armvixl | ad96eda | 2013-06-14 11:42:37 +0100 | [diff] [blame^] | 1 | // Copyright 2013, ARM Limited |
| 2 | // All rights reserved. |
| 3 | // |
| 4 | // Redistribution and use in source and binary forms, with or without |
| 5 | // modification, are permitted provided that the following conditions are met: |
| 6 | // |
| 7 | // * Redistributions of source code must retain the above copyright notice, |
| 8 | // this list of conditions and the following disclaimer. |
| 9 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 10 | // this list of conditions and the following disclaimer in the documentation |
| 11 | // and/or other materials provided with the distribution. |
| 12 | // * Neither the name of ARM Limited nor the names of its contributors may be |
| 13 | // used to endorse or promote products derived from this software without |
| 14 | // specific prior written permission. |
| 15 | // |
| 16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND |
| 17 | // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 18 | // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 19 | // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE |
| 20 | // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 21 | // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 22 | // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| 23 | // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| 24 | // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 25 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 26 | |
| 27 | #include "a64/macro-assembler-a64.h" |
| 28 | namespace vixl { |
| 29 | |
| 30 | void MacroAssembler::And(const Register& rd, |
| 31 | const Register& rn, |
| 32 | const Operand& operand, |
| 33 | FlagsUpdate S) { |
| 34 | ASSERT(allow_macro_instructions_); |
| 35 | LogicalMacro(rd, rn, operand, (S == SetFlags) ? ANDS : AND); |
| 36 | } |
| 37 | |
| 38 | |
| 39 | void MacroAssembler::Tst(const Register& rn, |
| 40 | const Operand& operand) { |
| 41 | ASSERT(allow_macro_instructions_); |
| 42 | And(AppropriateZeroRegFor(rn), rn, operand, SetFlags); |
| 43 | } |
| 44 | |
| 45 | |
| 46 | void MacroAssembler::Bic(const Register& rd, |
| 47 | const Register& rn, |
| 48 | const Operand& operand, |
| 49 | FlagsUpdate S) { |
| 50 | ASSERT(allow_macro_instructions_); |
| 51 | LogicalMacro(rd, rn, operand, (S == SetFlags) ? BICS : BIC); |
| 52 | } |
| 53 | |
| 54 | |
| 55 | void MacroAssembler::Orr(const Register& rd, |
| 56 | const Register& rn, |
| 57 | const Operand& operand) { |
| 58 | ASSERT(allow_macro_instructions_); |
| 59 | LogicalMacro(rd, rn, operand, ORR); |
| 60 | } |
| 61 | |
| 62 | |
| 63 | void MacroAssembler::Orn(const Register& rd, |
| 64 | const Register& rn, |
| 65 | const Operand& operand) { |
| 66 | ASSERT(allow_macro_instructions_); |
| 67 | LogicalMacro(rd, rn, operand, ORN); |
| 68 | } |
| 69 | |
| 70 | |
| 71 | void MacroAssembler::Eor(const Register& rd, |
| 72 | const Register& rn, |
| 73 | const Operand& operand) { |
| 74 | ASSERT(allow_macro_instructions_); |
| 75 | LogicalMacro(rd, rn, operand, EOR); |
| 76 | } |
| 77 | |
| 78 | |
| 79 | void MacroAssembler::Eon(const Register& rd, |
| 80 | const Register& rn, |
| 81 | const Operand& operand) { |
| 82 | ASSERT(allow_macro_instructions_); |
| 83 | LogicalMacro(rd, rn, operand, EON); |
| 84 | } |
| 85 | |
| 86 | |
| 87 | void MacroAssembler::LogicalMacro(const Register& rd, |
| 88 | const Register& rn, |
| 89 | const Operand& operand, |
| 90 | LogicalOp op) { |
| 91 | if (operand.IsImmediate()) { |
| 92 | int64_t immediate = operand.immediate(); |
| 93 | unsigned reg_size = rd.size(); |
| 94 | ASSERT(rd.Is64Bits() || is_uint32(immediate)); |
| 95 | |
| 96 | // If the operation is NOT, invert the operation and immediate. |
| 97 | if ((op & NOT) == NOT) { |
| 98 | op = static_cast<LogicalOp>(op & ~NOT); |
| 99 | immediate = ~immediate; |
| 100 | if (rd.Is32Bits()) { |
| 101 | immediate &= kWRegMask; |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | // Special cases for all set or all clear immediates. |
| 106 | if (immediate == 0) { |
| 107 | switch (op) { |
| 108 | case AND: |
| 109 | Mov(rd, 0); |
| 110 | return; |
| 111 | case ORR: // Fall through. |
| 112 | case EOR: |
| 113 | Mov(rd, rn); |
| 114 | return; |
| 115 | case ANDS: // Fall through. |
| 116 | case BICS: |
| 117 | break; |
| 118 | default: |
| 119 | UNREACHABLE(); |
| 120 | } |
| 121 | } else if ((rd.Is64Bits() && (immediate == -1L)) || |
| 122 | (rd.Is32Bits() && (immediate == 0xffffffffL))) { |
| 123 | switch (op) { |
| 124 | case AND: |
| 125 | Mov(rd, rn); |
| 126 | return; |
| 127 | case ORR: |
| 128 | Mov(rd, immediate); |
| 129 | return; |
| 130 | case EOR: |
| 131 | Mvn(rd, rn); |
| 132 | return; |
| 133 | case ANDS: // Fall through. |
| 134 | case BICS: |
| 135 | break; |
| 136 | default: |
| 137 | UNREACHABLE(); |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | unsigned n, imm_s, imm_r; |
| 142 | if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) { |
| 143 | // Immediate can be encoded in the instruction. |
| 144 | LogicalImmediate(rd, rn, n, imm_s, imm_r, op); |
| 145 | } else { |
| 146 | // Immediate can't be encoded: synthesize using move immediate. |
| 147 | Register temp = AppropriateTempFor(rn); |
| 148 | Mov(temp, immediate); |
| 149 | if (rd.Is(sp)) { |
| 150 | // If rd is the stack pointer we cannot use it as the destination |
| 151 | // register so we use the temp register as an intermediate again. |
