Alexandre Rames | d383296 | 2016-07-04 15:03:43 +0100 | [diff] [blame] | 1 | // Copyright 2015, VIXL authors |
| 2 | // All rights reserved. |
| 3 | // |
| 4 | // Redistribution and use in source and binary forms, with or without |
| 5 | // modification, are permitted provided that the following conditions are met: |
| 6 | // |
| 7 | // * Redistributions of source code must retain the above copyright notice, |
| 8 | // this list of conditions and the following disclaimer. |
| 9 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 10 | // this list of conditions and the following disclaimer in the documentation |
| 11 | // and/or other materials provided with the distribution. |
| 12 | // * Neither the name of ARM Limited nor the names of its contributors may be |
| 13 | // used to endorse or promote products derived from this software without |
| 14 | // specific prior written permission. |
| 15 | // |
| 16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND |
| 17 | // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 18 | // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 19 | // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE |
| 20 | // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 21 | // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 22 | // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| 23 | // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| 24 | // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 25 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 26 | |
Pierre Langlois | 1e85b7f | 2016-08-05 14:20:36 +0100 | [diff] [blame] | 27 | #ifdef VIXL_INCLUDE_SIMULATOR_AARCH64 |
Alexandre Rames | d383296 | 2016-07-04 15:03:43 +0100 | [diff] [blame] | 28 | |
Pierre Langlois | 78973f2 | 2016-08-10 14:35:56 +0100 | [diff] [blame] | 29 | #include <cstring> |
Alexandre Rames | d383296 | 2016-07-04 15:03:43 +0100 | [diff] [blame] | 30 | #include <cmath> |
| 31 | |
| 32 | #include "aarch64/simulator-aarch64.h" |
| 33 | |
| 34 | namespace vixl { |
| 35 | namespace aarch64 { |
| 36 | |
| 37 | const Instruction* Simulator::kEndOfSimAddress = NULL; |
| 38 | |
| 39 | void SimSystemRegister::SetBits(int msb, int lsb, uint32_t bits) { |
| 40 | int width = msb - lsb + 1; |
| 41 | VIXL_ASSERT(IsUintN(width, bits) || IsIntN(width, bits)); |
| 42 | |
| 43 | bits <<= lsb; |
| 44 | uint32_t mask = ((1 << width) - 1) << lsb; |
| 45 | VIXL_ASSERT((mask & write_ignore_mask_) == 0); |
| 46 | |
| 47 | value_ = (value_ & ~mask) | (bits & mask); |
| 48 | } |
| 49 | |
| 50 | |
| 51 | SimSystemRegister SimSystemRegister::DefaultValueFor(SystemRegister id) { |
| 52 | switch (id) { |
| 53 | case NZCV: |
| 54 | return SimSystemRegister(0x00000000, NZCVWriteIgnoreMask); |
| 55 | case FPCR: |
| 56 | return SimSystemRegister(0x00000000, FPCRWriteIgnoreMask); |
| 57 | default: |
| 58 | VIXL_UNREACHABLE(); |
| 59 | return SimSystemRegister(); |
| 60 | } |
| 61 | } |
| 62 | |
| 63 | |
| 64 | Simulator::Simulator(Decoder* decoder, FILE* stream) { |
| 65 | // Ensure that shift operations act as the simulator expects. |
| 66 | VIXL_ASSERT((static_cast<int32_t>(-1) >> 1) == -1); |
| 67 | VIXL_ASSERT((static_cast<uint32_t>(-1) >> 1) == 0x7fffffff); |
| 68 | |
| 69 | instruction_stats_ = false; |
| 70 | |
| 71 | // Set up the decoder. |
| 72 | decoder_ = decoder; |
| 73 | decoder_->AppendVisitor(this); |
| 74 | |
| 75 | stream_ = stream; |
| 76 | print_disasm_ = new PrintDisassembler(stream_); |
| 77 | SetColouredTrace(false); |
| 78 | trace_parameters_ = LOG_NONE; |
| 79 | |
| 80 | ResetState(); |
| 81 | |
| 82 | // Allocate and set up the simulator stack. |
| 83 | stack_ = new byte[stack_size_]; |
| 84 | stack_limit_ = stack_ + stack_protection_size_; |
| 85 | // Configure the starting stack pointer. |
| 86 | // - Find the top of the stack. |
| 87 | byte* tos = stack_ + stack_size_; |
| 88 | // - There's a protection region at both ends of the stack. |
| 89 | tos -= stack_protection_size_; |
| 90 | // - The stack pointer must be 16-byte aligned. |
| 91 | tos = AlignDown(tos, 16); |
| 92 | WriteSp(tos); |
| 93 | |
| 94 | instrumentation_ = NULL; |
| 95 | |
| 96 | // Print a warning about exclusive-access instructions, but only the first |
| 97 | // time they are encountered. This warning can be silenced using |
| 98 | // SilenceExclusiveAccessWarning(). |
| 99 | print_exclusive_access_warning_ = true; |
| 100 | } |
| 101 | |
| 102 | |
| 103 | void Simulator::ResetState() { |
| 104 | // Reset the system registers. |
| 105 | nzcv_ = SimSystemRegister::DefaultValueFor(NZCV); |
| 106 | fpcr_ = SimSystemRegister::DefaultValueFor(FPCR); |
| 107 | |
| 108 | // Reset registers to 0. |
| 109 | pc_ = NULL; |
| 110 | pc_modified_ = false; |
| 111 | for (unsigned i = 0; i < kNumberOfRegisters; i++) { |
| 112 | WriteXRegister(i, 0xbadbeef); |
| 113 | } |
| 114 | // Set FP registers to a value that is a NaN in both 32-bit and 64-bit FP. |
Pierre Langlois | 23703a7 | 2016-08-15 17:23:39 +0100 | [diff] [blame^] | 115 | uint64_t nan_bits[] = { |
| 116 | UINT64_C(0x7ff00cab7f8ba9e1), UINT64_C(0x7ff0dead7f8beef1), |
| 117 | }; |
| 118 | VIXL_ASSERT(IsSignallingNaN(RawbitsToDouble(nan_bits[0] & kDRegMask))); |
| 119 | VIXL_ASSERT(IsSignallingNaN(RawbitsToFloat(nan_bits[0] & kSRegMask))); |
| 120 | |
| 121 | qreg_t q_bits; |
| 122 | VIXL_ASSERT(sizeof(q_bits) == sizeof(nan_bits)); |
| 123 | memcpy(&q_bits, nan_bits, sizeof(nan_bits)); |
| 124 | |
| 125 | for (unsigned i = 0; i < kNumberOfVRegisters; i++) { |
| 126 | WriteQRegister(i, q_bits); |
Alexandre Rames | d383296 | 2016-07-04 15:03:43 +0100 | [diff] [blame] | 127 | } |
| 128 | // Returning to address 0 exits the Simulator. |
| 129 | WriteLr(kEndOfSimAddress); |
| 130 | } |
| 131 | |
| 132 | |
| 133 | Simulator::~Simulator() { |
| 134 | delete[] stack_; |
| 135 | // The decoder may outlive the simulator. |
| 136 | decoder_->RemoveVisitor(print_disasm_); |
| 137 | delete print_disasm_; |
| 138 | |
| 139 | decoder_->RemoveVisitor(instrumentation_); |
| 140 | delete instrumentation_; |
| 141 | } |
| 142 | |
| 143 | |
| 144 | void Simulator::Run() { |
| 145 | // Flush any written registers before executing anything, so that |
| 146 | // manually-set registers are logged _before_ the first instruction. |
| 147 | LogAllWrittenRegisters(); |
| 148 | |
| 149 | while (pc_ != kEndOfSimAddress) { |
| 150 | ExecuteInstruction(); |
| 151 | } |
| 152 | } |
| 153 | |
| 154 | |
| 155 | void Simulator::RunFrom(const Instruction* first) { |
| 156 | WritePc(first); |
| 157 | Run(); |
| 158 | } |
| 159 | |
| 160 | |
| 161 | const char* Simulator::xreg_names[] = {"x0", "x1", "x2", "x3", "x4", "x5", |
| 162 | "x6", "x7", "x8", "x9", "x10", "x11", |
| 163 | "x12", "x13", "x14", "x15", "x16", "x17", |
| 164 | "x18", "x19", "x20", "x21", "x22", "x23", |
| 165 | "x24", "x25", "x26", "x27", "x28", "x29", |
| 166 | "lr", "xzr", "sp"}; |
| 167 | |
| 168 | const char* Simulator::wreg_names[] = {"w0", "w1", "w2", "w3", "w4", "w5", |
| 169 | "w6", "w7", "w8", "w9", "w10", "w11", |
| 170 | "w12", "w13", "w14", "w15", "w16", "w17", |
| 171 | "w18", "w19", "w20", "w21", "w22", "w23", |
| 172 | "w24", "w25", "w26", "w27", "w28", "w29", |
| 173 | "w30", "wzr", "wsp"}; |
| 174 | |
| 175 | const char* Simulator::sreg_names[] = {"s0", "s1", "s2", "s3", "s4", "s5", |
| 176 | "s6", "s7", "s8", "s9", "s10", "s11", |
| 177 | "s12", "s13", "s14", "s15", "s16", "s17", |
| 178 | "s18", "s19", "s20", "s21", "s22", "s23", |
| 179 | "s24", "s25", "s26", "s27", "s28", "s29", |
| 180 | "s30", "s31"}; |
| 181 | |
| 182 | const char* Simulator::dreg_names[] = {"d0", "d1", "d2", "d3", "d4", "d5", |
| 183 | "d6", "d7", "d8", "d9", "d10", "d11", |
| 184 | "d12", "d13", "d14", "d15", "d16", "d17", |
| 185 | "d18", "d19", "d20", "d21", "d22", "d23", |
| 186 | "d24", "d25", "d26", "d27", "d28", "d29", |
| 187 | "d30", "d31"}; |
| 188 | |
| 189 | const char* Simulator::vreg_names[] = {"v0", "v1", "v2", "v3", "v4", "v5", |
| 190 | "v6", "v7", "v8", "v9", "v10", "v11", |
| 191 | "v12", "v13", "v14", "v15", "v16", "v17", |
| 192 | "v18", "v19", "v20", "v21", "v22", "v23", |
| 193 | "v24", "v25", "v26", "v27", "v28", "v29", |
| 194 | "v30", "v31"}; |
| 195 | |
| 196 | |
| 197 | const char* Simulator::WRegNameForCode(unsigned code, Reg31Mode mode) { |
| 198 | VIXL_ASSERT(code < kNumberOfRegisters); |
| 199 | // If the code represents the stack pointer, index the name after zr. |
| 200 | if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) { |
| 201 | code = kZeroRegCode + 1; |
| 202 | } |
| 203 | return wreg_names[code]; |
| 204 | } |
| 205 | |
| 206 | |
| 207 | const char* Simulator::XRegNameForCode(unsigned code, Reg31Mode mode) { |
| 208 | VIXL_ASSERT(code < kNumberOfRegisters); |
| 209 | // If the code represents the stack pointer, index the name after zr. |
| 210 | if ((code == kZeroRegCode) && (mode == Reg31IsStackPointer)) { |
| 211 | code = kZeroRegCode + 1; |
| 212 | } |
| 213 | return xreg_names[code]; |
| 214 | } |
| 215 | |
| 216 | |
| 217 | const char* Simulator::SRegNameForCode(unsigned code) { |
| 218 | VIXL_ASSERT(code < kNumberOfFPRegisters); |
| 219 | return sreg_names[code]; |
| 220 | } |
| 221 | |
| 222 | |
| 223 | const char* Simulator::DRegNameForCode(unsigned code) { |
| 224 | VIXL_ASSERT(code < kNumberOfFPRegisters); |
| 225 | return dreg_names[code]; |
| 226 | } |
| 227 | |
| 228 | |
| 229 | const char* Simulator::VRegNameForCode(unsigned code) { |
| 230 | VIXL_ASSERT(code < kNumberOfVRegisters); |
| 231 | return vreg_names[code]; |
| 232 | } |
| 233 | |
| 234 | |
| 235 | #define COLOUR(colour_code) "\033[0;" colour_code "m" |
| 236 | #define COLOUR_BOLD(colour_code) "\033[1;" colour_code "m" |
| 237 | #define NORMAL "" |
| 238 | #define GREY "30" |
| 239 | #define RED "31" |
| 240 | #define GREEN "32" |
| 241 | #define YELLOW "33" |
| 242 | #define BLUE "34" |
| 243 | #define MAGENTA "35" |
| 244 | #define CYAN "36" |
| 245 | #define WHITE "37" |
| 246 | void Simulator::SetColouredTrace(bool value) { |
| 247 | coloured_trace_ = value; |
| 248 | |
| 249 | clr_normal = value ? COLOUR(NORMAL) : ""; |
| 250 | clr_flag_name = value ? COLOUR_BOLD(WHITE) : ""; |
| 251 | clr_flag_value = value ? COLOUR(NORMAL) : ""; |
| 252 | clr_reg_name = value ? COLOUR_BOLD(CYAN) : ""; |
| 253 | clr_reg_value = value ? COLOUR(CYAN) : ""; |
| 254 | clr_vreg_name = value ? COLOUR_BOLD(MAGENTA) : ""; |
| 255 | clr_vreg_value = value ? COLOUR(MAGENTA) : ""; |
| 256 | clr_memory_address = value ? COLOUR_BOLD(BLUE) : ""; |
| 257 | clr_warning = value ? COLOUR_BOLD(YELLOW) : ""; |
| 258 | clr_warning_message = value ? COLOUR(YELLOW) : ""; |
| 259 | clr_printf = value ? COLOUR(GREEN) : ""; |
| 260 | } |
| 261 | |
| 262 | |
| 263 | void Simulator::SetTraceParameters(int parameters) { |
| 264 | bool disasm_before = trace_parameters_ & LOG_DISASM; |
| 265 | trace_parameters_ = parameters; |
| 266 | bool disasm_after = trace_parameters_ & LOG_DISASM; |
| 267 | |
| 268 | if (disasm_before != disasm_after) { |
| 269 | if (disasm_after) { |
| 270 | decoder_->InsertVisitorBefore(print_disasm_, this); |
| 271 | } else { |
| 272 | decoder_->RemoveVisitor(print_disasm_); |
| 273 | } |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | |
| 278 | void Simulator::SetInstructionStats(bool value) { |
| 279 | if (value != instruction_stats_) { |
| 280 | if (value) { |
| 281 | if (instrumentation_ == NULL) { |
| 282 | // Set the sample period to 10, as the VIXL examples and tests are |
| 283 | // short. |
| 284 | instrumentation_ = new Instrument("vixl_stats.csv", 10); |
| 285 | } |
| 286 | decoder_->AppendVisitor(instrumentation_); |
| 287 | } else if (instrumentation_ != NULL) { |
| 288 | decoder_->RemoveVisitor(instrumentation_); |
| 289 | } |
| 290 | instruction_stats_ = value; |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | // Helpers --------------------------------------------------------------------- |
| 295 | uint64_t Simulator::AddWithCarry(unsigned reg_size, |
| 296 | bool set_flags, |
| 297 | uint64_t left, |
| 298 | uint64_t right, |
| 299 | int carry_in) { |
| 300 | VIXL_ASSERT((carry_in == 0) || (carry_in == 1)); |
| 301 | VIXL_ASSERT((reg_size == kXRegSize) || (reg_size == kWRegSize)); |
| 302 | |
| 303 | uint64_t max_uint = (reg_size == kWRegSize) ? kWMaxUInt : kXMaxUInt; |
| 304 | uint64_t reg_mask = (reg_size == kWRegSize) ? kWRegMask : kXRegMask; |
| 305 | uint64_t sign_mask = (reg_size == kWRegSize) ? kWSignMask : kXSignMask; |
| 306 | |
| 307 | left &= reg_mask; |
| 308 | right &= reg_mask; |
| 309 | uint64_t result = (left + right + carry_in) & reg_mask; |
| 310 | |
| 311 | if (set_flags) { |
| 312 | ReadNzcv().SetN(CalcNFlag(result, reg_size)); |
| 313 | ReadNzcv().SetZ(CalcZFlag(result)); |
| 314 | |
| 315 | // Compute the C flag by comparing the result to the max unsigned integer. |
| 316 | uint64_t max_uint_2op = max_uint - carry_in; |
| 317 | bool C = (left > max_uint_2op) || ((max_uint_2op - left) < right); |
| 318 | ReadNzcv().SetC(C ? 1 : 0); |
| 319 | |
| 320 | // Overflow iff the sign bit is the same for the two inputs and different |
| 321 | // for the result. |
| 322 | uint64_t left_sign = left & sign_mask; |
| 323 | uint64_t right_sign = right & sign_mask; |
| 324 | uint64_t result_sign = result & sign_mask; |
| 325 | bool V = (left_sign == right_sign) && (left_sign != result_sign); |
| 326 | ReadNzcv().SetV(V ? 1 : 0); |
| 327 | |
| 328 | LogSystemRegister(NZCV); |
| 329 | } |
| 330 | return result; |
| 331 | } |
| 332 | |
| 333 | |
| 334 | int64_t Simulator::ShiftOperand(unsigned reg_size, |
| 335 | int64_t value, |
| 336 | Shift shift_type, |
Alexandre Rames | 868bfc4 | 2016-07-19 17:10:48 +0100 | [diff] [blame] | 337 | unsigned amount) const { |
Alexandre Rames | d383296 | 2016-07-04 15:03:43 +0100 | [diff] [blame] | 338 | if (amount == 0) { |
| 339 | return value; |
| 340 | } |
| 341 | int64_t mask = reg_size == kXRegSize ? kXRegMask : kWRegMask; |
| 342 | switch (shift_type) { |
| 343 | case LSL: |
| 344 | return (value << amount) & mask; |
| 345 | case LSR: |
| 346 | return static_cast<uint64_t>(value) >> amount; |
| 347 | case ASR: { |
| 348 | // Shift used to restore the sign. |
| 349 | unsigned s_shift = kXRegSize - reg_size; |
| 350 | // Value with its sign restored. |
| 351 | int64_t s_value = (value << s_shift) >> s_shift; |
| 352 | return (s_value >> amount) & mask; |
| 353 | } |
| 354 | case ROR: { |
| 355 | if (reg_size == kWRegSize) { |
| 356 | value &= kWRegMask; |
| 357 | } |
| 358 | return (static_cast<uint64_t>(value) >> amount) | |
| 359 | ((value & ((INT64_C(1) << amount) - 1)) << (reg_size - amount)); |
| 360 | } |
| 361 | default: |
| 362 | VIXL_UNIMPLEMENTED(); |
| 363 | return 0; |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | |
| 368 | int64_t Simulator::ExtendValue(unsigned reg_size, |
| 369 | int64_t value, |
| 370 | Extend extend_type, |
Alexandre Rames | 868bfc4 | 2016-07-19 17:10:48 +0100 | [diff] [blame] | 371 | unsigned left_shift) const { |
Alexandre Rames | d383296 | 2016-07-04 15:03:43 +0100 | [diff] [blame] | 372 | switch (extend_type) { |
| 373 | case UXTB: |
| 374 | value &= kByteMask; |
| 375 | break; |
| 376 | case UXTH: |
| 377 | value &= kHalfWordMask; |
| 378 | break; |
| 379 | case UXTW: |
| 380 | value &= kWordMask; |
| 381 | break; |
| 382 | case SXTB: |
| 383 | value = (value << 56) >> 56; |
| 384 | break; |
| 385 | case SXTH: |
| 386 | value = (value << 48) >> 48; |
| 387 | break; |
| 388 | case SXTW: |
| 389 | value = (value << 32) >> 32; |
| 390 | break; |
| 391 | case UXTX: |
| 392 | case SXTX: |
| 393 | break; |
| 394 | default: |
| 395 | VIXL_UNREACHABLE(); |
| 396 | } |
| 397 | int64_t mask = (reg_size == kXRegSize) ? kXRegMask : kWRegMask; |
| 398 | return (value << left_shift) & mask; |
| 399 | } |
| 400 | |
| 401 | |
| 402 | void Simulator::FPCompare(double val0, double val1, FPTrapFlags trap) { |
| 403 | AssertSupportedFPCR(); |
| 404 | |
| 405 | // TODO: This assumes that the C++ implementation handles comparisons in the |
| 406 | // way that we expect (as per AssertSupportedFPCR()). |
| 407 | bool process_exception = false; |
| 408 | if ((std::isnan(val0) != 0) || (std::isnan(val1) != 0)) { |
| 409 | ReadNzcv().SetRawValue(FPUnorderedFlag); |
| 410 | if (IsSignallingNaN(val0) || IsSignallingNaN(val1) || |
| 411 | (trap == EnableTrap)) { |
| 412 | process_exception = true; |
| 413 | } |
| 414 | } else if (val0 < val1) { |
| 415 | ReadNzcv().SetRawValue(FPLessThanFlag); |
| 416 | } else if (val0 > val1) { |
| 417 | ReadNzcv().SetRawValue(FPGreaterThanFlag); |
| 418 | } else if (val0 == val1) { |
| 419 | ReadNzcv().SetRawValue(FPEqualFlag); |
| 420 | } else { |
| 421 | VIXL_UNREACHABLE(); |
| 422 | } |
| 423 | LogSystemRegister(NZCV); |
| 424 | if (process_exception) FPProcessException(); |
| 425 | } |
| 426 | |
| 427 | |
Alexandre Rames | 868bfc4 | 2016-07-19 17:10:48 +0100 | [diff] [blame] | 428 | uint64_t Simulator::ComputeMemOperandAddress(const MemOperand& mem_op) const { |
| 429 | VIXL_ASSERT(mem_op.IsValid()); |
| 430 | int64_t base = ReadRegister<int64_t>(mem_op.GetBaseRegister()); |
| 431 | if (mem_op.IsImmediateOffset()) { |
| 432 | return base + mem_op.GetOffset(); |
| 433 | } else { |
| 434 | VIXL_ASSERT(mem_op.GetRegisterOffset().IsValid()); |
| 435 | int64_t offset = ReadRegister<int64_t>(mem_op.GetRegisterOffset()); |
| 436 | int64_t shift_amount = mem_op.GetShiftAmount(); |
| 437 | if (mem_op.GetShift() != NO_SHIFT) { |
| 438 | offset = ShiftOperand(kXRegSize, offset, mem_op.GetShift(), shift_amount); |
| 439 | } |
| 440 | if (mem_op.GetExtend() != NO_EXTEND) { |
| 441 | offset = ExtendValue(kXRegSize, offset, mem_op.GetExtend(), shift_amount); |
| 442 | } |
| 443 | return static_cast<uint64_t>(base + offset); |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | |
Alexandre Rames | d383296 | 2016-07-04 15:03:43 +0100 | [diff] [blame] | 448 | Simulator::PrintRegisterFormat Simulator::GetPrintRegisterFormatForSize( |
| 449 | unsigned reg_size, unsigned lane_size) { |
| 450 | VIXL_ASSERT(reg_size >= lane_size); |
| 451 | |
| 452 | uint32_t format = 0; |
| 453 | if (reg_size != lane_size) { |
| 454 | switch (reg_size) { |
| 455 | default: |
| 456 | VIXL_UNREACHABLE(); |
| 457 | break; |
| 458 | case kQRegSizeInBytes: |
| 459 | format = kPrintRegAsQVector; |
| 460 | break; |
| 461 | case kDRegSizeInBytes: |
| 462 | format = kPrintRegAsDVector; |
| 463 | break; |
| 464 | } |
| 465 | } |
| 466 | |
| 467 | switch (lane_size) { |
| 468 | default: |
| 469 | VIXL_UNREACHABLE(); |
| 470 | break; |
| 471 | case kQRegSizeInBytes: |
| 472 | format |= kPrintReg1Q; |
| 473 | break; |
| 474 | case kDRegSizeInBytes: |
| 475 | format |= kPrintReg1D; |
| 476 | break; |
| 477 | case kSRegSizeInBytes: |
| 478 | format |= kPrintReg1S; |
| 479 | break; |
| 480 | case kHRegSizeInBytes: |
| 481 | format |= kPrintReg1H; |
| 482 | break; |
| 483 | case kBRegSizeInBytes: |
| 484 | format |= kPrintReg1B; |
| 485 | break; |
| 486 | } |
| 487 | // These sizes would be duplicate case labels. |
| 488 | VIXL_STATIC_ASSERT(kXRegSizeInBytes == kDRegSizeInBytes); |
| 489 | VIXL_STATIC_ASSERT(kWRegSizeInBytes == kSRegSizeInBytes); |
| 490 | VIXL_STATIC_ASSERT(kPrintXReg == kPrintReg1D); |
| 491 | VIXL_STATIC_ASSERT(kPrintWReg == kPrintReg1S); |
| 492 | |
| 493 | return static_cast<PrintRegisterFormat>(format); |
| 494 | } |
| 495 | |
| 496 | |
| 497 | Simulator::PrintRegisterFormat Simulator::GetPrintRegisterFormat( |
| 498 | VectorFormat vform) { |
| 499 | switch (vform) { |
| 500 | default: |
| 501 | VIXL_UNREACHABLE(); |
| 502 | return kPrintReg16B; |
| 503 | case kFormat16B: |
| 504 | return kPrintReg16B; |
| 505 | case kFormat8B: |
| 506 | return kPrintReg8B; |
