu_channel_t dest_ch)
{
int retval = 0;
uint32_t fs_proc_flow1;
uint32_t fs_proc_flow2;
uint32_t fs_proc_flow3;
uint32_t fs_disp_flow1;
_ipu_lock(ipu);
fs_proc_flow1 = ipu_cm_read(ipu, IPU_FS_PROC_FLOW1);
fs_proc_flow2 = ipu_cm_read(ipu, IPU_FS_PROC_FLOW2);
fs_proc_flow3 = ipu_cm_read(ipu, IPU_FS_PROC_FLOW3);
fs_disp_flow1 = ipu_cm_read(ipu, IPU_FS_DISP_FLOW1);
switch (src_ch) {
case CSI_MEM0:
fs_proc_flow3 &= ~FS_SMFC0_DEST_SEL_MASK;
fs_proc_flow3 |=
proc_dest_sel[IPU_CHAN_ID(dest_ch)] <<
FS_SMFC0_DEST_SEL_OFFSET;
break;
case CSI_MEM1:
fs_proc_flow3 &= ~FS_SMFC1_DEST_SEL_MASK;
fs_proc_flow3 |=
proc_dest_sel[IPU_CHAN_ID(dest_ch)] <<
FS_SMFC1_DEST_SEL_OFFSET;
break;
case CSI_MEM2:
fs_proc_flow3 &= ~FS_SMFC2_DEST_SEL_MASK;
fs_proc_flow3 |=
proc_dest_sel[IPU_CHAN_ID(dest_ch)] <<
FS_SMFC2_DEST_SEL_OFFSET;
break;
case CSI_MEM3:
fs_proc_flow3 &= ~FS_SMFC3_DEST_SEL_MASK;
fs_proc_flow3 |=
proc_dest_sel[IPU_CHAN_ID(dest_ch)] <<
FS_SMFC3_DEST_SEL_OFFSET;
break;
case CSI_PRP_ENC_MEM:
fs_proc_flow2 &= ~FS_PRPENC_DEST_SEL_MASK;
fs_proc_flow2 |=
proc_dest_sel[IPU_CHAN_ID(dest_ch)] <<
FS_PRPENC_DEST_SEL_OFFSET;
break;
case CSI_PRP_VF_MEM:
fs_proc_flow2 &= ~FS_PRPVF_DEST_SEL_MASK;
fs_proc_flow2 |=
proc_dest_sel[IPU_CHAN_ID(dest_ch)] <<
FS_PRPVF_DEST_SEL_OFFSET;
break;
case MEM_PP_MEM:
fs_proc_flow2 &= ~FS_PP_DEST_SEL_MASK;
fs_proc_flow2 |=
proc_dest_sel[IPU_CHAN_ID(dest_ch)] <<
FS_PP_DEST_SEL_OFFSET;
break;
case MEM_ROT_PP_MEM:
fs_proc_flow2 &= ~FS_PP_ROT_DEST_SEL_MASK;
fs_proc_flow2 |=
proc_dest_sel[IPU_CHAN_ID(dest_ch)] <<
FS_PP_ROT_DEST_SEL_OFFSET;
break;
case MEM_PRP_ENC_MEM:
fs_proc_flow2 &= ~FS_PRPENC_DEST_SEL_MASK;
fs_proc_flow2 |=
proc_dest_sel[IPU_CHAN_ID(dest_ch)] <<
FS_PRPENC_DEST_SEL_OFFSET;
break;
case MEM_ROT_ENC_MEM:
fs_proc_flow2 &= ~FS_PRPENC_ROT_DEST_SEL_MASK;
fs_proc_flow2 |=
proc_dest_sel[IPU_CHAN_ID(dest_ch)] <<
FS_PRPENC_ROT_DEST_SEL_OFFSET;
break;
case MEM_PRP_VF_MEM:
fs_proc_flow2 &= ~FS_PRPVF_DEST_SEL_MASK;
fs_proc_flow2 |=
proc_dest_sel[IPU_CHAN_ID(dest_ch)] <<
FS_PRPVF_DEST_SEL_OFFSET;
break;
case MEM_VDI_PRP_VF_MEM:
fs_proc_flow2 &= ~FS_PRPVF_DEST_SEL_MASK;
fs_proc_flow2 |=
proc_dest_sel[IPU_CHAN_ID(dest_ch)] <<
FS_PRPVF_DEST_SEL_OFFSET;
break;
case MEM_ROT_VF_MEM:
fs_proc_flow2 &= ~FS_PRPVF_ROT_DEST_SEL_MASK;
fs_proc_flow2 |=
proc_dest_sel[IPU_CHAN_ID(dest_ch)] <<
FS_PRPVF_ROT_DEST_SEL_OFFSET;
break;
default:
retval = -EINVAL;
goto err;
}
switch (dest_ch) {
case MEM_PP_MEM:
fs_proc_flow1 &= ~FS_PP_SRC_SEL_MASK;
fs_proc_flow1 |=
proc_src_sel[IPU_CHAN_ID(src_ch)] << FS_PP_SRC_SEL_OFFSET;
break;
case MEM_ROT_PP_MEM:
fs_proc_flow1 &= ~FS_PP_ROT_SRC_SEL_MASK;
fs_proc_flow1 |=
proc_src_sel[IPU_CHAN_ID(src_ch)] <<
FS_PP_ROT_SRC_SEL_OFFSET;
break;
case MEM_PRP_ENC_MEM:
fs_proc_flow1 &= ~FS_PRP_SRC_SEL_MASK;
fs_proc_flow1 |=
proc_src_sel[IPU_CHAN_ID(src_ch)] << FS_PRP_SRC_SEL_OFFSET;
break;
case MEM_ROT_ENC_MEM:
fs_proc_flow1 &= ~FS_PRPENC_ROT_SRC_SEL_MASK;
fs_proc_flow1 |=
proc_src_sel[IPU_CHAN_ID(src_ch)] <<
FS_PRPENC_ROT_SRC_SEL_OFFSET;
break;
case MEM_PRP_VF_MEM:
fs_proc_flow1 &= ~FS_PRP_SRC_SEL_MASK;
fs_proc_flow1 |=
proc_src_sel[IPU_CHAN_ID(src_ch)] << FS_PRP_SRC_SEL_OFFSET;
break;
case MEM_VDI_PRP_VF_MEM:
fs_proc_flow1 &= ~FS_PRP_SRC_SEL_MASK;
fs_proc_flow1 |=
proc_src_sel[IPU_CHAN_ID(src_ch)] << FS_PRP_SRC_SEL_OFFSET;
break;
case MEM_ROT_VF_MEM:
fs_proc_flow1 &= ~FS_PRPVF_ROT_SRC_SEL_MASK;
fs_proc_flow1 |=
proc_src_sel[IPU_CHAN_ID(src_ch)] <<
FS_PRPVF_ROT_SRC_SEL_OFFSET;
break;
case MEM_DC_SYNC:
fs_disp_flow1 &= ~FS_DC1_SRC_SEL_MASK;
fs_disp_flow1 |=
disp_src_sel[IPU_CHAN_ID(src_ch)] << FS_DC1_SRC_SEL_OFFSET;
break;
case MEM_BG_SYNC:
fs_disp_flow1 &= ~FS_DP_SYNC0_SRC_SEL_MASK;
fs_disp_flow1 |=
disp_src_sel[IPU_CHAN_ID(src_ch)] <<
FS_DP_SYNC0_SRC_SEL_OFFSET;
break;
case MEM_FG_SYNC:
fs_disp_flow1 &= ~FS_DP_SYNC1_SRC_SEL_MASK;
fs_disp_flow1 |=
disp_src_sel[IPU_CHAN_ID(src_ch)] <<
FS_DP_SYNC1_SRC_SEL_OFFSET;
break;
case MEM_DC_ASYNC:
fs_disp_flow1 &= ~FS_DC2_SRC_SEL_MASK;
fs_disp_flow1 |=
disp_src_sel[IPU_CHAN_ID(src_ch)] << FS_DC2_SRC_SEL_OFFSET;
break;
case MEM_BG_ASYNC0:
fs_disp_flow1 &= ~FS_DP_ASYNC0_SRC_SEL_MASK;
fs_disp_flow1 |=
disp_src_sel[IPU_CHAN_ID(src_ch)] <<
FS_DP_ASYNC0_SRC_SEL_OFFSET;
break;
case MEM_FG_ASYNC0:
fs_disp_flow1 &= ~FS_DP_ASYNC1_SRC_SEL_MASK;
fs_disp_flow1 |=
disp_src_sel[IPU_CHAN_ID(src_ch)] <<
FS_DP_ASYNC1_SRC_SEL_OFFSET;
break;
default:
retval = -EINVAL;
goto err;
}
ipu_cm_write(ipu, fs_proc_flow1, IPU_FS_PROC_FLOW1);
ipu_cm_write(ipu, fs_proc_flow2, IPU_FS_PROC_FLOW2);
ipu_cm_write(ipu, fs_proc_flow3, IPU_FS_PROC_FLOW3);
ipu_cm_write(ipu, fs_disp_flow1, IPU_FS_DISP_FLOW1);
err:
_ipu_unlock(ipu);
return retval;
}
EXPORT_SYMBOL(ipu_link_channels);
/*!