| 152 | Logical(temp, rn, Operand(temp), op); |
| 153 | Mov(sp, temp); |
| 154 | } else { |
| 155 | Logical(rd, rn, Operand(temp), op); |
| 156 | } |
| 157 | } |
| 158 | } else if (operand.IsExtendedRegister()) { |
| 159 | ASSERT(operand.reg().size() <= rd.size()); |
| 160 | // Add/sub extended supports shift <= 4. We want to support exactly the |
| 161 | // same modes here. |
| 162 | ASSERT(operand.shift_amount() <= 4); |
| 163 | ASSERT(operand.reg().Is64Bits() || |
| 164 | ((operand.extend() != UXTX) && (operand.extend() != SXTX))); |
| 165 | Register temp = AppropriateTempFor(rn, operand.reg()); |
| 166 | EmitExtendShift(temp, operand.reg(), operand.extend(), |
| 167 | operand.shift_amount()); |
| 168 | Logical(rd, rn, Operand(temp), op); |
| 169 | } else { |
| 170 | // The operand can be encoded in the instruction. |
| 171 | ASSERT(operand.IsShiftedRegister()); |
| 172 | Logical(rd, rn, operand, op); |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | |
| 177 | void MacroAssembler::Mov(const Register& rd, const Operand& operand) { |
| 178 | ASSERT(allow_macro_instructions_); |
| 179 | if (operand.IsImmediate()) { |
| 180 | // Call the macro assembler for generic immediates. |
| 181 | Mov(rd, operand.immediate()); |
| 182 | } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) { |
| 183 | // Emit a shift instruction if moving a shifted register. This operation |
| 184 | // could also be achieved using an orr instruction (like orn used by Mvn), |
| 185 | // but using a shift instruction makes the disassembly clearer. |
| 186 | EmitShift(rd, operand.reg(), operand.shift(), operand.shift_amount()); |
| 187 | } else if (operand.IsExtendedRegister()) { |
| 188 | // Emit an extend instruction if moving an extended register. This handles |
| 189 | // extend with post-shift operations, too. |
| 190 | EmitExtendShift(rd, operand.reg(), operand.extend(), |
| 191 | operand.shift_amount()); |
| 192 | } else { |
| 193 | // Otherwise, emit a register move only if the registers are distinct, or |
| 194 | // if they are not X registers. Note that mov(w0, w0) is not a no-op |
| 195 | // because it clears the top word of x0. |
| 196 | // If the sp is an operand, add #0 is emitted, otherwise, orr #0. |
| 197 | if (!rd.Is(operand.reg()) || !rd.Is64Bits()) { |
| 198 | mov(rd, operand.reg()); |
| 199 | } |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | |
| 204 | void MacroAssembler::Mvn(const Register& rd, const Operand& operand) { |
| 205 | ASSERT(allow_macro_instructions_); |
| 206 | if (operand.IsImmediate()) { |
| 207 | // Call the macro assembler for generic immediates. |
| 208 | Mvn(rd, operand.immediate()); |
| 209 | } else if (operand.IsExtendedRegister()) { |
| 210 | // Emit two instructions for the extend case. This differs from Mov, as |
| 211 | // the extend and invert can't be achieved in one instruction. |
| 212 | Register temp = AppropriateTempFor(rd, operand.reg()); |
| 213 | EmitExtendShift(temp, operand.reg(), operand.extend(), |
| 214 | operand.shift_amount()); |
| 215 | mvn(rd, Operand(temp)); |
| 216 | } else { |
| 217 | // Otherwise, register and shifted register cases can be handled by the |
| 218 | // assembler directly, using orn. |
| 219 | mvn(rd, operand); |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | |
| 224 | void MacroAssembler::Mov(const Register& rd, uint64_t imm) { |
| 225 | ASSERT(allow_macro_instructions_); |
| 226 | ASSERT(is_uint32(imm) || is_int32(imm) || rd.Is64Bits()); |
| 227 | |
| 228 | // Immediates on Aarch64 can be produced using an initial value, and zero to |
| 229 | // three move keep operations. |
| 230 | // |
| 231 | // Initial values can be generated with: |
| 232 | // 1. 64-bit move zero (movz). |
| 233 | // 2. 32-bit move negative (movn). |
| 234 | // 3. 64-bit move negative. |
| 235 | // 4. 32-bit orr immediate. |
| 236 | // 5. 64-bit orr immediate. |
| 237 | // Move-keep may then be used to modify each of the 16-bit nybbles. |
| 238 | // |
| 239 | // The code below supports all five initial value generators, and |
| 240 | // applying move-keep operations to move-zero initial values only. |
| 241 | |
| 242 | unsigned reg_size = rd.size(); |
| 243 | unsigned n, imm_s, imm_r; |
| 244 | if (IsImmMovz(imm, reg_size) && !rd.IsSP()) { |
| 245 | // Immediate can be represented in a move zero instruction. |
| 246 | movz(rd, imm); |
| 247 | } else if (IsImmMovn(imm, reg_size) && !rd.IsSP()) { |
| 248 | // Immediate can be represented in a move negative instruction. Movn can't |
| 249 | // write to the stack pointer. |
| 250 | movn(rd, rd.Is64Bits() ? ~imm : (~imm & kWRegMask)); |
| 251 | } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) { |
| 252 | // Immediate can be represented in a logical orr instruction. |
| 253 | ASSERT(!rd.IsZero()); |
| 254 | LogicalImmediate(rd, AppropriateZeroRegFor(rd), n, imm_s, imm_r, ORR); |
| 255 | } else { |
| 256 | // Generic immediate case. Imm will be represented by |
| 257 | // [imm3, imm2, imm1, imm0], where each imm is 16 bits. |
| 258 | // A move-zero is generated for the first non-zero immX, and a move-keep |
| 259 | // for subsequent non-zero immX. |
| 260 | |
| 261 | // Use a temporary register when moving to the stack pointer. |
| 262 | Register temp = rd.IsSP() ? AppropriateTempFor(rd) : rd; |
| 263 | |
| 264 | ASSERT((reg_size % 16) == 0); |
| 265 | bool first_mov_done = false; |
| 266 | for (unsigned i = 0; i < (temp.size() / 16); i++) { |
