Rowan Lee | 389a242 | 2017-09-06 15:43:09 +0100 | [diff] [blame] | 1 | // Copyright 2017, VIXL authors |
| 2 | // All rights reserved. |
| 3 | // |
| 4 | // Redistribution and use in source and binary forms, with or without |
| 5 | // modification, are permitted provided that the following conditions are met: |
| 6 | // |
| 7 | // * Redistributions of source code must retain the above copyright notice, |
| 8 | // this list of conditions and the following disclaimer. |
| 9 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 10 | // this list of conditions and the following disclaimer in the documentation |
| 11 | // and/or other materials provided with the distribution. |
| 12 | // * Neither the name of ARM Limited nor the names of its contributors may be |
| 13 | // used to endorse or promote products derived from this software without |
| 14 | // specific prior written permission. |
| 15 | // |
| 16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND |
| 17 | // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 18 | // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 19 | // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE |
| 20 | // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 21 | // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 22 | // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| 23 | // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| 24 | // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 25 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 26 | |
| 27 | #include "examples.h" |
| 28 | |
Jacob Bramley | 5523f6c | 2019-06-28 11:37:26 +0100 | [diff] [blame] | 29 | using namespace vixl; |
| 30 | using namespace vixl::aarch32; |
| 31 | |
Rowan Lee | 389a242 | 2017-09-06 15:43:09 +0100 | [diff] [blame] | 32 | #define __ masm-> |
| 33 | |
| 34 | void GenerateMandelBrot(MacroAssembler* masm) { |
| 35 | const QRegister kCReal = q0; |
| 36 | const QRegister kCImag = q1; |
| 37 | |
| 38 | const QRegister kCRealStep = q13; |
| 39 | const QRegister kCImagStep = q14; |
| 40 | |
| 41 | const QRegister kModSqLimit = q15; |
| 42 | |
| 43 | // Save register values. |
| 44 | __ Push(RegisterList(r4, r5, r6)); |
| 45 | |
| 46 | __ Vmov(F32, kCRealStep, 0.125); |
| 47 | __ Vmov(F32, kCImagStep, 0.0625); |
| 48 | |
| 49 | const Register kZero = r2; |
| 50 | __ Mov(kZero, 0); |
| 51 | |
| 52 | const DRegister kStars = d6; |
| 53 | const DRegister kSpaces = d7; |
| 54 | // Output characters - packed 4 characters into 32 bits. |
| 55 | __ Vmov(I8, kStars, '*'); |
| 56 | __ Vmov(I8, kSpaces, ' '); |
| 57 | |
| 58 | const DRegisterLane kNegTwo = DRegisterLane(d7, 1); |
| 59 | __ Vmov(s15, -2.0); |
| 60 | |
| 61 | // Imaginary part of c. |
| 62 | __ Vdup(Untyped32, kCImag, kNegTwo); |
| 63 | |
| 64 | // Max modulus squared. |
| 65 | __ Vmov(F32, kModSqLimit, 4.0); |
| 66 | |
| 67 | // Height of output in characters. |
| 68 | __ Mov(r4, 64); |
| 69 | |
| 70 | // String length will be 129, so need 132 bytes of space. |
| 71 | const uint32_t kStringLength = 132; |
| 72 | |
| 73 | // Make space for our string. |
| 74 | __ Sub(sp, sp, kStringLength); |
| 75 | |
| 76 | // Set up a starting pointer for the string. |
| 77 | const Register kStringPtr = r6; |
| 78 | __ Mov(kStringPtr, sp); |
| 79 | |
| 80 | // Loop over imaginary values of c from -2 to 2, taking |
| 81 | // 64 equally spaced values in the range. |
| 82 | { |
| 83 | Label c_imag_loop; |
| 84 | |
| 85 | __ Bind(&c_imag_loop); |
| 86 | |
| 87 | // Real part of c. |
| 88 | // Store 4 equally spaced values in q0 (kCReal) to use SIMD. |
| 89 | __ Vmov(s0, -2.0); |
| 90 | __ Vmov(s1, -1.96875); |
| 91 | __ Vmov(s2, -1.9375); |
| 92 | __ Vmov(s3, -1.90625); |
| 93 | |
| 94 | // Width of output in terms of sets of 4 characters - twice that |
| 95 | // of height to compensate for ratio of character height to width. |
| 96 | __ Mov(r5, 32); |
| 97 | |
| 98 | const Register kWriteCursor = r3; |
| 99 | // Set a cursor ready to write the next line. |
| 100 | __ Mov(kWriteCursor, kStringPtr); |
| 101 | |
| 102 | // Loop over real values of c from -2 to 2, processing |
| 103 | // 4 different values simultaneously using SIMD. |
| 104 | { |
| 105 | const QRegister kFlags = q2; |
| 106 | const DRegister kLowerFlags = d4; |