* This function unlinks 2 channels and disables automatic frame
* synchronization.
*
* @param ipu ipu handler
* @param src_ch Input parameter for the logical channel ID of
* the source channel.
*
* @param dest_ch Input parameter for the logical channel ID of
* the destination channel.
*
* @return This function returns 0 on success or negative error code on
* fail.
*/
int32_t ipu_unlink_channels(struct ipu_soc *ipu, ipu_channel_t src_ch, ipu_channel_t dest_ch)
{
int retval = 0;
uint32_t fs_proc_flow1;
uint32_t fs_proc_flow2;
uint32_t fs_proc_flow3;
uint32_t fs_disp_flow1;
_ipu_lock(ipu);
fs_proc_flow1 = ipu_cm_read(ipu, IPU_FS_PROC_FLOW1);
fs_proc_flow2 = ipu_cm_read(ipu, IPU_FS_PROC_FLOW2);
fs_proc_flow3 = ipu_cm_read(ipu, IPU_FS_PROC_FLOW3);
fs_disp_flow1 = ipu_cm_read(ipu, IPU_FS_DISP_FLOW1);
switch (src_ch) {
case CSI_MEM0:
fs_proc_flow3 &= ~FS_SMFC0_DEST_SEL_MASK;
break;
case CSI_MEM1:
fs_proc_flow3 &= ~FS_SMFC1_DEST_SEL_MASK;
break;
case CSI_MEM2:
fs_proc_flow3 &= ~FS_SMFC2_DEST_SEL_MASK;
break;
case CSI_MEM3:
fs_proc_flow3 &= ~FS_SMFC3_DEST_SEL_MASK;
break;
case CSI_PRP_ENC_MEM:
fs_proc_flow2 &= ~FS_PRPENC_DEST_SEL_MASK;
break;
case CSI_PRP_VF_MEM:
fs_proc_flow2 &= ~FS_PRPVF_DEST_SEL_MASK;
break;
case MEM_PP_MEM:
fs_proc_flow2 &= ~FS_PP_DEST_SEL_MASK;
break;
case MEM_ROT_PP_MEM:
fs_proc_flow2 &= ~FS_PP_ROT_DEST_SEL_MASK;
break;
case MEM_PRP_ENC_MEM:
fs_proc_flow2 &= ~FS_PRPENC_DEST_SEL_MASK;
break;
case MEM_ROT_ENC_MEM:
fs_proc_flow2 &= ~FS_PRPENC_ROT_DEST_SEL_MASK;
break;
case MEM_PRP_VF_MEM:
fs_proc_flow2 &= ~FS_PRPVF_DEST_SEL_MASK;
break;
case MEM_VDI_PRP_VF_MEM:
fs_proc_flow2 &= ~FS_PRPVF_DEST_SEL_MASK;
break;
case MEM_ROT_VF_MEM:
fs_proc_flow2 &= ~FS_PRPVF_ROT_DEST_SEL_MASK;
break;
default:
retval = -EINVAL;
goto err;
}
switch (dest_ch) {
case MEM_PP_MEM:
fs_proc_flow1 &= ~FS_PP_SRC_SEL_MASK;
break;
case MEM_ROT_PP_MEM:
fs_proc_flow1 &= ~FS_PP_ROT_SRC_SEL_MASK;
break;
case MEM_PRP_ENC_MEM:
fs_proc_flow1 &= ~FS_PRP_SRC_SEL_MASK;
break;
case MEM_ROT_ENC_MEM:
fs_proc_flow1 &= ~FS_PRPENC_ROT_SRC_SEL_MASK;
break;
case MEM_PRP_VF_MEM:
fs_proc_flow1 &= ~FS_PRP_SRC_SEL_MASK;
break;
case MEM_VDI_PRP_VF_MEM:
fs_proc_flow1 &= ~FS_PRP_SRC_SEL_MASK;
break;
case MEM_ROT_VF_MEM:
fs_proc_flow1 &= ~FS_PRPVF_ROT_SRC_SEL_MASK;
break;
case MEM_DC_SYNC:
fs_disp_flow1 &= ~FS_DC1_SRC_SEL_MASK;
break;
case MEM_BG_SYNC:
fs_disp_flow1 &= ~FS_DP_SYNC0_SRC_SEL_MASK;
break;
case MEM_FG_SYNC:
fs_disp_flow1 &= ~FS_DP_SYNC1_SRC_SEL_MASK;
break;
case MEM_DC_ASYNC:
fs_disp_flow1 &= ~FS_DC2_SRC_SEL_MASK;
break;
case MEM_BG_ASYNC0:
fs_disp_flow1 &= ~FS_DP_ASYNC0_SRC_SEL_MASK;
break;
case MEM_FG_ASYNC0:
fs_disp_flow1 &= ~FS_DP_ASYNC1_SRC_SEL_MASK;
break;
default:
retval = -EINVAL;
goto err;
}
ipu_cm_write(ipu, fs_proc_flow1, IPU_FS_PROC_FLOW1);
ipu_cm_write(ipu, fs_proc_flow2, IPU_FS_PROC_FLOW2);
ipu_cm_write(ipu, fs_proc_flow3, IPU_FS_PROC_FLOW3);
ipu_cm_write(ipu, fs_disp_flow1, IPU_FS_DISP_FLOW1);
err:
_ipu_unlock(ipu);
return retval;
}
EXPORT_SYMBOL(ipu_unlink_channels);
/*!
* This function check whether a logical channel was enabled.
*
* @param ipu ipu handler
* @param channel Input parameter for the logical channel ID.
*
* @return This function returns 1 while request channel is enabled or
* 0 for not enabled.