| 507 | case kFormat8H: |
| 508 | return kPrintReg8H; |
| 509 | case kFormat4H: |
| 510 | return kPrintReg4H; |
| 511 | case kFormat4S: |
| 512 | return kPrintReg4S; |
| 513 | case kFormat2S: |
| 514 | return kPrintReg2S; |
| 515 | case kFormat2D: |
| 516 | return kPrintReg2D; |
| 517 | case kFormat1D: |
| 518 | return kPrintReg1D; |
| 519 | |
| 520 | case kFormatB: |
| 521 | return kPrintReg1B; |
| 522 | case kFormatH: |
| 523 | return kPrintReg1H; |
| 524 | case kFormatS: |
| 525 | return kPrintReg1S; |
| 526 | case kFormatD: |
| 527 | return kPrintReg1D; |
| 528 | } |
| 529 | } |
| 530 | |
| 531 | |
| 532 | Simulator::PrintRegisterFormat Simulator::GetPrintRegisterFormatFP( |
| 533 | VectorFormat vform) { |
| 534 | switch (vform) { |
| 535 | default: |
| 536 | VIXL_UNREACHABLE(); |
| 537 | return kPrintReg16B; |
| 538 | case kFormat4S: |
| 539 | return kPrintReg4SFP; |
| 540 | case kFormat2S: |
| 541 | return kPrintReg2SFP; |
| 542 | case kFormat2D: |
| 543 | return kPrintReg2DFP; |
| 544 | case kFormat1D: |
| 545 | return kPrintReg1DFP; |
| 546 | |
| 547 | case kFormatS: |
| 548 | return kPrintReg1SFP; |
| 549 | case kFormatD: |
| 550 | return kPrintReg1DFP; |
| 551 | } |
| 552 | } |
| 553 | |
| 554 | |
| 555 | void Simulator::PrintWrittenRegisters() { |
| 556 | for (unsigned i = 0; i < kNumberOfRegisters; i++) { |
| 557 | if (registers_[i].WrittenSinceLastLog()) PrintRegister(i); |
| 558 | } |
| 559 | } |
| 560 | |
| 561 | |
| 562 | void Simulator::PrintWrittenVRegisters() { |
| 563 | for (unsigned i = 0; i < kNumberOfVRegisters; i++) { |
| 564 | // At this point there is no type information, so print as a raw 1Q. |
| 565 | if (vregisters_[i].WrittenSinceLastLog()) PrintVRegister(i, kPrintReg1Q); |
| 566 | } |
| 567 | } |
| 568 | |
| 569 | |
| 570 | void Simulator::PrintSystemRegisters() { |
| 571 | PrintSystemRegister(NZCV); |
| 572 | PrintSystemRegister(FPCR); |
| 573 | } |
| 574 | |
| 575 | |
| 576 | void Simulator::PrintRegisters() { |
| 577 | for (unsigned i = 0; i < kNumberOfRegisters; i++) { |
| 578 | PrintRegister(i); |
| 579 | } |
| 580 | } |
| 581 | |
| 582 | |
| 583 | void Simulator::PrintVRegisters() { |
| 584 | for (unsigned i = 0; i < kNumberOfVRegisters; i++) { |
| 585 | // At this point there is no type information, so print as a raw 1Q. |
| 586 | PrintVRegister(i, kPrintReg1Q); |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | |
| 591 | // Print a register's name and raw value. |
| 592 | // |
| 593 | // Only the least-significant `size_in_bytes` bytes of the register are printed, |
| 594 | // but the value is aligned as if the whole register had been printed. |
| 595 | // |
| 596 | // For typical register updates, size_in_bytes should be set to kXRegSizeInBytes |
| 597 | // -- the default -- so that the whole register is printed. Other values of |
| 598 | // size_in_bytes are intended for use when the register hasn't actually been |
| 599 | // updated (such as in PrintWrite). |
| 600 | // |
| 601 | // No newline is printed. This allows the caller to print more details (such as |
| 602 | // a memory access annotation). |
| 603 | void Simulator::PrintRegisterRawHelper(unsigned code, |
| 604 | Reg31Mode r31mode, |
| 605 | int size_in_bytes) { |
| 606 | // The template for all supported sizes. |
| 607 | // "# x{code}: 0xffeeddccbbaa9988" |
| 608 | // "# w{code}: 0xbbaa9988" |
| 609 | // "# w{code}<15:0>: 0x9988" |
| 610 | // "# w{code}<7:0>: 0x88" |
| 611 | unsigned padding_chars = (kXRegSizeInBytes - size_in_bytes) * 2; |
| 612 | |
| 613 | const char* name = ""; |
| 614 | const char* suffix = ""; |
| 615 | switch (size_in_bytes) { |
| 616 | case kXRegSizeInBytes: |
| 617 | name = XRegNameForCode(code, r31mode); |
| 618 | break; |
| 619 | case kWRegSizeInBytes: |
| 620 | name = WRegNameForCode(code, r31mode); |
| 621 | break; |
| 622 | case 2: |
| 623 | name = WRegNameForCode(code, r31mode); |
| 624 | suffix = "<15:0>"; |
| 625 | padding_chars -= strlen(suffix); |
| 626 | break; |
| 627 | case 1: |
| 628 | name = WRegNameForCode(code, r31mode); |
| 629 | suffix = "<7:0>"; |
| 630 | padding_chars -= strlen(suffix); |
| 631 | break; |
| 632 | default: |
| 633 | VIXL_UNREACHABLE(); |
| 634 | } |
| 635 | fprintf(stream_, "# %s%5s%s: ", clr_reg_name, name, suffix); |
| 636 | |
| 637 | // Print leading padding spaces. |
| 638 | VIXL_ASSERT(padding_chars < (kXRegSizeInBytes * 2)); |
| 639 | for (unsigned i = 0; i < padding_chars; i++) { |
| 640 | putc(' ', stream_); |
| 641 | } |
| 642 | |
| 643 | // Print the specified bits in hexadecimal format. |
| 644 | uint64_t bits = ReadRegister<uint64_t>(code, r31mode); |
| 645 | bits &= kXRegMask >> ((kXRegSizeInBytes - size_in_bytes) * 8); |
| 646 | VIXL_STATIC_ASSERT(sizeof(bits) == kXRegSizeInBytes); |
| 647 | |
| 648 | int chars = size_in_bytes * 2; |
| 649 | fprintf(stream_, |
| 650 | "%s0x%0*" PRIx64 "%s", |
| 651 | clr_reg_value, |
| 652 | chars, |
| 653 | bits, |
| 654 | clr_normal); |
| 655 | } |
| 656 | |
| 657 | |
| 658 | void Simulator::PrintRegister(unsigned code, Reg31Mode r31mode) { |
| 659 | registers_[code].NotifyRegisterLogged(); |
| 660 | |
| 661 | // Don't print writes into xzr. |
| 662 | if ((code == kZeroRegCode) && (r31mode == Reg31IsZeroRegister)) { |
| 663 | return; |
| 664 | } |
| 665 | |
| 666 | // The template for all x and w registers: |
| 667 | // "# x{code}: 0x{value}" |
| 668 | // "# w{code}: 0x{value}" |
| 669 | |
| 670 | PrintRegisterRawHelper(code, r31mode); |
| 671 | fprintf(stream_, "\n"); |
| 672 | } |
| 673 | |
| 674 | |
| 675 | // Print a register's name and raw value. |
| 676 | // |
| 677 | // The `bytes` and `lsb` arguments can be used to limit the bytes that are |
| 678 | // printed. These arguments are intended for use in cases where register hasn't |
| 679 | // actually been updated (such as in PrintVWrite). |
| 680 | // |
| 681 | // No newline is printed. This allows the caller to print more details (such as |
| 682 | // a floating-point interpretation or a memory access annotation). |
| 683 | void Simulator::PrintVRegisterRawHelper(unsigned code, int bytes, int lsb) { |
| 684 | // The template for vector types: |
| 685 | // "# v{code}: 0xffeeddccbbaa99887766554433221100". |
| 686 | // An example with bytes=4 and lsb=8: |
| 687 | // "# v{code}: 0xbbaa9988 ". |
| 688 | fprintf(stream_, |
| 689 | "# %s%5s: %s", |
| 690 | clr_vreg_name, |
| 691 | VRegNameForCode(code), |
| 692 | clr_vreg_value); |
| 693 | |
| 694 | int msb = lsb + bytes - 1; |
| 695 | int byte = kQRegSizeInBytes - 1; |
| 696 | |
| 697 | // Print leading padding spaces. (Two spaces per byte.) |
| 698 | while (byte > msb) { |
| 699 | fprintf(stream_, " "); |
| 700 | byte--; |
| 701 | } |
| 702 | |
| 703 | // Print the specified part of the value, byte by byte. |
| 704 | qreg_t rawbits = ReadQRegister(code); |
| 705 | fprintf(stream_, "0x"); |
| 706 | while (byte >= lsb) { |
| 707 | fprintf(stream_, "%02x", rawbits.val[byte]); |
| 708 | byte--; |
| 709 | } |
| 710 | |
| 711 | // Print trailing padding spaces. |
| 712 | while (byte >= 0) { |
| 713 | fprintf(stream_, " "); |
| 714 | byte--; |
| 715 | } |
| 716 | fprintf(stream_, "%s", clr_normal); |
| 717 | } |
| 718 | |
| 719 | |
| 720 | // Print each of the specified lanes of a register as a float or double value. |
| 721 | // |
| 722 | // The `lane_count` and `lslane` arguments can be used to limit the lanes that |
| 723 | // are printed. These arguments are intended for use in cases where register |
| 724 | // hasn't actually been updated (such as in PrintVWrite). |
| 725 | // |
| 726 | // No newline is printed. This allows the caller to print more details (such as |
| 727 | // a memory access annotation). |
| 728 | void Simulator::PrintVRegisterFPHelper(unsigned code, |
| 729 | unsigned lane_size_in_bytes, |
| 730 | int lane_count, |
| 731 | int rightmost_lane) { |
| 732 | VIXL_ASSERT((lane_size_in_bytes == kSRegSizeInBytes) || |
| 733 | (lane_size_in_bytes == kDRegSizeInBytes)); |
| 734 | |
| 735 | unsigned msb = ((lane_count + rightmost_lane) * lane_size_in_bytes); |
| 736 | VIXL_ASSERT(msb <= kQRegSizeInBytes); |
| 737 | |
| 738 | // For scalar types ((lane_count == 1) && (rightmost_lane == 0)), a register |
| 739 | // name is used: |
| 740 | // " (s{code}: {value})" |
| 741 | // " (d{code}: {value})" |
| 742 | // For vector types, "..." is used to represent one or more omitted lanes. |
| 743 | // " (..., {value}, {value}, ...)" |
| 744 | if ((lane_count == 1) && (rightmost_lane == 0)) { |
| 745 | const char* name = (lane_size_in_bytes == kSRegSizeInBytes) |
| 746 | ? SRegNameForCode(code) |
| 747 | : DRegNameForCode(code); |
| 748 | fprintf(stream_, " (%s%s: ", clr_vreg_name, name); |
| 749 | } else { |
| 750 | if (msb < (kQRegSizeInBytes - 1)) { |
| 751 | fprintf(stream_, " (..., "); |
| 752 | } else { |
| 753 | fprintf(stream_, " ("); |
| 754 | } |
| 755 | } |
| 756 | |
| 757 | // Print the list of values. |
| 758 | const char* separator = ""; |
| 759 | int leftmost_lane = rightmost_lane + lane_count - 1; |
| 760 | for (int lane = leftmost_lane; lane >= rightmost_lane; lane--) { |
| 761 | double value = (lane_size_in_bytes == kSRegSizeInBytes) |
| 762 | ? ReadVRegister(code).GetLane<float>(lane) |
| 763 | : ReadVRegister(code).GetLane<double>(lane); |
Alexandre Rames | 6b5fe94 | 2016-07-22 17:17:23 +0100 | [diff] [blame] | 764 | if (std::isnan(value)) { |
| 765 | // The output for NaNs is implementation defined. Always print `nan`, so |
| 766 | // that traces are coherent across different implementations. |
| 767 | fprintf(stream_, "%s%snan%s", separator, clr_vreg_value, clr_normal); |
| 768 | } else { |
| 769 | fprintf(stream_, |
| 770 | "%s%s%#g%s", |
| 771 | separator, |
| 772 | clr_vreg_value, |
| 773 | value, |
| 774 | clr_normal); |
| 775 | } |
Alexandre Rames | d383296 | 2016-07-04 15:03:43 +0100 | [diff] [blame] | 776 | separator = ", "; |
| 777 | } |
| 778 | |
| 779 | if (rightmost_lane > 0) { |
| 780 | fprintf(stream_, ", ..."); |
| 781 | } |
| 782 | fprintf(stream_, ")"); |
| 783 | } |
| 784 | |
| 785 | |
| 786 | void Simulator::PrintVRegister(unsigned code, PrintRegisterFormat format) { |
| 787 | vregisters_[code].NotifyRegisterLogged(); |
| 788 | |
| 789 | int lane_size_log2 = format & kPrintRegLaneSizeMask; |
| 790 | |
| 791 | int reg_size_log2; |
| 792 | if (format & kPrintRegAsQVector) { |
| 793 | reg_size_log2 = kQRegSizeInBytesLog2; |
| 794 | } else if (format & kPrintRegAsDVector) { |
| 795 | reg_size_log2 = kDRegSizeInBytesLog2; |
| 796 | } else { |
| 797 | // Scalar types. |
| 798 | reg_size_log2 = lane_size_log2; |
| 799 | } |
| 800 | |
| 801 | int lane_count = 1 << (reg_size_log2 - lane_size_log2); |
| 802 | int lane_size = 1 << lane_size_log2; |
| 803 | |
| 804 | // The template for vector types: |
| 805 | // "# v{code}: 0x{rawbits} (..., {value}, ...)". |
| 806 | // The template for scalar types: |
| 807 | // "# v{code}: 0x{rawbits} ({reg}:{value})". |
| 808 | // The values in parentheses after the bit representations are floating-point |
| 809 | // interpretations. They are displayed only if the kPrintVRegAsFP bit is set. |
| 810 | |
| 811 | PrintVRegisterRawHelper(code); |
| 812 | if (format & kPrintRegAsFP) { |
| 813 | PrintVRegisterFPHelper(code, lane_size, lane_count); |
| 814 | } |
| 815 | |
| 816 | fprintf(stream_, "\n"); |
| 817 | } |
| 818 | |
| 819 | |
| 820 | void Simulator::PrintSystemRegister(SystemRegister id) { |
| 821 | switch (id) { |
| 822 | case NZCV: |
| 823 | fprintf(stream_, |
| 824 | "# %sNZCV: %sN:%d Z:%d C:%d V:%d%s\n", |
| 825 | clr_flag_name, |
| 826 | clr_flag_value, |
| 827 | ReadNzcv().GetN(), |
| 828 | ReadNzcv().GetZ(), |
| 829 | ReadNzcv().GetC(), |
| 830 | ReadNzcv().GetV(), |
| 831 | clr_normal); |
| 832 | break; |
| 833 | case FPCR: { |
| 834 | static const char* rmode[] = {"0b00 (Round to Nearest)", |
| 835 | "0b01 (Round towards Plus Infinity)", |
| 836 | "0b10 (Round towards Minus Infinity)", |
| 837 | "0b11 (Round towards Zero)"}; |
| 838 | VIXL_ASSERT(ReadFpcr().GetRMode() < (sizeof(rmode) / sizeof(rmode[0]))); |
| 839 | fprintf(stream_, |
| 840 | "# %sFPCR: %sAHP:%d DN:%d FZ:%d RMode:%s%s\n", |
| 841 | clr_flag_name, |
| 842 | clr_flag_value, |
| 843 | ReadFpcr().GetAHP(), |
| 844 | ReadFpcr().GetDN(), |
| 845 | ReadFpcr().GetFZ(), |
| 846 | rmode[ReadFpcr().GetRMode()], |
| 847 | clr_normal); |
| 848 | break; |
| 849 | } |
| 850 | default: |
| 851 | VIXL_UNREACHABLE(); |
| 852 | } |
| 853 | } |
| 854 | |
| 855 | |
| 856 | void Simulator::PrintRead(uintptr_t address, |
| 857 | unsigned reg_code, |
| 858 | PrintRegisterFormat format) { |
| 859 | registers_[reg_code].NotifyRegisterLogged(); |
| 860 | |
| 861 | USE(format); |
| 862 | |
| 863 | // The template is "# {reg}: 0x{value} <- {address}". |
| 864 | PrintRegisterRawHelper(reg_code, Reg31IsZeroRegister); |
| 865 | fprintf(stream_, |
| 866 | " <- %s0x%016" PRIxPTR "%s\n", |
| 867 | clr_memory_address, |
| 868 | address, |
| 869 | clr_normal); |
| 870 | } |
| 871 | |
| 872 | |
| 873 | void Simulator::PrintVRead(uintptr_t address, |
| 874 | unsigned reg_code, |
| 875 | PrintRegisterFormat format, |
| 876 | unsigned lane) { |
| 877 | vregisters_[reg_code].NotifyRegisterLogged(); |
| 878 | |
| 879 | // The template is "# v{code}: 0x{rawbits} <- address". |
| 880 | PrintVRegisterRawHelper(reg_code); |
| 881 | if (format & kPrintRegAsFP) { |
| 882 | PrintVRegisterFPHelper(reg_code, |
| 883 | GetPrintRegLaneSizeInBytes(format), |
| 884 | GetPrintRegLaneCount(format), |
| 885 | lane); |
| 886 | } |
| 887 | fprintf(stream_, |
| 888 | " <- %s0x%016" PRIxPTR "%s\n", |
| 889 | clr_memory_address, |
| 890 | address, |
| 891 | clr_normal); |
| 892 | } |
| 893 | |
| 894 | |
| 895 | void Simulator::PrintWrite(uintptr_t address, |
| 896 | unsigned reg_code, |
| 897 | PrintRegisterFormat format) { |
| 898 | VIXL_ASSERT(GetPrintRegLaneCount(format) == 1); |
| 899 | |
| 900 | // The template is "# v{code}: 0x{value} -> {address}". To keep the trace tidy |
| 901 | // and readable, the value is aligned with the values in the register trace. |
| 902 | PrintRegisterRawHelper(reg_code, |
| 903 | Reg31IsZeroRegister, |
| 904 | GetPrintRegSizeInBytes(format)); |
| 905 | fprintf(stream_, |
| 906 | " -> %s0x%016" PRIxPTR "%s\n", |
| 907 | clr_memory_address, |
| 908 | address, |
| 909 | clr_normal); |
| 910 | } |
| 911 | |
| 912 | |
| 913 | void Simulator::PrintVWrite(uintptr_t address, |
| 914 | unsigned reg_code, |
| 915 | PrintRegisterFormat format, |
| 916 | unsigned lane) { |
| 917 | // The templates: |
| 918 | // "# v{code}: 0x{rawbits} -> {address}" |
| 919 | // "# v{code}: 0x{rawbits} (..., {value}, ...) -> {address}". |
| 920 | // "# v{code}: 0x{rawbits} ({reg}:{value}) -> {address}" |
| 921 | // Because this trace doesn't represent a change to the source register's |
| 922 | // value, only the relevant part of the value is printed. To keep the trace |
| 923 | // tidy and readable, the raw value is aligned with the other values in the |
| 924 | // register trace. |
| 925 | int lane_count = GetPrintRegLaneCount(format); |
| 926 | int lane_size = GetPrintRegLaneSizeInBytes(format); |
| 927 | int reg_size = GetPrintRegSizeInBytes(format); |
| 928 | PrintVRegisterRawHelper(reg_code, reg_size, lane_size * lane); |
| 929 | if (format & kPrintRegAsFP) { |
| 930 | PrintVRegisterFPHelper(reg_code, lane_size, lane_count, lane); |
| 931 | } |
| 932 | fprintf(stream_, |
| 933 | " -> %s0x%016" PRIxPTR "%s\n", |
| 934 | clr_memory_address, |
| 935 | address, |
| 936 | clr_normal); |
| 937 | } |
| 938 | |
| 939 | |
| 940 | // Visitors--------------------------------------------------------------------- |
| 941 | |
| 942 | void Simulator::VisitUnimplemented(const Instruction* instr) { |
| 943 | printf("Unimplemented instruction at %p: 0x%08" PRIx32 "\n", |
| 944 | reinterpret_cast<const void*>(instr), |
| 945 | instr->GetInstructionBits()); |
| 946 | VIXL_UNIMPLEMENTED(); |
| 947 | } |
| 948 | |
| 949 | |
| 950 | void Simulator::VisitUnallocated(const Instruction* instr) { |
| 951 | printf("Unallocated instruction at %p: 0x%08" PRIx32 "\n", |
| 952 | reinterpret_cast<const void*>(instr), |
| 953 | instr->GetInstructionBits()); |
| 954 | VIXL_UNIMPLEMENTED(); |
| 955 | } |
| 956 | |
| 957 | |
| 958 | void Simulator::VisitPCRelAddressing(const Instruction* instr) { |
| 959 | VIXL_ASSERT((instr->Mask(PCRelAddressingMask) == ADR) || |
| 960 | (instr->Mask(PCRelAddressingMask) == ADRP)); |
| 961 | |
| 962 | WriteRegister(instr->GetRd(), instr->GetImmPCOffsetTarget()); |
| 963 | } |
| 964 | |
| 965 | |
| 966 | void Simulator::VisitUnconditionalBranch(const Instruction* instr) { |
| 967 | switch (instr->Mask(UnconditionalBranchMask)) { |
| 968 | case BL: |
| 969 | WriteLr(instr->GetNextInstruction()); |
| 970 | VIXL_FALLTHROUGH(); |
| 971 | case B: |
| 972 | WritePc(instr->GetImmPCOffsetTarget()); |
| 973 | break; |
| 974 | default: |
| 975 | VIXL_UNREACHABLE(); |
| 976 | } |
| 977 | } |
| 978 | |
| 979 | |
| 980 | void Simulator::VisitConditionalBranch(const Instruction* instr) { |
| 981 | VIXL_ASSERT(instr->Mask(ConditionalBranchMask) == B_cond); |
| 982 | if (ConditionPassed(instr->GetConditionBranch())) { |
| 983 | WritePc(instr->GetImmPCOffsetTarget()); |
| 984 | } |
| 985 | } |
| 986 | |
| 987 | |
| 988 | void Simulator::VisitUnconditionalBranchToRegister(const Instruction* instr) { |
| 989 | const Instruction* target = Instruction::Cast(ReadXRegister(instr->GetRn())); |
| 990 | |
| 991 | switch (instr->Mask(UnconditionalBranchToRegisterMask)) { |
| 992 | case BLR: |
| 993 | WriteLr(instr->GetNextInstruction()); |
| 994 | VIXL_FALLTHROUGH(); |
| 995 | case BR: |
| 996 | case RET: |
| 997 | WritePc(target); |
| 998 | break; |
| 999 | default: |
| 1000 | VIXL_UNREACHABLE(); |
| 1001 | } |
| 1002 | } |
| 1003 | |
| 1004 | |
| 1005 | void Simulator::VisitTestBranch(const Instruction* instr) { |
| 1006 | unsigned bit_pos = |
| 1007 | (instr->GetImmTestBranchBit5() << 5) | instr->GetImmTestBranchBit40(); |
| 1008 | bool bit_zero = ((ReadXRegister(instr->GetRt()) >> bit_pos) & 1) == 0; |
| 1009 | bool take_branch = false; |
| 1010 | switch (instr->Mask(TestBranchMask)) { |
| 1011 | case TBZ: |
| 1012 | take_branch = bit_zero; |
| 1013 | break; |
| 1014 | case TBNZ: |
| 1015 | take_branch = !bit_zero; |
| 1016 | break; |
| 1017 | default: |
| 1018 | VIXL_UNIMPLEMENTED(); |
| 1019 | } |
| 1020 | if (take_branch) { |
| 1021 | WritePc(instr->GetImmPCOffsetTarget()); |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | |
| 1026 | void Simulator::VisitCompareBranch(const Instruction* instr) { |
| 1027 | unsigned rt = instr->GetRt(); |
| 1028 | bool take_branch = false; |
| 1029 | switch (instr->Mask(CompareBranchMask)) { |
| 1030 | case CBZ_w: |
| 1031 | take_branch = (ReadWRegister(rt) == 0); |
| 1032 | break; |
| 1033 | case CBZ_x: |
| 1034 | take_branch = (ReadXRegister(rt) == 0); |
| 1035 | break; |
| 1036 | case CBNZ_w: |
| 1037 | take_branch = (ReadWRegister(rt) != 0); |
| 1038 | break; |
| 1039 | case CBNZ_x: |
| 1040 | take_branch = (ReadXRegister(rt) != 0); |
| 1041 | break; |
| 1042 | default: |
| 1043 | VIXL_UNIMPLEMENTED(); |
| 1044 | } |
| 1045 | if (take_branch) { |
| 1046 | WritePc(instr->GetImmPCOffsetTarget()); |
| 1047 | } |
| 1048 | } |
| 1049 | |
| 1050 | |
| 1051 | void Simulator::AddSubHelper(const Instruction* instr, int64_t op2) { |
| 1052 | unsigned reg_size = instr->GetSixtyFourBits() ? kXRegSize : kWRegSize; |
| 1053 | bool set_flags = instr->GetFlagsUpdate(); |
| 1054 | int64_t new_val = 0; |
| 1055 | Instr operation = instr->Mask(AddSubOpMask); |
| 1056 | |
| 1057 | switch (operation) { |
| 1058 | case ADD: |
| 1059 | case ADDS: { |
| 1060 | new_val = AddWithCarry(reg_size, |
| 1061 | set_flags, |