| 267 | uint64_t imm16 = (imm >> (16 * i)) & 0xffffL; |
| 268 | if (imm16 != 0) { |
| 269 | if (!first_mov_done) { |
| 270 | // Move the first non-zero 16-bit chunk into the destination register. |
| 271 | movz(temp, imm16, 16 * i); |
| 272 | first_mov_done = true; |
| 273 | } else { |
| 274 | // Construct a wider constant. |
| 275 | movk(temp, imm16, 16 * i); |
| 276 | } |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | if (rd.IsSP()) { |
| 281 | mov(rd, temp); |
| 282 | } |
| 283 | |
| 284 | ASSERT(first_mov_done); |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | |
| 289 | // The movz instruction can generate immediates containing an arbitrary 16-bit |
| 290 | // value, with remaining bits set, eg. 0x00001234, 0x0000123400000000. |
| 291 | bool MacroAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) { |
| 292 | if (reg_size == kXRegSize) { |
| 293 | if (((imm & 0xffffffffffff0000UL) == 0UL) || |
| 294 | ((imm & 0xffffffff0000ffffUL) == 0UL) || |
| 295 | ((imm & 0xffff0000ffffffffUL) == 0UL) || |
| 296 | ((imm & 0x0000ffffffffffffUL) == 0UL)) { |
| 297 | return true; |
| 298 | } |
| 299 | } else { |
| 300 | ASSERT(reg_size == kWRegSize); |
| 301 | imm &= kWRegMask; |
| 302 | if (((imm & 0xffff0000) == 0) || |
| 303 | ((imm & 0x0000ffff) == 0)) { |
| 304 | return true; |
| 305 | } |
| 306 | } |
| 307 | return false; |
| 308 | } |
| 309 | |
| 310 | |
| 311 | // The movn instruction can generate immediates containing an arbitrary 16-bit |
| 312 | // value, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff. |
| 313 | bool MacroAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) { |
| 314 | return IsImmMovz(~imm, reg_size); |
| 315 | } |
| 316 | |
| 317 | |
| 318 | void MacroAssembler::Ccmp(const Register& rn, |
| 319 | const Operand& operand, |
| 320 | StatusFlags nzcv, |
| 321 | Condition cond) { |
| 322 | ASSERT(allow_macro_instructions_); |
| 323 | ConditionalCompareMacro(rn, operand, nzcv, cond, CCMP); |
| 324 | } |
| 325 | |
| 326 | |
| 327 | void MacroAssembler::Ccmn(const Register& rn, |
| 328 | const Operand& operand, |
| 329 | StatusFlags nzcv, |
| 330 | Condition cond) { |
| 331 | ASSERT(allow_macro_instructions_); |
| 332 | ConditionalCompareMacro(rn, operand, nzcv, cond, CCMN); |
| 333 | } |
| 334 | |
| 335 | |
| 336 | void MacroAssembler::ConditionalCompareMacro(const Register& rn, |
| 337 | const Operand& operand, |
| 338 | StatusFlags nzcv, |
| 339 | Condition cond, |
| 340 | ConditionalCompareOp op) { |
| 341 | if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) || |
| 342 | (operand.IsImmediate() && IsImmConditionalCompare(operand.immediate()))) { |
| 343 | // The immediate can be encoded in the instruction, or the operand is an |
| 344 | // unshifted register: call the assembler. |
| 345 | ConditionalCompare(rn, operand, nzcv, cond, op); |
| 346 | } else { |
| 347 | // The operand isn't directly supported by the instruction: perform the |
| 348 | // operation on a temporary register. |
| 349 | Register temp(NoReg); |
| 350 | if (operand.IsImmediate()) { |
| 351 | temp = AppropriateTempFor(rn); |
| 352 | Mov(temp, operand.immediate()); |
| 353 | } else if (operand.IsShiftedRegister()) { |
| 354 | ASSERT(operand.shift() != ROR); |
| 355 | ASSERT(is_uintn(rn.size() == kXRegSize ? kXRegSizeLog2 : kWRegSizeLog2, |
| 356 | operand.shift_amount())); |
| 357 | temp = AppropriateTempFor(rn, operand.reg()); |
| 358 | EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount()); |
| 359 | } else { |
| 360 | ASSERT(operand.IsExtendedRegister()); |
| 361 | ASSERT(operand.reg().size() <= rn.size()); |
| 362 | // Add/sub extended support a shift <= 4. We want to support exactly the |
| 363 | // same modes. |
| 364 | ASSERT(operand.shift_amount() <= 4); |
| 365 | ASSERT(operand.reg().Is64Bits() || |
| 366 | ((operand.extend() != UXTX) && (operand.extend() != SXTX))); |
| 367 | temp = AppropriateTempFor(rn, operand.reg()); |
| 368 | EmitExtendShift(temp, operand.reg(), operand.extend(), |
| 369 | operand.shift_amount()); |
| 370 | } |
| 371 | ConditionalCompare(rn, Operand(temp), nzcv, cond, op); |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | |
| 376 | void MacroAssembler::Add(const Register& rd, |
| 377 | const Register& rn, |
| 378 | const Operand& operand, |
| 379 | FlagsUpdate S) { |
| 380 | ASSERT(allow_macro_instructions_); |
| 381 | if (operand.IsImmediate() && (operand.immediate() < 0)) { |
| 382 | AddSubMacro(rd, rn, -operand.immediate(), S, SUB); |
| 383 | } else { |
| 384 | AddSubMacro(rd, rn, operand, S, ADD); |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | |
| 389 | void MacroAssembler::Sub(const Register& rd, |
| 390 | const Register& rn, |
| 391 | const Operand& operand, |
| 392 | FlagsUpdate S) { |
| 393 | ASSERT(allow_macro_instructions_); |
| 394 | if (operand.IsImmediate() && (operand.immediate() < 0)) { |
| 395 | AddSubMacro(rd, rn, -operand.immediate(), S, ADD); |
| 396 | } else { |
| 397 | AddSubMacro(rd, rn, operand, S, SUB); |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | |
| 402 | void MacroAssembler::Cmn(const Register& rn, const Operand& operand) { |
| 403 | ASSERT(allow_macro_instructions_); |
| 404 | Add(AppropriateZeroRegFor(rn), rn, operand, SetFlags); |
| 405 | } |
| 406 | |
| 407 | |
| 408 | void MacroAssembler::Cmp(const Register& rn, const Operand& operand) { |
| 409 | ASSERT(allow_macro_instructions_); |