*/
int32_t ipu_is_channel_busy(struct ipu_soc *ipu, ipu_channel_t channel)
{
uint32_t reg;
uint32_t in_dma;
uint32_t out_dma;
out_dma = channel_2_dma(channel, IPU_OUTPUT_BUFFER);
in_dma = channel_2_dma(channel, IPU_VIDEO_IN_BUFFER);
reg = ipu_idmac_read(ipu, IDMAC_CHA_EN(in_dma));
if (reg & idma_mask(in_dma))
return 1;
reg = ipu_idmac_read(ipu, IDMAC_CHA_EN(out_dma));
if (reg & idma_mask(out_dma))
return 1;
return 0;
}
EXPORT_SYMBOL(ipu_is_channel_busy);
/*!
* This function enables a logical channel.
*
* @param ipu ipu handler
* @param channel Input parameter for the logical channel ID.
*
* @return This function returns 0 on success or negative error code on
* fail.
*/
int32_t ipu_enable_channel(struct ipu_soc *ipu, ipu_channel_t channel)
{
uint32_t reg;
uint32_t ipu_conf;
uint32_t in_dma;
uint32_t out_dma;
uint32_t sec_dma;
uint32_t thrd_dma;
_ipu_lock(ipu);
if (ipu->channel_enable_mask & (1L << IPU_CHAN_ID(channel))) {
dev_err(ipu->dev, "Warning: channel already enabled %d\n",
IPU_CHAN_ID(channel));
_ipu_unlock(ipu);
return -EACCES;
}
/* Get input and output dma channels */
out_dma = channel_2_dma(channel, IPU_OUTPUT_BUFFER);
in_dma = channel_2_dma(channel, IPU_VIDEO_IN_BUFFER);
ipu_conf = ipu_cm_read(ipu, IPU_CONF);
if (ipu->di_use_count[0] > 0) {
ipu_conf |= IPU_CONF_DI0_EN;
}
if (ipu->di_use_count[1] > 0) {
ipu_conf |= IPU_CONF_DI1_EN;
}
if (ipu->dp_use_count > 0)
ipu_conf |= IPU_CONF_DP_EN;
if (ipu->dc_use_count > 0)
ipu_conf |= IPU_CONF_DC_EN;
if (ipu->dmfc_use_count > 0)
ipu_conf |= IPU_CONF_DMFC_EN;
if (ipu->ic_use_count > 0)
ipu_conf |= IPU_CONF_IC_EN;
if (ipu->vdi_use_count > 0) {
ipu_conf |= IPU_CONF_ISP_EN;
ipu_conf |= IPU_CONF_VDI_EN;
ipu_conf |= IPU_CONF_IC_INPUT;
}
if (ipu->rot_use_count > 0)
ipu_conf |= IPU_CONF_ROT_EN;
if (ipu->smfc_use_count > 0)
ipu_conf |= IPU_CONF_SMFC_EN;
ipu_cm_write(ipu, ipu_conf, IPU_CONF);
if (idma_is_valid(in_dma)) {
reg = ipu_idmac_read(ipu, IDMAC_CHA_EN(in_dma));
ipu_idmac_write(ipu, reg | idma_mask(in_dma), IDMAC_CHA_EN(in_dma));
}
if (idma_is_valid(out_dma)) {
reg = ipu_idmac_read(ipu, IDMAC_CHA_EN(out_dma));
ipu_idmac_write(ipu, reg | idma_mask(out_dma), IDMAC_CHA_EN(out_dma));
}
if ((ipu->sec_chan_en[IPU_CHAN_ID(channel)]) &&
((channel == MEM_PP_MEM) || (channel == MEM_PRP_VF_MEM) ||
(channel == MEM_VDI_PRP_VF_MEM))) {
sec_dma = channel_2_dma(channel, IPU_GRAPH_IN_BUFFER);
reg = ipu_idmac_read(ipu, IDMAC_CHA_EN(sec_dma));
ipu_idmac_write(ipu, reg | idma_mask(sec_dma), IDMAC_CHA_EN(sec_dma));
}
if ((ipu->thrd_chan_en[IPU_CHAN_ID(channel)]) &&
((channel == MEM_PP_MEM) || (channel == MEM_PRP_VF_MEM))) {
thrd_dma = channel_2_dma(channel, IPU_ALPHA_IN_BUFFER);
reg = ipu_idmac_read(ipu, IDMAC_CHA_EN(thrd_dma));
ipu_idmac_write(ipu, reg | idma_mask(thrd_dma), IDMAC_CHA_EN(thrd_dma));
sec_dma = channel_2_dma(channel, IPU_GRAPH_IN_BUFFER);
reg = ipu_idmac_read(ipu, IDMAC_SEP_ALPHA);
ipu_idmac_write(ipu, reg | idma_mask(sec_dma), IDMAC_SEP_ALPHA);
} else if ((ipu->thrd_chan_en[IPU_CHAN_ID(channel)]) &&
((channel == MEM_BG_SYNC) || (channel == MEM_FG_SYNC))) {
thrd_dma = channel_2_dma(channel, IPU_ALPHA_IN_BUFFER);
reg = ipu_idmac_read(ipu, IDMAC_CHA_EN(thrd_dma));
ipu_idmac_write(ipu, reg | idma_mask(thrd_dma), IDMAC_CHA_EN(thrd_dma));
reg = ipu_idmac_read(ipu, IDMAC_SEP_ALPHA);
ipu_idmac_write(ipu, reg | idma_mask(in_dma), IDMAC_SEP_ALPHA);
}
if ((channel == MEM_DC_SYNC) || (channel == MEM_BG_SYNC) ||
(channel == MEM_FG_SYNC)) {
reg = ipu_idmac_read(ipu, IDMAC_WM_EN(in_dma));
ipu_idmac_write(ipu, reg | idma_mask(in_dma), IDMAC_WM_EN(in_dma));
_ipu_dp_dc_enable(ipu, channel);
}
if (_ipu_is_ic_chan(in_dma) || _ipu_is_ic_chan(out_dma) ||
_ipu_is_irt_chan(in_dma) || _ipu_is_irt_chan(out_dma))
_ipu_ic_enable_task(ipu, channel);
ipu->channel_enable_mask |= 1L << IPU_CHAN_ID(channel);
_ipu_unlock(ipu);
return 0;
}
EXPORT_SYMBOL(ipu_enable_channel);
/*!
* This function check buffer ready for a logical channel.
*
* @param ipu ipu handler
* @param channel Input parameter for the logical channel ID.
*
* @param type Input parameter which buffer to clear.
*
* @param bufNum Input parameter for which buffer number clear
* ready state.
*
*/
int32_t ipu_check_buffer_ready(struct ipu_soc *ipu, ipu_channel_t channel, ipu_buffer_t type,
uint32_t bufNum)
{
uint32_t dma_chan = channel_2_dma(channel, type);
uint32_t reg;
if (dma_chan == IDMA_CHAN_INVALID)
return -EINVAL;
if (bufNum == 0)
reg = ipu_cm_read(ipu, IPU_CHA_BUF0_RDY(dma_chan));
else if (bufNum == 1)
reg = ipu_cm_read(ipu, IPU_CHA_BUF1_RDY(dma_chan));
else
reg = ipu_cm_read(ipu, IPU_CHA_BUF2_RDY(dma_chan));
if (reg & idma_mask(dma_chan))
return 1;
else
return 0;
}
EXPORT_SYMBOL(ipu_check_buffer_ready);
/*!
* This function clear buffer ready for a logical channel.
*
* @param ipu ipu handler
* @param channel Input parameter for the logical channel ID.
*
* @param type Input parameter which buffer to clear.