| 1062 | ReadRegister(reg_size, |
| 1063 | instr->GetRn(), |
| 1064 | instr->GetRnMode()), |
| 1065 | op2); |
| 1066 | break; |
| 1067 | } |
| 1068 | case SUB: |
| 1069 | case SUBS: { |
| 1070 | new_val = AddWithCarry(reg_size, |
| 1071 | set_flags, |
| 1072 | ReadRegister(reg_size, |
| 1073 | instr->GetRn(), |
| 1074 | instr->GetRnMode()), |
| 1075 | ~op2, |
| 1076 | 1); |
| 1077 | break; |
| 1078 | } |
| 1079 | default: |
| 1080 | VIXL_UNREACHABLE(); |
| 1081 | } |
| 1082 | |
| 1083 | WriteRegister(reg_size, |
| 1084 | instr->GetRd(), |
| 1085 | new_val, |
| 1086 | LogRegWrites, |
| 1087 | instr->GetRdMode()); |
| 1088 | } |
| 1089 | |
| 1090 | |
| 1091 | void Simulator::VisitAddSubShifted(const Instruction* instr) { |
| 1092 | unsigned reg_size = instr->GetSixtyFourBits() ? kXRegSize : kWRegSize; |
| 1093 | int64_t op2 = ShiftOperand(reg_size, |
| 1094 | ReadRegister(reg_size, instr->GetRm()), |
| 1095 | static_cast<Shift>(instr->GetShiftDP()), |
| 1096 | instr->GetImmDPShift()); |
| 1097 | AddSubHelper(instr, op2); |
| 1098 | } |
| 1099 | |
| 1100 | |
| 1101 | void Simulator::VisitAddSubImmediate(const Instruction* instr) { |
| 1102 | int64_t op2 = instr->GetImmAddSub() |
| 1103 | << ((instr->GetShiftAddSub() == 1) ? 12 : 0); |
| 1104 | AddSubHelper(instr, op2); |
| 1105 | } |
| 1106 | |
| 1107 | |
| 1108 | void Simulator::VisitAddSubExtended(const Instruction* instr) { |
| 1109 | unsigned reg_size = instr->GetSixtyFourBits() ? kXRegSize : kWRegSize; |
| 1110 | int64_t op2 = ExtendValue(reg_size, |
| 1111 | ReadRegister(reg_size, instr->GetRm()), |
| 1112 | static_cast<Extend>(instr->GetExtendMode()), |
| 1113 | instr->GetImmExtendShift()); |
| 1114 | AddSubHelper(instr, op2); |
| 1115 | } |
| 1116 | |
| 1117 | |
| 1118 | void Simulator::VisitAddSubWithCarry(const Instruction* instr) { |
| 1119 | unsigned reg_size = instr->GetSixtyFourBits() ? kXRegSize : kWRegSize; |
| 1120 | int64_t op2 = ReadRegister(reg_size, instr->GetRm()); |
| 1121 | int64_t new_val; |
| 1122 | |
| 1123 | if ((instr->Mask(AddSubOpMask) == SUB) || |
| 1124 | (instr->Mask(AddSubOpMask) == SUBS)) { |
| 1125 | op2 = ~op2; |
| 1126 | } |
| 1127 | |
| 1128 | new_val = AddWithCarry(reg_size, |
| 1129 | instr->GetFlagsUpdate(), |
| 1130 | ReadRegister(reg_size, instr->GetRn()), |
| 1131 | op2, |
| 1132 | ReadC()); |
| 1133 | |
| 1134 | WriteRegister(reg_size, instr->GetRd(), new_val); |
| 1135 | } |
| 1136 | |
| 1137 | |
| 1138 | void Simulator::VisitLogicalShifted(const Instruction* instr) { |
| 1139 | unsigned reg_size = instr->GetSixtyFourBits() ? kXRegSize : kWRegSize; |
| 1140 | Shift shift_type = static_cast<Shift>(instr->GetShiftDP()); |
| 1141 | unsigned shift_amount = instr->GetImmDPShift(); |
| 1142 | int64_t op2 = ShiftOperand(reg_size, |
| 1143 | ReadRegister(reg_size, instr->GetRm()), |
| 1144 | shift_type, |
| 1145 | shift_amount); |
| 1146 | if (instr->Mask(NOT) == NOT) { |
| 1147 | op2 = ~op2; |
| 1148 | } |
| 1149 | LogicalHelper(instr, op2); |
| 1150 | } |
| 1151 | |
| 1152 | |
| 1153 | void Simulator::VisitLogicalImmediate(const Instruction* instr) { |
| 1154 | LogicalHelper(instr, instr->GetImmLogical()); |
| 1155 | } |
| 1156 | |
| 1157 | |
| 1158 | void Simulator::LogicalHelper(const Instruction* instr, int64_t op2) { |
| 1159 | unsigned reg_size = instr->GetSixtyFourBits() ? kXRegSize : kWRegSize; |
| 1160 | int64_t op1 = ReadRegister(reg_size, instr->GetRn()); |
| 1161 | int64_t result = 0; |
| 1162 | bool update_flags = false; |
| 1163 | |
| 1164 | // Switch on the logical operation, stripping out the NOT bit, as it has a |
| 1165 | // different meaning for logical immediate instructions. |
| 1166 | switch (instr->Mask(LogicalOpMask & ~NOT)) { |
| 1167 | case ANDS: |
| 1168 | update_flags = true; |
| 1169 | VIXL_FALLTHROUGH(); |
| 1170 | case AND: |
| 1171 | result = op1 & op2; |
| 1172 | break; |
| 1173 | case ORR: |
| 1174 | result = op1 | op2; |
| 1175 | break; |
| 1176 | case EOR: |
| 1177 | result = op1 ^ op2; |
| 1178 | break; |
| 1179 | default: |
| 1180 | VIXL_UNIMPLEMENTED(); |
| 1181 | } |
| 1182 | |
| 1183 | if (update_flags) { |
| 1184 | ReadNzcv().SetN(CalcNFlag(result, reg_size)); |
| 1185 | ReadNzcv().SetZ(CalcZFlag(result)); |
| 1186 | ReadNzcv().SetC(0); |
| 1187 | ReadNzcv().SetV(0); |
| 1188 | LogSystemRegister(NZCV); |
| 1189 | } |
| 1190 | |
| 1191 | WriteRegister(reg_size, |
| 1192 | instr->GetRd(), |
| 1193 | result, |
| 1194 | LogRegWrites, |
| 1195 | instr->GetRdMode()); |
| 1196 | } |
| 1197 | |
| 1198 | |
| 1199 | void Simulator::VisitConditionalCompareRegister(const Instruction* instr) { |
| 1200 | unsigned reg_size = instr->GetSixtyFourBits() ? kXRegSize : kWRegSize; |
| 1201 | ConditionalCompareHelper(instr, ReadRegister(reg_size, instr->GetRm())); |
| 1202 | } |
| 1203 | |
| 1204 | |
| 1205 | void Simulator::VisitConditionalCompareImmediate(const Instruction* instr) { |
| 1206 | ConditionalCompareHelper(instr, instr->GetImmCondCmp()); |
| 1207 | } |
| 1208 | |
| 1209 | |
| 1210 | void Simulator::ConditionalCompareHelper(const Instruction* instr, |
| 1211 | int64_t op2) { |
| 1212 | unsigned reg_size = instr->GetSixtyFourBits() ? kXRegSize : kWRegSize; |
| 1213 | int64_t op1 = ReadRegister(reg_size, instr->GetRn()); |
| 1214 | |
| 1215 | if (ConditionPassed(instr->GetCondition())) { |
| 1216 | // If the condition passes, set the status flags to the result of comparing |
| 1217 | // the operands. |
| 1218 | if (instr->Mask(ConditionalCompareMask) == CCMP) { |
| 1219 | AddWithCarry(reg_size, true, op1, ~op2, 1); |
| 1220 | } else { |
| 1221 | VIXL_ASSERT(instr->Mask(ConditionalCompareMask) == CCMN); |
| 1222 | AddWithCarry(reg_size, true, op1, op2, 0); |
| 1223 | } |
| 1224 | } else { |
| 1225 | // If the condition fails, set the status flags to the nzcv immediate. |
| 1226 | ReadNzcv().SetFlags(instr->GetNzcv()); |
| 1227 | LogSystemRegister(NZCV); |
| 1228 | } |
| 1229 | } |
| 1230 | |
| 1231 | |
| 1232 | void Simulator::VisitLoadStoreUnsignedOffset(const Instruction* instr) { |
| 1233 | int offset = instr->GetImmLSUnsigned() << instr->GetSizeLS(); |
| 1234 | LoadStoreHelper(instr, offset, Offset); |
| 1235 | } |
| 1236 | |
| 1237 | |
| 1238 | void Simulator::VisitLoadStoreUnscaledOffset(const Instruction* instr) { |
| 1239 | LoadStoreHelper(instr, instr->GetImmLS(), Offset); |
| 1240 | } |
| 1241 | |
| 1242 | |
| 1243 | void Simulator::VisitLoadStorePreIndex(const Instruction* instr) { |
| 1244 | LoadStoreHelper(instr, instr->GetImmLS(), PreIndex); |
| 1245 | } |
| 1246 | |
| 1247 | |
| 1248 | void Simulator::VisitLoadStorePostIndex(const Instruction* instr) { |
| 1249 | LoadStoreHelper(instr, instr->GetImmLS(), PostIndex); |
| 1250 | } |
| 1251 | |
| 1252 | |
| 1253 | void Simulator::VisitLoadStoreRegisterOffset(const Instruction* instr) { |
| 1254 | Extend ext = static_cast<Extend>(instr->GetExtendMode()); |
| 1255 | VIXL_ASSERT((ext == UXTW) || (ext == UXTX) || (ext == SXTW) || (ext == SXTX)); |
| 1256 | unsigned shift_amount = instr->GetImmShiftLS() * instr->GetSizeLS(); |
| 1257 | |
| 1258 | int64_t offset = |
| 1259 | ExtendValue(kXRegSize, ReadXRegister(instr->GetRm()), ext, shift_amount); |
| 1260 | LoadStoreHelper(instr, offset, Offset); |
| 1261 | } |
| 1262 | |
| 1263 | |
| 1264 | void Simulator::LoadStoreHelper(const Instruction* instr, |
| 1265 | int64_t offset, |
| 1266 | AddrMode addrmode) { |
| 1267 | unsigned srcdst = instr->GetRt(); |
| 1268 | uintptr_t address = AddressModeHelper(instr->GetRn(), offset, addrmode); |
| 1269 | |
| 1270 | LoadStoreOp op = static_cast<LoadStoreOp>(instr->Mask(LoadStoreMask)); |
| 1271 | switch (op) { |
| 1272 | case LDRB_w: |
| 1273 | WriteWRegister(srcdst, Memory::Read<uint8_t>(address), NoRegLog); |
| 1274 | break; |
| 1275 | case LDRH_w: |
| 1276 | WriteWRegister(srcdst, Memory::Read<uint16_t>(address), NoRegLog); |
| 1277 | break; |
| 1278 | case LDR_w: |
| 1279 | WriteWRegister(srcdst, Memory::Read<uint32_t>(address), NoRegLog); |
| 1280 | break; |
| 1281 | case LDR_x: |
| 1282 | WriteXRegister(srcdst, Memory::Read<uint64_t>(address), NoRegLog); |
| 1283 | break; |
| 1284 | case LDRSB_w: |
| 1285 | WriteWRegister(srcdst, Memory::Read<int8_t>(address), NoRegLog); |
| 1286 | break; |
| 1287 | case LDRSH_w: |
| 1288 | WriteWRegister(srcdst, Memory::Read<int16_t>(address), NoRegLog); |
| 1289 | break; |
| 1290 | case LDRSB_x: |
| 1291 | WriteXRegister(srcdst, Memory::Read<int8_t>(address), NoRegLog); |
| 1292 | break; |
| 1293 | case LDRSH_x: |
| 1294 | WriteXRegister(srcdst, Memory::Read<int16_t>(address), NoRegLog); |
| 1295 | break; |
| 1296 | case LDRSW_x: |
| 1297 | WriteXRegister(srcdst, Memory::Read<int32_t>(address), NoRegLog); |
| 1298 | break; |
| 1299 | case LDR_b: |
| 1300 | WriteBRegister(srcdst, Memory::Read<uint8_t>(address), NoRegLog); |
| 1301 | break; |
| 1302 | case LDR_h: |
| 1303 | WriteHRegister(srcdst, Memory::Read<uint16_t>(address), NoRegLog); |
| 1304 | break; |
| 1305 | case LDR_s: |
| 1306 | WriteSRegister(srcdst, Memory::Read<float>(address), NoRegLog); |
| 1307 | break; |
| 1308 | case LDR_d: |
| 1309 | WriteDRegister(srcdst, Memory::Read<double>(address), NoRegLog); |
| 1310 | break; |
| 1311 | case LDR_q: |
| 1312 | WriteQRegister(srcdst, Memory::Read<qreg_t>(address), NoRegLog); |
| 1313 | break; |
| 1314 | |
| 1315 | case STRB_w: |
| 1316 | Memory::Write<uint8_t>(address, ReadWRegister(srcdst)); |
| 1317 | break; |
| 1318 | case STRH_w: |
| 1319 | Memory::Write<uint16_t>(address, ReadWRegister(srcdst)); |
| 1320 | break; |
| 1321 | case STR_w: |
| 1322 | Memory::Write<uint32_t>(address, ReadWRegister(srcdst)); |
| 1323 | break; |
| 1324 | case STR_x: |
| 1325 | Memory::Write<uint64_t>(address, ReadXRegister(srcdst)); |
| 1326 | break; |
| 1327 | case STR_b: |
| 1328 | Memory::Write<uint8_t>(address, ReadBRegister(srcdst)); |
| 1329 | break; |
| 1330 | case STR_h: |
| 1331 | Memory::Write<uint16_t>(address, ReadHRegister(srcdst)); |
| 1332 | break; |
| 1333 | case STR_s: |
| 1334 | Memory::Write<float>(address, ReadSRegister(srcdst)); |
| 1335 | break; |
| 1336 | case STR_d: |
| 1337 | Memory::Write<double>(address, ReadDRegister(srcdst)); |
| 1338 | break; |
| 1339 | case STR_q: |
| 1340 | Memory::Write<qreg_t>(address, ReadQRegister(srcdst)); |
| 1341 | break; |
| 1342 | |
| 1343 | // Ignore prfm hint instructions. |
| 1344 | case PRFM: |
| 1345 | break; |
| 1346 | |
| 1347 | default: |
| 1348 | VIXL_UNIMPLEMENTED(); |
| 1349 | } |
| 1350 | |
| 1351 | unsigned access_size = 1 << instr->GetSizeLS(); |
| 1352 | if (instr->IsLoad()) { |
| 1353 | if ((op == LDR_s) || (op == LDR_d)) { |
| 1354 | LogVRead(address, srcdst, GetPrintRegisterFormatForSizeFP(access_size)); |
| 1355 | } else if ((op == LDR_b) || (op == LDR_h) || (op == LDR_q)) { |
| 1356 | LogVRead(address, srcdst, GetPrintRegisterFormatForSize(access_size)); |
| 1357 | } else { |
| 1358 | LogRead(address, srcdst, GetPrintRegisterFormatForSize(access_size)); |
| 1359 | } |
| 1360 | } else if (instr->IsStore()) { |
| 1361 | if ((op == STR_s) || (op == STR_d)) { |
| 1362 | LogVWrite(address, srcdst, GetPrintRegisterFormatForSizeFP(access_size)); |
| 1363 | } else if ((op == STR_b) || (op == STR_h) || (op == STR_q)) { |
| 1364 | LogVWrite(address, srcdst, GetPrintRegisterFormatForSize(access_size)); |
| 1365 | } else { |
| 1366 | LogWrite(address, srcdst, GetPrintRegisterFormatForSize(access_size)); |
| 1367 | } |
| 1368 | } else { |
| 1369 | VIXL_ASSERT(op == PRFM); |
| 1370 | } |
| 1371 | |
| 1372 | local_monitor_.MaybeClear(); |
| 1373 | } |
| 1374 | |
| 1375 | |
| 1376 | void Simulator::VisitLoadStorePairOffset(const Instruction* instr) { |
| 1377 | LoadStorePairHelper(instr, Offset); |
| 1378 | } |
| 1379 | |
| 1380 | |
| 1381 | void Simulator::VisitLoadStorePairPreIndex(const Instruction* instr) { |
| 1382 | LoadStorePairHelper(instr, PreIndex); |
| 1383 | } |
| 1384 | |
| 1385 | |
| 1386 | void Simulator::VisitLoadStorePairPostIndex(const Instruction* instr) { |
| 1387 | LoadStorePairHelper(instr, PostIndex); |
| 1388 | } |
| 1389 | |
| 1390 | |
| 1391 | void Simulator::VisitLoadStorePairNonTemporal(const Instruction* instr) { |
| 1392 | LoadStorePairHelper(instr, Offset); |
| 1393 | } |
| 1394 | |
| 1395 | |
| 1396 | void Simulator::LoadStorePairHelper(const Instruction* instr, |
| 1397 | AddrMode addrmode) { |
| 1398 | unsigned rt = instr->GetRt(); |
| 1399 | unsigned rt2 = instr->GetRt2(); |
| 1400 | int element_size = 1 << instr->GetSizeLSPair(); |
| 1401 | int64_t offset = instr->GetImmLSPair() * element_size; |
| 1402 | uintptr_t address = AddressModeHelper(instr->GetRn(), offset, addrmode); |
| 1403 | uintptr_t address2 = address + element_size; |
| 1404 | |
| 1405 | LoadStorePairOp op = |
| 1406 | static_cast<LoadStorePairOp>(instr->Mask(LoadStorePairMask)); |
| 1407 | |
| 1408 | // 'rt' and 'rt2' can only be aliased for stores. |
| 1409 | VIXL_ASSERT(((op & LoadStorePairLBit) == 0) || (rt != rt2)); |
| 1410 | |
| 1411 | switch (op) { |
| 1412 | // Use NoRegLog to suppress the register trace (LOG_REGS, LOG_FP_REGS). We |
| 1413 | // will print a more detailed log. |
| 1414 | case LDP_w: { |
| 1415 | WriteWRegister(rt, Memory::Read<uint32_t>(address), NoRegLog); |
| 1416 | WriteWRegister(rt2, Memory::Read<uint32_t>(address2), NoRegLog); |
| 1417 | break; |
| 1418 | } |
| 1419 | case LDP_s: { |
| 1420 | WriteSRegister(rt, Memory::Read<float>(address), NoRegLog); |
| 1421 | WriteSRegister(rt2, Memory::Read<float>(address2), NoRegLog); |
| 1422 | break; |
| 1423 | } |
| 1424 | case LDP_x: { |
| 1425 | WriteXRegister(rt, Memory::Read<uint64_t>(address), NoRegLog); |
| 1426 | WriteXRegister(rt2, Memory::Read<uint64_t>(address2), NoRegLog); |
| 1427 | break; |
| 1428 | } |
| 1429 | case LDP_d: { |
| 1430 | WriteDRegister(rt, Memory::Read<double>(address), NoRegLog); |
| 1431 | WriteDRegister(rt2, Memory::Read<double>(address2), NoRegLog); |
| 1432 | break; |
| 1433 | } |
| 1434 | case LDP_q: { |
| 1435 | WriteQRegister(rt, Memory::Read<qreg_t>(address), NoRegLog); |
| 1436 | WriteQRegister(rt2, Memory::Read<qreg_t>(address2), NoRegLog); |
| 1437 | break; |
| 1438 | } |
| 1439 | case LDPSW_x: { |
| 1440 | WriteXRegister(rt, Memory::Read<int32_t>(address), NoRegLog); |
| 1441 | WriteXRegister(rt2, Memory::Read<int32_t>(address2), NoRegLog); |
| 1442 | break; |
| 1443 | } |
| 1444 | case STP_w: { |
| 1445 | Memory::Write<uint32_t>(address, ReadWRegister(rt)); |
| 1446 | Memory::Write<uint32_t>(address2, ReadWRegister(rt2)); |
| 1447 | break; |
| 1448 | } |
| 1449 | case STP_s: { |
| 1450 | Memory::Write<float>(address, ReadSRegister(rt)); |
| 1451 | Memory::Write<float>(address2, ReadSRegister(rt2)); |
| 1452 | break; |
| 1453 | } |
| 1454 | case STP_x: { |
| 1455 | Memory::Write<uint64_t>(address, ReadXRegister(rt)); |
| 1456 | Memory::Write<uint64_t>(address2, ReadXRegister(rt2)); |
| 1457 | break; |
| 1458 | } |
| 1459 | case STP_d: { |
| 1460 | Memory::Write<double>(address, ReadDRegister(rt)); |
| 1461 | Memory::Write<double>(address2, ReadDRegister(rt2)); |
| 1462 | break; |
| 1463 | } |
| 1464 | case STP_q: { |
| 1465 | Memory::Write<qreg_t>(address, ReadQRegister(rt)); |
| 1466 | Memory::Write<qreg_t>(address2, ReadQRegister(rt2)); |
| 1467 | break; |
| 1468 | } |
| 1469 | default: |
| 1470 | VIXL_UNREACHABLE(); |
| 1471 | } |
| 1472 | |
| 1473 | // Print a detailed trace (including the memory address) instead of the basic |
| 1474 | // register:value trace generated by set_*reg(). |
| 1475 | if (instr->IsLoad()) { |
| 1476 | if ((op == LDP_s) || (op == LDP_d)) { |
| 1477 | LogVRead(address, rt, GetPrintRegisterFormatForSizeFP(element_size)); |
| 1478 | LogVRead(address2, rt2, GetPrintRegisterFormatForSizeFP(element_size)); |
| 1479 | } else if (op == LDP_q) { |
| 1480 | LogVRead(address, rt, GetPrintRegisterFormatForSize(element_size)); |
| 1481 | LogVRead(address2, rt2, GetPrintRegisterFormatForSize(element_size)); |
| 1482 | } else { |
| 1483 | LogRead(address, rt, GetPrintRegisterFormatForSize(element_size)); |
| 1484 | LogRead(address2, rt2, GetPrintRegisterFormatForSize(element_size)); |
| 1485 | } |
| 1486 | } else { |
| 1487 | if ((op == STP_s) || (op == STP_d)) { |
| 1488 | LogVWrite(address, rt, GetPrintRegisterFormatForSizeFP(element_size)); |
| 1489 | LogVWrite(address2, rt2, GetPrintRegisterFormatForSizeFP(element_size)); |
| 1490 | } else if (op == STP_q) { |
| 1491 | LogVWrite(address, rt, GetPrintRegisterFormatForSize(element_size)); |
| 1492 | LogVWrite(address2, rt2, GetPrintRegisterFormatForSize(element_size)); |
| 1493 | } else { |
| 1494 | LogWrite(address, rt, GetPrintRegisterFormatForSize(element_size)); |
| 1495 | LogWrite(address2, rt2, GetPrintRegisterFormatForSize(element_size)); |
| 1496 | } |
| 1497 | } |
| 1498 | |
| 1499 | local_monitor_.MaybeClear(); |
| 1500 | } |
| 1501 | |
| 1502 | |
| 1503 | void Simulator::PrintExclusiveAccessWarning() { |
| 1504 | if (print_exclusive_access_warning_) { |
| 1505 | fprintf(stderr, |
| 1506 | "%sWARNING:%s VIXL simulator support for " |
| 1507 | "load-/store-/clear-exclusive " |
| 1508 | "instructions is limited. Refer to the README for details.%s\n", |
| 1509 | clr_warning, |
| 1510 | clr_warning_message, |
| 1511 | clr_normal); |
| 1512 | print_exclusive_access_warning_ = false; |
| 1513 | } |
| 1514 | } |
| 1515 | |
| 1516 | |
| 1517 | void Simulator::VisitLoadStoreExclusive(const Instruction* instr) { |
| 1518 | PrintExclusiveAccessWarning(); |
| 1519 | |
| 1520 | unsigned rs = instr->GetRs(); |
| 1521 | unsigned rt = instr->GetRt(); |
| 1522 | unsigned rt2 = instr->GetRt2(); |
| 1523 | unsigned rn = instr->GetRn(); |
| 1524 | |
| 1525 | LoadStoreExclusive op = |
| 1526 | static_cast<LoadStoreExclusive>(instr->Mask(LoadStoreExclusiveMask)); |
| 1527 | |
| 1528 | bool is_acquire_release = instr->GetLdStXAcquireRelease(); |
| 1529 | bool is_exclusive = !instr->GetLdStXNotExclusive(); |
| 1530 | bool is_load = instr->GetLdStXLoad(); |
| 1531 | bool is_pair = instr->GetLdStXPair(); |
| 1532 | |
| 1533 | unsigned element_size = 1 << instr->GetLdStXSizeLog2(); |
| 1534 | unsigned access_size = is_pair ? element_size * 2 : element_size; |
| 1535 | uint64_t address = ReadRegister<uint64_t>(rn, Reg31IsStackPointer); |
| 1536 | |
| 1537 | // Verify that the address is available to the host. |
| 1538 | VIXL_ASSERT(address == static_cast<uintptr_t>(address)); |
| 1539 | |
| 1540 | // Check the alignment of `address`. |
| 1541 | if (AlignDown(address, access_size) != address) { |
| 1542 | VIXL_ALIGNMENT_EXCEPTION(); |
| 1543 | } |
| 1544 | |
| 1545 | // The sp must be aligned to 16 bytes when it is accessed. |
| 1546 | if ((rn == 31) && (AlignDown(address, 16) != address)) { |
| 1547 | VIXL_ALIGNMENT_EXCEPTION(); |
| 1548 | } |
| 1549 | |
| 1550 | if (is_load) { |
| 1551 | if (is_exclusive) { |
| 1552 | local_monitor_.MarkExclusive(address, access_size); |
| 1553 | } else { |
| 1554 | // Any non-exclusive load can clear the local monitor as a side effect. We |
| 1555 | // don't need to do this, but it is useful to stress the simulated code. |
| 1556 | local_monitor_.Clear(); |
| 1557 | } |
| 1558 | |
| 1559 | // Use NoRegLog to suppress the register trace (LOG_REGS, LOG_FP_REGS). We |
| 1560 | // will print a more detailed log. |
| 1561 | switch (op) { |
| 1562 | case LDXRB_w: |
| 1563 | case LDAXRB_w: |
| 1564 | case LDARB_w: |
| 1565 | WriteWRegister(rt, Memory::Read<uint8_t>(address), NoRegLog); |
| 1566 | break; |
| 1567 | case LDXRH_w: |
| 1568 | case LDAXRH_w: |
| 1569 | case LDARH_w: |
| 1570 | WriteWRegister(rt, Memory::Read<uint16_t>(address), NoRegLog); |
| 1571 | break; |
| 1572 | case LDXR_w: |
| 1573 | case LDAXR_w: |
| 1574 | case LDAR_w: |
| 1575 | WriteWRegister(rt, Memory::Read<uint32_t>(address), NoRegLog); |