| 107 | |
| 108 | Label c_real_loop; |
| 109 | __ Bind(&c_real_loop); |
| 110 | |
| 111 | // Get number of iterations. |
| 112 | __ Add(r1, r0, 1); |
| 113 | |
| 114 | // Perform the iterations of z(n+1) = zn^2 + c using SIMD. |
| 115 | // If the result is that c is in the set, the element of |
| 116 | // kFlags will be 0, else ~0. |
| 117 | { |
| 118 | const QRegister kZReal = q8; |
| 119 | const QRegister kZImag = q9; |
| 120 | |
| 121 | // Real part of z. |
| 122 | __ Vmov(F32, kZReal, 0.0); |
| 123 | |
| 124 | // Imaginary part of z. |
| 125 | __ Vmov(F32, kZImag, 0.0); |
| 126 | |
| 127 | __ Vmov(F32, kFlags, 0.0); |
| 128 | |
| 129 | Label iterative_formula_start, iterative_formula_end; |
| 130 | __ Bind(&iterative_formula_start); |
| 131 | __ Subs(r1, r1, 1); |
| 132 | __ B(le, &iterative_formula_end); |
| 133 | |
| 134 | // z(n+1) = zn^2 + c. |
| 135 | // re(z(n+1)) = re(c) + re(zn)^2 - im(zn)^2. |
| 136 | // im(z(n+1)) = im(c) + 2 * re(zn) * im(zn) |
| 137 | |
| 138 | __ Vmul(F32, q10, kZReal, kZImag); // re(zn) * im(zn) |
| 139 | |
| 140 | __ Vmul(F32, kZReal, kZReal, kZReal); // re(zn)^2 |
| 141 | __ Vadd(F32, kZReal, kCReal, kZReal); // re(c) + re(zn)^2 |
| 142 | __ Vmls(F32, kZReal, kZImag, kZImag); // re(c) + re(zn)^2 - im(zn)^2 |
| 143 | |
| 144 | __ Vmov(F32, kZImag, kCImag); // im(c) |
| 145 | __ Vmls(F32, kZImag, q10, kNegTwo); // im(c) + 2 * re(zn) * im(zn) |
| 146 | |
| 147 | __ Vmul(F32, q10, kZReal, kZReal); // re(z(n+1))^2 |
| 148 | __ Vmla(F32, q10, kZImag, kZImag); // re(z(n+1))^2 + im(z(n+1))^2 |
| 149 | __ Vcgt(F32, q10, q10, kModSqLimit); // |z(n+1)|^2 > 4 ? ~0 : 0 |
| 150 | __ Vorr(F32, kFlags, kFlags, q10); // (~0/0) | above result |
| 151 | |
| 152 | __ B(&iterative_formula_start); |
| 153 | __ Bind(&iterative_formula_end); |
| 154 | } |
| 155 | |
| 156 | // Narrow twice so that each mask is 8 bits, packed into |
| 157 | // a single 32 bit register s4. |
| 158 | // kLowerFlags is the lower half of kFlags, so the second narrow will |
| 159 | // be working on the results of the first to halve the size of each |
| 160 | // representation again. |
| 161 | __ Vmovn(I32, kLowerFlags, kFlags); |
| 162 | __ Vmovn(I16, kLowerFlags, kFlags); |
| 163 | |
| 164 | // '*' if in set, ' ' if not. |
| 165 | __ Vbsl(Untyped32, kLowerFlags, kSpaces, kStars); |
| 166 | |
| 167 | // Add this to the string. |
| 168 | __ Vst1(Untyped32, |
| 169 | NeonRegisterList(kLowerFlags, 0), |
| 170 | AlignedMemOperand(kWriteCursor, k32BitAlign, PostIndex)); |
| 171 | |
| 172 | // Increase real part of c. |
| 173 | __ Vadd(F32, kCReal, kCReal, kCRealStep); |
| 174 | |
| 175 | __ Subs(r5, r5, 1); |
| 176 | __ B(ne, &c_real_loop); |
| 177 | } |
| 178 | |
| 179 | // Put terminating character. |
| 180 | __ Strb(kZero, MemOperand(kWriteCursor)); |
| 181 | |
| 182 | // Print the string. |
| 183 | __ Printf("%s\n", kStringPtr); |
| 184 | |
| 185 | // Increase imaginary part of c. |
| 186 | __ Vadd(F32, kCImag, kCImag, kCImagStep); |
| 187 | |
| 188 | __ Subs(r4, r4, 1); |
| 189 | __ B(ne, &c_imag_loop); |
| 190 | } |
| 191 | // Restore stack pointer. |
| 192 | __ Add(sp, sp, kStringLength); |
| 193 | // Restore register values. |
| 194 | __ Pop(RegisterList(r4, r5, r6)); |
| 195 | __ Bx(lr); |
| 196 | } |
| 197 | |
| 198 | #ifndef TEST_EXAMPLES |
| 199 | int main() { |
| 200 | MacroAssembler masm; |
| 201 | // Generate the code for the example function. |
| 202 | Label mandelbrot; |
| 203 | masm.Bind(&mandelbrot); |
| 204 | GenerateMandelBrot(&masm); |
| 205 | masm.FinalizeCode(); |
| 206 | #ifdef VIXL_INCLUDE_SIMULATOR_AARCH32 |
| 207 | // There is no simulator defined for VIXL AArch32. |
| 208 | printf("This example cannot be simulated\n"); |
| 209 | #else |
| 210 | byte* code = masm.GetBuffer()->GetStartAddress<byte*>(); |
| 211 | uint32_t code_size = masm.GetSizeOfCodeGenerated(); |
| 212 | ExecutableMemory memory(code, code_size); |
| 213 | // Run the example function. |
| 214 | double (*mandelbrot_func)(uint32_t) = |
| 215 | memory.GetEntryPoint<double (*)(uint32_t)>(mandelbrot, |
| 216 | masm.GetInstructionSetInUse()); |
| 217 | uint32_t iterations = 1000; |
| 218 | (*mandelbrot_func)(iterations); |
| 219 | #endif |
| 220 | return 0; |
| 221 | } |
| 222 | #endif // TEST_EXAMPLES |