| 410 | Sub(AppropriateZeroRegFor(rn), rn, operand, SetFlags); |
| 411 | } |
| 412 | |
| 413 | |
| 414 | void MacroAssembler::Neg(const Register& rd, |
| 415 | const Operand& operand, |
| 416 | FlagsUpdate S) { |
| 417 | ASSERT(allow_macro_instructions_); |
| 418 | if (operand.IsImmediate()) { |
| 419 | Mov(rd, -operand.immediate()); |
| 420 | } else { |
| 421 | Sub(rd, AppropriateZeroRegFor(rd), operand, S); |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | |
| 426 | void MacroAssembler::AddSubMacro(const Register& rd, |
| 427 | const Register& rn, |
| 428 | const Operand& operand, |
| 429 | FlagsUpdate S, |
| 430 | AddSubOp op) { |
| 431 | if ((operand.IsImmediate() && !IsImmAddSub(operand.immediate())) || |
| 432 | (rn.IsZero() && !operand.IsShiftedRegister()) || |
| 433 | (operand.IsShiftedRegister() && (operand.shift() == ROR))) { |
| 434 | Register temp = AppropriateTempFor(rn); |
| 435 | Mov(temp, operand); |
| 436 | AddSub(rd, rn, temp, S, op); |
| 437 | } else { |
| 438 | AddSub(rd, rn, operand, S, op); |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | |
| 443 | void MacroAssembler::Adc(const Register& rd, |
| 444 | const Register& rn, |
| 445 | const Operand& operand, |
| 446 | FlagsUpdate S) { |
| 447 | ASSERT(allow_macro_instructions_); |
| 448 | AddSubWithCarryMacro(rd, rn, operand, S, ADC); |
| 449 | } |
| 450 | |
| 451 | |
| 452 | void MacroAssembler::Sbc(const Register& rd, |
| 453 | const Register& rn, |
| 454 | const Operand& operand, |
| 455 | FlagsUpdate S) { |
| 456 | ASSERT(allow_macro_instructions_); |
| 457 | AddSubWithCarryMacro(rd, rn, operand, S, SBC); |
| 458 | } |
| 459 | |
| 460 | |
| 461 | void MacroAssembler::Ngc(const Register& rd, |
| 462 | const Operand& operand, |
| 463 | FlagsUpdate S) { |
| 464 | ASSERT(allow_macro_instructions_); |
| 465 | Register zr = AppropriateZeroRegFor(rd); |
| 466 | Sbc(rd, zr, operand, S); |
| 467 | } |
| 468 | |
| 469 | |
| 470 | void MacroAssembler::AddSubWithCarryMacro(const Register& rd, |
| 471 | const Register& rn, |
| 472 | const Operand& operand, |
| 473 | FlagsUpdate S, |
| 474 | AddSubWithCarryOp op) { |
| 475 | ASSERT(rd.size() == rn.size()); |
| 476 | |
| 477 | if (operand.IsImmediate() || |
| 478 | (operand.IsShiftedRegister() && (operand.shift() == ROR))) { |
| 479 | // Add/sub with carry (immediate or ROR shifted register.) |
| 480 | Register temp = AppropriateTempFor(rn); |
| 481 | Mov(temp, operand); |
| 482 | AddSubWithCarry(rd, rn, Operand(temp), S, op); |
| 483 | } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) { |
| 484 | // Add/sub with carry (shifted register). |
| 485 | ASSERT(operand.reg().size() == rd.size()); |
| 486 | ASSERT(operand.shift() != ROR); |
| 487 | ASSERT(is_uintn(rd.size() == kXRegSize ? kXRegSizeLog2 : kWRegSizeLog2, |
| 488 | operand.shift_amount())); |
| 489 | Register temp = AppropriateTempFor(rn, operand.reg()); |
| 490 | EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount()); |
| 491 | AddSubWithCarry(rd, rn, Operand(temp), S, op); |
| 492 | } else if (operand.IsExtendedRegister()) { |
| 493 | // Add/sub with carry (extended register). |
| 494 | ASSERT(operand.reg().size() <= rd.size()); |
| 495 | // Add/sub extended supports a shift <= 4. We want to support exactly the |
| 496 | // same modes. |
| 497 | ASSERT(operand.shift_amount() <= 4); |
| 498 | ASSERT(operand.reg().Is64Bits() || |
| 499 | ((operand.extend() != UXTX) && (operand.extend() != SXTX))); |
| 500 | Register temp = AppropriateTempFor(rn, operand.reg()); |
| 501 | EmitExtendShift(temp, operand.reg(), operand.extend(), |
| 502 | operand.shift_amount()); |
| 503 | AddSubWithCarry(rd, rn, Operand(temp), S, op); |
| 504 | } else { |
| 505 | // The addressing mode is directly supported by the instruction. |
| 506 | AddSubWithCarry(rd, rn, operand, S, op); |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | |
| 511 | #define DEFINE_FUNCTION(FN, REGTYPE, REG, OP) \ |
| 512 | void MacroAssembler::FN(const REGTYPE REG, const MemOperand& addr) { \ |
| 513 | LoadStoreMacro(REG, addr, OP); \ |
| 514 | } |
| 515 | LS_MACRO_LIST(DEFINE_FUNCTION) |
| 516 | #undef DEFINE_FUNCTION |
| 517 | |
| 518 | void MacroAssembler::LoadStoreMacro(const CPURegister& rt, |
| 519 | const MemOperand& addr, |
| 520 | LoadStoreOp op) { |
| 521 | int64_t offset = addr.offset(); |
| 522 | LSDataSize size = CalcLSDataSize(op); |
| 523 | |
| 524 | // Check if an immediate offset fits in the immediate field of the |
| 525 | // appropriate instruction. If not, emit two instructions to perform |
| 526 | // the operation. |
| 527 | if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) && |
| 528 | !IsImmLSUnscaled(offset)) { |
| 529 | // Immediate offset that can't be encoded using unsigned or unscaled |
| 530 | // addressing modes. |
| 531 | Register temp = AppropriateTempFor(addr.base()); |
| 532 | Mov(temp, addr.offset()); |
| 533 | LoadStore(rt, MemOperand(addr.base(), temp), op); |
| 534 | } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) { |
| 535 | // Post-index beyond unscaled addressing range. |
| 536 | LoadStore(rt, MemOperand(addr.base()), op); |
| 537 | Add(addr.base(), addr.base(), Operand(offset)); |
| 538 | } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) { |
| 539 | // Pre-index beyond unscaled addressing range. |
| 540 | Add(addr.base(), addr.base(), Operand(offset)); |
| 541 | LoadStore(rt, MemOperand(addr.base()), op); |
| 542 | } else { |
| 543 | // Encodable in one load/store instruction. |