| 1576 | break; |
| 1577 | case LDXR_x: |
| 1578 | case LDAXR_x: |
| 1579 | case LDAR_x: |
| 1580 | WriteXRegister(rt, Memory::Read<uint64_t>(address), NoRegLog); |
| 1581 | break; |
| 1582 | case LDXP_w: |
| 1583 | case LDAXP_w: |
| 1584 | WriteWRegister(rt, Memory::Read<uint32_t>(address), NoRegLog); |
| 1585 | WriteWRegister(rt2, |
| 1586 | Memory::Read<uint32_t>(address + element_size), |
| 1587 | NoRegLog); |
| 1588 | break; |
| 1589 | case LDXP_x: |
| 1590 | case LDAXP_x: |
| 1591 | WriteXRegister(rt, Memory::Read<uint64_t>(address), NoRegLog); |
| 1592 | WriteXRegister(rt2, |
| 1593 | Memory::Read<uint64_t>(address + element_size), |
| 1594 | NoRegLog); |
| 1595 | break; |
| 1596 | default: |
| 1597 | VIXL_UNREACHABLE(); |
| 1598 | } |
| 1599 | |
| 1600 | if (is_acquire_release) { |
| 1601 | // Approximate load-acquire by issuing a full barrier after the load. |
| 1602 | __sync_synchronize(); |
| 1603 | } |
| 1604 | |
| 1605 | LogRead(address, rt, GetPrintRegisterFormatForSize(element_size)); |
| 1606 | if (is_pair) { |
| 1607 | LogRead(address + element_size, |
| 1608 | rt2, |
| 1609 | GetPrintRegisterFormatForSize(element_size)); |
| 1610 | } |
| 1611 | } else { |
| 1612 | if (is_acquire_release) { |
| 1613 | // Approximate store-release by issuing a full barrier before the store. |
| 1614 | __sync_synchronize(); |
| 1615 | } |
| 1616 | |
| 1617 | bool do_store = true; |
| 1618 | if (is_exclusive) { |
| 1619 | do_store = local_monitor_.IsExclusive(address, access_size) && |
| 1620 | global_monitor_.IsExclusive(address, access_size); |
| 1621 | WriteWRegister(rs, do_store ? 0 : 1); |
| 1622 | |
| 1623 | // - All exclusive stores explicitly clear the local monitor. |
| 1624 | local_monitor_.Clear(); |
| 1625 | } else { |
| 1626 | // - Any other store can clear the local monitor as a side effect. |
| 1627 | local_monitor_.MaybeClear(); |
| 1628 | } |
| 1629 | |
| 1630 | if (do_store) { |
| 1631 | switch (op) { |
| 1632 | case STXRB_w: |
| 1633 | case STLXRB_w: |
| 1634 | case STLRB_w: |
| 1635 | Memory::Write<uint8_t>(address, ReadWRegister(rt)); |
| 1636 | break; |
| 1637 | case STXRH_w: |
| 1638 | case STLXRH_w: |
| 1639 | case STLRH_w: |
| 1640 | Memory::Write<uint16_t>(address, ReadWRegister(rt)); |
| 1641 | break; |
| 1642 | case STXR_w: |
| 1643 | case STLXR_w: |
| 1644 | case STLR_w: |
| 1645 | Memory::Write<uint32_t>(address, ReadWRegister(rt)); |
| 1646 | break; |
| 1647 | case STXR_x: |
| 1648 | case STLXR_x: |
| 1649 | case STLR_x: |
| 1650 | Memory::Write<uint64_t>(address, ReadXRegister(rt)); |
| 1651 | break; |
| 1652 | case STXP_w: |
| 1653 | case STLXP_w: |
| 1654 | Memory::Write<uint32_t>(address, ReadWRegister(rt)); |
| 1655 | Memory::Write<uint32_t>(address + element_size, ReadWRegister(rt2)); |
| 1656 | break; |
| 1657 | case STXP_x: |
| 1658 | case STLXP_x: |
| 1659 | Memory::Write<uint64_t>(address, ReadXRegister(rt)); |
| 1660 | Memory::Write<uint64_t>(address + element_size, ReadXRegister(rt2)); |
| 1661 | break; |
| 1662 | default: |
| 1663 | VIXL_UNREACHABLE(); |
| 1664 | } |
| 1665 | |
| 1666 | LogWrite(address, rt, GetPrintRegisterFormatForSize(element_size)); |
| 1667 | if (is_pair) { |
| 1668 | LogWrite(address + element_size, |
| 1669 | rt2, |
| 1670 | GetPrintRegisterFormatForSize(element_size)); |
| 1671 | } |
| 1672 | } |
| 1673 | } |
| 1674 | } |
| 1675 | |
| 1676 | |
| 1677 | void Simulator::VisitLoadLiteral(const Instruction* instr) { |
| 1678 | unsigned rt = instr->GetRt(); |
| 1679 | uint64_t address = instr->GetLiteralAddress<uint64_t>(); |
| 1680 | |
| 1681 | // Verify that the calculated address is available to the host. |
| 1682 | VIXL_ASSERT(address == static_cast<uintptr_t>(address)); |
| 1683 | |
| 1684 | switch (instr->Mask(LoadLiteralMask)) { |
| 1685 | // Use NoRegLog to suppress the register trace (LOG_REGS, LOG_VREGS), then |
| 1686 | // print a more detailed log. |
| 1687 | case LDR_w_lit: |
| 1688 | WriteWRegister(rt, Memory::Read<uint32_t>(address), NoRegLog); |
| 1689 | LogRead(address, rt, kPrintWReg); |
| 1690 | break; |
| 1691 | case LDR_x_lit: |
| 1692 | WriteXRegister(rt, Memory::Read<uint64_t>(address), NoRegLog); |
| 1693 | LogRead(address, rt, kPrintXReg); |
| 1694 | break; |
| 1695 | case LDR_s_lit: |
| 1696 | WriteSRegister(rt, Memory::Read<float>(address), NoRegLog); |
| 1697 | LogVRead(address, rt, kPrintSReg); |
| 1698 | break; |
| 1699 | case LDR_d_lit: |
| 1700 | WriteDRegister(rt, Memory::Read<double>(address), NoRegLog); |
| 1701 | LogVRead(address, rt, kPrintDReg); |
| 1702 | break; |
| 1703 | case LDR_q_lit: |
| 1704 | WriteQRegister(rt, Memory::Read<qreg_t>(address), NoRegLog); |
| 1705 | LogVRead(address, rt, kPrintReg1Q); |
| 1706 | break; |
| 1707 | case LDRSW_x_lit: |
| 1708 | WriteXRegister(rt, Memory::Read<int32_t>(address), NoRegLog); |
| 1709 | LogRead(address, rt, kPrintWReg); |
| 1710 | break; |
| 1711 | |
| 1712 | // Ignore prfm hint instructions. |
| 1713 | case PRFM_lit: |
| 1714 | break; |
| 1715 | |
| 1716 | default: |
| 1717 | VIXL_UNREACHABLE(); |
| 1718 | } |
| 1719 | |
| 1720 | local_monitor_.MaybeClear(); |
| 1721 | } |
| 1722 | |
| 1723 | |
| 1724 | uintptr_t Simulator::AddressModeHelper(unsigned addr_reg, |
| 1725 | int64_t offset, |
| 1726 | AddrMode addrmode) { |
| 1727 | uint64_t address = ReadXRegister(addr_reg, Reg31IsStackPointer); |
| 1728 | |
| 1729 | if ((addr_reg == 31) && ((address % 16) != 0)) { |
| 1730 | // When the base register is SP the stack pointer is required to be |
| 1731 | // quadword aligned prior to the address calculation and write-backs. |
| 1732 | // Misalignment will cause a stack alignment fault. |
| 1733 | VIXL_ALIGNMENT_EXCEPTION(); |
| 1734 | } |
| 1735 | |
| 1736 | if ((addrmode == PreIndex) || (addrmode == PostIndex)) { |
| 1737 | VIXL_ASSERT(offset != 0); |
| 1738 | // Only preindex should log the register update here. For Postindex, the |
| 1739 | // update will be printed automatically by LogWrittenRegisters _after_ the |
| 1740 | // memory access itself is logged. |
| 1741 | RegLogMode log_mode = (addrmode == PreIndex) ? LogRegWrites : NoRegLog; |
| 1742 | WriteXRegister(addr_reg, address + offset, log_mode, Reg31IsStackPointer); |
| 1743 | } |
| 1744 | |
| 1745 | if ((addrmode == Offset) || (addrmode == PreIndex)) { |
| 1746 | address += offset; |
| 1747 | } |
| 1748 | |
| 1749 | // Verify that the calculated address is available to the host. |
| 1750 | VIXL_ASSERT(address == static_cast<uintptr_t>(address)); |
| 1751 | |
| 1752 | return static_cast<uintptr_t>(address); |
| 1753 | } |
| 1754 | |
| 1755 | |
| 1756 | void Simulator::VisitMoveWideImmediate(const Instruction* instr) { |
| 1757 | MoveWideImmediateOp mov_op = |
| 1758 | static_cast<MoveWideImmediateOp>(instr->Mask(MoveWideImmediateMask)); |
| 1759 | int64_t new_xn_val = 0; |
| 1760 | |
| 1761 | bool is_64_bits = instr->GetSixtyFourBits() == 1; |
| 1762 | // Shift is limited for W operations. |
| 1763 | VIXL_ASSERT(is_64_bits || (instr->GetShiftMoveWide() < 2)); |
| 1764 | |
| 1765 | // Get the shifted immediate. |
| 1766 | int64_t shift = instr->GetShiftMoveWide() * 16; |
| 1767 | int64_t shifted_imm16 = static_cast<int64_t>(instr->GetImmMoveWide()) |
| 1768 | << shift; |
| 1769 | |
| 1770 | // Compute the new value. |
| 1771 | switch (mov_op) { |
| 1772 | case MOVN_w: |
| 1773 | case MOVN_x: { |
| 1774 | new_xn_val = ~shifted_imm16; |
| 1775 | if (!is_64_bits) new_xn_val &= kWRegMask; |
| 1776 | break; |
| 1777 | } |
| 1778 | case MOVK_w: |
| 1779 | case MOVK_x: { |
| 1780 | unsigned reg_code = instr->GetRd(); |
| 1781 | int64_t prev_xn_val = |
| 1782 | is_64_bits ? ReadXRegister(reg_code) : ReadWRegister(reg_code); |
| 1783 | new_xn_val = (prev_xn_val & ~(INT64_C(0xffff) << shift)) | shifted_imm16; |
| 1784 | break; |
| 1785 | } |
| 1786 | case MOVZ_w: |
| 1787 | case MOVZ_x: { |
| 1788 | new_xn_val = shifted_imm16; |
| 1789 | break; |
| 1790 | } |
| 1791 | default: |
| 1792 | VIXL_UNREACHABLE(); |
| 1793 | } |
| 1794 | |
| 1795 | // Update the destination register. |
| 1796 | WriteXRegister(instr->GetRd(), new_xn_val); |
| 1797 | } |
| 1798 | |
| 1799 | |
| 1800 | void Simulator::VisitConditionalSelect(const Instruction* instr) { |
| 1801 | uint64_t new_val = ReadXRegister(instr->GetRn()); |
| 1802 | |
| 1803 | if (ConditionFailed(static_cast<Condition>(instr->GetCondition()))) { |
| 1804 | new_val = ReadXRegister(instr->GetRm()); |
| 1805 | switch (instr->Mask(ConditionalSelectMask)) { |
| 1806 | case CSEL_w: |
| 1807 | case CSEL_x: |
| 1808 | break; |
| 1809 | case CSINC_w: |
| 1810 | case CSINC_x: |
| 1811 | new_val++; |
| 1812 | break; |
| 1813 | case CSINV_w: |
| 1814 | case CSINV_x: |
| 1815 | new_val = ~new_val; |
| 1816 | break; |
| 1817 | case CSNEG_w: |
| 1818 | case CSNEG_x: |
| 1819 | new_val = -new_val; |
| 1820 | break; |
| 1821 | default: |
| 1822 | VIXL_UNIMPLEMENTED(); |
| 1823 | } |
| 1824 | } |
| 1825 | unsigned reg_size = instr->GetSixtyFourBits() ? kXRegSize : kWRegSize; |
| 1826 | WriteRegister(reg_size, instr->GetRd(), new_val); |
| 1827 | } |
| 1828 | |
| 1829 | |
| 1830 | void Simulator::VisitDataProcessing1Source(const Instruction* instr) { |
| 1831 | unsigned dst = instr->GetRd(); |
| 1832 | unsigned src = instr->GetRn(); |
| 1833 | |
| 1834 | switch (instr->Mask(DataProcessing1SourceMask)) { |
| 1835 | case RBIT_w: |
| 1836 | WriteWRegister(dst, ReverseBits(ReadWRegister(src))); |
| 1837 | break; |
| 1838 | case RBIT_x: |
| 1839 | WriteXRegister(dst, ReverseBits(ReadXRegister(src))); |
| 1840 | break; |
| 1841 | case REV16_w: |
| 1842 | WriteWRegister(dst, ReverseBytes(ReadWRegister(src), 1)); |
| 1843 | break; |
| 1844 | case REV16_x: |
| 1845 | WriteXRegister(dst, ReverseBytes(ReadXRegister(src), 1)); |
| 1846 | break; |
| 1847 | case REV_w: |
| 1848 | WriteWRegister(dst, ReverseBytes(ReadWRegister(src), 2)); |
| 1849 | break; |
| 1850 | case REV32_x: |
| 1851 | WriteXRegister(dst, ReverseBytes(ReadXRegister(src), 2)); |
| 1852 | break; |
| 1853 | case REV_x: |
| 1854 | WriteXRegister(dst, ReverseBytes(ReadXRegister(src), 3)); |
| 1855 | break; |
| 1856 | case CLZ_w: |
| 1857 | WriteWRegister(dst, CountLeadingZeros(ReadWRegister(src))); |
| 1858 | break; |
| 1859 | case CLZ_x: |
| 1860 | WriteXRegister(dst, CountLeadingZeros(ReadXRegister(src))); |
| 1861 | break; |
| 1862 | case CLS_w: |
| 1863 | WriteWRegister(dst, CountLeadingSignBits(ReadWRegister(src))); |
| 1864 | break; |
| 1865 | case CLS_x: |
| 1866 | WriteXRegister(dst, CountLeadingSignBits(ReadXRegister(src))); |
| 1867 | break; |
| 1868 | default: |
| 1869 | VIXL_UNIMPLEMENTED(); |
| 1870 | } |
| 1871 | } |
| 1872 | |
| 1873 | |
| 1874 | uint32_t Simulator::Poly32Mod2(unsigned n, uint64_t data, uint32_t poly) { |
| 1875 | VIXL_ASSERT((n > 32) && (n <= 64)); |
| 1876 | for (unsigned i = (n - 1); i >= 32; i--) { |
| 1877 | if (((data >> i) & 1) != 0) { |
| 1878 | uint64_t polysh32 = (uint64_t)poly << (i - 32); |
| 1879 | uint64_t mask = (UINT64_C(1) << i) - 1; |
| 1880 | data = ((data & mask) ^ polysh32); |
| 1881 | } |
| 1882 | } |
| 1883 | return data & 0xffffffff; |
| 1884 | } |
| 1885 | |
| 1886 | |
| 1887 | template <typename T> |
| 1888 | uint32_t Simulator::Crc32Checksum(uint32_t acc, T val, uint32_t poly) { |
| 1889 | unsigned size = sizeof(val) * 8; // Number of bits in type T. |
| 1890 | VIXL_ASSERT((size == 8) || (size == 16) || (size == 32)); |
| 1891 | uint64_t tempacc = static_cast<uint64_t>(ReverseBits(acc)) << size; |
| 1892 | uint64_t tempval = static_cast<uint64_t>(ReverseBits(val)) << 32; |
| 1893 | return ReverseBits(Poly32Mod2(32 + size, tempacc ^ tempval, poly)); |
| 1894 | } |
| 1895 | |
| 1896 | |
| 1897 | uint32_t Simulator::Crc32Checksum(uint32_t acc, uint64_t val, uint32_t poly) { |
| 1898 | // Poly32Mod2 cannot handle inputs with more than 32 bits, so compute |
| 1899 | // the CRC of each 32-bit word sequentially. |
| 1900 | acc = Crc32Checksum(acc, (uint32_t)(val & 0xffffffff), poly); |
| 1901 | return Crc32Checksum(acc, (uint32_t)(val >> 32), poly); |
| 1902 | } |
| 1903 | |
| 1904 | |
| 1905 | void Simulator::VisitDataProcessing2Source(const Instruction* instr) { |
| 1906 | Shift shift_op = NO_SHIFT; |
| 1907 | int64_t result = 0; |
| 1908 | unsigned reg_size = instr->GetSixtyFourBits() ? kXRegSize : kWRegSize; |
| 1909 | |
| 1910 | switch (instr->Mask(DataProcessing2SourceMask)) { |
| 1911 | case SDIV_w: { |
| 1912 | int32_t rn = ReadWRegister(instr->GetRn()); |
| 1913 | int32_t rm = ReadWRegister(instr->GetRm()); |
| 1914 | if ((rn == kWMinInt) && (rm == -1)) { |
| 1915 | result = kWMinInt; |
| 1916 | } else if (rm == 0) { |
| 1917 | // Division by zero can be trapped, but not on A-class processors. |
| 1918 | result = 0; |
| 1919 | } else { |
| 1920 | result = rn / rm; |
| 1921 | } |
| 1922 | break; |
| 1923 | } |
| 1924 | case SDIV_x: { |
| 1925 | int64_t rn = ReadXRegister(instr->GetRn()); |
| 1926 | int64_t rm = ReadXRegister(instr->GetRm()); |
| 1927 | if ((rn == kXMinInt) && (rm == -1)) { |
| 1928 | result = kXMinInt; |
| 1929 | } else if (rm == 0) { |
| 1930 | // Division by zero can be trapped, but not on A-class processors. |
| 1931 | result = 0; |
| 1932 | } else { |
| 1933 | result = rn / rm; |
| 1934 | } |
| 1935 | break; |
| 1936 | } |
| 1937 | case UDIV_w: { |
| 1938 | uint32_t rn = static_cast<uint32_t>(ReadWRegister(instr->GetRn())); |
| 1939 | uint32_t rm = static_cast<uint32_t>(ReadWRegister(instr->GetRm())); |
| 1940 | if (rm == 0) { |
| 1941 | // Division by zero can be trapped, but not on A-class processors. |
| 1942 | result = 0; |
| 1943 | } else { |
| 1944 | result = rn / rm; |
| 1945 | } |
| 1946 | break; |
| 1947 | } |
| 1948 | case UDIV_x: { |
| 1949 | uint64_t rn = static_cast<uint64_t>(ReadXRegister(instr->GetRn())); |
| 1950 | uint64_t rm = static_cast<uint64_t>(ReadXRegister(instr->GetRm())); |
| 1951 | if (rm == 0) { |
| 1952 | // Division by zero can be trapped, but not on A-class processors. |
| 1953 | result = 0; |
| 1954 | } else { |
| 1955 | result = rn / rm; |
| 1956 | } |
| 1957 | break; |
| 1958 | } |
| 1959 | case LSLV_w: |
| 1960 | case LSLV_x: |
| 1961 | shift_op = LSL; |
| 1962 | break; |
| 1963 | case LSRV_w: |
| 1964 | case LSRV_x: |
| 1965 | shift_op = LSR; |
| 1966 | break; |
| 1967 | case ASRV_w: |
| 1968 | case ASRV_x: |
| 1969 | shift_op = ASR; |
| 1970 | break; |
| 1971 | case RORV_w: |
| 1972 | case RORV_x: |
| 1973 | shift_op = ROR; |
| 1974 | break; |
| 1975 | case CRC32B: { |
| 1976 | uint32_t acc = ReadRegister<uint32_t>(instr->GetRn()); |
| 1977 | uint8_t val = ReadRegister<uint8_t>(instr->GetRm()); |
| 1978 | result = Crc32Checksum(acc, val, CRC32_POLY); |
| 1979 | break; |
| 1980 | } |
| 1981 | case CRC32H: { |
| 1982 | uint32_t acc = ReadRegister<uint32_t>(instr->GetRn()); |
| 1983 | uint16_t val = ReadRegister<uint16_t>(instr->GetRm()); |
| 1984 | result = Crc32Checksum(acc, val, CRC32_POLY); |
| 1985 | break; |
| 1986 | } |
| 1987 | case CRC32W: { |
| 1988 | uint32_t acc = ReadRegister<uint32_t>(instr->GetRn()); |
| 1989 | uint32_t val = ReadRegister<uint32_t>(instr->GetRm()); |
| 1990 | result = Crc32Checksum(acc, val, CRC32_POLY); |
| 1991 | break; |
| 1992 | } |
| 1993 | case CRC32X: { |
| 1994 | uint32_t acc = ReadRegister<uint32_t>(instr->GetRn()); |
| 1995 | uint64_t val = ReadRegister<uint64_t>(instr->GetRm()); |
| 1996 | result = Crc32Checksum(acc, val, CRC32_POLY); |
| 1997 | reg_size = kWRegSize; |
| 1998 | break; |
| 1999 | } |
| 2000 | case CRC32CB: { |
| 2001 | uint32_t acc = ReadRegister<uint32_t>(instr->GetRn()); |
| 2002 | uint8_t val = ReadRegister<uint8_t>(instr->GetRm()); |
| 2003 | result = Crc32Checksum(acc, val, CRC32C_POLY); |
| 2004 | break; |
| 2005 | } |
| 2006 | case CRC32CH: { |
| 2007 | uint32_t acc = ReadRegister<uint32_t>(instr->GetRn()); |
| 2008 | uint16_t val = ReadRegister<uint16_t>(instr->GetRm()); |
| 2009 | result = Crc32Checksum(acc, val, CRC32C_POLY); |
| 2010 | break; |
| 2011 | } |
| 2012 | case CRC32CW: { |
| 2013 | uint32_t acc = ReadRegister<uint32_t>(instr->GetRn()); |
| 2014 | uint32_t val = ReadRegister<uint32_t>(instr->GetRm()); |
| 2015 | result = Crc32Checksum(acc, val, CRC32C_POLY); |
| 2016 | break; |
| 2017 | } |
| 2018 | case CRC32CX: { |
| 2019 | uint32_t acc = ReadRegister<uint32_t>(instr->GetRn()); |
| 2020 | uint64_t val = ReadRegister<uint64_t>(instr->GetRm()); |
| 2021 | result = Crc32Checksum(acc, val, CRC32C_POLY); |
| 2022 | reg_size = kWRegSize; |
| 2023 | break; |
| 2024 | } |
| 2025 | default: |
| 2026 | VIXL_UNIMPLEMENTED(); |
| 2027 | } |
| 2028 | |
| 2029 | if (shift_op != NO_SHIFT) { |
| 2030 | // Shift distance encoded in the least-significant five/six bits of the |
| 2031 | // register. |
| 2032 | int mask = (instr->GetSixtyFourBits() == 1) ? 0x3f : 0x1f; |
| 2033 | unsigned shift = ReadWRegister(instr->GetRm()) & mask; |
| 2034 | result = ShiftOperand(reg_size, |
| 2035 | ReadRegister(reg_size, instr->GetRn()), |
| 2036 | shift_op, |
| 2037 | shift); |
| 2038 | } |
| 2039 | WriteRegister(reg_size, instr->GetRd(), result); |
| 2040 | } |
| 2041 | |
| 2042 | |
| 2043 | // The algorithm used is adapted from the one described in section 8.2 of |
| 2044 | // Hacker's Delight, by Henry S. Warren, Jr. |
| 2045 | // It assumes that a right shift on a signed integer is an arithmetic shift. |
| 2046 | // Type T must be either uint64_t or int64_t. |
| 2047 | template <typename T> |
| 2048 | static T MultiplyHigh(T u, T v) { |
| 2049 | uint64_t u0, v0, w0; |
| 2050 | T u1, v1, w1, w2, t; |
| 2051 | |
| 2052 | VIXL_ASSERT(sizeof(u) == sizeof(u0)); |
| 2053 | |
| 2054 | u0 = u & 0xffffffff; |
| 2055 | u1 = u >> 32; |
| 2056 | v0 = v & 0xffffffff; |
| 2057 | v1 = v >> 32; |
| 2058 | |
| 2059 | w0 = u0 * v0; |
| 2060 | t = u1 * v0 + (w0 >> 32); |
| 2061 | w1 = t & 0xffffffff; |
| 2062 | w2 = t >> 32; |
| 2063 | w1 = u0 * v1 + w1; |
| 2064 | |
| 2065 | return u1 * v1 + w2 + (w1 >> 32); |
| 2066 | } |
| 2067 | |
| 2068 | |
| 2069 | void Simulator::VisitDataProcessing3Source(const Instruction* instr) { |
| 2070 | unsigned reg_size = instr->GetSixtyFourBits() ? kXRegSize : kWRegSize; |
| 2071 | |
| 2072 | uint64_t result = 0; |
| 2073 | // Extract and sign- or zero-extend 32-bit arguments for widening operations. |
| 2074 | uint64_t rn_u32 = ReadRegister<uint32_t>(instr->GetRn()); |
| 2075 | uint64_t rm_u32 = ReadRegister<uint32_t>(instr->GetRm()); |
| 2076 | int64_t rn_s32 = ReadRegister<int32_t>(instr->GetRn()); |
| 2077 | int64_t rm_s32 = ReadRegister<int32_t>(instr->GetRm()); |
| 2078 | switch (instr->Mask(DataProcessing3SourceMask)) { |
| 2079 | case MADD_w: |
| 2080 | case MADD_x: |
| 2081 | result = ReadXRegister(instr->GetRa()) + |
| 2082 | (ReadXRegister(instr->GetRn()) * ReadXRegister(instr->GetRm())); |
| 2083 | break; |
| 2084 | case MSUB_w: |
| 2085 | case MSUB_x: |
| 2086 | result = ReadXRegister(instr->GetRa()) - |
| 2087 | (ReadXRegister(instr->GetRn()) * ReadXRegister(instr->GetRm())); |
| 2088 | break; |
| 2089 | case SMADDL_x: |
| 2090 | result = ReadXRegister(instr->GetRa()) + (rn_s32 * rm_s32); |
| 2091 | break; |
| 2092 | case SMSUBL_x: |
| 2093 | result = ReadXRegister(instr->GetRa()) - (rn_s32 * rm_s32); |
| 2094 | break; |
| 2095 | case UMADDL_x: |
| 2096 | result = ReadXRegister(instr->GetRa()) + (rn_u32 * rm_u32); |
| 2097 | break; |
| 2098 | case UMSUBL_x: |
| 2099 | result = ReadXRegister(instr->GetRa()) - (rn_u32 * rm_u32); |
| 2100 | break; |
| 2101 | case UMULH_x: |
| 2102 | result = MultiplyHigh(ReadRegister<uint64_t>(instr->GetRn()), |
| 2103 | ReadRegister<uint64_t>(instr->GetRm())); |
| 2104 | break; |
| 2105 | case SMULH_x: |
| 2106 | result = MultiplyHigh(ReadXRegister(instr->GetRn()), |
| 2107 | ReadXRegister(instr->GetRm())); |