*
* @param bufNum Input parameter for which buffer number clear
* ready state.
*
*/
void _ipu_clear_buffer_ready(struct ipu_soc *ipu, ipu_channel_t channel, ipu_buffer_t type,
uint32_t bufNum)
{
uint32_t dma_ch = channel_2_dma(channel, type);
if (!idma_is_valid(dma_ch))
return;
ipu_cm_write(ipu, 0xF0300000, IPU_GPR); /* write one to clear */
if (bufNum == 0)
ipu_cm_write(ipu, idma_mask(dma_ch),
IPU_CHA_BUF0_RDY(dma_ch));
else if (bufNum == 1)
ipu_cm_write(ipu, idma_mask(dma_ch),
IPU_CHA_BUF1_RDY(dma_ch));
else
ipu_cm_write(ipu, idma_mask(dma_ch),
IPU_CHA_BUF2_RDY(dma_ch));
ipu_cm_write(ipu, 0x0, IPU_GPR); /* write one to set */
}
void ipu_clear_buffer_ready(struct ipu_soc *ipu, ipu_channel_t channel, ipu_buffer_t type,
uint32_t bufNum)
{
_ipu_lock(ipu);
_ipu_clear_buffer_ready(ipu, channel, type, bufNum);
_ipu_unlock(ipu);
}
EXPORT_SYMBOL(ipu_clear_buffer_ready);
/*!
* This function disables a logical channel.
*
* @param ipu ipu handler
* @param channel Input parameter for the logical channel ID.
*
* @param wait_for_stop Flag to set whether to wait for channel end
* of frame or return immediately.
*
* @return This function returns 0 on success or negative error code on
* fail.
*/
int32_t ipu_disable_channel(struct ipu_soc *ipu, ipu_channel_t channel, bool wait_for_stop)
{
uint32_t reg;
uint32_t in_dma;
uint32_t out_dma;
uint32_t sec_dma = NO_DMA;
uint32_t thrd_dma = NO_DMA;
uint16_t fg_pos_x, fg_pos_y;
_ipu_lock(ipu);
if ((ipu->channel_enable_mask & (1L << IPU_CHAN_ID(channel))) == 0) {
dev_err(ipu->dev, "Channel already disabled %d\n",
IPU_CHAN_ID(channel));
_ipu_unlock(ipu);
return -EACCES;
}
/* Get input and output dma channels */
out_dma = channel_2_dma(channel, IPU_OUTPUT_BUFFER);
in_dma = channel_2_dma(channel, IPU_VIDEO_IN_BUFFER);
if ((idma_is_valid(in_dma) &&
!idma_is_set(ipu, IDMAC_CHA_EN, in_dma))
&& (idma_is_valid(out_dma) &&
!idma_is_set(ipu, IDMAC_CHA_EN, out_dma))) {
_ipu_unlock(ipu);
return -EINVAL;
}
if (ipu->sec_chan_en[IPU_CHAN_ID(channel)])
sec_dma = channel_2_dma(channel, IPU_GRAPH_IN_BUFFER);
if (ipu->thrd_chan_en[IPU_CHAN_ID(channel)]) {
sec_dma = channel_2_dma(channel, IPU_GRAPH_IN_BUFFER);
thrd_dma = channel_2_dma(channel, IPU_ALPHA_IN_BUFFER);
}
if ((channel == MEM_BG_SYNC) || (channel == MEM_FG_SYNC) ||
(channel == MEM_DC_SYNC)) {
if (channel == MEM_FG_SYNC) {
_ipu_disp_get_window_pos(ipu, channel, &fg_pos_x, &fg_pos_y);
_ipu_disp_set_window_pos(ipu, channel, 0, 0);
}
_ipu_dp_dc_disable(ipu, channel, false);
/*
* wait for BG channel EOF then disable FG-IDMAC,
* it avoid FG NFB4EOF error.
*/
if ((channel == MEM_FG_SYNC) && (ipu_is_channel_busy(ipu, MEM_BG_SYNC))) {
int timeout = 50;
ipu_cm_write(ipu, IPUIRQ_2_MASK(IPU_IRQ_BG_SYNC_EOF),
IPUIRQ_2_STATREG(IPU_IRQ_BG_SYNC_EOF));
while ((ipu_cm_read(ipu, IPUIRQ_2_STATREG(IPU_IRQ_BG_SYNC_EOF)) &
IPUIRQ_2_MASK(IPU_IRQ_BG_SYNC_EOF)) == 0) {
msleep(10);
timeout -= 10;
if (timeout <= 0) {
dev_err(ipu->dev, "warning: wait for bg sync eof timeout\n");
break;
}
}
}
} else if (wait_for_stop) {
while (idma_is_set(ipu, IDMAC_CHA_BUSY, in_dma) ||
idma_is_set(ipu, IDMAC_CHA_BUSY, out_dma) ||
(ipu->sec_chan_en[IPU_CHAN_ID(channel)] &&
idma_is_set(ipu, IDMAC_CHA_BUSY, sec_dma)) ||
(ipu->thrd_chan_en[IPU_CHAN_ID(channel)] &&
idma_is_set(ipu, IDMAC_CHA_BUSY, thrd_dma))) {
uint32_t irq = 0xffffffff;
int timeout = 50;
if (idma_is_set(ipu, IDMAC_CHA_BUSY, out_dma))
irq = out_dma;
if (ipu->sec_chan_en[IPU_CHAN_ID(channel)] &&
idma_is_set(ipu, IDMAC_CHA_BUSY, sec_dma))
irq = sec_dma;
if (ipu->thrd_chan_en[IPU_CHAN_ID(channel)] &&
idma_is_set(ipu, IDMAC_CHA_BUSY, thrd_dma))
irq = thrd_dma;
if (idma_is_set(ipu, IDMAC_CHA_BUSY, in_dma))
irq = in_dma;
if (irq == 0xffffffff) {
dev_dbg(ipu->dev, "warning: no channel busy, break\n");
break;
}
ipu_cm_write(ipu, IPUIRQ_2_MASK(irq),
IPUIRQ_2_STATREG(irq));
dev_dbg(ipu->dev, "warning: channel %d busy, need wait\n", irq);
while (((ipu_cm_read(ipu, IPUIRQ_2_STATREG(irq))
& IPUIRQ_2_MASK(irq)) == 0) &&
(idma_is_set(ipu, IDMAC_CHA_BUSY, irq))) {
msleep(10);
timeout -= 10;
if (timeout <= 0) {
ipu_dump_registers(ipu);
dev_err(ipu->dev, "warning: disable ipu dma channel %d during its busy state\n", irq);
break;
}
}
}
}
if ((channel == MEM_BG_SYNC) || (channel == MEM_FG_SYNC) ||
(channel == MEM_DC_SYNC)) {
reg = ipu_idmac_read(ipu, IDMAC_WM_EN(in_dma));
ipu_idmac_write(ipu, reg & ~idma_mask(in_dma), IDMAC_WM_EN(in_dma));
}
/* Disable IC task */
if (_ipu_is_ic_chan(in_dma) || _ipu_is_ic_chan(out_dma) ||
_ipu_is_irt_chan(in_dma) || _ipu_is_irt_chan(out_dma))
_ipu_ic_disable_task(ipu, channel);
/* Disable DMA channel(s) */
if (idma_is_valid(in_dma)) {
reg = ipu_idmac_read(ipu, IDMAC_CHA_EN(in_dma));
ipu_idmac_write(ipu, reg & ~idma_mask(in_dma), IDMAC_CHA_EN(in_dma));
ipu_cm_write(ipu, idma_mask(in_dma), IPU_CHA_CUR_BUF(in_dma));
ipu_cm_write(ipu, tri_cur_buf_mask(in_dma),