| 544 | LoadStore(rt, addr, op); |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | |
| 549 | void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1, |
| 550 | const CPURegister& src2, const CPURegister& src3) { |
| 551 | ASSERT(allow_macro_instructions_); |
| 552 | ASSERT(AreSameSizeAndType(src0, src1, src2, src3)); |
| 553 | ASSERT(src0.IsValid()); |
| 554 | |
| 555 | int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid(); |
| 556 | int size = src0.SizeInBytes(); |
| 557 | |
| 558 | PrepareForPush(count, size); |
| 559 | PushHelper(count, size, src0, src1, src2, src3); |
| 560 | } |
| 561 | |
| 562 | |
| 563 | void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1, |
| 564 | const CPURegister& dst2, const CPURegister& dst3) { |
| 565 | // It is not valid to pop into the same register more than once in one |
| 566 | // instruction, not even into the zero register. |
| 567 | ASSERT(allow_macro_instructions_); |
| 568 | ASSERT(!AreAliased(dst0, dst1, dst2, dst3)); |
| 569 | ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3)); |
| 570 | ASSERT(dst0.IsValid()); |
| 571 | |
| 572 | int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid(); |
| 573 | int size = dst0.SizeInBytes(); |
| 574 | |
| 575 | PrepareForPop(count, size); |
| 576 | PopHelper(count, size, dst0, dst1, dst2, dst3); |
| 577 | } |
| 578 | |
| 579 | |
| 580 | void MacroAssembler::PushCPURegList(CPURegList registers) { |
| 581 | int size = registers.RegisterSizeInBytes(); |
| 582 | |
| 583 | PrepareForPush(registers.Count(), size); |
| 584 | // Push up to four registers at a time because if the current stack pointer is |
| 585 | // sp and reg_size is 32, registers must be pushed in blocks of four in order |
| 586 | // to maintain the 16-byte alignment for sp. |
| 587 | ASSERT(allow_macro_instructions_); |
| 588 | while (!registers.IsEmpty()) { |
| 589 | int count_before = registers.Count(); |
| 590 | const CPURegister& src0 = registers.PopHighestIndex(); |
| 591 | const CPURegister& src1 = registers.PopHighestIndex(); |
| 592 | const CPURegister& src2 = registers.PopHighestIndex(); |
| 593 | const CPURegister& src3 = registers.PopHighestIndex(); |
| 594 | int count = count_before - registers.Count(); |
| 595 | PushHelper(count, size, src0, src1, src2, src3); |
| 596 | } |
| 597 | } |
| 598 | |
| 599 | |
| 600 | void MacroAssembler::PopCPURegList(CPURegList registers) { |
| 601 | int size = registers.RegisterSizeInBytes(); |
| 602 | |
| 603 | PrepareForPop(registers.Count(), size); |
| 604 | // Pop up to four registers at a time because if the current stack pointer is |
| 605 | // sp and reg_size is 32, registers must be pushed in blocks of four in order |
| 606 | // to maintain the 16-byte alignment for sp. |
| 607 | ASSERT(allow_macro_instructions_); |
| 608 | while (!registers.IsEmpty()) { |
| 609 | int count_before = registers.Count(); |
| 610 | const CPURegister& dst0 = registers.PopLowestIndex(); |
| 611 | const CPURegister& dst1 = registers.PopLowestIndex(); |
| 612 | const CPURegister& dst2 = registers.PopLowestIndex(); |
| 613 | const CPURegister& dst3 = registers.PopLowestIndex(); |
| 614 | int count = count_before - registers.Count(); |
| 615 | PopHelper(count, size, dst0, dst1, dst2, dst3); |
| 616 | } |
| 617 | } |
| 618 | |
| 619 | |
| 620 | void MacroAssembler::PushMultipleTimes(int count, Register src) { |
| 621 | ASSERT(allow_macro_instructions_); |
| 622 | int size = src.SizeInBytes(); |
| 623 | |
| 624 | PrepareForPush(count, size); |
| 625 | // Push up to four registers at a time if possible because if the current |
| 626 | // stack pointer is sp and the register size is 32, registers must be pushed |
| 627 | // in blocks of four in order to maintain the 16-byte alignment for sp. |
| 628 | while (count >= 4) { |
| 629 | PushHelper(4, size, src, src, src, src); |
| 630 | count -= 4; |
| 631 | } |
| 632 | if (count >= 2) { |
| 633 | PushHelper(2, size, src, src, NoReg, NoReg); |
| 634 | count -= 2; |
| 635 | } |
| 636 | if (count == 1) { |
| 637 | PushHelper(1, size, src, NoReg, NoReg, NoReg); |
| 638 | count -= 1; |
| 639 | } |
| 640 | ASSERT(count == 0); |
| 641 | } |
| 642 | |
| 643 | |
| 644 | void MacroAssembler::PushHelper(int count, int size, |
| 645 | const CPURegister& src0, |
| 646 | const CPURegister& src1, |
| 647 | const CPURegister& src2, |
| 648 | const CPURegister& src3) { |
| 649 | // Ensure that we don't unintentionally modify scratch or debug registers. |
| 650 | InstructionAccurateScope scope(this); |
| 651 | |
| 652 | ASSERT(AreSameSizeAndType(src0, src1, src2, src3)); |
| 653 | ASSERT(size == src0.SizeInBytes()); |
| 654 | |
| 655 | // When pushing multiple registers, the store order is chosen such that |
| 656 | // Push(a, b) is equivalent to Push(a) followed by Push(b). |
| 657 | switch (count) { |
| 658 | case 1: |
| 659 | ASSERT(src1.IsNone() && src2.IsNone() && src3.IsNone()); |
| 660 | str(src0, MemOperand(StackPointer(), -1 * size, PreIndex)); |
| 661 | break; |
| 662 | case 2: |
| 663 | ASSERT(src2.IsNone() && src3.IsNone()); |
| 664 | stp(src1, src0, MemOperand(StackPointer(), -2 * size, PreIndex)); |
| 665 | break; |
| 666 | case 3: |
| 667 | ASSERT(src3.IsNone()); |
| 668 | stp(src2, src1, MemOperand(StackPointer(), -3 * size, PreIndex)); |
| 669 | str(src0, MemOperand(StackPointer(), 2 * size)); |
| 670 | break; |
| 671 | case 4: |
| 672 | // Skip over 4 * size, then fill in the gap. This allows four W registers |