| 2108 | break; |
| 2109 | default: |
| 2110 | VIXL_UNIMPLEMENTED(); |
| 2111 | } |
| 2112 | WriteRegister(reg_size, instr->GetRd(), result); |
| 2113 | } |
| 2114 | |
| 2115 | |
| 2116 | void Simulator::VisitBitfield(const Instruction* instr) { |
| 2117 | unsigned reg_size = instr->GetSixtyFourBits() ? kXRegSize : kWRegSize; |
| 2118 | int64_t reg_mask = instr->GetSixtyFourBits() ? kXRegMask : kWRegMask; |
| 2119 | int64_t R = instr->GetImmR(); |
| 2120 | int64_t S = instr->GetImmS(); |
| 2121 | int64_t diff = S - R; |
| 2122 | int64_t mask; |
| 2123 | if (diff >= 0) { |
| 2124 | mask = (diff < (reg_size - 1)) ? (INT64_C(1) << (diff + 1)) - 1 : reg_mask; |
| 2125 | } else { |
| 2126 | mask = (INT64_C(1) << (S + 1)) - 1; |
| 2127 | mask = (static_cast<uint64_t>(mask) >> R) | (mask << (reg_size - R)); |
| 2128 | diff += reg_size; |
| 2129 | } |
| 2130 | |
| 2131 | // inzero indicates if the extracted bitfield is inserted into the |
| 2132 | // destination register value or in zero. |
| 2133 | // If extend is true, extend the sign of the extracted bitfield. |
| 2134 | bool inzero = false; |
| 2135 | bool extend = false; |
| 2136 | switch (instr->Mask(BitfieldMask)) { |
| 2137 | case BFM_x: |
| 2138 | case BFM_w: |
| 2139 | break; |
| 2140 | case SBFM_x: |
| 2141 | case SBFM_w: |
| 2142 | inzero = true; |
| 2143 | extend = true; |
| 2144 | break; |
| 2145 | case UBFM_x: |
| 2146 | case UBFM_w: |
| 2147 | inzero = true; |
| 2148 | break; |
| 2149 | default: |
| 2150 | VIXL_UNIMPLEMENTED(); |
| 2151 | } |
| 2152 | |
| 2153 | int64_t dst = inzero ? 0 : ReadRegister(reg_size, instr->GetRd()); |
| 2154 | int64_t src = ReadRegister(reg_size, instr->GetRn()); |
| 2155 | // Rotate source bitfield into place. |
| 2156 | int64_t result = (static_cast<uint64_t>(src) >> R) | (src << (reg_size - R)); |
| 2157 | // Determine the sign extension. |
| 2158 | int64_t topbits = ((INT64_C(1) << (reg_size - diff - 1)) - 1) << (diff + 1); |
| 2159 | int64_t signbits = extend && ((src >> S) & 1) ? topbits : 0; |
| 2160 | |
| 2161 | // Merge sign extension, dest/zero and bitfield. |
| 2162 | result = signbits | (result & mask) | (dst & ~mask); |
| 2163 | |
| 2164 | WriteRegister(reg_size, instr->GetRd(), result); |
| 2165 | } |
| 2166 | |
| 2167 | |
| 2168 | void Simulator::VisitExtract(const Instruction* instr) { |
| 2169 | unsigned lsb = instr->GetImmS(); |
| 2170 | unsigned reg_size = (instr->GetSixtyFourBits() == 1) ? kXRegSize : kWRegSize; |
| 2171 | uint64_t low_res = |
| 2172 | static_cast<uint64_t>(ReadRegister(reg_size, instr->GetRm())) >> lsb; |
| 2173 | uint64_t high_res = (lsb == 0) ? 0 : ReadRegister(reg_size, instr->GetRn()) |
| 2174 | << (reg_size - lsb); |
| 2175 | WriteRegister(reg_size, instr->GetRd(), low_res | high_res); |
| 2176 | } |
| 2177 | |
| 2178 | |
| 2179 | void Simulator::VisitFPImmediate(const Instruction* instr) { |
| 2180 | AssertSupportedFPCR(); |
| 2181 | |
| 2182 | unsigned dest = instr->GetRd(); |
| 2183 | switch (instr->Mask(FPImmediateMask)) { |
| 2184 | case FMOV_s_imm: |
| 2185 | WriteSRegister(dest, instr->GetImmFP32()); |
| 2186 | break; |
| 2187 | case FMOV_d_imm: |
| 2188 | WriteDRegister(dest, instr->GetImmFP64()); |
| 2189 | break; |
| 2190 | default: |
| 2191 | VIXL_UNREACHABLE(); |
| 2192 | } |
| 2193 | } |
| 2194 | |
| 2195 | |
| 2196 | void Simulator::VisitFPIntegerConvert(const Instruction* instr) { |
| 2197 | AssertSupportedFPCR(); |
| 2198 | |
| 2199 | unsigned dst = instr->GetRd(); |
| 2200 | unsigned src = instr->GetRn(); |
| 2201 | |
| 2202 | FPRounding round = ReadRMode(); |
| 2203 | |
| 2204 | switch (instr->Mask(FPIntegerConvertMask)) { |
| 2205 | case FCVTAS_ws: |
| 2206 | WriteWRegister(dst, FPToInt32(ReadSRegister(src), FPTieAway)); |
| 2207 | break; |
| 2208 | case FCVTAS_xs: |
| 2209 | WriteXRegister(dst, FPToInt64(ReadSRegister(src), FPTieAway)); |
| 2210 | break; |
| 2211 | case FCVTAS_wd: |
| 2212 | WriteWRegister(dst, FPToInt32(ReadDRegister(src), FPTieAway)); |
| 2213 | break; |
| 2214 | case FCVTAS_xd: |
| 2215 | WriteXRegister(dst, FPToInt64(ReadDRegister(src), FPTieAway)); |
| 2216 | break; |
| 2217 | case FCVTAU_ws: |
| 2218 | WriteWRegister(dst, FPToUInt32(ReadSRegister(src), FPTieAway)); |
| 2219 | break; |
| 2220 | case FCVTAU_xs: |
| 2221 | WriteXRegister(dst, FPToUInt64(ReadSRegister(src), FPTieAway)); |
| 2222 | break; |
| 2223 | case FCVTAU_wd: |
| 2224 | WriteWRegister(dst, FPToUInt32(ReadDRegister(src), FPTieAway)); |
| 2225 | break; |
| 2226 | case FCVTAU_xd: |
| 2227 | WriteXRegister(dst, FPToUInt64(ReadDRegister(src), FPTieAway)); |
| 2228 | break; |
| 2229 | case FCVTMS_ws: |
| 2230 | WriteWRegister(dst, FPToInt32(ReadSRegister(src), FPNegativeInfinity)); |
| 2231 | break; |
| 2232 | case FCVTMS_xs: |
| 2233 | WriteXRegister(dst, FPToInt64(ReadSRegister(src), FPNegativeInfinity)); |
| 2234 | break; |
| 2235 | case FCVTMS_wd: |
| 2236 | WriteWRegister(dst, FPToInt32(ReadDRegister(src), FPNegativeInfinity)); |
| 2237 | break; |
| 2238 | case FCVTMS_xd: |
| 2239 | WriteXRegister(dst, FPToInt64(ReadDRegister(src), FPNegativeInfinity)); |
| 2240 | break; |
| 2241 | case FCVTMU_ws: |
| 2242 | WriteWRegister(dst, FPToUInt32(ReadSRegister(src), FPNegativeInfinity)); |
| 2243 | break; |
| 2244 | case FCVTMU_xs: |
| 2245 | WriteXRegister(dst, FPToUInt64(ReadSRegister(src), FPNegativeInfinity)); |
| 2246 | break; |
| 2247 | case FCVTMU_wd: |
| 2248 | WriteWRegister(dst, FPToUInt32(ReadDRegister(src), FPNegativeInfinity)); |
| 2249 | break; |
| 2250 | case FCVTMU_xd: |
| 2251 | WriteXRegister(dst, FPToUInt64(ReadDRegister(src), FPNegativeInfinity)); |
| 2252 | break; |
| 2253 | case FCVTPS_ws: |
| 2254 | WriteWRegister(dst, FPToInt32(ReadSRegister(src), FPPositiveInfinity)); |
| 2255 | break; |
| 2256 | case FCVTPS_xs: |
| 2257 | WriteXRegister(dst, FPToInt64(ReadSRegister(src), FPPositiveInfinity)); |
| 2258 | break; |
| 2259 | case FCVTPS_wd: |
| 2260 | WriteWRegister(dst, FPToInt32(ReadDRegister(src), FPPositiveInfinity)); |
| 2261 | break; |
| 2262 | case FCVTPS_xd: |
| 2263 | WriteXRegister(dst, FPToInt64(ReadDRegister(src), FPPositiveInfinity)); |
| 2264 | break; |
| 2265 | case FCVTPU_ws: |
| 2266 | WriteWRegister(dst, FPToUInt32(ReadSRegister(src), FPPositiveInfinity)); |
| 2267 | break; |
| 2268 | case FCVTPU_xs: |
| 2269 | WriteXRegister(dst, FPToUInt64(ReadSRegister(src), FPPositiveInfinity)); |
| 2270 | break; |
| 2271 | case FCVTPU_wd: |
| 2272 | WriteWRegister(dst, FPToUInt32(ReadDRegister(src), FPPositiveInfinity)); |
| 2273 | break; |
| 2274 | case FCVTPU_xd: |
| 2275 | WriteXRegister(dst, FPToUInt64(ReadDRegister(src), FPPositiveInfinity)); |
| 2276 | break; |
| 2277 | case FCVTNS_ws: |
| 2278 | WriteWRegister(dst, FPToInt32(ReadSRegister(src), FPTieEven)); |
| 2279 | break; |
| 2280 | case FCVTNS_xs: |
| 2281 | WriteXRegister(dst, FPToInt64(ReadSRegister(src), FPTieEven)); |
| 2282 | break; |
| 2283 | case FCVTNS_wd: |
| 2284 | WriteWRegister(dst, FPToInt32(ReadDRegister(src), FPTieEven)); |
| 2285 | break; |
| 2286 | case FCVTNS_xd: |
| 2287 | WriteXRegister(dst, FPToInt64(ReadDRegister(src), FPTieEven)); |
| 2288 | break; |
| 2289 | case FCVTNU_ws: |
| 2290 | WriteWRegister(dst, FPToUInt32(ReadSRegister(src), FPTieEven)); |
| 2291 | break; |
| 2292 | case FCVTNU_xs: |
| 2293 | WriteXRegister(dst, FPToUInt64(ReadSRegister(src), FPTieEven)); |
| 2294 | break; |
| 2295 | case FCVTNU_wd: |
| 2296 | WriteWRegister(dst, FPToUInt32(ReadDRegister(src), FPTieEven)); |
| 2297 | break; |
| 2298 | case FCVTNU_xd: |
| 2299 | WriteXRegister(dst, FPToUInt64(ReadDRegister(src), FPTieEven)); |
| 2300 | break; |
| 2301 | case FCVTZS_ws: |
| 2302 | WriteWRegister(dst, FPToInt32(ReadSRegister(src), FPZero)); |
| 2303 | break; |
| 2304 | case FCVTZS_xs: |
| 2305 | WriteXRegister(dst, FPToInt64(ReadSRegister(src), FPZero)); |
| 2306 | break; |
| 2307 | case FCVTZS_wd: |
| 2308 | WriteWRegister(dst, FPToInt32(ReadDRegister(src), FPZero)); |
| 2309 | break; |
| 2310 | case FCVTZS_xd: |
| 2311 | WriteXRegister(dst, FPToInt64(ReadDRegister(src), FPZero)); |
| 2312 | break; |
| 2313 | case FCVTZU_ws: |
| 2314 | WriteWRegister(dst, FPToUInt32(ReadSRegister(src), FPZero)); |
| 2315 | break; |
| 2316 | case FCVTZU_xs: |
| 2317 | WriteXRegister(dst, FPToUInt64(ReadSRegister(src), FPZero)); |
| 2318 | break; |
| 2319 | case FCVTZU_wd: |
| 2320 | WriteWRegister(dst, FPToUInt32(ReadDRegister(src), FPZero)); |
| 2321 | break; |
| 2322 | case FCVTZU_xd: |
| 2323 | WriteXRegister(dst, FPToUInt64(ReadDRegister(src), FPZero)); |
| 2324 | break; |
| 2325 | case FMOV_ws: |
| 2326 | WriteWRegister(dst, ReadSRegisterBits(src)); |
| 2327 | break; |
| 2328 | case FMOV_xd: |
| 2329 | WriteXRegister(dst, ReadDRegisterBits(src)); |
| 2330 | break; |
| 2331 | case FMOV_sw: |
| 2332 | WriteSRegisterBits(dst, ReadWRegister(src)); |
| 2333 | break; |
| 2334 | case FMOV_dx: |
| 2335 | WriteDRegisterBits(dst, ReadXRegister(src)); |
| 2336 | break; |
| 2337 | case FMOV_d1_x: |
| 2338 | LogicVRegister(ReadVRegister(dst)) |
| 2339 | .SetUint(kFormatD, 1, ReadXRegister(src)); |
| 2340 | break; |
| 2341 | case FMOV_x_d1: |
| 2342 | WriteXRegister(dst, LogicVRegister(ReadVRegister(src)).Uint(kFormatD, 1)); |
| 2343 | break; |
| 2344 | |
| 2345 | // A 32-bit input can be handled in the same way as a 64-bit input, since |
| 2346 | // the sign- or zero-extension will not affect the conversion. |
| 2347 | case SCVTF_dx: |
| 2348 | WriteDRegister(dst, FixedToDouble(ReadXRegister(src), 0, round)); |
| 2349 | break; |
| 2350 | case SCVTF_dw: |
| 2351 | WriteDRegister(dst, FixedToDouble(ReadWRegister(src), 0, round)); |
| 2352 | break; |
| 2353 | case UCVTF_dx: |
| 2354 | WriteDRegister(dst, UFixedToDouble(ReadXRegister(src), 0, round)); |
| 2355 | break; |
| 2356 | case UCVTF_dw: { |
| 2357 | WriteDRegister(dst, |
| 2358 | UFixedToDouble(static_cast<uint32_t>(ReadWRegister(src)), |
| 2359 | 0, |
| 2360 | round)); |
| 2361 | break; |
| 2362 | } |
| 2363 | case SCVTF_sx: |
| 2364 | WriteSRegister(dst, FixedToFloat(ReadXRegister(src), 0, round)); |
| 2365 | break; |
| 2366 | case SCVTF_sw: |
| 2367 | WriteSRegister(dst, FixedToFloat(ReadWRegister(src), 0, round)); |
| 2368 | break; |
| 2369 | case UCVTF_sx: |
| 2370 | WriteSRegister(dst, UFixedToFloat(ReadXRegister(src), 0, round)); |
| 2371 | break; |
| 2372 | case UCVTF_sw: { |
| 2373 | WriteSRegister(dst, |
| 2374 | UFixedToFloat(static_cast<uint32_t>(ReadWRegister(src)), |
| 2375 | 0, |
| 2376 | round)); |
| 2377 | break; |
| 2378 | } |
| 2379 | |
| 2380 | default: |
| 2381 | VIXL_UNREACHABLE(); |
| 2382 | } |
| 2383 | } |
| 2384 | |
| 2385 | |
| 2386 | void Simulator::VisitFPFixedPointConvert(const Instruction* instr) { |
| 2387 | AssertSupportedFPCR(); |
| 2388 | |
| 2389 | unsigned dst = instr->GetRd(); |
| 2390 | unsigned src = instr->GetRn(); |
| 2391 | int fbits = 64 - instr->GetFPScale(); |
| 2392 | |
| 2393 | FPRounding round = ReadRMode(); |
| 2394 | |
| 2395 | switch (instr->Mask(FPFixedPointConvertMask)) { |
| 2396 | // A 32-bit input can be handled in the same way as a 64-bit input, since |
| 2397 | // the sign- or zero-extension will not affect the conversion. |
| 2398 | case SCVTF_dx_fixed: |
| 2399 | WriteDRegister(dst, FixedToDouble(ReadXRegister(src), fbits, round)); |
| 2400 | break; |
| 2401 | case SCVTF_dw_fixed: |
| 2402 | WriteDRegister(dst, FixedToDouble(ReadWRegister(src), fbits, round)); |
| 2403 | break; |
| 2404 | case UCVTF_dx_fixed: |
| 2405 | WriteDRegister(dst, UFixedToDouble(ReadXRegister(src), fbits, round)); |
| 2406 | break; |
| 2407 | case UCVTF_dw_fixed: { |
| 2408 | WriteDRegister(dst, |
| 2409 | UFixedToDouble(static_cast<uint32_t>(ReadWRegister(src)), |
| 2410 | fbits, |
| 2411 | round)); |
| 2412 | break; |
| 2413 | } |
| 2414 | case SCVTF_sx_fixed: |
| 2415 | WriteSRegister(dst, FixedToFloat(ReadXRegister(src), fbits, round)); |
| 2416 | break; |
| 2417 | case SCVTF_sw_fixed: |
| 2418 | WriteSRegister(dst, FixedToFloat(ReadWRegister(src), fbits, round)); |
| 2419 | break; |
| 2420 | case UCVTF_sx_fixed: |
| 2421 | WriteSRegister(dst, UFixedToFloat(ReadXRegister(src), fbits, round)); |
| 2422 | break; |
| 2423 | case UCVTF_sw_fixed: { |
| 2424 | WriteSRegister(dst, |
| 2425 | UFixedToFloat(static_cast<uint32_t>(ReadWRegister(src)), |
| 2426 | fbits, |
| 2427 | round)); |
| 2428 | break; |
| 2429 | } |
| 2430 | case FCVTZS_xd_fixed: |
| 2431 | WriteXRegister(dst, |
| 2432 | FPToInt64(ReadDRegister(src) * std::pow(2.0, fbits), |
| 2433 | FPZero)); |
| 2434 | break; |
| 2435 | case FCVTZS_wd_fixed: |
| 2436 | WriteWRegister(dst, |
| 2437 | FPToInt32(ReadDRegister(src) * std::pow(2.0, fbits), |
| 2438 | FPZero)); |
| 2439 | break; |
| 2440 | case FCVTZU_xd_fixed: |
| 2441 | WriteXRegister(dst, |
| 2442 | FPToUInt64(ReadDRegister(src) * std::pow(2.0, fbits), |
| 2443 | FPZero)); |
| 2444 | break; |
| 2445 | case FCVTZU_wd_fixed: |
| 2446 | WriteWRegister(dst, |
| 2447 | FPToUInt32(ReadDRegister(src) * std::pow(2.0, fbits), |
| 2448 | FPZero)); |
| 2449 | break; |
| 2450 | case FCVTZS_xs_fixed: |
| 2451 | WriteXRegister(dst, |
| 2452 | FPToInt64(ReadSRegister(src) * std::pow(2.0f, fbits), |
| 2453 | FPZero)); |
| 2454 | break; |
| 2455 | case FCVTZS_ws_fixed: |
| 2456 | WriteWRegister(dst, |
| 2457 | FPToInt32(ReadSRegister(src) * std::pow(2.0f, fbits), |
| 2458 | FPZero)); |
| 2459 | break; |
| 2460 | case FCVTZU_xs_fixed: |
| 2461 | WriteXRegister(dst, |
| 2462 | FPToUInt64(ReadSRegister(src) * std::pow(2.0f, fbits), |
| 2463 | FPZero)); |
| 2464 | break; |
| 2465 | case FCVTZU_ws_fixed: |
| 2466 | WriteWRegister(dst, |
| 2467 | FPToUInt32(ReadSRegister(src) * std::pow(2.0f, fbits), |
| 2468 | FPZero)); |
| 2469 | break; |
| 2470 | default: |
| 2471 | VIXL_UNREACHABLE(); |
| 2472 | } |
| 2473 | } |
| 2474 | |
| 2475 | |
| 2476 | void Simulator::VisitFPCompare(const Instruction* instr) { |
| 2477 | AssertSupportedFPCR(); |
| 2478 | |
| 2479 | FPTrapFlags trap = DisableTrap; |
| 2480 | switch (instr->Mask(FPCompareMask)) { |
| 2481 | case FCMPE_s: |
| 2482 | trap = EnableTrap; |
| 2483 | VIXL_FALLTHROUGH(); |
| 2484 | case FCMP_s: |
| 2485 | FPCompare(ReadSRegister(instr->GetRn()), |
| 2486 | ReadSRegister(instr->GetRm()), |
| 2487 | trap); |
| 2488 | break; |
| 2489 | case FCMPE_d: |
| 2490 | trap = EnableTrap; |
| 2491 | VIXL_FALLTHROUGH(); |
| 2492 | case FCMP_d: |
| 2493 | FPCompare(ReadDRegister(instr->GetRn()), |
| 2494 | ReadDRegister(instr->GetRm()), |
| 2495 | trap); |
| 2496 | break; |
| 2497 | case FCMPE_s_zero: |
| 2498 | trap = EnableTrap; |
| 2499 | VIXL_FALLTHROUGH(); |
| 2500 | case FCMP_s_zero: |
| 2501 | FPCompare(ReadSRegister(instr->GetRn()), 0.0f, trap); |
| 2502 | break; |
| 2503 | case FCMPE_d_zero: |
| 2504 | trap = EnableTrap; |
| 2505 | VIXL_FALLTHROUGH(); |
| 2506 | case FCMP_d_zero: |
| 2507 | FPCompare(ReadDRegister(instr->GetRn()), 0.0, trap); |
| 2508 | break; |
| 2509 | default: |
| 2510 | VIXL_UNIMPLEMENTED(); |
| 2511 | } |
| 2512 | } |
| 2513 | |
| 2514 | |
| 2515 | void Simulator::VisitFPConditionalCompare(const Instruction* instr) { |
| 2516 | AssertSupportedFPCR(); |
| 2517 | |
| 2518 | FPTrapFlags trap = DisableTrap; |
| 2519 | switch (instr->Mask(FPConditionalCompareMask)) { |
| 2520 | case FCCMPE_s: |
| 2521 | trap = EnableTrap; |
| 2522 | VIXL_FALLTHROUGH(); |
| 2523 | case FCCMP_s: |
| 2524 | if (ConditionPassed(instr->GetCondition())) { |
| 2525 | FPCompare(ReadSRegister(instr->GetRn()), |
| 2526 | ReadSRegister(instr->GetRm()), |
| 2527 | trap); |
| 2528 | } else { |
| 2529 | ReadNzcv().SetFlags(instr->GetNzcv()); |
| 2530 | LogSystemRegister(NZCV); |
| 2531 | } |
| 2532 | break; |
| 2533 | case FCCMPE_d: |
| 2534 | trap = EnableTrap; |
| 2535 | VIXL_FALLTHROUGH(); |
| 2536 | case FCCMP_d: |
| 2537 | if (ConditionPassed(instr->GetCondition())) { |
| 2538 | FPCompare(ReadDRegister(instr->GetRn()), |
| 2539 | ReadDRegister(instr->GetRm()), |
| 2540 | trap); |
| 2541 | } else { |
| 2542 | ReadNzcv().SetFlags(instr->GetNzcv()); |
| 2543 | LogSystemRegister(NZCV); |
| 2544 | } |
| 2545 | break; |
| 2546 | default: |
| 2547 | VIXL_UNIMPLEMENTED(); |
| 2548 | } |
| 2549 | } |
| 2550 | |
| 2551 | |
| 2552 | void Simulator::VisitFPConditionalSelect(const Instruction* instr) { |
| 2553 | AssertSupportedFPCR(); |
| 2554 | |
| 2555 | Instr selected; |
| 2556 | if (ConditionPassed(instr->GetCondition())) { |
| 2557 | selected = instr->GetRn(); |
| 2558 | } else { |
| 2559 | selected = instr->GetRm(); |
| 2560 | } |
| 2561 | |
| 2562 | switch (instr->Mask(FPConditionalSelectMask)) { |
| 2563 | case FCSEL_s: |
| 2564 | WriteSRegister(instr->GetRd(), ReadSRegister(selected)); |
| 2565 | break; |
| 2566 | case FCSEL_d: |
| 2567 | WriteDRegister(instr->GetRd(), ReadDRegister(selected)); |
| 2568 | break; |
| 2569 | default: |
| 2570 | VIXL_UNIMPLEMENTED(); |
| 2571 | } |
| 2572 | } |
| 2573 | |
| 2574 | |
| 2575 | void Simulator::VisitFPDataProcessing1Source(const Instruction* instr) { |
| 2576 | AssertSupportedFPCR(); |
| 2577 | |
| 2578 | FPRounding fpcr_rounding = static_cast<FPRounding>(ReadFpcr().GetRMode()); |
| 2579 | VectorFormat vform = (instr->Mask(FP64) == FP64) ? kFormatD : kFormatS; |
| 2580 | SimVRegister& rd = ReadVRegister(instr->GetRd()); |
| 2581 | SimVRegister& rn = ReadVRegister(instr->GetRn()); |
| 2582 | bool inexact_exception = false; |
| 2583 | |
| 2584 | unsigned fd = instr->GetRd(); |
| 2585 | unsigned fn = instr->GetRn(); |
| 2586 | |
| 2587 | switch (instr->Mask(FPDataProcessing1SourceMask)) { |
| 2588 | case FMOV_s: |
| 2589 | WriteSRegister(fd, ReadSRegister(fn)); |
| 2590 | return; |
| 2591 | case FMOV_d: |
| 2592 | WriteDRegister(fd, ReadDRegister(fn)); |
| 2593 | return; |
| 2594 | case FABS_s: |
| 2595 | case FABS_d: |
| 2596 | fabs_(vform, ReadVRegister(fd), ReadVRegister(fn)); |
| 2597 | // Explicitly log the register update whilst we have type information. |
| 2598 | LogVRegister(fd, GetPrintRegisterFormatFP(vform)); |
| 2599 | return; |
| 2600 | case FNEG_s: |
| 2601 | case FNEG_d: |
| 2602 | fneg(vform, ReadVRegister(fd), ReadVRegister(fn)); |
| 2603 | // Explicitly log the register update whilst we have type information. |
| 2604 | LogVRegister(fd, GetPrintRegisterFormatFP(vform)); |
| 2605 | return; |
| 2606 | case FCVT_ds: |
| 2607 | WriteDRegister(fd, FPToDouble(ReadSRegister(fn))); |
| 2608 | return; |
| 2609 | case FCVT_sd: |
| 2610 | WriteSRegister(fd, FPToFloat(ReadDRegister(fn), FPTieEven)); |
| 2611 | return; |
| 2612 | case FCVT_hs: |
| 2613 | WriteHRegister(fd, FPToFloat16(ReadSRegister(fn), FPTieEven)); |
| 2614 | return; |
| 2615 | case FCVT_sh: |
| 2616 | WriteSRegister(fd, FPToFloat(ReadHRegister(fn))); |
| 2617 | return; |
| 2618 | case FCVT_dh: |
| 2619 | WriteDRegister(fd, FPToDouble(FPToFloat(ReadHRegister(fn)))); |
| 2620 | return; |
| 2621 | case FCVT_hd: |
| 2622 | WriteHRegister(fd, FPToFloat16(ReadDRegister(fn), FPTieEven)); |
| 2623 | return; |
| 2624 | case FSQRT_s: |
| 2625 | case FSQRT_d: |
| 2626 | fsqrt(vform, rd, rn); |
| 2627 | // Explicitly log the register update whilst we have type information. |
| 2628 | LogVRegister(fd, GetPrintRegisterFormatFP(vform)); |
| 2629 | return; |
| 2630 | case FRINTI_s: |
| 2631 | case FRINTI_d: |
| 2632 | break; // Use FPCR rounding mode. |
| 2633 | case FRINTX_s: |
| 2634 | case FRINTX_d: |
| 2635 | inexact_exception = true; |
| 2636 | break; |
| 2637 | case FRINTA_s: |
| 2638 | case FRINTA_d: |
| 2639 | fpcr_rounding = FPTieAway; |
| 2640 | break; |
| 2641 | case FRINTM_s: |
| 2642 | case FRINTM_d: |
| 2643 | fpcr_rounding = FPNegativeInfinity; |
| 2644 | break; |
| 2645 | case FRINTN_s: |
| 2646 | case FRINTN_d: |
| 2647 | fpcr_rounding = FPTieEven; |
| 2648 | break; |
| 2649 | case FRINTP_s: |