IPU_CHA_TRIPLE_CUR_BUF(in_dma));
}
if (idma_is_valid(out_dma)) {
reg = ipu_idmac_read(ipu, IDMAC_CHA_EN(out_dma));
ipu_idmac_write(ipu, reg & ~idma_mask(out_dma), IDMAC_CHA_EN(out_dma));
ipu_cm_write(ipu, idma_mask(out_dma), IPU_CHA_CUR_BUF(out_dma));
ipu_cm_write(ipu, tri_cur_buf_mask(out_dma),
IPU_CHA_TRIPLE_CUR_BUF(out_dma));
}
if (ipu->sec_chan_en[IPU_CHAN_ID(channel)] && idma_is_valid(sec_dma)) {
reg = ipu_idmac_read(ipu, IDMAC_CHA_EN(sec_dma));
ipu_idmac_write(ipu, reg & ~idma_mask(sec_dma), IDMAC_CHA_EN(sec_dma));
ipu_cm_write(ipu, idma_mask(sec_dma), IPU_CHA_CUR_BUF(sec_dma));
}
if (ipu->thrd_chan_en[IPU_CHAN_ID(channel)] && idma_is_valid(thrd_dma)) {
reg = ipu_idmac_read(ipu, IDMAC_CHA_EN(thrd_dma));
ipu_idmac_write(ipu, reg & ~idma_mask(thrd_dma), IDMAC_CHA_EN(thrd_dma));
if (channel == MEM_BG_SYNC || channel == MEM_FG_SYNC) {
reg = ipu_idmac_read(ipu, IDMAC_SEP_ALPHA);
ipu_idmac_write(ipu, reg & ~idma_mask(in_dma), IDMAC_SEP_ALPHA);
} else {
reg = ipu_idmac_read(ipu, IDMAC_SEP_ALPHA);
ipu_idmac_write(ipu, reg & ~idma_mask(sec_dma), IDMAC_SEP_ALPHA);
}
ipu_cm_write(ipu, idma_mask(thrd_dma), IPU_CHA_CUR_BUF(thrd_dma));
}
if (channel == MEM_FG_SYNC)
_ipu_disp_set_window_pos(ipu, channel, fg_pos_x, fg_pos_y);
/* Set channel buffers NOT to be ready */
if (idma_is_valid(in_dma)) {
_ipu_clear_buffer_ready(ipu, channel, IPU_VIDEO_IN_BUFFER, 0);
_ipu_clear_buffer_ready(ipu, channel, IPU_VIDEO_IN_BUFFER, 1);
_ipu_clear_buffer_ready(ipu, channel, IPU_VIDEO_IN_BUFFER, 2);
}
if (idma_is_valid(out_dma)) {
_ipu_clear_buffer_ready(ipu, channel, IPU_OUTPUT_BUFFER, 0);
_ipu_clear_buffer_ready(ipu, channel, IPU_OUTPUT_BUFFER, 1);
}
if (ipu->sec_chan_en[IPU_CHAN_ID(channel)] && idma_is_valid(sec_dma)) {
_ipu_clear_buffer_ready(ipu, channel, IPU_GRAPH_IN_BUFFER, 0);
_ipu_clear_buffer_ready(ipu, channel, IPU_GRAPH_IN_BUFFER, 1);
}
if (ipu->thrd_chan_en[IPU_CHAN_ID(channel)] && idma_is_valid(thrd_dma)) {
_ipu_clear_buffer_ready(ipu, channel, IPU_ALPHA_IN_BUFFER, 0);
_ipu_clear_buffer_ready(ipu, channel, IPU_ALPHA_IN_BUFFER, 1);
}
ipu->channel_enable_mask &= ~(1L << IPU_CHAN_ID(channel));
_ipu_unlock(ipu);
return 0;
}
EXPORT_SYMBOL(ipu_disable_channel);
/*!
* This function enables CSI.
*
* @param ipu ipu handler
* @param csi csi num 0 or 1
*
* @return This function returns 0 on success or negative error code on
* fail.
*/
int32_t ipu_enable_csi(struct ipu_soc *ipu, uint32_t csi)
{
uint32_t reg;
if (csi > 1) {
dev_err(ipu->dev, "Wrong csi num_%d\n", csi);
return -EINVAL;
}
_ipu_lock(ipu);
ipu->csi_use_count[csi]++;
if (ipu->csi_use_count[csi] == 1) {
reg = ipu_cm_read(ipu, IPU_CONF);
if (csi == 0)
ipu_cm_write(ipu, reg | IPU_CONF_CSI0_EN, IPU_CONF);
else
ipu_cm_write(ipu, reg | IPU_CONF_CSI1_EN, IPU_CONF);
}
_ipu_unlock(ipu);
return 0;
}
EXPORT_SYMBOL(ipu_enable_csi);
/*!
* This function disables CSI.
*
* @param ipu ipu handler
* @param csi csi num 0 or 1
*
* @return This function returns 0 on success or negative error code on
* fail.
*/
int32_t ipu_disable_csi(struct ipu_soc *ipu, uint32_t csi)
{
uint32_t reg;
if (csi > 1) {
dev_err(ipu->dev, "Wrong csi num_%d\n", csi);
return -EINVAL;
}
_ipu_lock(ipu);
ipu->csi_use_count[csi]--;
if (ipu->csi_use_count[csi] == 0) {
reg = ipu_cm_read(ipu, IPU_CONF);
if (csi == 0)
ipu_cm_write(ipu, reg & ~IPU_CONF_CSI0_EN, IPU_CONF);
else
ipu_cm_write(ipu, reg & ~IPU_CONF_CSI1_EN, IPU_CONF);
}
_ipu_unlock(ipu);
return 0;
}
EXPORT_SYMBOL(ipu_disable_csi);
static irqreturn_t ipu_irq_handler(int irq, void *desc)
{
struct ipu_soc *ipu = desc;
int i;
uint32_t line;
irqreturn_t result = IRQ_NONE;
uint32_t int_stat;
const int err_reg[] = { 5, 6, 9, 10, 0 };
const int int_reg[] = { 1, 2, 3, 4, 11, 12, 13, 14, 15, 0 };
unsigned long lock_flags;
for (i = 0;; i++) {
if (err_reg[i] == 0)
break;
spin_lock_irqsave(&ipu->spin_lock, lock_flags);
int_stat = ipu_cm_read(ipu, IPU_INT_STAT(err_reg[i]));
int_stat &= ipu_cm_read(ipu, IPU_INT_CTRL(err_reg[i]));
if (int_stat) {
ipu_cm_write(ipu, int_stat, IPU_INT_STAT(err_reg[i]));
dev_err(ipu->dev,
"IPU Error - IPU_INT_STAT_%d = 0x%08X\n",
err_reg[i], int_stat);
/* Disable interrupts so we only get error once */
int_stat =
ipu_cm_read(ipu, IPU_INT_CTRL(err_reg[i])) & ~int_stat;
ipu_cm_write(ipu, int_stat, IPU_INT_CTRL(err_reg[i]));
}
spin_unlock_irqrestore(&ipu->spin_lock, lock_flags);
}
for (i = 0;; i++) {
if (int_reg[i] == 0)
break;
spin_lock_irqsave(&ipu->spin_lock, lock_flags);
int_stat = ipu_cm_read(ipu, IPU_INT_STAT(int_reg[i]));
int_stat &= ipu_cm_read(ipu, IPU_INT_CTRL(int_reg[i]));
ipu_cm_write(ipu, int_stat, IPU_INT_STAT(int_reg[i]));
spin_unlock_irqrestore(&ipu->spin_lock, lock_flags);
while ((line = ffs(int_stat)) != 0) {
line--;
int_stat &= ~(1UL << line);
line += (int_reg[i] - 1) * 32;
result |=
ipu->irq_list[line].handler(line,
ipu->irq_list[line].
dev_id);
}
}
return result;
}
/*!