| 673 | // to be pushed using sp, whilst maintaining 16-byte alignment for sp at |
| 674 | // all times. |
| 675 | stp(src3, src2, MemOperand(StackPointer(), -4 * size, PreIndex)); |
| 676 | stp(src1, src0, MemOperand(StackPointer(), 2 * size)); |
| 677 | break; |
| 678 | default: |
| 679 | UNREACHABLE(); |
| 680 | } |
| 681 | } |
| 682 | |
| 683 | |
| 684 | void MacroAssembler::PopHelper(int count, int size, |
| 685 | const CPURegister& dst0, |
| 686 | const CPURegister& dst1, |
| 687 | const CPURegister& dst2, |
| 688 | const CPURegister& dst3) { |
| 689 | // Ensure that we don't unintentionally modify scratch or debug registers. |
| 690 | InstructionAccurateScope scope(this); |
| 691 | |
| 692 | ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3)); |
| 693 | ASSERT(size == dst0.SizeInBytes()); |
| 694 | |
| 695 | // When popping multiple registers, the load order is chosen such that |
| 696 | // Pop(a, b) is equivalent to Pop(a) followed by Pop(b). |
| 697 | switch (count) { |
| 698 | case 1: |
| 699 | ASSERT(dst1.IsNone() && dst2.IsNone() && dst3.IsNone()); |
| 700 | ldr(dst0, MemOperand(StackPointer(), 1 * size, PostIndex)); |
| 701 | break; |
| 702 | case 2: |
| 703 | ASSERT(dst2.IsNone() && dst3.IsNone()); |
| 704 | ldp(dst0, dst1, MemOperand(StackPointer(), 2 * size, PostIndex)); |
| 705 | break; |
| 706 | case 3: |
| 707 | ASSERT(dst3.IsNone()); |
| 708 | ldr(dst2, MemOperand(StackPointer(), 2 * size)); |
| 709 | ldp(dst0, dst1, MemOperand(StackPointer(), 3 * size, PostIndex)); |
| 710 | break; |
| 711 | case 4: |
| 712 | // Load the higher addresses first, then load the lower addresses and skip |
| 713 | // the whole block in the second instruction. This allows four W registers |
| 714 | // to be popped using sp, whilst maintaining 16-byte alignment for sp at |
| 715 | // all times. |
| 716 | ldp(dst2, dst3, MemOperand(StackPointer(), 2 * size)); |
| 717 | ldp(dst0, dst1, MemOperand(StackPointer(), 4 * size, PostIndex)); |
| 718 | break; |
| 719 | default: |
| 720 | UNREACHABLE(); |
| 721 | } |
| 722 | } |
| 723 | |
| 724 | |
| 725 | void MacroAssembler::PrepareForPush(int count, int size) { |
| 726 | if (sp.Is(StackPointer())) { |
| 727 | // If the current stack pointer is sp, then it must be aligned to 16 bytes |
| 728 | // on entry and the total size of the specified registers must also be a |
| 729 | // multiple of 16 bytes. |
| 730 | ASSERT((count * size) % 16 == 0); |
| 731 | } else { |
| 732 | // Even if the current stack pointer is not the system stack pointer (sp), |
| 733 | // the system stack pointer will still be modified in order to comply with |
| 734 | // ABI rules about accessing memory below the system stack pointer. |
| 735 | BumpSystemStackPointer(count * size); |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | |
| 740 | void MacroAssembler::PrepareForPop(int count, int size) { |
| 741 | USE(count); |
| 742 | USE(size); |
| 743 | if (sp.Is(StackPointer())) { |
| 744 | // If the current stack pointer is sp, then it must be aligned to 16 bytes |
| 745 | // on entry and the total size of the specified registers must also be a |
| 746 | // multiple of 16 bytes. |
| 747 | ASSERT((count * size) % 16 == 0); |
| 748 | } |
| 749 | } |
| 750 | |
| 751 | void MacroAssembler::Poke(const Register& src, const Operand& offset) { |
| 752 | ASSERT(allow_macro_instructions_); |
| 753 | if (offset.IsImmediate()) { |
| 754 | ASSERT(offset.immediate() >= 0); |
| 755 | } |
| 756 | |
| 757 | Str(src, MemOperand(StackPointer(), offset)); |
| 758 | } |
| 759 | |
| 760 | |
| 761 | void MacroAssembler::Peek(const Register& dst, const Operand& offset) { |
| 762 | ASSERT(allow_macro_instructions_); |
| 763 | if (offset.IsImmediate()) { |
| 764 | ASSERT(offset.immediate() >= 0); |
| 765 | } |
| 766 | |
| 767 | Ldr(dst, MemOperand(StackPointer(), offset)); |
| 768 | } |
| 769 | |
| 770 | |
| 771 | void MacroAssembler::Claim(const Operand& size) { |
| 772 | ASSERT(allow_macro_instructions_); |
| 773 | if (size.IsImmediate()) { |
| 774 | ASSERT(size.immediate() >= 0); |
| 775 | if (sp.Is(StackPointer())) { |
| 776 | ASSERT((size.immediate() % 16) == 0); |
| 777 | } |
| 778 | } |
| 779 | |
| 780 | if (!sp.Is(StackPointer())) { |
| 781 | BumpSystemStackPointer(size); |
| 782 | } |
| 783 | |
| 784 | Sub(StackPointer(), StackPointer(), size); |
| 785 | } |
| 786 | |
| 787 | |
| 788 | void MacroAssembler::Drop(const Operand& size) { |
| 789 | ASSERT(allow_macro_instructions_); |
| 790 | if (size.IsImmediate()) { |
| 791 | ASSERT(size.immediate() >= 0); |
| 792 | if (sp.Is(StackPointer())) { |
| 793 | ASSERT((size.immediate() % 16) == 0); |
| 794 | } |
| 795 | } |
| 796 | |
| 797 | Add(StackPointer(), StackPointer(), size); |
| 798 | } |
| 799 | |
| 800 | |
| 801 | void MacroAssembler::PushCalleeSavedRegisters() { |
| 802 | // Ensure that the macro-assembler doesn't use any scratch registers. |
| 803 | InstructionAccurateScope scope(this); |
| 804 | |
| 805 | // This method must not be called unless the current stack pointer is sp. |
| 806 | ASSERT(sp.Is(StackPointer())); |
| 807 | |
| 808 | MemOperand tos(sp, -2 * kXRegSizeInBytes, PreIndex); |
| 809 | |
| 810 | stp(d14, d15, tos); |
| 811 | stp(d12, d13, tos); |
| 812 | stp(d10, d11, tos); |
| 813 | stp(d8, d9, tos); |
| 814 | |
| 815 | stp(x29, x30, tos); |
| 816 | stp(x27, x28, tos); |
| 817 | stp(x25, x26, tos); |
| 818 | stp(x23, x24, tos); |
| 819 | stp(x21, x22, tos); |