| 2650 | case FRINTP_d: |
| 2651 | fpcr_rounding = FPPositiveInfinity; |
| 2652 | break; |
| 2653 | case FRINTZ_s: |
| 2654 | case FRINTZ_d: |
| 2655 | fpcr_rounding = FPZero; |
| 2656 | break; |
| 2657 | default: |
| 2658 | VIXL_UNIMPLEMENTED(); |
| 2659 | } |
| 2660 | |
| 2661 | // Only FRINT* instructions fall through the switch above. |
| 2662 | frint(vform, rd, rn, fpcr_rounding, inexact_exception); |
| 2663 | // Explicitly log the register update whilst we have type information. |
| 2664 | LogVRegister(fd, GetPrintRegisterFormatFP(vform)); |
| 2665 | } |
| 2666 | |
| 2667 | |
| 2668 | void Simulator::VisitFPDataProcessing2Source(const Instruction* instr) { |
| 2669 | AssertSupportedFPCR(); |
| 2670 | |
| 2671 | VectorFormat vform = (instr->Mask(FP64) == FP64) ? kFormatD : kFormatS; |
| 2672 | SimVRegister& rd = ReadVRegister(instr->GetRd()); |
| 2673 | SimVRegister& rn = ReadVRegister(instr->GetRn()); |
| 2674 | SimVRegister& rm = ReadVRegister(instr->GetRm()); |
| 2675 | |
| 2676 | switch (instr->Mask(FPDataProcessing2SourceMask)) { |
| 2677 | case FADD_s: |
| 2678 | case FADD_d: |
| 2679 | fadd(vform, rd, rn, rm); |
| 2680 | break; |
| 2681 | case FSUB_s: |
| 2682 | case FSUB_d: |
| 2683 | fsub(vform, rd, rn, rm); |
| 2684 | break; |
| 2685 | case FMUL_s: |
| 2686 | case FMUL_d: |
| 2687 | fmul(vform, rd, rn, rm); |
| 2688 | break; |
| 2689 | case FNMUL_s: |
| 2690 | case FNMUL_d: |
| 2691 | fnmul(vform, rd, rn, rm); |
| 2692 | break; |
| 2693 | case FDIV_s: |
| 2694 | case FDIV_d: |
| 2695 | fdiv(vform, rd, rn, rm); |
| 2696 | break; |
| 2697 | case FMAX_s: |
| 2698 | case FMAX_d: |
| 2699 | fmax(vform, rd, rn, rm); |
| 2700 | break; |
| 2701 | case FMIN_s: |
| 2702 | case FMIN_d: |
| 2703 | fmin(vform, rd, rn, rm); |
| 2704 | break; |
| 2705 | case FMAXNM_s: |
| 2706 | case FMAXNM_d: |
| 2707 | fmaxnm(vform, rd, rn, rm); |
| 2708 | break; |
| 2709 | case FMINNM_s: |
| 2710 | case FMINNM_d: |
| 2711 | fminnm(vform, rd, rn, rm); |
| 2712 | break; |
| 2713 | default: |
| 2714 | VIXL_UNREACHABLE(); |
| 2715 | } |
| 2716 | // Explicitly log the register update whilst we have type information. |
| 2717 | LogVRegister(instr->GetRd(), GetPrintRegisterFormatFP(vform)); |
| 2718 | } |
| 2719 | |
| 2720 | |
| 2721 | void Simulator::VisitFPDataProcessing3Source(const Instruction* instr) { |
| 2722 | AssertSupportedFPCR(); |
| 2723 | |
| 2724 | unsigned fd = instr->GetRd(); |
| 2725 | unsigned fn = instr->GetRn(); |
| 2726 | unsigned fm = instr->GetRm(); |
| 2727 | unsigned fa = instr->GetRa(); |
| 2728 | |
| 2729 | switch (instr->Mask(FPDataProcessing3SourceMask)) { |
| 2730 | // fd = fa +/- (fn * fm) |
| 2731 | case FMADD_s: |
| 2732 | WriteSRegister(fd, |
| 2733 | FPMulAdd(ReadSRegister(fa), |
| 2734 | ReadSRegister(fn), |
| 2735 | ReadSRegister(fm))); |
| 2736 | break; |
| 2737 | case FMSUB_s: |
| 2738 | WriteSRegister(fd, |
| 2739 | FPMulAdd(ReadSRegister(fa), |
| 2740 | -ReadSRegister(fn), |
| 2741 | ReadSRegister(fm))); |
| 2742 | break; |
| 2743 | case FMADD_d: |
| 2744 | WriteDRegister(fd, |
| 2745 | FPMulAdd(ReadDRegister(fa), |
| 2746 | ReadDRegister(fn), |
| 2747 | ReadDRegister(fm))); |
| 2748 | break; |
| 2749 | case FMSUB_d: |
| 2750 | WriteDRegister(fd, |
| 2751 | FPMulAdd(ReadDRegister(fa), |
| 2752 | -ReadDRegister(fn), |
| 2753 | ReadDRegister(fm))); |
| 2754 | break; |
| 2755 | // Negated variants of the above. |
| 2756 | case FNMADD_s: |
| 2757 | WriteSRegister(fd, |
| 2758 | FPMulAdd(-ReadSRegister(fa), |
| 2759 | -ReadSRegister(fn), |
| 2760 | ReadSRegister(fm))); |
| 2761 | break; |
| 2762 | case FNMSUB_s: |
| 2763 | WriteSRegister(fd, |
| 2764 | FPMulAdd(-ReadSRegister(fa), |
| 2765 | ReadSRegister(fn), |
| 2766 | ReadSRegister(fm))); |
| 2767 | break; |
| 2768 | case FNMADD_d: |
| 2769 | WriteDRegister(fd, |
| 2770 | FPMulAdd(-ReadDRegister(fa), |
| 2771 | -ReadDRegister(fn), |
| 2772 | ReadDRegister(fm))); |
| 2773 | break; |
| 2774 | case FNMSUB_d: |
| 2775 | WriteDRegister(fd, |
| 2776 | FPMulAdd(-ReadDRegister(fa), |
| 2777 | ReadDRegister(fn), |
| 2778 | ReadDRegister(fm))); |
| 2779 | break; |
| 2780 | default: |
| 2781 | VIXL_UNIMPLEMENTED(); |
| 2782 | } |
| 2783 | } |
| 2784 | |
| 2785 | |
| 2786 | bool Simulator::FPProcessNaNs(const Instruction* instr) { |
| 2787 | unsigned fd = instr->GetRd(); |
| 2788 | unsigned fn = instr->GetRn(); |
| 2789 | unsigned fm = instr->GetRm(); |
| 2790 | bool done = false; |
| 2791 | |
| 2792 | if (instr->Mask(FP64) == FP64) { |
| 2793 | double result = FPProcessNaNs(ReadDRegister(fn), ReadDRegister(fm)); |
| 2794 | if (std::isnan(result)) { |
| 2795 | WriteDRegister(fd, result); |
| 2796 | done = true; |
| 2797 | } |
| 2798 | } else { |
| 2799 | float result = FPProcessNaNs(ReadSRegister(fn), ReadSRegister(fm)); |
| 2800 | if (std::isnan(result)) { |
| 2801 | WriteSRegister(fd, result); |
| 2802 | done = true; |
| 2803 | } |
| 2804 | } |
| 2805 | |
| 2806 | return done; |
| 2807 | } |
| 2808 | |
| 2809 | |
| 2810 | void Simulator::SysOp_W(int op, int64_t val) { |
| 2811 | switch (op) { |
| 2812 | case IVAU: |
| 2813 | case CVAC: |
| 2814 | case CVAU: |
| 2815 | case CIVAC: { |
| 2816 | // Perform a dummy memory access to ensure that we have read access |
| 2817 | // to the specified address. |
| 2818 | volatile uint8_t y = Memory::Read<uint8_t>(val); |
| 2819 | USE(y); |
| 2820 | // TODO: Implement "case ZVA:". |
| 2821 | break; |
| 2822 | } |
| 2823 | default: |
| 2824 | VIXL_UNIMPLEMENTED(); |
| 2825 | } |
| 2826 | } |
| 2827 | |
| 2828 | |
| 2829 | void Simulator::VisitSystem(const Instruction* instr) { |
| 2830 | // Some system instructions hijack their Op and Cp fields to represent a |
| 2831 | // range of immediates instead of indicating a different instruction. This |
| 2832 | // makes the decoding tricky. |
| 2833 | if (instr->Mask(SystemExclusiveMonitorFMask) == SystemExclusiveMonitorFixed) { |
| 2834 | VIXL_ASSERT(instr->Mask(SystemExclusiveMonitorMask) == CLREX); |
| 2835 | switch (instr->Mask(SystemExclusiveMonitorMask)) { |
| 2836 | case CLREX: { |
| 2837 | PrintExclusiveAccessWarning(); |
| 2838 | ClearLocalMonitor(); |
| 2839 | break; |
| 2840 | } |
| 2841 | } |
| 2842 | } else if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) { |
| 2843 | switch (instr->Mask(SystemSysRegMask)) { |
| 2844 | case MRS: { |
| 2845 | switch (instr->GetImmSystemRegister()) { |
| 2846 | case NZCV: |
| 2847 | WriteXRegister(instr->GetRt(), ReadNzcv().GetRawValue()); |
| 2848 | break; |
| 2849 | case FPCR: |
| 2850 | WriteXRegister(instr->GetRt(), ReadFpcr().GetRawValue()); |
| 2851 | break; |
| 2852 | default: |
| 2853 | VIXL_UNIMPLEMENTED(); |
| 2854 | } |
| 2855 | break; |
| 2856 | } |
| 2857 | case MSR: { |
| 2858 | switch (instr->GetImmSystemRegister()) { |
| 2859 | case NZCV: |
| 2860 | ReadNzcv().SetRawValue(ReadWRegister(instr->GetRt())); |
| 2861 | LogSystemRegister(NZCV); |
| 2862 | break; |
| 2863 | case FPCR: |
| 2864 | ReadFpcr().SetRawValue(ReadWRegister(instr->GetRt())); |
| 2865 | LogSystemRegister(FPCR); |
| 2866 | break; |
| 2867 | default: |
| 2868 | VIXL_UNIMPLEMENTED(); |
| 2869 | } |
| 2870 | break; |
| 2871 | } |
| 2872 | } |
| 2873 | } else if (instr->Mask(SystemHintFMask) == SystemHintFixed) { |
| 2874 | VIXL_ASSERT(instr->Mask(SystemHintMask) == HINT); |
| 2875 | switch (instr->GetImmHint()) { |
| 2876 | case NOP: |
| 2877 | break; |
| 2878 | default: |
| 2879 | VIXL_UNIMPLEMENTED(); |
| 2880 | } |
| 2881 | } else if (instr->Mask(MemBarrierFMask) == MemBarrierFixed) { |
| 2882 | __sync_synchronize(); |
| 2883 | } else if ((instr->Mask(SystemSysFMask) == SystemSysFixed)) { |
| 2884 | switch (instr->Mask(SystemSysMask)) { |
| 2885 | case SYS: |
| 2886 | SysOp_W(instr->GetSysOp(), ReadXRegister(instr->GetRt())); |
| 2887 | break; |
| 2888 | default: |
| 2889 | VIXL_UNIMPLEMENTED(); |
| 2890 | } |
| 2891 | } else { |
| 2892 | VIXL_UNIMPLEMENTED(); |
| 2893 | } |
| 2894 | } |
| 2895 | |
| 2896 | |
| 2897 | void Simulator::VisitException(const Instruction* instr) { |
| 2898 | switch (instr->Mask(ExceptionMask)) { |
| 2899 | case HLT: |
| 2900 | switch (instr->GetImmException()) { |
| 2901 | case kUnreachableOpcode: |
| 2902 | DoUnreachable(instr); |
| 2903 | return; |
| 2904 | case kTraceOpcode: |
| 2905 | DoTrace(instr); |
| 2906 | return; |
| 2907 | case kLogOpcode: |
| 2908 | DoLog(instr); |
| 2909 | return; |
| 2910 | case kPrintfOpcode: |
| 2911 | DoPrintf(instr); |
| 2912 | return; |
Alexandre Rames | 064e02d | 2016-07-12 11:53:13 +0100 | [diff] [blame] | 2913 | case kRuntimeCallOpcode: |
| 2914 | DoRuntimeCall(instr); |
| 2915 | return; |
Alexandre Rames | d383296 | 2016-07-04 15:03:43 +0100 | [diff] [blame] | 2916 | default: |
| 2917 | HostBreakpoint(); |
| 2918 | return; |
| 2919 | } |
| 2920 | case BRK: |
| 2921 | HostBreakpoint(); |
| 2922 | return; |
| 2923 | default: |
| 2924 | VIXL_UNIMPLEMENTED(); |
| 2925 | } |
| 2926 | } |
| 2927 | |
| 2928 | |
| 2929 | void Simulator::VisitCrypto2RegSHA(const Instruction* instr) { |
| 2930 | VisitUnimplemented(instr); |
| 2931 | } |
| 2932 | |
| 2933 | |
| 2934 | void Simulator::VisitCrypto3RegSHA(const Instruction* instr) { |
| 2935 | VisitUnimplemented(instr); |
| 2936 | } |
| 2937 | |
| 2938 | |
| 2939 | void Simulator::VisitCryptoAES(const Instruction* instr) { |
| 2940 | VisitUnimplemented(instr); |
| 2941 | } |
| 2942 | |
| 2943 | |
| 2944 | void Simulator::VisitNEON2RegMisc(const Instruction* instr) { |
| 2945 | NEONFormatDecoder nfd(instr); |
| 2946 | VectorFormat vf = nfd.GetVectorFormat(); |
| 2947 | |
| 2948 | static const NEONFormatMap map_lp = |
| 2949 | {{23, 22, 30}, {NF_4H, NF_8H, NF_2S, NF_4S, NF_1D, NF_2D}}; |
| 2950 | VectorFormat vf_lp = nfd.GetVectorFormat(&map_lp); |
| 2951 | |
| 2952 | static const NEONFormatMap map_fcvtl = {{22}, {NF_4S, NF_2D}}; |
| 2953 | VectorFormat vf_fcvtl = nfd.GetVectorFormat(&map_fcvtl); |
| 2954 | |
| 2955 | static const NEONFormatMap map_fcvtn = {{22, 30}, |
| 2956 | {NF_4H, NF_8H, NF_2S, NF_4S}}; |
| 2957 | VectorFormat vf_fcvtn = nfd.GetVectorFormat(&map_fcvtn); |
| 2958 | |
| 2959 | SimVRegister& rd = ReadVRegister(instr->GetRd()); |
| 2960 | SimVRegister& rn = ReadVRegister(instr->GetRn()); |
| 2961 | |
| 2962 | if (instr->Mask(NEON2RegMiscOpcode) <= NEON_NEG_opcode) { |
| 2963 | // These instructions all use a two bit size field, except NOT and RBIT, |
| 2964 | // which use the field to encode the operation. |
| 2965 | switch (instr->Mask(NEON2RegMiscMask)) { |
| 2966 | case NEON_REV64: |
| 2967 | rev64(vf, rd, rn); |
| 2968 | break; |
| 2969 | case NEON_REV32: |
| 2970 | rev32(vf, rd, rn); |
| 2971 | break; |
| 2972 | case NEON_REV16: |
| 2973 | rev16(vf, rd, rn); |
| 2974 | break; |
| 2975 | case NEON_SUQADD: |
| 2976 | suqadd(vf, rd, rn); |
| 2977 | break; |
| 2978 | case NEON_USQADD: |
| 2979 | usqadd(vf, rd, rn); |
| 2980 | break; |
| 2981 | case NEON_CLS: |
| 2982 | cls(vf, rd, rn); |
| 2983 | break; |
| 2984 | case NEON_CLZ: |
| 2985 | clz(vf, rd, rn); |
| 2986 | break; |
| 2987 | case NEON_CNT: |
| 2988 | cnt(vf, rd, rn); |
| 2989 | break; |
| 2990 | case NEON_SQABS: |
| 2991 | abs(vf, rd, rn).SignedSaturate(vf); |
| 2992 | break; |
| 2993 | case NEON_SQNEG: |
| 2994 | neg(vf, rd, rn).SignedSaturate(vf); |
| 2995 | break; |
| 2996 | case NEON_CMGT_zero: |
| 2997 | cmp(vf, rd, rn, 0, gt); |
| 2998 | break; |
| 2999 | case NEON_CMGE_zero: |
| 3000 | cmp(vf, rd, rn, 0, ge); |
| 3001 | break; |
| 3002 | case NEON_CMEQ_zero: |
| 3003 | cmp(vf, rd, rn, 0, eq); |
| 3004 | break; |
| 3005 | case NEON_CMLE_zero: |
| 3006 | cmp(vf, rd, rn, 0, le); |
| 3007 | break; |
| 3008 | case NEON_CMLT_zero: |
| 3009 | cmp(vf, rd, rn, 0, lt); |
| 3010 | break; |
| 3011 | case NEON_ABS: |
| 3012 | abs(vf, rd, rn); |
| 3013 | break; |
| 3014 | case NEON_NEG: |
| 3015 | neg(vf, rd, rn); |
| 3016 | break; |
| 3017 | case NEON_SADDLP: |
| 3018 | saddlp(vf_lp, rd, rn); |
| 3019 | break; |
| 3020 | case NEON_UADDLP: |
| 3021 | uaddlp(vf_lp, rd, rn); |
| 3022 | break; |
| 3023 | case NEON_SADALP: |
| 3024 | sadalp(vf_lp, rd, rn); |
| 3025 | break; |
| 3026 | case NEON_UADALP: |
| 3027 | uadalp(vf_lp, rd, rn); |
| 3028 | break; |
| 3029 | case NEON_RBIT_NOT: |
| 3030 | vf = nfd.GetVectorFormat(nfd.LogicalFormatMap()); |
| 3031 | switch (instr->GetFPType()) { |
| 3032 | case 0: |
| 3033 | not_(vf, rd, rn); |
| 3034 | break; |
| 3035 | case 1: |
| 3036 | rbit(vf, rd, rn); |
| 3037 | break; |
| 3038 | default: |
| 3039 | VIXL_UNIMPLEMENTED(); |
| 3040 | } |
| 3041 | break; |
| 3042 | } |
| 3043 | } else { |
| 3044 | VectorFormat fpf = nfd.GetVectorFormat(nfd.FPFormatMap()); |
| 3045 | FPRounding fpcr_rounding = static_cast<FPRounding>(ReadFpcr().GetRMode()); |
| 3046 | bool inexact_exception = false; |
| 3047 | |
| 3048 | // These instructions all use a one bit size field, except XTN, SQXTUN, |
| 3049 | // SHLL, SQXTN and UQXTN, which use a two bit size field. |
| 3050 | switch (instr->Mask(NEON2RegMiscFPMask)) { |
| 3051 | case NEON_FABS: |
| 3052 | fabs_(fpf, rd, rn); |
| 3053 | return; |
| 3054 | case NEON_FNEG: |
| 3055 | fneg(fpf, rd, rn); |
| 3056 | return; |
| 3057 | case NEON_FSQRT: |
| 3058 | fsqrt(fpf, rd, rn); |
| 3059 | return; |
| 3060 | case NEON_FCVTL: |
| 3061 | if (instr->Mask(NEON_Q)) { |
| 3062 | fcvtl2(vf_fcvtl, rd, rn); |
| 3063 | } else { |
| 3064 | fcvtl(vf_fcvtl, rd, rn); |
| 3065 | } |
| 3066 | return; |
| 3067 | case NEON_FCVTN: |
| 3068 | if (instr->Mask(NEON_Q)) { |
| 3069 | fcvtn2(vf_fcvtn, rd, rn); |
| 3070 | } else { |
| 3071 | fcvtn(vf_fcvtn, rd, rn); |
| 3072 | } |
| 3073 | return; |
| 3074 | case NEON_FCVTXN: |
| 3075 | if (instr->Mask(NEON_Q)) { |
| 3076 | fcvtxn2(vf_fcvtn, rd, rn); |
| 3077 | } else { |
| 3078 | fcvtxn(vf_fcvtn, rd, rn); |
| 3079 | } |
| 3080 | return; |
| 3081 | |
| 3082 | // The following instructions break from the switch statement, rather |
| 3083 | // than return. |
| 3084 | case NEON_FRINTI: |
| 3085 | break; // Use FPCR rounding mode. |
| 3086 | case NEON_FRINTX: |
| 3087 | inexact_exception = true; |
| 3088 | break; |
| 3089 | case NEON_FRINTA: |
| 3090 | fpcr_rounding = FPTieAway; |
| 3091 | break; |
| 3092 | case NEON_FRINTM: |
| 3093 | fpcr_rounding = FPNegativeInfinity; |
| 3094 | break; |
| 3095 | case NEON_FRINTN: |
| 3096 | fpcr_rounding = FPTieEven; |
| 3097 | break; |
| 3098 | case NEON_FRINTP: |
| 3099 | fpcr_rounding = FPPositiveInfinity; |
| 3100 | break; |
| 3101 | case NEON_FRINTZ: |
| 3102 | fpcr_rounding = FPZero; |
| 3103 | break; |
| 3104 | |
| 3105 | case NEON_FCVTNS: |
| 3106 | fcvts(fpf, rd, rn, FPTieEven); |
| 3107 | return; |
| 3108 | case NEON_FCVTNU: |
| 3109 | fcvtu(fpf, rd, rn, FPTieEven); |
| 3110 | return; |
| 3111 | case NEON_FCVTPS: |
| 3112 | fcvts(fpf, rd, rn, FPPositiveInfinity); |
| 3113 | return; |
| 3114 | case NEON_FCVTPU: |
| 3115 | fcvtu(fpf, rd, rn, FPPositiveInfinity); |
| 3116 | return; |
| 3117 | case NEON_FCVTMS: |
| 3118 | fcvts(fpf, rd, rn, FPNegativeInfinity); |
| 3119 | return; |
| 3120 | case NEON_FCVTMU: |
| 3121 | fcvtu(fpf, rd, rn, FPNegativeInfinity); |
| 3122 | return; |
| 3123 | case NEON_FCVTZS: |
| 3124 | fcvts(fpf, rd, rn, FPZero); |
| 3125 | return; |
| 3126 | case NEON_FCVTZU: |
| 3127 | fcvtu(fpf, rd, rn, FPZero); |
| 3128 | return; |
| 3129 | case NEON_FCVTAS: |
| 3130 | fcvts(fpf, rd, rn, FPTieAway); |
| 3131 | return; |
| 3132 | case NEON_FCVTAU: |
| 3133 | fcvtu(fpf, rd, rn, FPTieAway); |
| 3134 | return; |
| 3135 | case NEON_SCVTF: |
| 3136 | scvtf(fpf, rd, rn, 0, fpcr_rounding); |
| 3137 | return; |
| 3138 | case NEON_UCVTF: |
| 3139 | ucvtf(fpf, rd, rn, 0, fpcr_rounding); |
| 3140 | return; |
| 3141 | case NEON_URSQRTE: |
| 3142 | ursqrte(fpf, rd, rn); |
| 3143 | return; |
| 3144 | case NEON_URECPE: |
| 3145 | urecpe(fpf, rd, rn); |
| 3146 | return; |
| 3147 | case NEON_FRSQRTE: |
| 3148 | frsqrte(fpf, rd, rn); |
| 3149 | return; |
| 3150 | case NEON_FRECPE: |
| 3151 | frecpe(fpf, rd, rn, fpcr_rounding); |
| 3152 | return; |
| 3153 | case NEON_FCMGT_zero: |
| 3154 | fcmp_zero(fpf, rd, rn, gt); |
| 3155 | return; |
| 3156 | case NEON_FCMGE_zero: |
| 3157 | fcmp_zero(fpf, rd, rn, ge); |
| 3158 | return; |
| 3159 | case NEON_FCMEQ_zero: |
| 3160 | fcmp_zero(fpf, rd, rn, eq); |
| 3161 | return; |
| 3162 | case NEON_FCMLE_zero: |
| 3163 | fcmp_zero(fpf, rd, rn, le); |
| 3164 | return; |
| 3165 | case NEON_FCMLT_zero: |
| 3166 | fcmp_zero(fpf, rd, rn, lt); |
| 3167 | return; |
| 3168 | default: |
| 3169 | if ((NEON_XTN_opcode <= instr->Mask(NEON2RegMiscOpcode)) && |
| 3170 | (instr->Mask(NEON2RegMiscOpcode) <= NEON_UQXTN_opcode)) { |
| 3171 | switch (instr->Mask(NEON2RegMiscMask)) { |
| 3172 | case NEON_XTN: |
| 3173 | xtn(vf, rd, rn); |
| 3174 | return; |
| 3175 | case NEON_SQXTN: |
| 3176 | sqxtn(vf, rd, rn); |
| 3177 | return; |
| 3178 | case NEON_UQXTN: |
| 3179 | uqxtn(vf, rd, rn); |
| 3180 | return; |
| 3181 | case NEON_SQXTUN: |
| 3182 | sqxtun(vf, rd, rn); |
| 3183 | return; |
| 3184 | case NEON_SHLL: |
| 3185 | vf = nfd.GetVectorFormat(nfd.LongIntegerFormatMap()); |
| 3186 | if (instr->Mask(NEON_Q)) { |
| 3187 | shll2(vf, rd, rn); |
| 3188 | } else { |
| 3189 | shll(vf, rd, rn); |
| 3190 | } |
| 3191 | return; |
| 3192 | default: |
| 3193 | VIXL_UNIMPLEMENTED(); |
| 3194 | } |
| 3195 | } else { |
| 3196 | VIXL_UNIMPLEMENTED(); |
| 3197 | } |
| 3198 | } |
| 3199 | |
| 3200 | // Only FRINT* instructions fall through the switch above. |
| 3201 | frint(fpf, rd, rn, fpcr_rounding, inexact_exception); |
| 3202 | } |
| 3203 | } |
| 3204 | |
| 3205 | |
| 3206 | void Simulator::VisitNEON3Same(const Instruction* instr) { |
| 3207 | NEONFormatDecoder nfd(instr); |
| 3208 | SimVRegister& rd = ReadVRegister(instr->GetRd()); |
| 3209 | SimVRegister& rn = ReadVRegister(instr->GetRn()); |
| 3210 | SimVRegister& rm = ReadVRegister(instr->GetRm()); |
| 3211 | |
| 3212 | if (instr->Mask(NEON3SameLogicalFMask) == NEON3SameLogicalFixed) { |
| 3213 | VectorFormat vf = nfd.GetVectorFormat(nfd.LogicalFormatMap()); |
| 3214 | switch (instr->Mask(NEON3SameLogicalMask)) { |
| 3215 | case NEON_AND: |
| 3216 | and_(vf, rd, rn, rm); |
| 3217 | break; |
| 3218 | case NEON_ORR: |
| 3219 | orr(vf, rd, rn, rm); |
| 3220 | break; |
| 3221 | case NEON_ORN: |
| 3222 | orn(vf, rd, rn, rm); |
| 3223 | break; |
| 3224 | case NEON_EOR: |
| 3225 | eor(vf, rd, rn, rm); |
| 3226 | break; |
| 3227 | case NEON_BIC: |
| 3228 | bic(vf, rd, rn, rm); |
| 3229 | break; |
| 3230 | case NEON_BIF: |
| 3231 | bif(vf, rd, rn, rm); |
| 3232 | break; |
| 3233 | case NEON_BIT: |
| 3234 | bit(vf, rd, rn, rm); |
| 3235 | break; |
| 3236 | case NEON_BSL: |
| 3237 | bsl(vf, rd, rn, rm); |
| 3238 | break; |
| 3239 | default: |
| 3240 | VIXL_UNIMPLEMENTED(); |
| 3241 | } |
| 3242 | } else if (instr->Mask(NEON3SameFPFMask) == NEON3SameFPFixed) { |
| 3243 | VectorFormat vf = nfd.GetVectorFormat(nfd.FPFormatMap()); |
| 3244 | switch (instr->Mask(NEON3SameFPMask)) { |
| 3245 | case NEON_FADD: |
| 3246 | fadd(vf, rd, rn, rm); |
| 3247 | break; |
| 3248 | case NEON_FSUB: |
| 3249 | fsub(vf, rd, rn, rm); |
| 3250 | break; |
| 3251 | case NEON_FMUL: |
| 3252 | fmul(vf, rd, rn, rm); |
| 3253 | break; |
| 3254 | case NEON_FDIV: |
| 3255 | fdiv(vf, rd, rn, rm); |
| 3256 | break; |
| 3257 | case NEON_FMAX: |
| 3258 | fmax(vf, rd, rn, rm); |
| 3259 | break; |
| 3260 | case NEON_FMIN: |
| 3261 | fmin(vf, rd, rn, rm); |
| 3262 | break; |
| 3263 | case NEON_FMAXNM: |
| 3264 | fmaxnm(vf, rd, rn, rm); |
| 3265 | break; |
| 3266 | case NEON_FMINNM: |
| 3267 | fminnm(vf, rd, rn, rm); |
| 3268 | break; |
| 3269 | case NEON_FMLA: |
| 3270 | fmla(vf, rd, rn, rm); |
| 3271 | break; |
| 3272 | case NEON_FMLS: |
| 3273 | fmls(vf, rd, rn, rm); |
| 3274 | break; |
| 3275 | case NEON_FMULX: |
| 3276 | fmulx(vf, rd, rn, rm); |