* This function enables the interrupt for the specified interrupt line.
* The interrupt lines are defined in \b ipu_irq_line enum.
*
* @param ipu ipu handler
* @param irq Interrupt line to enable interrupt for.
*
*/
void ipu_enable_irq(struct ipu_soc *ipu, uint32_t irq)
{
uint32_t reg;
unsigned long lock_flags;
_ipu_get(ipu);
spin_lock_irqsave(&ipu->spin_lock, lock_flags);
reg = ipu_cm_read(ipu, IPUIRQ_2_CTRLREG(irq));
reg |= IPUIRQ_2_MASK(irq);
ipu_cm_write(ipu, reg, IPUIRQ_2_CTRLREG(irq));
spin_unlock_irqrestore(&ipu->spin_lock, lock_flags);
_ipu_put(ipu);
}
EXPORT_SYMBOL(ipu_enable_irq);
/*!
* This function disables the interrupt for the specified interrupt line.
* The interrupt lines are defined in \b ipu_irq_line enum.
*
* @param ipu ipu handler
* @param irq Interrupt line to disable interrupt for.
*
*/
void ipu_disable_irq(struct ipu_soc *ipu, uint32_t irq)
{
uint32_t reg;
unsigned long lock_flags;
_ipu_get(ipu);
spin_lock_irqsave(&ipu->spin_lock, lock_flags);
reg = ipu_cm_read(ipu, IPUIRQ_2_CTRLREG(irq));
reg &= ~IPUIRQ_2_MASK(irq);
ipu_cm_write(ipu, reg, IPUIRQ_2_CTRLREG(irq));
spin_unlock_irqrestore(&ipu->spin_lock, lock_flags);
_ipu_put(ipu);
}
EXPORT_SYMBOL(ipu_disable_irq);
/*!
* This function clears the interrupt for the specified interrupt line.
* The interrupt lines are defined in \b ipu_irq_line enum.
*
* @param ipu ipu handler
* @param irq Interrupt line to clear interrupt for.
*
*/
void ipu_clear_irq(struct ipu_soc *ipu, uint32_t irq)
{
unsigned long lock_flags;
_ipu_get(ipu);
spin_lock_irqsave(&ipu->spin_lock, lock_flags);
ipu_cm_write(ipu, IPUIRQ_2_MASK(irq), IPUIRQ_2_STATREG(irq));
spin_unlock_irqrestore(&ipu->spin_lock, lock_flags);
_ipu_put(ipu);
}
EXPORT_SYMBOL(ipu_clear_irq);
/*!
* This function returns the current interrupt status for the specified
* interrupt line. The interrupt lines are defined in \b ipu_irq_line enum.
*
* @param ipu ipu handler
* @param irq Interrupt line to get status for.
*
* @return Returns true if the interrupt is pending/asserted or false if
* the interrupt is not pending.
*/
bool ipu_get_irq_status(struct ipu_soc *ipu, uint32_t irq)
{
uint32_t reg;
_ipu_get(ipu);
reg = ipu_cm_read(ipu, IPUIRQ_2_STATREG(irq));
_ipu_put(ipu);
if (reg & IPUIRQ_2_MASK(irq))
return true;
else
return false;
}
EXPORT_SYMBOL(ipu_get_irq_status);
/*!
* This function registers an interrupt handler function for the specified
* interrupt line. The interrupt lines are defined in \b ipu_irq_line enum.
*
* @param ipu ipu handler
* @param irq Interrupt line to get status for.
*
* @param handler Input parameter for address of the handler
* function.
*
* @param irq_flags Flags for interrupt mode. Currently not used.
*
* @param devname Input parameter for string name of driver
* registering the handler.
*
* @param dev_id Input parameter for pointer of data to be
* passed to the handler.
*
* @return This function returns 0 on success or negative error code on
* fail.
*/
int ipu_request_irq(struct ipu_soc *ipu, uint32_t irq,
irqreturn_t(*handler) (int, void *),
uint32_t irq_flags, const char *devname, void *dev_id)
{
unsigned long lock_flags;
BUG_ON(irq >= IPU_IRQ_COUNT);
_ipu_get(ipu);
spin_lock_irqsave(&ipu->spin_lock, lock_flags);
if (ipu->irq_list[irq].handler != NULL) {
dev_err(ipu->dev,
"handler already installed on irq %d\n", irq);
spin_unlock_irqrestore(&ipu->spin_lock, lock_flags);
return -EINVAL;
}
ipu->irq_list[irq].handler = handler;
ipu->irq_list[irq].flags = irq_flags;
ipu->irq_list[irq].dev_id = dev_id;
ipu->irq_list[irq].name = devname;
/* clear irq stat for previous use */
ipu_cm_write(ipu, IPUIRQ_2_MASK(irq), IPUIRQ_2_STATREG(irq));
spin_unlock_irqrestore(&ipu->spin_lock, lock_flags);
_ipu_put(ipu);
ipu_enable_irq(ipu, irq); /* enable the interrupt */
return 0;
}
EXPORT_SYMBOL(ipu_request_irq);
/*!
* This function unregisters an interrupt handler for the specified interrupt
* line. The interrupt lines are defined in \b ipu_irq_line enum.
*
* @param ipu ipu handler
* @param irq Interrupt line to get status for.
*
* @param dev_id Input parameter for pointer of data to be passed
* to the handler. This must match value passed to
* ipu_request_irq().