| 820 | stp(x19, x20, tos); |
| 821 | } |
| 822 | |
| 823 | |
| 824 | void MacroAssembler::PopCalleeSavedRegisters() { |
| 825 | // Ensure that the macro-assembler doesn't use any scratch registers. |
| 826 | InstructionAccurateScope scope(this); |
| 827 | |
| 828 | // This method must not be called unless the current stack pointer is sp. |
| 829 | ASSERT(sp.Is(StackPointer())); |
| 830 | |
| 831 | MemOperand tos(sp, 2 * kXRegSizeInBytes, PostIndex); |
| 832 | |
| 833 | ldp(x19, x20, tos); |
| 834 | ldp(x21, x22, tos); |
| 835 | ldp(x23, x24, tos); |
| 836 | ldp(x25, x26, tos); |
| 837 | ldp(x27, x28, tos); |
| 838 | ldp(x29, x30, tos); |
| 839 | |
| 840 | ldp(d8, d9, tos); |
| 841 | ldp(d10, d11, tos); |
| 842 | ldp(d12, d13, tos); |
| 843 | ldp(d14, d15, tos); |
| 844 | } |
| 845 | |
| 846 | void MacroAssembler::BumpSystemStackPointer(const Operand& space) { |
| 847 | ASSERT(!sp.Is(StackPointer())); |
| 848 | // TODO: Several callers rely on this not using scratch registers, so we use |
| 849 | // the assembler directly here. However, this means that large immediate |
| 850 | // values of 'space' cannot be handled. |
| 851 | InstructionAccurateScope scope(this); |
| 852 | sub(sp, StackPointer(), space); |
| 853 | } |
| 854 | |
| 855 | |
| 856 | // This is the main Printf implementation. All callee-saved registers are |
| 857 | // preserved, but NZCV and the caller-saved registers may be clobbered. |
| 858 | void MacroAssembler::PrintfNoPreserve(const char * format, |
| 859 | const CPURegister& arg0, |
| 860 | const CPURegister& arg1, |
| 861 | const CPURegister& arg2, |
| 862 | const CPURegister& arg3) { |
| 863 | // We cannot handle a caller-saved stack pointer. It doesn't make much sense |
| 864 | // in most cases anyway, so this restriction shouldn't be too serious. |
| 865 | ASSERT(!kCallerSaved.IncludesAliasOf(StackPointer())); |
| 866 | |
| 867 | // We cannot print Tmp0() or Tmp1() as they're used internally by the macro |
| 868 | // assembler. We cannot print the stack pointer because it is typically used |
| 869 | // to preserve caller-saved registers (using other Printf variants which |
| 870 | // depend on this helper). |
| 871 | ASSERT(!AreAliased(Tmp0(), Tmp1(), StackPointer(), arg0)); |
| 872 | ASSERT(!AreAliased(Tmp0(), Tmp1(), StackPointer(), arg1)); |
| 873 | ASSERT(!AreAliased(Tmp0(), Tmp1(), StackPointer(), arg2)); |
| 874 | ASSERT(!AreAliased(Tmp0(), Tmp1(), StackPointer(), arg3)); |
| 875 | |
| 876 | static const int kMaxArgCount = 4; |
| 877 | // Assume that we have the maximum number of arguments until we know |
| 878 | // otherwise. |
| 879 | int arg_count = kMaxArgCount; |
| 880 | |
| 881 | // The provided arguments. |
| 882 | CPURegister args[kMaxArgCount] = {arg0, arg1, arg2, arg3}; |
| 883 | |
| 884 | // The PCS registers where the arguments need to end up. |
| 885 | CPURegister pcs[kMaxArgCount]; |
| 886 | |
| 887 | // Promote FP arguments to doubles, and integer arguments to X registers. |
| 888 | // Note that FP and integer arguments cannot be mixed, but we'll check |
| 889 | // AreSameSizeAndType once we've processed these promotions. |
| 890 | for (int i = 0; i < kMaxArgCount; i++) { |
| 891 | if (args[i].IsRegister()) { |
| 892 | // Note that we use x1 onwards, because x0 will hold the format string. |
| 893 | pcs[i] = Register::XRegFromCode(i + 1); |
| 894 | // For simplicity, we handle all integer arguments as X registers. An X |
| 895 | // register argument takes the same space as a W register argument in the |
| 896 | // PCS anyway. The only limitation is that we must explicitly clear the |
| 897 | // top word for W register arguments as the callee will expect it to be |
| 898 | // clear. |
| 899 | if (!args[i].Is64Bits()) { |
| 900 | const Register& as_x = args[i].X(); |
| 901 | And(as_x, as_x, 0x00000000ffffffff); |
| 902 | args[i] = as_x; |
| 903 | } |
| 904 | } else if (args[i].IsFPRegister()) { |
| 905 | pcs[i] = FPRegister::DRegFromCode(i); |
| 906 | // C and C++ varargs functions (such as printf) implicitly promote float |
| 907 | // arguments to doubles. |
| 908 | if (!args[i].Is64Bits()) { |
| 909 | FPRegister s(args[i]); |
| 910 | const FPRegister& as_d = args[i].D(); |
| 911 | Fcvt(as_d, s); |
| 912 | args[i] = as_d; |
| 913 | } |
| 914 | } else { |
| 915 | // This is the first empty (NoCPUReg) argument, so use it to set the |
| 916 | // argument count and bail out. |
| 917 | arg_count = i; |
| 918 | break; |
| 919 | } |
| 920 | } |
| 921 | ASSERT((arg_count >= 0) && (arg_count <= kMaxArgCount)); |
| 922 | // Check that every remaining argument is NoCPUReg. |
| 923 | for (int i = arg_count; i < kMaxArgCount; i++) { |
| 924 | ASSERT(args[i].IsNone()); |
| 925 | } |
| 926 | ASSERT((arg_count == 0) || AreSameSizeAndType(args[0], args[1], |
| 927 | args[2], args[3], |
| 928 | pcs[0], pcs[1], |
| 929 | pcs[2], pcs[3])); |
| 930 | |
| 931 | // Move the arguments into the appropriate PCS registers. |
| 932 | // |
| 933 | // Arranging an arbitrary list of registers into x1-x4 (or d0-d3) is |
| 934 | // surprisingly complicated. |
| 935 | // |
| 936 | // * For even numbers of registers, we push the arguments and then pop them |
| 937 | // into their final registers. This maintains 16-byte stack alignment in |
| 938 | // case sp is the stack pointer, since we're only handling X or D registers |
| 939 | // at this point. |
| 940 | // |
| 941 | // * For odd numbers of registers, we push and pop all but one register in |