| 3277 | break; |
| 3278 | case NEON_FACGE: |
| 3279 | fabscmp(vf, rd, rn, rm, ge); |
| 3280 | break; |
| 3281 | case NEON_FACGT: |
| 3282 | fabscmp(vf, rd, rn, rm, gt); |
| 3283 | break; |
| 3284 | case NEON_FCMEQ: |
| 3285 | fcmp(vf, rd, rn, rm, eq); |
| 3286 | break; |
| 3287 | case NEON_FCMGE: |
| 3288 | fcmp(vf, rd, rn, rm, ge); |
| 3289 | break; |
| 3290 | case NEON_FCMGT: |
| 3291 | fcmp(vf, rd, rn, rm, gt); |
| 3292 | break; |
| 3293 | case NEON_FRECPS: |
| 3294 | frecps(vf, rd, rn, rm); |
| 3295 | break; |
| 3296 | case NEON_FRSQRTS: |
| 3297 | frsqrts(vf, rd, rn, rm); |
| 3298 | break; |
| 3299 | case NEON_FABD: |
| 3300 | fabd(vf, rd, rn, rm); |
| 3301 | break; |
| 3302 | case NEON_FADDP: |
| 3303 | faddp(vf, rd, rn, rm); |
| 3304 | break; |
| 3305 | case NEON_FMAXP: |
| 3306 | fmaxp(vf, rd, rn, rm); |
| 3307 | break; |
| 3308 | case NEON_FMAXNMP: |
| 3309 | fmaxnmp(vf, rd, rn, rm); |
| 3310 | break; |
| 3311 | case NEON_FMINP: |
| 3312 | fminp(vf, rd, rn, rm); |
| 3313 | break; |
| 3314 | case NEON_FMINNMP: |
| 3315 | fminnmp(vf, rd, rn, rm); |
| 3316 | break; |
| 3317 | default: |
| 3318 | VIXL_UNIMPLEMENTED(); |
| 3319 | } |
| 3320 | } else { |
| 3321 | VectorFormat vf = nfd.GetVectorFormat(); |
| 3322 | switch (instr->Mask(NEON3SameMask)) { |
| 3323 | case NEON_ADD: |
| 3324 | add(vf, rd, rn, rm); |
| 3325 | break; |
| 3326 | case NEON_ADDP: |
| 3327 | addp(vf, rd, rn, rm); |
| 3328 | break; |
| 3329 | case NEON_CMEQ: |
| 3330 | cmp(vf, rd, rn, rm, eq); |
| 3331 | break; |
| 3332 | case NEON_CMGE: |
| 3333 | cmp(vf, rd, rn, rm, ge); |
| 3334 | break; |
| 3335 | case NEON_CMGT: |
| 3336 | cmp(vf, rd, rn, rm, gt); |
| 3337 | break; |
| 3338 | case NEON_CMHI: |
| 3339 | cmp(vf, rd, rn, rm, hi); |
| 3340 | break; |
| 3341 | case NEON_CMHS: |
| 3342 | cmp(vf, rd, rn, rm, hs); |
| 3343 | break; |
| 3344 | case NEON_CMTST: |
| 3345 | cmptst(vf, rd, rn, rm); |
| 3346 | break; |
| 3347 | case NEON_MLS: |
| 3348 | mls(vf, rd, rn, rm); |
| 3349 | break; |
| 3350 | case NEON_MLA: |
| 3351 | mla(vf, rd, rn, rm); |
| 3352 | break; |
| 3353 | case NEON_MUL: |
| 3354 | mul(vf, rd, rn, rm); |
| 3355 | break; |
| 3356 | case NEON_PMUL: |
| 3357 | pmul(vf, rd, rn, rm); |
| 3358 | break; |
| 3359 | case NEON_SMAX: |
| 3360 | smax(vf, rd, rn, rm); |
| 3361 | break; |
| 3362 | case NEON_SMAXP: |
| 3363 | smaxp(vf, rd, rn, rm); |
| 3364 | break; |
| 3365 | case NEON_SMIN: |
| 3366 | smin(vf, rd, rn, rm); |
| 3367 | break; |
| 3368 | case NEON_SMINP: |
| 3369 | sminp(vf, rd, rn, rm); |
| 3370 | break; |
| 3371 | case NEON_SUB: |
| 3372 | sub(vf, rd, rn, rm); |
| 3373 | break; |
| 3374 | case NEON_UMAX: |
| 3375 | umax(vf, rd, rn, rm); |
| 3376 | break; |
| 3377 | case NEON_UMAXP: |
| 3378 | umaxp(vf, rd, rn, rm); |
| 3379 | break; |
| 3380 | case NEON_UMIN: |
| 3381 | umin(vf, rd, rn, rm); |
| 3382 | break; |
| 3383 | case NEON_UMINP: |
| 3384 | uminp(vf, rd, rn, rm); |
| 3385 | break; |
| 3386 | case NEON_SSHL: |
| 3387 | sshl(vf, rd, rn, rm); |
| 3388 | break; |
| 3389 | case NEON_USHL: |
| 3390 | ushl(vf, rd, rn, rm); |
| 3391 | break; |
| 3392 | case NEON_SABD: |
| 3393 | absdiff(vf, rd, rn, rm, true); |
| 3394 | break; |
| 3395 | case NEON_UABD: |
| 3396 | absdiff(vf, rd, rn, rm, false); |
| 3397 | break; |
| 3398 | case NEON_SABA: |
| 3399 | saba(vf, rd, rn, rm); |
| 3400 | break; |
| 3401 | case NEON_UABA: |
| 3402 | uaba(vf, rd, rn, rm); |
| 3403 | break; |
| 3404 | case NEON_UQADD: |
| 3405 | add(vf, rd, rn, rm).UnsignedSaturate(vf); |
| 3406 | break; |
| 3407 | case NEON_SQADD: |
| 3408 | add(vf, rd, rn, rm).SignedSaturate(vf); |
| 3409 | break; |
| 3410 | case NEON_UQSUB: |
| 3411 | sub(vf, rd, rn, rm).UnsignedSaturate(vf); |
| 3412 | break; |
| 3413 | case NEON_SQSUB: |
| 3414 | sub(vf, rd, rn, rm).SignedSaturate(vf); |
| 3415 | break; |
| 3416 | case NEON_SQDMULH: |
| 3417 | sqdmulh(vf, rd, rn, rm); |
| 3418 | break; |
| 3419 | case NEON_SQRDMULH: |
| 3420 | sqrdmulh(vf, rd, rn, rm); |
| 3421 | break; |
| 3422 | case NEON_UQSHL: |
| 3423 | ushl(vf, rd, rn, rm).UnsignedSaturate(vf); |
| 3424 | break; |
| 3425 | case NEON_SQSHL: |
| 3426 | sshl(vf, rd, rn, rm).SignedSaturate(vf); |
| 3427 | break; |
| 3428 | case NEON_URSHL: |
| 3429 | ushl(vf, rd, rn, rm).Round(vf); |
| 3430 | break; |
| 3431 | case NEON_SRSHL: |
| 3432 | sshl(vf, rd, rn, rm).Round(vf); |
| 3433 | break; |
| 3434 | case NEON_UQRSHL: |
| 3435 | ushl(vf, rd, rn, rm).Round(vf).UnsignedSaturate(vf); |
| 3436 | break; |
| 3437 | case NEON_SQRSHL: |
| 3438 | sshl(vf, rd, rn, rm).Round(vf).SignedSaturate(vf); |
| 3439 | break; |
| 3440 | case NEON_UHADD: |
| 3441 | add(vf, rd, rn, rm).Uhalve(vf); |
| 3442 | break; |
| 3443 | case NEON_URHADD: |
| 3444 | add(vf, rd, rn, rm).Uhalve(vf).Round(vf); |
| 3445 | break; |
| 3446 | case NEON_SHADD: |
| 3447 | add(vf, rd, rn, rm).Halve(vf); |
| 3448 | break; |
| 3449 | case NEON_SRHADD: |
| 3450 | add(vf, rd, rn, rm).Halve(vf).Round(vf); |
| 3451 | break; |
| 3452 | case NEON_UHSUB: |
| 3453 | sub(vf, rd, rn, rm).Uhalve(vf); |
| 3454 | break; |
| 3455 | case NEON_SHSUB: |
| 3456 | sub(vf, rd, rn, rm).Halve(vf); |
| 3457 | break; |
| 3458 | default: |
| 3459 | VIXL_UNIMPLEMENTED(); |
| 3460 | } |
| 3461 | } |
| 3462 | } |
| 3463 | |
| 3464 | |
| 3465 | void Simulator::VisitNEON3Different(const Instruction* instr) { |
| 3466 | NEONFormatDecoder nfd(instr); |
| 3467 | VectorFormat vf = nfd.GetVectorFormat(); |
| 3468 | VectorFormat vf_l = nfd.GetVectorFormat(nfd.LongIntegerFormatMap()); |
| 3469 | |
| 3470 | SimVRegister& rd = ReadVRegister(instr->GetRd()); |
| 3471 | SimVRegister& rn = ReadVRegister(instr->GetRn()); |
| 3472 | SimVRegister& rm = ReadVRegister(instr->GetRm()); |
| 3473 | |
| 3474 | switch (instr->Mask(NEON3DifferentMask)) { |
| 3475 | case NEON_PMULL: |
| 3476 | pmull(vf_l, rd, rn, rm); |
| 3477 | break; |
| 3478 | case NEON_PMULL2: |
| 3479 | pmull2(vf_l, rd, rn, rm); |
| 3480 | break; |
| 3481 | case NEON_UADDL: |
| 3482 | uaddl(vf_l, rd, rn, rm); |
| 3483 | break; |
| 3484 | case NEON_UADDL2: |
| 3485 | uaddl2(vf_l, rd, rn, rm); |
| 3486 | break; |
| 3487 | case NEON_SADDL: |
| 3488 | saddl(vf_l, rd, rn, rm); |
| 3489 | break; |
| 3490 | case NEON_SADDL2: |
| 3491 | saddl2(vf_l, rd, rn, rm); |
| 3492 | break; |
| 3493 | case NEON_USUBL: |
| 3494 | usubl(vf_l, rd, rn, rm); |
| 3495 | break; |
| 3496 | case NEON_USUBL2: |
| 3497 | usubl2(vf_l, rd, rn, rm); |
| 3498 | break; |
| 3499 | case NEON_SSUBL: |
| 3500 | ssubl(vf_l, rd, rn, rm); |
| 3501 | break; |
| 3502 | case NEON_SSUBL2: |
| 3503 | ssubl2(vf_l, rd, rn, rm); |
| 3504 | break; |
| 3505 | case NEON_SABAL: |
| 3506 | sabal(vf_l, rd, rn, rm); |
| 3507 | break; |
| 3508 | case NEON_SABAL2: |
| 3509 | sabal2(vf_l, rd, rn, rm); |
| 3510 | break; |
| 3511 | case NEON_UABAL: |
| 3512 | uabal(vf_l, rd, rn, rm); |
| 3513 | break; |
| 3514 | case NEON_UABAL2: |
| 3515 | uabal2(vf_l, rd, rn, rm); |
| 3516 | break; |
| 3517 | case NEON_SABDL: |
| 3518 | sabdl(vf_l, rd, rn, rm); |
| 3519 | break; |
| 3520 | case NEON_SABDL2: |
| 3521 | sabdl2(vf_l, rd, rn, rm); |
| 3522 | break; |
| 3523 | case NEON_UABDL: |
| 3524 | uabdl(vf_l, rd, rn, rm); |
| 3525 | break; |
| 3526 | case NEON_UABDL2: |
| 3527 | uabdl2(vf_l, rd, rn, rm); |
| 3528 | break; |
| 3529 | case NEON_SMLAL: |
| 3530 | smlal(vf_l, rd, rn, rm); |
| 3531 | break; |
| 3532 | case NEON_SMLAL2: |
| 3533 | smlal2(vf_l, rd, rn, rm); |
| 3534 | break; |
| 3535 | case NEON_UMLAL: |
| 3536 | umlal(vf_l, rd, rn, rm); |
| 3537 | break; |
| 3538 | case NEON_UMLAL2: |
| 3539 | umlal2(vf_l, rd, rn, rm); |
| 3540 | break; |
| 3541 | case NEON_SMLSL: |
| 3542 | smlsl(vf_l, rd, rn, rm); |
| 3543 | break; |
| 3544 | case NEON_SMLSL2: |
| 3545 | smlsl2(vf_l, rd, rn, rm); |
| 3546 | break; |
| 3547 | case NEON_UMLSL: |
| 3548 | umlsl(vf_l, rd, rn, rm); |
| 3549 | break; |
| 3550 | case NEON_UMLSL2: |
| 3551 | umlsl2(vf_l, rd, rn, rm); |
| 3552 | break; |
| 3553 | case NEON_SMULL: |
| 3554 | smull(vf_l, rd, rn, rm); |
| 3555 | break; |
| 3556 | case NEON_SMULL2: |
| 3557 | smull2(vf_l, rd, rn, rm); |
| 3558 | break; |
| 3559 | case NEON_UMULL: |
| 3560 | umull(vf_l, rd, rn, rm); |
| 3561 | break; |
| 3562 | case NEON_UMULL2: |
| 3563 | umull2(vf_l, rd, rn, rm); |
| 3564 | break; |
| 3565 | case NEON_SQDMLAL: |
| 3566 | sqdmlal(vf_l, rd, rn, rm); |
| 3567 | break; |
| 3568 | case NEON_SQDMLAL2: |
| 3569 | sqdmlal2(vf_l, rd, rn, rm); |
| 3570 | break; |
| 3571 | case NEON_SQDMLSL: |
| 3572 | sqdmlsl(vf_l, rd, rn, rm); |
| 3573 | break; |
| 3574 | case NEON_SQDMLSL2: |
| 3575 | sqdmlsl2(vf_l, rd, rn, rm); |
| 3576 | break; |
| 3577 | case NEON_SQDMULL: |
| 3578 | sqdmull(vf_l, rd, rn, rm); |
| 3579 | break; |
| 3580 | case NEON_SQDMULL2: |
| 3581 | sqdmull2(vf_l, rd, rn, rm); |
| 3582 | break; |
| 3583 | case NEON_UADDW: |
| 3584 | uaddw(vf_l, rd, rn, rm); |
| 3585 | break; |
| 3586 | case NEON_UADDW2: |
| 3587 | uaddw2(vf_l, rd, rn, rm); |
| 3588 | break; |
| 3589 | case NEON_SADDW: |
| 3590 | saddw(vf_l, rd, rn, rm); |
| 3591 | break; |
| 3592 | case NEON_SADDW2: |
| 3593 | saddw2(vf_l, rd, rn, rm); |
| 3594 | break; |
| 3595 | case NEON_USUBW: |
| 3596 | usubw(vf_l, rd, rn, rm); |
| 3597 | break; |
| 3598 | case NEON_USUBW2: |
| 3599 | usubw2(vf_l, rd, rn, rm); |
| 3600 | break; |
| 3601 | case NEON_SSUBW: |
| 3602 | ssubw(vf_l, rd, rn, rm); |
| 3603 | break; |
| 3604 | case NEON_SSUBW2: |
| 3605 | ssubw2(vf_l, rd, rn, rm); |
| 3606 | break; |
| 3607 | case NEON_ADDHN: |
| 3608 | addhn(vf, rd, rn, rm); |
| 3609 | break; |
| 3610 | case NEON_ADDHN2: |
| 3611 | addhn2(vf, rd, rn, rm); |
| 3612 | break; |
| 3613 | case NEON_RADDHN: |
| 3614 | raddhn(vf, rd, rn, rm); |
| 3615 | break; |
| 3616 | case NEON_RADDHN2: |
| 3617 | raddhn2(vf, rd, rn, rm); |
| 3618 | break; |
| 3619 | case NEON_SUBHN: |
| 3620 | subhn(vf, rd, rn, rm); |
| 3621 | break; |
| 3622 | case NEON_SUBHN2: |
| 3623 | subhn2(vf, rd, rn, rm); |
| 3624 | break; |
| 3625 | case NEON_RSUBHN: |
| 3626 | rsubhn(vf, rd, rn, rm); |
| 3627 | break; |
| 3628 | case NEON_RSUBHN2: |
| 3629 | rsubhn2(vf, rd, rn, rm); |
| 3630 | break; |
| 3631 | default: |
| 3632 | VIXL_UNIMPLEMENTED(); |
| 3633 | } |
| 3634 | } |
| 3635 | |
| 3636 | |
| 3637 | void Simulator::VisitNEONAcrossLanes(const Instruction* instr) { |
| 3638 | NEONFormatDecoder nfd(instr); |
| 3639 | |
| 3640 | SimVRegister& rd = ReadVRegister(instr->GetRd()); |
| 3641 | SimVRegister& rn = ReadVRegister(instr->GetRn()); |
| 3642 | |
| 3643 | // The input operand's VectorFormat is passed for these instructions. |
| 3644 | if (instr->Mask(NEONAcrossLanesFPFMask) == NEONAcrossLanesFPFixed) { |
| 3645 | VectorFormat vf = nfd.GetVectorFormat(nfd.FPFormatMap()); |
| 3646 | |
| 3647 | switch (instr->Mask(NEONAcrossLanesFPMask)) { |
| 3648 | case NEON_FMAXV: |
| 3649 | fmaxv(vf, rd, rn); |
| 3650 | break; |
| 3651 | case NEON_FMINV: |
| 3652 | fminv(vf, rd, rn); |
| 3653 | break; |
| 3654 | case NEON_FMAXNMV: |
| 3655 | fmaxnmv(vf, rd, rn); |
| 3656 | break; |
| 3657 | case NEON_FMINNMV: |
| 3658 | fminnmv(vf, rd, rn); |
| 3659 | break; |
| 3660 | default: |
| 3661 | VIXL_UNIMPLEMENTED(); |
| 3662 | } |
| 3663 | } else { |
| 3664 | VectorFormat vf = nfd.GetVectorFormat(); |
| 3665 | |
| 3666 | switch (instr->Mask(NEONAcrossLanesMask)) { |
| 3667 | case NEON_ADDV: |
| 3668 | addv(vf, rd, rn); |
| 3669 | break; |
| 3670 | case NEON_SMAXV: |
| 3671 | smaxv(vf, rd, rn); |
| 3672 | break; |
| 3673 | case NEON_SMINV: |
| 3674 | sminv(vf, rd, rn); |
| 3675 | break; |
| 3676 | case NEON_UMAXV: |
| 3677 | umaxv(vf, rd, rn); |
| 3678 | break; |
| 3679 | case NEON_UMINV: |
| 3680 | uminv(vf, rd, rn); |
| 3681 | break; |
| 3682 | case NEON_SADDLV: |
| 3683 | saddlv(vf, rd, rn); |
| 3684 | break; |
| 3685 | case NEON_UADDLV: |
| 3686 | uaddlv(vf, rd, rn); |
| 3687 | break; |
| 3688 | default: |
| 3689 | VIXL_UNIMPLEMENTED(); |
| 3690 | } |
| 3691 | } |
| 3692 | } |
| 3693 | |
| 3694 | |
| 3695 | void Simulator::VisitNEONByIndexedElement(const Instruction* instr) { |
| 3696 | NEONFormatDecoder nfd(instr); |
| 3697 | VectorFormat vf_r = nfd.GetVectorFormat(); |
| 3698 | VectorFormat vf = nfd.GetVectorFormat(nfd.LongIntegerFormatMap()); |
| 3699 | |
| 3700 | SimVRegister& rd = ReadVRegister(instr->GetRd()); |
| 3701 | SimVRegister& rn = ReadVRegister(instr->GetRn()); |
| 3702 | |
| 3703 | ByElementOp Op = NULL; |
| 3704 | |
| 3705 | int rm_reg = instr->GetRm(); |
| 3706 | int index = (instr->GetNEONH() << 1) | instr->GetNEONL(); |
| 3707 | if (instr->GetNEONSize() == 1) { |
| 3708 | rm_reg &= 0xf; |
| 3709 | index = (index << 1) | instr->GetNEONM(); |
| 3710 | } |
| 3711 | |
| 3712 | switch (instr->Mask(NEONByIndexedElementMask)) { |
| 3713 | case NEON_MUL_byelement: |
| 3714 | Op = &Simulator::mul; |
| 3715 | vf = vf_r; |
| 3716 | break; |
| 3717 | case NEON_MLA_byelement: |
| 3718 | Op = &Simulator::mla; |
| 3719 | vf = vf_r; |
| 3720 | break; |
| 3721 | case NEON_MLS_byelement: |
| 3722 | Op = &Simulator::mls; |
| 3723 | vf = vf_r; |
| 3724 | break; |
| 3725 | case NEON_SQDMULH_byelement: |
| 3726 | Op = &Simulator::sqdmulh; |
| 3727 | vf = vf_r; |
| 3728 | break; |
| 3729 | case NEON_SQRDMULH_byelement: |
| 3730 | Op = &Simulator::sqrdmulh; |
| 3731 | vf = vf_r; |
| 3732 | break; |
| 3733 | case NEON_SMULL_byelement: |
| 3734 | if (instr->Mask(NEON_Q)) { |
| 3735 | Op = &Simulator::smull2; |
| 3736 | } else { |
| 3737 | Op = &Simulator::smull; |
| 3738 | } |
| 3739 | break; |
| 3740 | case NEON_UMULL_byelement: |
| 3741 | if (instr->Mask(NEON_Q)) { |
| 3742 | Op = &Simulator::umull2; |
| 3743 | } else { |
| 3744 | Op = &Simulator::umull; |
| 3745 | } |
| 3746 | break; |
| 3747 | case NEON_SMLAL_byelement: |
| 3748 | if (instr->Mask(NEON_Q)) { |
| 3749 | Op = &Simulator::smlal2; |
| 3750 | } else { |
| 3751 | Op = &Simulator::smlal; |
| 3752 | } |
| 3753 | break; |
| 3754 | case NEON_UMLAL_byelement: |
| 3755 | if (instr->Mask(NEON_Q)) { |
| 3756 | Op = &Simulator::umlal2; |
| 3757 | } else { |
| 3758 | Op = &Simulator::umlal; |
| 3759 | } |
| 3760 | break; |
| 3761 | case NEON_SMLSL_byelement: |
| 3762 | if (instr->Mask(NEON_Q)) { |
| 3763 | Op = &Simulator::smlsl2; |
| 3764 | } else { |
| 3765 | Op = &Simulator::smlsl; |
| 3766 | } |
| 3767 | break; |
| 3768 | case NEON_UMLSL_byelement: |
| 3769 | if (instr->Mask(NEON_Q)) { |
| 3770 | Op = &Simulator::umlsl2; |
| 3771 | } else { |
| 3772 | Op = &Simulator::umlsl; |
| 3773 | } |
| 3774 | break; |
| 3775 | case NEON_SQDMULL_byelement: |
| 3776 | if (instr->Mask(NEON_Q)) { |
| 3777 | Op = &Simulator::sqdmull2; |
| 3778 | } else { |
| 3779 | Op = &Simulator::sqdmull; |
| 3780 | } |
| 3781 | break; |
| 3782 | case NEON_SQDMLAL_byelement: |
| 3783 | if (instr->Mask(NEON_Q)) { |
| 3784 | Op = &Simulator::sqdmlal2; |
| 3785 | } else { |
| 3786 | Op = &Simulator::sqdmlal; |
| 3787 | } |
| 3788 | break; |
| 3789 | case NEON_SQDMLSL_byelement: |
| 3790 | if (instr->Mask(NEON_Q)) { |
| 3791 | Op = &Simulator::sqdmlsl2; |
| 3792 | } else { |
| 3793 | Op = &Simulator::sqdmlsl; |
| 3794 | } |
| 3795 | break; |
| 3796 | default: |
| 3797 | index = instr->GetNEONH(); |
| 3798 | if ((instr->GetFPType() & 1) == 0) { |
| 3799 | index = (index << 1) | instr->GetNEONL(); |
| 3800 | } |
| 3801 | |
| 3802 | vf = nfd.GetVectorFormat(nfd.FPFormatMap()); |
| 3803 | |
| 3804 | switch (instr->Mask(NEONByIndexedElementFPMask)) { |
| 3805 | case NEON_FMUL_byelement: |
| 3806 | Op = &Simulator::fmul; |
| 3807 | break; |
| 3808 | case NEON_FMLA_byelement: |
| 3809 | Op = &Simulator::fmla; |
| 3810 | break; |
| 3811 | case NEON_FMLS_byelement: |
| 3812 | Op = &Simulator::fmls; |
| 3813 | break; |
| 3814 | case NEON_FMULX_byelement: |
| 3815 | Op = &Simulator::fmulx; |
| 3816 | break; |
| 3817 | default: |
| 3818 | VIXL_UNIMPLEMENTED(); |
| 3819 | } |
| 3820 | } |
| 3821 | |
| 3822 | (this->*Op)(vf, rd, rn, ReadVRegister(rm_reg), index); |
| 3823 | } |
| 3824 | |
| 3825 | |
| 3826 | void Simulator::VisitNEONCopy(const Instruction* instr) { |
| 3827 | NEONFormatDecoder nfd(instr, NEONFormatDecoder::TriangularFormatMap()); |
| 3828 | VectorFormat vf = nfd.GetVectorFormat(); |
| 3829 | |
| 3830 | SimVRegister& rd = ReadVRegister(instr->GetRd()); |
| 3831 | SimVRegister& rn = ReadVRegister(instr->GetRn()); |
| 3832 | int imm5 = instr->GetImmNEON5(); |
| 3833 | int tz = CountTrailingZeros(imm5, 32); |
| 3834 | int reg_index = imm5 >> (tz + 1); |
| 3835 | |
| 3836 | if (instr->Mask(NEONCopyInsElementMask) == NEON_INS_ELEMENT) { |
| 3837 | int imm4 = instr->GetImmNEON4(); |
| 3838 | int rn_index = imm4 >> tz; |
| 3839 | ins_element(vf, rd, reg_index, rn, rn_index); |
| 3840 | } else if (instr->Mask(NEONCopyInsGeneralMask) == NEON_INS_GENERAL) { |
| 3841 | ins_immediate(vf, rd, reg_index, ReadXRegister(instr->GetRn())); |
| 3842 | } else if (instr->Mask(NEONCopyUmovMask) == NEON_UMOV) { |
| 3843 | uint64_t value = LogicVRegister(rn).Uint(vf, reg_index); |
| 3844 | value &= MaxUintFromFormat(vf); |
| 3845 | WriteXRegister(instr->GetRd(), value); |
| 3846 | } else if (instr->Mask(NEONCopyUmovMask) == NEON_SMOV) { |
| 3847 | int64_t value = LogicVRegister(rn).Int(vf, reg_index); |
| 3848 | if (instr->GetNEONQ()) { |
| 3849 | WriteXRegister(instr->GetRd(), value); |
| 3850 | } else { |
| 3851 | WriteWRegister(instr->GetRd(), (int32_t)value); |
| 3852 | } |
| 3853 | } else if (instr->Mask(NEONCopyDupElementMask) == NEON_DUP_ELEMENT) { |
| 3854 | dup_element(vf, rd, rn, reg_index); |
| 3855 | } else if (instr->Mask(NEONCopyDupGeneralMask) == NEON_DUP_GENERAL) { |
| 3856 | dup_immediate(vf, rd, ReadXRegister(instr->GetRn())); |
| 3857 | } else { |
| 3858 | VIXL_UNIMPLEMENTED(); |
| 3859 | } |
| 3860 | } |
| 3861 | |
| 3862 | |
| 3863 | void Simulator::VisitNEONExtract(const Instruction* instr) { |
| 3864 | NEONFormatDecoder nfd(instr, NEONFormatDecoder::LogicalFormatMap()); |
| 3865 | VectorFormat vf = nfd.GetVectorFormat(); |
| 3866 | SimVRegister& rd = ReadVRegister(instr->GetRd()); |
| 3867 | SimVRegister& rn = ReadVRegister(instr->GetRn()); |
| 3868 | SimVRegister& rm = ReadVRegister(instr->GetRm()); |
| 3869 | if (instr->Mask(NEONExtractMask) == NEON_EXT) { |
| 3870 | int index = instr->GetImmNEONExt(); |
| 3871 | ext(vf, rd, rn, rm, index); |
| 3872 | } else { |
| 3873 | VIXL_UNIMPLEMENTED(); |
| 3874 | } |
| 3875 | } |
| 3876 | |
| 3877 | |
| 3878 | void Simulator::NEONLoadStoreMultiStructHelper(const Instruction* instr, |
| 3879 | AddrMode addr_mode) { |
| 3880 | NEONFormatDecoder nfd(instr, NEONFormatDecoder::LoadStoreFormatMap()); |
| 3881 | VectorFormat vf = nfd.GetVectorFormat(); |
| 3882 | |
| 3883 | uint64_t addr_base = ReadXRegister(instr->GetRn(), Reg31IsStackPointer); |
| 3884 | int reg_size = RegisterSizeInBytesFromFormat(vf); |
| 3885 | |
| 3886 | int reg[4]; |
| 3887 | uint64_t addr[4]; |
| 3888 | for (int i = 0; i < 4; i++) { |
| 3889 | reg[i] = (instr->GetRt() + i) % kNumberOfVRegisters; |
| 3890 | addr[i] = addr_base + (i * reg_size); |
| 3891 | } |
| 3892 | int count = 1; |
| 3893 | bool log_read = true; |
| 3894 | |
| 3895 | Instr itype = instr->Mask(NEONLoadStoreMultiStructMask); |
| 3896 | if (((itype == NEON_LD1_1v) || (itype == NEON_LD1_2v) || |
| 3897 | (itype == NEON_LD1_3v) || (itype == NEON_LD1_4v) || |
| 3898 | (itype == NEON_ST1_1v) || (itype == NEON_ST1_2v) || |
| 3899 | (itype == NEON_ST1_3v) || (itype == NEON_ST1_4v)) && |
| 3900 | (instr->ExtractBits(20, 16) != 0)) { |
| 3901 | VIXL_UNREACHABLE(); |
| 3902 | } |
| 3903 | |
| 3904 | // We use the PostIndex mask here, as it works in this case for both Offset |
| 3905 | // and PostIndex addressing. |
| 3906 | switch (instr->Mask(NEONLoadStoreMultiStructPostIndexMask)) { |
| 3907 | case NEON_LD1_4v: |
| 3908 | case NEON_LD1_4v_post: |