*
*/
void ipu_free_irq(struct ipu_soc *ipu, uint32_t irq, void *dev_id)
{
unsigned long lock_flags;
ipu_disable_irq(ipu, irq); /* disable the interrupt */
spin_lock_irqsave(&ipu->spin_lock, lock_flags);
if (ipu->irq_list[irq].dev_id == dev_id)
ipu->irq_list[irq].handler = NULL;
spin_unlock_irqrestore(&ipu->spin_lock, lock_flags);
}
EXPORT_SYMBOL(ipu_free_irq);
uint32_t ipu_get_cur_buffer_idx(struct ipu_soc *ipu, ipu_channel_t channel, ipu_buffer_t type)
{
uint32_t reg, dma_chan;
dma_chan = channel_2_dma(channel, type);
if (!idma_is_valid(dma_chan))
return -EINVAL;
reg = ipu_cm_read(ipu, IPU_CHA_TRB_MODE_SEL(dma_chan));
if ((reg & idma_mask(dma_chan)) && _ipu_is_trb_chan(dma_chan)) {
reg = ipu_cm_read(ipu, IPU_CHA_TRIPLE_CUR_BUF(dma_chan));
return (reg & tri_cur_buf_mask(dma_chan)) >>
tri_cur_buf_shift(dma_chan);
} else {
reg = ipu_cm_read(ipu, IPU_CHA_CUR_BUF(dma_chan));
if (reg & idma_mask(dma_chan))
return 1;
else
return 0;
}
}
EXPORT_SYMBOL(ipu_get_cur_buffer_idx);
uint32_t _ipu_channel_status(struct ipu_soc *ipu, ipu_channel_t channel)
{
uint32_t stat = 0;
uint32_t task_stat_reg = ipu_cm_read(ipu, IPU_PROC_TASK_STAT);
switch (channel) {
case MEM_PRP_VF_MEM:
stat = (task_stat_reg & TSTAT_VF_MASK) >> TSTAT_VF_OFFSET;
break;
case MEM_VDI_PRP_VF_MEM:
stat = (task_stat_reg & TSTAT_VF_MASK) >> TSTAT_VF_OFFSET;
break;
case MEM_ROT_VF_MEM:
stat =
(task_stat_reg & TSTAT_VF_ROT_MASK) >> TSTAT_VF_ROT_OFFSET;
break;
case MEM_PRP_ENC_MEM:
stat = (task_stat_reg & TSTAT_ENC_MASK) >> TSTAT_ENC_OFFSET;
break;
case MEM_ROT_ENC_MEM:
stat =
(task_stat_reg & TSTAT_ENC_ROT_MASK) >>
TSTAT_ENC_ROT_OFFSET;
break;
case MEM_PP_MEM:
stat = (task_stat_reg & TSTAT_PP_MASK) >> TSTAT_PP_OFFSET;
break;
case MEM_ROT_PP_MEM:
stat =
(task_stat_reg & TSTAT_PP_ROT_MASK) >> TSTAT_PP_ROT_OFFSET;
break;
default:
stat = TASK_STAT_IDLE;
break;
}
return stat;
}
int32_t ipu_swap_channel(struct ipu_soc *ipu, ipu_channel_t from_ch, ipu_channel_t to_ch)
{
uint32_t reg;
int from_dma = channel_2_dma(from_ch, IPU_INPUT_BUFFER);
int to_dma = channel_2_dma(to_ch, IPU_INPUT_BUFFER);
_ipu_lock(ipu);
/* enable target channel */
reg = ipu_idmac_read(ipu, IDMAC_CHA_EN(to_dma));
ipu_idmac_write(ipu, reg | idma_mask(to_dma), IDMAC_CHA_EN(to_dma));
ipu->channel_enable_mask |= 1L << IPU_CHAN_ID(to_ch);
/* switch dp dc */
_ipu_dp_dc_disable(ipu, from_ch, true);
/* disable source channel */
reg = ipu_idmac_read(ipu, IDMAC_CHA_EN(from_dma));
ipu_idmac_write(ipu, reg & ~idma_mask(from_dma), IDMAC_CHA_EN(from_dma));
ipu_cm_write(ipu, idma_mask(from_dma), IPU_CHA_CUR_BUF(from_dma));
ipu_cm_write(ipu, tri_cur_buf_mask(from_dma),
IPU_CHA_TRIPLE_CUR_BUF(from_dma));
ipu->channel_enable_mask &= ~(1L << IPU_CHAN_ID(from_ch));
_ipu_clear_buffer_ready(ipu, from_ch, IPU_VIDEO_IN_BUFFER, 0);
_ipu_clear_buffer_ready(ipu, from_ch, IPU_VIDEO_IN_BUFFER, 1);
_ipu_clear_buffer_ready(ipu, from_ch, IPU_VIDEO_IN_BUFFER, 2);
_ipu_unlock(ipu);
return 0;
}
EXPORT_SYMBOL(ipu_swap_channel);
uint32_t bytes_per_pixel(uint32_t fmt)
{
switch (fmt) {
case IPU_PIX_FMT_GENERIC: /*generic data */
case IPU_PIX_FMT_RGB332:
case IPU_PIX_FMT_YUV420P:
case IPU_PIX_FMT_YVU420P:
case IPU_PIX_FMT_YUV422P:
return 1;
break;
case IPU_PIX_FMT_RGB565:
case IPU_PIX_FMT_YUYV:
case IPU_PIX_FMT_UYVY:
return 2;
break;
case IPU_PIX_FMT_BGR24:
case IPU_PIX_FMT_RGB24:
return 3;
break;
case IPU_PIX_FMT_GENERIC_32: /*generic data */
case IPU_PIX_FMT_BGR32:
case IPU_PIX_FMT_BGRA32:
case IPU_PIX_FMT_RGB32:
case IPU_PIX_FMT_RGBA32:
case IPU_PIX_FMT_ABGR32:
return 4;
break;
default:
return 1;
break;
}
return 0;
}
EXPORT_SYMBOL(bytes_per_pixel);
ipu_color_space_t format_to_colorspace(uint32_t fmt)
{
switch (fmt) {
case IPU_PIX_FMT_RGB666:
case IPU_PIX_FMT_RGB565:
case IPU_PIX_FMT_BGR24:
case IPU_PIX_FMT_RGB24:
case IPU_PIX_FMT_GBR24:
case IPU_PIX_FMT_BGR32:
case IPU_PIX_FMT_BGRA32:
case IPU_PIX_FMT_RGB32:
case IPU_PIX_FMT_RGBA32:
case IPU_PIX_FMT_ABGR32:
case IPU_PIX_FMT_LVDS666:
case IPU_PIX_FMT_LVDS888:
return RGB;
break;
default:
return YCbCr;
break;
}
return RGB;
}
bool ipu_pixel_format_has_alpha(uint32_t fmt)
{
switch (fmt) {
case IPU_PIX_FMT_RGBA32:
case IPU_PIX_FMT_BGRA32:
case IPU_PIX_FMT_ABGR32:
return true;
break;
default:
return false;
break;
}
return false;
}
static int ipu_suspend(struct platform_device *pdev, pm_message_t state)
{
struct imx_ipuv3_platform_data *plat_data = pdev->dev.platform_data;
struct ipu_soc *ipu = platform_get_drvdata(pdev);
if (atomic_read(&ipu->ipu_use_count)) {
/* save and disable enabled channels*/
ipu->idma_enable_reg[0] = ipu_idmac_read(ipu, IDMAC_CHA_EN(0));
ipu->idma_enable_reg[1] = ipu_idmac_read(ipu, IDMAC_CHA_EN(32));
while ((ipu_idmac_read(ipu, IDMAC_CHA_BUSY(0))
& ipu->idma_enable_reg[0])
|| (ipu_idmac_read(ipu, IDMAC_CHA_BUSY(32))
& ipu->idma_enable_reg[1])) {
/* disable channel not busy already */
uint32_t chan_should_disable, timeout = 1000, time = 0;
chan_should_disable =
ipu_idmac_read(ipu, IDMAC_CHA_BUSY(0))
^ ipu->idma_enable_reg[0];
ipu_idmac_write(ipu, (~chan_should_disable) &