| 942 | // the same way, but the left-over register is moved directly, since we |
| 943 | // can always safely move one register without clobbering any source. |
| 944 | if (arg_count >= 4) { |
| 945 | Push(args[3], args[2], args[1], args[0]); |
| 946 | } else if (arg_count >= 2) { |
| 947 | Push(args[1], args[0]); |
| 948 | } |
| 949 | |
| 950 | if ((arg_count % 2) != 0) { |
| 951 | // Move the left-over register directly. |
| 952 | const CPURegister& leftover_arg = args[arg_count - 1]; |
| 953 | const CPURegister& leftover_pcs = pcs[arg_count - 1]; |
| 954 | if (leftover_arg.IsRegister()) { |
| 955 | Mov(Register(leftover_pcs), Register(leftover_arg)); |
| 956 | } else { |
| 957 | Fmov(FPRegister(leftover_pcs), FPRegister(leftover_arg)); |
| 958 | } |
| 959 | } |
| 960 | |
| 961 | if (arg_count >= 4) { |
| 962 | Pop(pcs[0], pcs[1], pcs[2], pcs[3]); |
| 963 | } else if (arg_count >= 2) { |
| 964 | Pop(pcs[0], pcs[1]); |
| 965 | } |
| 966 | |
| 967 | // Load the format string into x0, as per the procedure-call standard. |
| 968 | // |
| 969 | // To make the code as portable as possible, the format string is encoded |
| 970 | // directly in the instruction stream. It might be cleaner to encode it in a |
| 971 | // literal pool, but since Printf is usually used for debugging, it is |
| 972 | // beneficial for it to be minimally dependent on other features. |
| 973 | Label format_address; |
| 974 | Adr(x0, &format_address); |
| 975 | |
| 976 | // Emit the format string directly in the instruction stream. |
| 977 | { BlockLiteralPoolScope scope(this); |
| 978 | Label after_data; |
| 979 | B(&after_data); |
| 980 | Bind(&format_address); |
| 981 | EmitStringData(format); |
| 982 | Unreachable(); |
| 983 | Bind(&after_data); |
| 984 | } |
| 985 | |
| 986 | // We don't pass any arguments on the stack, but we still need to align the C |
| 987 | // stack pointer to a 16-byte boundary for PCS compliance. |
| 988 | if (!sp.Is(StackPointer())) { |
| 989 | Bic(sp, StackPointer(), 0xf); |
| 990 | } |
| 991 | |
| 992 | // Actually call printf. This part needs special handling for the simulator, |
| 993 | // since the system printf function will use a different instruction set and |
| 994 | // the procedure-call standard will not be compatible. |
| 995 | #ifdef USE_SIMULATOR |
| 996 | { InstructionAccurateScope scope(this, kPrintfLength / kInstructionSize); |
| 997 | hlt(kPrintfOpcode); |
| 998 | dc32(pcs[0].type()); |
| 999 | } |
| 1000 | #else |
| 1001 | Mov(Tmp0(), reinterpret_cast<uintptr_t>(printf)); |
| 1002 | Blr(Tmp0()); |
| 1003 | #endif |
| 1004 | } |
| 1005 | |
| 1006 | |
| 1007 | void MacroAssembler::Printf(const char * format, |
| 1008 | const CPURegister& arg0, |
| 1009 | const CPURegister& arg1, |
| 1010 | const CPURegister& arg2, |
| 1011 | const CPURegister& arg3) { |
| 1012 | // Preserve all caller-saved registers as well as NZCV. |
| 1013 | // If sp is the stack pointer, PushCPURegList asserts that the size of each |
| 1014 | // list is a multiple of 16 bytes. |
| 1015 | PushCPURegList(kCallerSaved); |
| 1016 | PushCPURegList(kCallerSavedFP); |
| 1017 | // Use Tmp0() as a scratch register. It is not accepted by Printf so it will |
| 1018 | // never overlap an argument register. |
| 1019 | Mrs(Tmp0(), NZCV); |
| 1020 | Push(Tmp0(), xzr); |
| 1021 | |
| 1022 | PrintfNoPreserve(format, arg0, arg1, arg2, arg3); |
| 1023 | |
| 1024 | Pop(xzr, Tmp0()); |
| 1025 | Msr(NZCV, Tmp0()); |
| 1026 | PopCPURegList(kCallerSavedFP); |
| 1027 | PopCPURegList(kCallerSaved); |
| 1028 | } |
| 1029 | |
| 1030 | void MacroAssembler::Trace(TraceParameters parameters, TraceCommand command) { |
| 1031 | ASSERT(allow_macro_instructions_); |
| 1032 | |
| 1033 | #ifdef USE_SIMULATOR |
| 1034 | // The arguments to the trace pseudo instruction need to be contiguous in |
| 1035 | // memory, so make sure we don't try to emit a literal pool. |
| 1036 | InstructionAccurateScope scope(this, kTraceLength / kInstructionSize); |
| 1037 | |
| 1038 | Label start; |
| 1039 | bind(&start); |
| 1040 | |
| 1041 | // Refer to instructions-a64.h for a description of the marker and its |
| 1042 | // arguments. |
| 1043 | hlt(kTraceOpcode); |
| 1044 | |
| 1045 | ASSERT(SizeOfCodeGeneratedSince(&start) == kTraceParamsOffset); |
| 1046 | dc32(parameters); |
| 1047 | |
| 1048 | ASSERT(SizeOfCodeGeneratedSince(&start) == kTraceCommandOffset); |
| 1049 | dc32(command); |
| 1050 | #else |
| 1051 | // Emit nothing on real hardware. |
| 1052 | USE(parameters); |
| 1053 | USE(command); |
| 1054 | #endif |
| 1055 | } |
| 1056 | |
| 1057 | |
| 1058 | void MacroAssembler::Log(TraceParameters parameters) { |
| 1059 | ASSERT(allow_macro_instructions_); |
| 1060 | |
| 1061 | #ifdef USE_SIMULATOR |
| 1062 | // The arguments to the log pseudo instruction need to be contiguous in |
| 1063 | // memory, so make sure we don't try to emit a literal pool. |
| 1064 | InstructionAccurateScope scope(this, kLogLength / kInstructionSize); |
| 1065 | |
| 1066 | Label start; |
| 1067 | bind(&start); |
| 1068 | |
| 1069 | // Refer to instructions-a64.h for a description of the marker and its |
| 1070 | // arguments. |
| 1071 | hlt(kLogOpcode); |
| 1072 | |
| 1073 | ASSERT(SizeOfCodeGeneratedSince(&start) == kLogParamsOffset); |
| 1074 | dc32(parameters); |
| 1075 | #else |
| 1076 | // Emit nothing on real hardware. |
| 1077 | USE(parameters); |
| 1078 | #endif |
| 1079 | } |
| 1080 | |
| 1081 | } // namespace vixl |