ipu->idma_enable_reg[0], IDMAC_CHA_EN(0));
chan_should_disable =
ipu_idmac_read(ipu, IDMAC_CHA_BUSY(1))
^ ipu->idma_enable_reg[1];
ipu_idmac_write(ipu, (~chan_should_disable) &
ipu->idma_enable_reg[1], IDMAC_CHA_EN(32));
msleep(2);
time += 2;
if (time >= timeout)
return -1;
}
ipu_idmac_write(ipu, 0, IDMAC_CHA_EN(0));
ipu_idmac_write(ipu, 0, IDMAC_CHA_EN(32));
/* save double buffer select regs */
ipu->cha_db_mode_reg[0] = ipu_cm_read(ipu, IPU_CHA_DB_MODE_SEL(0));
ipu->cha_db_mode_reg[1] = ipu_cm_read(ipu, IPU_CHA_DB_MODE_SEL(32));
ipu->cha_db_mode_reg[2] =
ipu_cm_read(ipu, IPU_ALT_CHA_DB_MODE_SEL(0));
ipu->cha_db_mode_reg[3] =
ipu_cm_read(ipu, IPU_ALT_CHA_DB_MODE_SEL(32));
/* save triple buffer select regs */
ipu->cha_trb_mode_reg[0] = ipu_cm_read(ipu, IPU_CHA_TRB_MODE_SEL(0));
ipu->cha_trb_mode_reg[1] = ipu_cm_read(ipu, IPU_CHA_TRB_MODE_SEL(32));
/* save idamc sub addr regs */
ipu->idma_sub_addr_reg[0] = ipu_idmac_read(ipu, IDMAC_SUB_ADDR_0);
ipu->idma_sub_addr_reg[1] = ipu_idmac_read(ipu, IDMAC_SUB_ADDR_1);
ipu->idma_sub_addr_reg[2] = ipu_idmac_read(ipu, IDMAC_SUB_ADDR_2);
ipu->idma_sub_addr_reg[3] = ipu_idmac_read(ipu, IDMAC_SUB_ADDR_3);
ipu->idma_sub_addr_reg[4] = ipu_idmac_read(ipu, IDMAC_SUB_ADDR_4);
/* save sub-modules status and disable all */
ipu->ic_conf_reg = ipu_ic_read(ipu, IC_CONF);
ipu_ic_write(ipu, 0, IC_CONF);
ipu->ipu_conf_reg = ipu_cm_read(ipu, IPU_CONF);
ipu_cm_write(ipu, 0, IPU_CONF);
/* save buf ready regs */
ipu->buf_ready_reg[0] = ipu_cm_read(ipu, IPU_CHA_BUF0_RDY(0));
ipu->buf_ready_reg[1] = ipu_cm_read(ipu, IPU_CHA_BUF0_RDY(32));
ipu->buf_ready_reg[2] = ipu_cm_read(ipu, IPU_CHA_BUF1_RDY(0));
ipu->buf_ready_reg[3] = ipu_cm_read(ipu, IPU_CHA_BUF1_RDY(32));
ipu->buf_ready_reg[4] = ipu_cm_read(ipu, IPU_ALT_CHA_BUF0_RDY(0));
ipu->buf_ready_reg[5] = ipu_cm_read(ipu, IPU_ALT_CHA_BUF0_RDY(32));
ipu->buf_ready_reg[6] = ipu_cm_read(ipu, IPU_ALT_CHA_BUF1_RDY(0));
ipu->buf_ready_reg[7] = ipu_cm_read(ipu, IPU_ALT_CHA_BUF1_RDY(32));
ipu->buf_ready_reg[8] = ipu_cm_read(ipu, IPU_CHA_BUF2_RDY(0));
ipu->buf_ready_reg[9] = ipu_cm_read(ipu, IPU_CHA_BUF2_RDY(32));
}
if (plat_data->pg)
plat_data->pg(1);
return 0;
}
static int ipu_resume(struct platform_device *pdev)
{
struct imx_ipuv3_platform_data *plat_data = pdev->dev.platform_data;
struct ipu_soc *ipu = platform_get_drvdata(pdev);
if (plat_data->pg)
plat_data->pg(0);
if (atomic_read(&ipu->ipu_use_count)) {
/* restore buf ready regs */
ipu_cm_write(ipu, ipu->buf_ready_reg[0], IPU_CHA_BUF0_RDY(0));
ipu_cm_write(ipu, ipu->buf_ready_reg[1], IPU_CHA_BUF0_RDY(32));
ipu_cm_write(ipu, ipu->buf_ready_reg[2], IPU_CHA_BUF1_RDY(0));
ipu_cm_write(ipu, ipu->buf_ready_reg[3], IPU_CHA_BUF1_RDY(32));
ipu_cm_write(ipu, ipu->buf_ready_reg[4], IPU_ALT_CHA_BUF0_RDY(0));
ipu_cm_write(ipu, ipu->buf_ready_reg[5], IPU_ALT_CHA_BUF0_RDY(32));
ipu_cm_write(ipu, ipu->buf_ready_reg[6], IPU_ALT_CHA_BUF1_RDY(0));
ipu_cm_write(ipu, ipu->buf_ready_reg[7], IPU_ALT_CHA_BUF1_RDY(32));
ipu_cm_write(ipu, ipu->buf_ready_reg[8], IPU_CHA_BUF2_RDY(0));
ipu_cm_write(ipu, ipu->buf_ready_reg[9], IPU_CHA_BUF2_RDY(32));
/* re-enable sub-modules*/
ipu_cm_write(ipu, ipu->ipu_conf_reg, IPU_CONF);
ipu_ic_write(ipu, ipu->ic_conf_reg, IC_CONF);
/* restore double buffer select regs */
ipu_cm_write(ipu, ipu->cha_db_mode_reg[0], IPU_CHA_DB_MODE_SEL(0));
ipu_cm_write(ipu, ipu->cha_db_mode_reg[1], IPU_CHA_DB_MODE_SEL(32));
ipu_cm_write(ipu, ipu->cha_db_mode_reg[2],
IPU_ALT_CHA_DB_MODE_SEL(0));
ipu_cm_write(ipu, ipu->cha_db_mode_reg[3],
IPU_ALT_CHA_DB_MODE_SEL(32));
/* restore triple buffer select regs */
ipu_cm_write(ipu, ipu->cha_trb_mode_reg[0], IPU_CHA_TRB_MODE_SEL(0));
ipu_cm_write(ipu, ipu->cha_trb_mode_reg[1], IPU_CHA_TRB_MODE_SEL(32));
/* restore idamc sub addr regs */
ipu_idmac_write(ipu, ipu->idma_sub_addr_reg[0], IDMAC_SUB_ADDR_0);
ipu_idmac_write(ipu, ipu->idma_sub_addr_reg[1], IDMAC_SUB_ADDR_1);
ipu_idmac_write(ipu, ipu->idma_sub_addr_reg[2], IDMAC_SUB_ADDR_2);
ipu_idmac_write(ipu, ipu->idma_sub_addr_reg[3], IDMAC_SUB_ADDR_3);
ipu_idmac_write(ipu, ipu->idma_sub_addr_reg[4], IDMAC_SUB_ADDR_4);
/* restart idma channel*/
ipu_idmac_write(ipu, ipu->idma_enable_reg[0], IDMAC_CHA_EN(0));
ipu_idmac_write(ipu, ipu->idma_enable_reg[1], IDMAC_CHA_EN(32));
} else {
_ipu_get(ipu);
_ipu_dmfc_init(ipu, dmfc_type_setup, 1);
_ipu_init_dc_mappings(ipu);
/* Set sync refresh channels as high priority */
ipu_idmac_write(ipu, 0x18800001L, IDMAC_CHA_PRI(0));
_ipu_put(ipu);
}
return 0;
}
/*!
* This structure contains pointers to the power management callback functions.
*/
static struct platform_driver mxcipu_driver = {
.driver = {
.name = "imx-ipuv3",
},
.probe = ipu_probe,
.remove = ipu_remove,
.suspend = ipu_suspend,
.resume = ipu_resume,
};
int32_t __init ipu_gen_init(void)
{
int32_t ret;
ret = platform_driver_register(&mxcipu_driver);
return 0;
}
subsys_initcall(ipu_gen_init);
static void __exit ipu_gen_uninit(void)
{
platform_driver_unregister(&mxcipu_driver);
}
module_exit(ipu_gen_uninit);