| 3909 | ld1(vf, ReadVRegister(reg[3]), addr[3]); |
| 3910 | count++; |
| 3911 | VIXL_FALLTHROUGH(); |
| 3912 | case NEON_LD1_3v: |
| 3913 | case NEON_LD1_3v_post: |
| 3914 | ld1(vf, ReadVRegister(reg[2]), addr[2]); |
| 3915 | count++; |
| 3916 | VIXL_FALLTHROUGH(); |
| 3917 | case NEON_LD1_2v: |
| 3918 | case NEON_LD1_2v_post: |
| 3919 | ld1(vf, ReadVRegister(reg[1]), addr[1]); |
| 3920 | count++; |
| 3921 | VIXL_FALLTHROUGH(); |
| 3922 | case NEON_LD1_1v: |
| 3923 | case NEON_LD1_1v_post: |
| 3924 | ld1(vf, ReadVRegister(reg[0]), addr[0]); |
| 3925 | break; |
| 3926 | case NEON_ST1_4v: |
| 3927 | case NEON_ST1_4v_post: |
| 3928 | st1(vf, ReadVRegister(reg[3]), addr[3]); |
| 3929 | count++; |
| 3930 | VIXL_FALLTHROUGH(); |
| 3931 | case NEON_ST1_3v: |
| 3932 | case NEON_ST1_3v_post: |
| 3933 | st1(vf, ReadVRegister(reg[2]), addr[2]); |
| 3934 | count++; |
| 3935 | VIXL_FALLTHROUGH(); |
| 3936 | case NEON_ST1_2v: |
| 3937 | case NEON_ST1_2v_post: |
| 3938 | st1(vf, ReadVRegister(reg[1]), addr[1]); |
| 3939 | count++; |
| 3940 | VIXL_FALLTHROUGH(); |
| 3941 | case NEON_ST1_1v: |
| 3942 | case NEON_ST1_1v_post: |
| 3943 | st1(vf, ReadVRegister(reg[0]), addr[0]); |
| 3944 | log_read = false; |
| 3945 | break; |
| 3946 | case NEON_LD2_post: |
| 3947 | case NEON_LD2: |
| 3948 | ld2(vf, ReadVRegister(reg[0]), ReadVRegister(reg[1]), addr[0]); |
| 3949 | count = 2; |
| 3950 | break; |
| 3951 | case NEON_ST2: |
| 3952 | case NEON_ST2_post: |
| 3953 | st2(vf, ReadVRegister(reg[0]), ReadVRegister(reg[1]), addr[0]); |
| 3954 | count = 2; |
| 3955 | break; |
| 3956 | case NEON_LD3_post: |
| 3957 | case NEON_LD3: |
| 3958 | ld3(vf, |
| 3959 | ReadVRegister(reg[0]), |
| 3960 | ReadVRegister(reg[1]), |
| 3961 | ReadVRegister(reg[2]), |
| 3962 | addr[0]); |
| 3963 | count = 3; |
| 3964 | break; |
| 3965 | case NEON_ST3: |
| 3966 | case NEON_ST3_post: |
| 3967 | st3(vf, |
| 3968 | ReadVRegister(reg[0]), |
| 3969 | ReadVRegister(reg[1]), |
| 3970 | ReadVRegister(reg[2]), |
| 3971 | addr[0]); |
| 3972 | count = 3; |
| 3973 | break; |
| 3974 | case NEON_ST4: |
| 3975 | case NEON_ST4_post: |
| 3976 | st4(vf, |
| 3977 | ReadVRegister(reg[0]), |
| 3978 | ReadVRegister(reg[1]), |
| 3979 | ReadVRegister(reg[2]), |
| 3980 | ReadVRegister(reg[3]), |
| 3981 | addr[0]); |
| 3982 | count = 4; |
| 3983 | break; |
| 3984 | case NEON_LD4_post: |
| 3985 | case NEON_LD4: |
| 3986 | ld4(vf, |
| 3987 | ReadVRegister(reg[0]), |
| 3988 | ReadVRegister(reg[1]), |
| 3989 | ReadVRegister(reg[2]), |
| 3990 | ReadVRegister(reg[3]), |
| 3991 | addr[0]); |
| 3992 | count = 4; |
| 3993 | break; |
| 3994 | default: |
| 3995 | VIXL_UNIMPLEMENTED(); |
| 3996 | } |
| 3997 | |
| 3998 | // Explicitly log the register update whilst we have type information. |
| 3999 | for (int i = 0; i < count; i++) { |
| 4000 | // For de-interleaving loads, only print the base address. |
| 4001 | int lane_size = LaneSizeInBytesFromFormat(vf); |
| 4002 | PrintRegisterFormat format = GetPrintRegisterFormatTryFP( |
| 4003 | GetPrintRegisterFormatForSize(reg_size, lane_size)); |
| 4004 | if (log_read) { |
| 4005 | LogVRead(addr_base, reg[i], format); |
| 4006 | } else { |
| 4007 | LogVWrite(addr_base, reg[i], format); |
| 4008 | } |
| 4009 | } |
| 4010 | |
| 4011 | if (addr_mode == PostIndex) { |
| 4012 | int rm = instr->GetRm(); |
| 4013 | // The immediate post index addressing mode is indicated by rm = 31. |
| 4014 | // The immediate is implied by the number of vector registers used. |
| 4015 | addr_base += (rm == 31) ? RegisterSizeInBytesFromFormat(vf) * count |
| 4016 | : ReadXRegister(rm); |
| 4017 | WriteXRegister(instr->GetRn(), addr_base); |
| 4018 | } else { |
| 4019 | VIXL_ASSERT(addr_mode == Offset); |
| 4020 | } |
| 4021 | } |
| 4022 | |
| 4023 | |
| 4024 | void Simulator::VisitNEONLoadStoreMultiStruct(const Instruction* instr) { |
| 4025 | NEONLoadStoreMultiStructHelper(instr, Offset); |
| 4026 | } |
| 4027 | |
| 4028 | |
| 4029 | void Simulator::VisitNEONLoadStoreMultiStructPostIndex( |
| 4030 | const Instruction* instr) { |
| 4031 | NEONLoadStoreMultiStructHelper(instr, PostIndex); |
| 4032 | } |
| 4033 | |
| 4034 | |
| 4035 | void Simulator::NEONLoadStoreSingleStructHelper(const Instruction* instr, |
| 4036 | AddrMode addr_mode) { |
| 4037 | uint64_t addr = ReadXRegister(instr->GetRn(), Reg31IsStackPointer); |
| 4038 | int rt = instr->GetRt(); |
| 4039 | |
| 4040 | Instr itype = instr->Mask(NEONLoadStoreSingleStructMask); |
| 4041 | if (((itype == NEON_LD1_b) || (itype == NEON_LD1_h) || |
| 4042 | (itype == NEON_LD1_s) || (itype == NEON_LD1_d)) && |
| 4043 | (instr->ExtractBits(20, 16) != 0)) { |
| 4044 | VIXL_UNREACHABLE(); |
| 4045 | } |
| 4046 | |
| 4047 | // We use the PostIndex mask here, as it works in this case for both Offset |
| 4048 | // and PostIndex addressing. |
| 4049 | bool do_load = false; |
| 4050 | |
| 4051 | NEONFormatDecoder nfd(instr, NEONFormatDecoder::LoadStoreFormatMap()); |
| 4052 | VectorFormat vf_t = nfd.GetVectorFormat(); |
| 4053 | |
| 4054 | VectorFormat vf = kFormat16B; |
| 4055 | switch (instr->Mask(NEONLoadStoreSingleStructPostIndexMask)) { |
| 4056 | case NEON_LD1_b: |
| 4057 | case NEON_LD1_b_post: |
| 4058 | case NEON_LD2_b: |
| 4059 | case NEON_LD2_b_post: |
| 4060 | case NEON_LD3_b: |
| 4061 | case NEON_LD3_b_post: |
| 4062 | case NEON_LD4_b: |
| 4063 | case NEON_LD4_b_post: |
| 4064 | do_load = true; |
| 4065 | VIXL_FALLTHROUGH(); |
| 4066 | case NEON_ST1_b: |
| 4067 | case NEON_ST1_b_post: |
| 4068 | case NEON_ST2_b: |
| 4069 | case NEON_ST2_b_post: |
| 4070 | case NEON_ST3_b: |
| 4071 | case NEON_ST3_b_post: |
| 4072 | case NEON_ST4_b: |
| 4073 | case NEON_ST4_b_post: |
| 4074 | break; |
| 4075 | |
| 4076 | case NEON_LD1_h: |
| 4077 | case NEON_LD1_h_post: |
| 4078 | case NEON_LD2_h: |
| 4079 | case NEON_LD2_h_post: |
| 4080 | case NEON_LD3_h: |
| 4081 | case NEON_LD3_h_post: |
| 4082 | case NEON_LD4_h: |
| 4083 | case NEON_LD4_h_post: |
| 4084 | do_load = true; |
| 4085 | VIXL_FALLTHROUGH(); |
| 4086 | case NEON_ST1_h: |
| 4087 | case NEON_ST1_h_post: |
| 4088 | case NEON_ST2_h: |
| 4089 | case NEON_ST2_h_post: |
| 4090 | case NEON_ST3_h: |
| 4091 | case NEON_ST3_h_post: |
| 4092 | case NEON_ST4_h: |
| 4093 | case NEON_ST4_h_post: |
| 4094 | vf = kFormat8H; |
| 4095 | break; |
| 4096 | case NEON_LD1_s: |
| 4097 | case NEON_LD1_s_post: |
| 4098 | case NEON_LD2_s: |
| 4099 | case NEON_LD2_s_post: |
| 4100 | case NEON_LD3_s: |
| 4101 | case NEON_LD3_s_post: |
| 4102 | case NEON_LD4_s: |
| 4103 | case NEON_LD4_s_post: |
| 4104 | do_load = true; |
| 4105 | VIXL_FALLTHROUGH(); |
| 4106 | case NEON_ST1_s: |
| 4107 | case NEON_ST1_s_post: |
| 4108 | case NEON_ST2_s: |
| 4109 | case NEON_ST2_s_post: |
| 4110 | case NEON_ST3_s: |
| 4111 | case NEON_ST3_s_post: |
| 4112 | case NEON_ST4_s: |
| 4113 | case NEON_ST4_s_post: { |
| 4114 | VIXL_STATIC_ASSERT((NEON_LD1_s | (1 << NEONLSSize_offset)) == NEON_LD1_d); |
| 4115 | VIXL_STATIC_ASSERT((NEON_LD1_s_post | (1 << NEONLSSize_offset)) == |
| 4116 | NEON_LD1_d_post); |
| 4117 | VIXL_STATIC_ASSERT((NEON_ST1_s | (1 << NEONLSSize_offset)) == NEON_ST1_d); |
| 4118 | VIXL_STATIC_ASSERT((NEON_ST1_s_post | (1 << NEONLSSize_offset)) == |
| 4119 | NEON_ST1_d_post); |
| 4120 | vf = ((instr->GetNEONLSSize() & 1) == 0) ? kFormat4S : kFormat2D; |
| 4121 | break; |
| 4122 | } |
| 4123 | |
| 4124 | case NEON_LD1R: |
| 4125 | case NEON_LD1R_post: { |
| 4126 | vf = vf_t; |
| 4127 | ld1r(vf, ReadVRegister(rt), addr); |
| 4128 | do_load = true; |
| 4129 | break; |
| 4130 | } |
| 4131 | |
| 4132 | case NEON_LD2R: |
| 4133 | case NEON_LD2R_post: { |
| 4134 | vf = vf_t; |
| 4135 | int rt2 = (rt + 1) % kNumberOfVRegisters; |
| 4136 | ld2r(vf, ReadVRegister(rt), ReadVRegister(rt2), addr); |
| 4137 | do_load = true; |
| 4138 | break; |
| 4139 | } |
| 4140 | |
| 4141 | case NEON_LD3R: |
| 4142 | case NEON_LD3R_post: { |
| 4143 | vf = vf_t; |
| 4144 | int rt2 = (rt + 1) % kNumberOfVRegisters; |
| 4145 | int rt3 = (rt2 + 1) % kNumberOfVRegisters; |
| 4146 | ld3r(vf, ReadVRegister(rt), ReadVRegister(rt2), ReadVRegister(rt3), addr); |
| 4147 | do_load = true; |
| 4148 | break; |
| 4149 | } |
| 4150 | |
| 4151 | case NEON_LD4R: |
| 4152 | case NEON_LD4R_post: { |
| 4153 | vf = vf_t; |
| 4154 | int rt2 = (rt + 1) % kNumberOfVRegisters; |
| 4155 | int rt3 = (rt2 + 1) % kNumberOfVRegisters; |
| 4156 | int rt4 = (rt3 + 1) % kNumberOfVRegisters; |
| 4157 | ld4r(vf, |
| 4158 | ReadVRegister(rt), |
| 4159 | ReadVRegister(rt2), |
| 4160 | ReadVRegister(rt3), |
| 4161 | ReadVRegister(rt4), |
| 4162 | addr); |
| 4163 | do_load = true; |
| 4164 | break; |
| 4165 | } |
| 4166 | default: |
| 4167 | VIXL_UNIMPLEMENTED(); |
| 4168 | } |
| 4169 | |
| 4170 | PrintRegisterFormat print_format = |
| 4171 | GetPrintRegisterFormatTryFP(GetPrintRegisterFormat(vf)); |
| 4172 | // Make sure that the print_format only includes a single lane. |
| 4173 | print_format = |
| 4174 | static_cast<PrintRegisterFormat>(print_format & ~kPrintRegAsVectorMask); |
| 4175 | |
| 4176 | int esize = LaneSizeInBytesFromFormat(vf); |
| 4177 | int index_shift = LaneSizeInBytesLog2FromFormat(vf); |
| 4178 | int lane = instr->GetNEONLSIndex(index_shift); |
| 4179 | int scale = 0; |
| 4180 | int rt2 = (rt + 1) % kNumberOfVRegisters; |
| 4181 | int rt3 = (rt2 + 1) % kNumberOfVRegisters; |
| 4182 | int rt4 = (rt3 + 1) % kNumberOfVRegisters; |
| 4183 | switch (instr->Mask(NEONLoadStoreSingleLenMask)) { |
| 4184 | case NEONLoadStoreSingle1: |
| 4185 | scale = 1; |
| 4186 | if (do_load) { |
| 4187 | ld1(vf, ReadVRegister(rt), lane, addr); |
| 4188 | LogVRead(addr, rt, print_format, lane); |
| 4189 | } else { |
| 4190 | st1(vf, ReadVRegister(rt), lane, addr); |
| 4191 | LogVWrite(addr, rt, print_format, lane); |
| 4192 | } |
| 4193 | break; |
| 4194 | case NEONLoadStoreSingle2: |
| 4195 | scale = 2; |
| 4196 | if (do_load) { |
| 4197 | ld2(vf, ReadVRegister(rt), ReadVRegister(rt2), lane, addr); |
| 4198 | LogVRead(addr, rt, print_format, lane); |
| 4199 | LogVRead(addr + esize, rt2, print_format, lane); |
| 4200 | } else { |
| 4201 | st2(vf, ReadVRegister(rt), ReadVRegister(rt2), lane, addr); |
| 4202 | LogVWrite(addr, rt, print_format, lane); |
| 4203 | LogVWrite(addr + esize, rt2, print_format, lane); |
| 4204 | } |
| 4205 | break; |
| 4206 | case NEONLoadStoreSingle3: |
| 4207 | scale = 3; |
| 4208 | if (do_load) { |
| 4209 | ld3(vf, |
| 4210 | ReadVRegister(rt), |
| 4211 | ReadVRegister(rt2), |
| 4212 | ReadVRegister(rt3), |
| 4213 | lane, |
| 4214 | addr); |
| 4215 | LogVRead(addr, rt, print_format, lane); |
| 4216 | LogVRead(addr + esize, rt2, print_format, lane); |
| 4217 | LogVRead(addr + (2 * esize), rt3, print_format, lane); |
| 4218 | } else { |
| 4219 | st3(vf, |
| 4220 | ReadVRegister(rt), |
| 4221 | ReadVRegister(rt2), |
| 4222 | ReadVRegister(rt3), |
| 4223 | lane, |
| 4224 | addr); |
| 4225 | LogVWrite(addr, rt, print_format, lane); |
| 4226 | LogVWrite(addr + esize, rt2, print_format, lane); |
| 4227 | LogVWrite(addr + (2 * esize), rt3, print_format, lane); |
| 4228 | } |
| 4229 | break; |
| 4230 | case NEONLoadStoreSingle4: |
| 4231 | scale = 4; |
| 4232 | if (do_load) { |
| 4233 | ld4(vf, |
| 4234 | ReadVRegister(rt), |
| 4235 | ReadVRegister(rt2), |
| 4236 | ReadVRegister(rt3), |
| 4237 | ReadVRegister(rt4), |
| 4238 | lane, |
| 4239 | addr); |
| 4240 | LogVRead(addr, rt, print_format, lane); |
| 4241 | LogVRead(addr + esize, rt2, print_format, lane); |
| 4242 | LogVRead(addr + (2 * esize), rt3, print_format, lane); |
| 4243 | LogVRead(addr + (3 * esize), rt4, print_format, lane); |
| 4244 | } else { |
| 4245 | st4(vf, |
| 4246 | ReadVRegister(rt), |
| 4247 | ReadVRegister(rt2), |
| 4248 | ReadVRegister(rt3), |
| 4249 | ReadVRegister(rt4), |
| 4250 | lane, |
| 4251 | addr); |
| 4252 | LogVWrite(addr, rt, print_format, lane); |
| 4253 | LogVWrite(addr + esize, rt2, print_format, lane); |
| 4254 | LogVWrite(addr + (2 * esize), rt3, print_format, lane); |
| 4255 | LogVWrite(addr + (3 * esize), rt4, print_format, lane); |
| 4256 | } |
| 4257 | break; |
| 4258 | default: |
| 4259 | VIXL_UNIMPLEMENTED(); |
| 4260 | } |
| 4261 | |
| 4262 | if (addr_mode == PostIndex) { |
| 4263 | int rm = instr->GetRm(); |
| 4264 | int lane_size = LaneSizeInBytesFromFormat(vf); |
| 4265 | WriteXRegister(instr->GetRn(), |
| 4266 | addr + |
| 4267 | ((rm == 31) ? (scale * lane_size) : ReadXRegister(rm))); |
| 4268 | } |
| 4269 | } |
| 4270 | |
| 4271 | |
| 4272 | void Simulator::VisitNEONLoadStoreSingleStruct(const Instruction* instr) { |
| 4273 | NEONLoadStoreSingleStructHelper(instr, Offset); |
| 4274 | } |
| 4275 | |
| 4276 | |
| 4277 | void Simulator::VisitNEONLoadStoreSingleStructPostIndex( |
| 4278 | const Instruction* instr) { |
| 4279 | NEONLoadStoreSingleStructHelper(instr, PostIndex); |
| 4280 | } |
| 4281 | |
| 4282 | |
| 4283 | void Simulator::VisitNEONModifiedImmediate(const Instruction* instr) { |
| 4284 | SimVRegister& rd = ReadVRegister(instr->GetRd()); |
| 4285 | int cmode = instr->GetNEONCmode(); |
| 4286 | int cmode_3_1 = (cmode >> 1) & 7; |
| 4287 | int cmode_3 = (cmode >> 3) & 1; |
| 4288 | int cmode_2 = (cmode >> 2) & 1; |
| 4289 | int cmode_1 = (cmode >> 1) & 1; |
| 4290 | int cmode_0 = cmode & 1; |
| 4291 | int q = instr->GetNEONQ(); |
| 4292 | int op_bit = instr->GetNEONModImmOp(); |
| 4293 | uint64_t imm8 = instr->GetImmNEONabcdefgh(); |
| 4294 | |
| 4295 | // Find the format and immediate value |
| 4296 | uint64_t imm = 0; |
| 4297 | VectorFormat vform = kFormatUndefined; |
| 4298 | switch (cmode_3_1) { |
| 4299 | case 0x0: |
| 4300 | case 0x1: |
| 4301 | case 0x2: |
| 4302 | case 0x3: |
| 4303 | vform = (q == 1) ? kFormat4S : kFormat2S; |
| 4304 | imm = imm8 << (8 * cmode_3_1); |
| 4305 | break; |
| 4306 | case 0x4: |
| 4307 | case 0x5: |
| 4308 | vform = (q == 1) ? kFormat8H : kFormat4H; |
| 4309 | imm = imm8 << (8 * cmode_1); |
| 4310 | break; |
| 4311 | case 0x6: |
| 4312 | vform = (q == 1) ? kFormat4S : kFormat2S; |
| 4313 | if (cmode_0 == 0) { |
| 4314 | imm = imm8 << 8 | 0x000000ff; |
| 4315 | } else { |
| 4316 | imm = imm8 << 16 | 0x0000ffff; |
| 4317 | } |
| 4318 | break; |
| 4319 | case 0x7: |
| 4320 | if (cmode_0 == 0 && op_bit == 0) { |
| 4321 | vform = q ? kFormat16B : kFormat8B; |
| 4322 | imm = imm8; |
| 4323 | } else if (cmode_0 == 0 && op_bit == 1) { |
| 4324 | vform = q ? kFormat2D : kFormat1D; |
| 4325 | imm = 0; |
| 4326 | for (int i = 0; i < 8; ++i) { |
| 4327 | if (imm8 & (1 << i)) { |
| 4328 | imm |= (UINT64_C(0xff) << (8 * i)); |
| 4329 | } |
| 4330 | } |
| 4331 | } else { // cmode_0 == 1, cmode == 0xf. |
| 4332 | if (op_bit == 0) { |
| 4333 | vform = q ? kFormat4S : kFormat2S; |
| 4334 | imm = FloatToRawbits(instr->GetImmNEONFP32()); |
| 4335 | } else if (q == 1) { |
| 4336 | vform = kFormat2D; |
| 4337 | imm = DoubleToRawbits(instr->GetImmNEONFP64()); |
| 4338 | } else { |
| 4339 | VIXL_ASSERT((q == 0) && (op_bit == 1) && (cmode == 0xf)); |
| 4340 | VisitUnallocated(instr); |
| 4341 | } |
| 4342 | } |
| 4343 | break; |
| 4344 | default: |
| 4345 | VIXL_UNREACHABLE(); |
| 4346 | break; |
| 4347 | } |
| 4348 | |
| 4349 | // Find the operation |
| 4350 | NEONModifiedImmediateOp op; |
| 4351 | if (cmode_3 == 0) { |
| 4352 | if (cmode_0 == 0) { |
| 4353 | op = op_bit ? NEONModifiedImmediate_MVNI : NEONModifiedImmediate_MOVI; |
| 4354 | } else { // cmode<0> == '1' |
| 4355 | op = op_bit ? NEONModifiedImmediate_BIC : NEONModifiedImmediate_ORR; |
| 4356 | } |
| 4357 | } else { // cmode<3> == '1' |
| 4358 | if (cmode_2 == 0) { |
| 4359 | if (cmode_0 == 0) { |
| 4360 | op = op_bit ? NEONModifiedImmediate_MVNI : NEONModifiedImmediate_MOVI; |
| 4361 | } else { // cmode<0> == '1' |
| 4362 | op = op_bit ? NEONModifiedImmediate_BIC : NEONModifiedImmediate_ORR; |
| 4363 | } |
| 4364 | } else { // cmode<2> == '1' |
| 4365 | if (cmode_1 == 0) { |
| 4366 | op = op_bit ? NEONModifiedImmediate_MVNI : NEONModifiedImmediate_MOVI; |
| 4367 | } else { // cmode<1> == '1' |
| 4368 | if (cmode_0 == 0) { |
| 4369 | op = NEONModifiedImmediate_MOVI; |
| 4370 | } else { // cmode<0> == '1' |
| 4371 | op = NEONModifiedImmediate_MOVI; |
| 4372 | } |
| 4373 | } |
| 4374 | } |
| 4375 | } |
| 4376 | |
| 4377 | // Call the logic function |
| 4378 | if (op == NEONModifiedImmediate_ORR) { |
| 4379 | orr(vform, rd, rd, imm); |
| 4380 | } else if (op == NEONModifiedImmediate_BIC) { |
| 4381 | bic(vform, rd, rd, imm); |
| 4382 | } else if (op == NEONModifiedImmediate_MOVI) { |
| 4383 | movi(vform, rd, imm); |
| 4384 | } else if (op == NEONModifiedImmediate_MVNI) { |
| 4385 | mvni(vform, rd, imm); |
| 4386 | } else { |
| 4387 | VisitUnimplemented(instr); |
| 4388 | } |
| 4389 | } |
| 4390 | |
| 4391 | |
| 4392 | void Simulator::VisitNEONScalar2RegMisc(const Instruction* instr) { |
| 4393 | NEONFormatDecoder nfd(instr, NEONFormatDecoder::ScalarFormatMap()); |
| 4394 | VectorFormat vf = nfd.GetVectorFormat(); |
| 4395 | |
| 4396 | SimVRegister& rd = ReadVRegister(instr->GetRd()); |
| 4397 | SimVRegister& rn = ReadVRegister(instr->GetRn()); |
| 4398 | |
| 4399 | if (instr->Mask(NEON2RegMiscOpcode) <= NEON_NEG_scalar_opcode) { |
| 4400 | // These instructions all use a two bit size field, except NOT and RBIT, |
| 4401 | // which use the field to encode the operation. |
| 4402 | switch (instr->Mask(NEONScalar2RegMiscMask)) { |
| 4403 | case NEON_CMEQ_zero_scalar: |
| 4404 | cmp(vf, rd, rn, 0, eq); |
| 4405 | break; |
| 4406 | case NEON_CMGE_zero_scalar: |
| 4407 | cmp(vf, rd, rn, 0, ge); |
| 4408 | break; |
| 4409 | case NEON_CMGT_zero_scalar: |
| 4410 | cmp(vf, rd, rn, 0, gt); |
| 4411 | break; |
| 4412 | case NEON_CMLT_zero_scalar: |
| 4413 | cmp(vf, rd, rn, 0, lt); |
| 4414 | break; |
| 4415 | case NEON_CMLE_zero_scalar: |
| 4416 | cmp(vf, rd, rn, 0, le); |
| 4417 | break; |
| 4418 | case NEON_ABS_scalar: |
| 4419 | abs(vf, rd, rn); |
| 4420 | break; |
| 4421 | case NEON_SQABS_scalar: |
| 4422 | abs(vf, rd, rn).SignedSaturate(vf); |
| 4423 | break; |
| 4424 | case NEON_NEG_scalar: |
| 4425 | neg(vf, rd, rn); |
| 4426 | break; |
| 4427 | case NEON_SQNEG_scalar: |
| 4428 | neg(vf, rd, rn).SignedSaturate(vf); |
| 4429 | break; |
| 4430 | case NEON_SUQADD_scalar: |
| 4431 | suqadd(vf, rd, rn); |
| 4432 | break; |
| 4433 | case NEON_USQADD_scalar: |
| 4434 | usqadd(vf, rd, rn); |
| 4435 | break; |
| 4436 | default: |
| 4437 | VIXL_UNIMPLEMENTED(); |
| 4438 | break; |
| 4439 | } |
| 4440 | } else { |
| 4441 | VectorFormat fpf = nfd.GetVectorFormat(nfd.FPScalarFormatMap()); |
| 4442 | FPRounding fpcr_rounding = static_cast<FPRounding>(ReadFpcr().GetRMode()); |
| 4443 | |
| 4444 | // These instructions all use a one bit size field, except SQXTUN, SQXTN |
| 4445 | // and UQXTN, which use a two bit size field. |
| 4446 | switch (instr->Mask(NEONScalar2RegMiscFPMask)) { |
| 4447 | case NEON_FRECPE_scalar: |
| 4448 | frecpe(fpf, rd, rn, fpcr_rounding); |
| 4449 | break; |
| 4450 | case NEON_FRECPX_scalar: |
| 4451 | frecpx(fpf, rd, rn); |
| 4452 | break; |
| 4453 | case NEON_FRSQRTE_scalar: |
| 4454 | frsqrte(fpf, rd, rn); |
| 4455 | break; |
| 4456 | case NEON_FCMGT_zero_scalar: |
| 4457 | fcmp_zero(fpf, rd, rn, gt); |
| 4458 | break; |
| 4459 | case NEON_FCMGE_zero_scalar: |
| 4460 | fcmp_zero(fpf, rd, rn, ge); |
| 4461 | break; |
| 4462 | case NEON_FCMEQ_zero_scalar: |
| 4463 | fcmp_zero(fpf, rd, rn, eq); |
| 4464 | break; |
| 4465 | case NEON_FCMLE_zero_scalar: |
| 4466 | fcmp_zero(fpf, rd, rn, le); |
| 4467 | break; |
| 4468 | case NEON_FCMLT_zero_scalar: |
| 4469 | fcmp_zero(fpf, rd, rn, lt); |
| 4470 | break; |
| 4471 | case NEON_SCVTF_scalar: |
| 4472 | scvtf(fpf, rd, rn, 0, fpcr_rounding); |
| 4473 | break; |
| 4474 | case NEON_UCVTF_scalar: |
| 4475 | ucvtf(fpf, rd, rn, 0, fpcr_rounding); |
| 4476 | break; |
| 4477 | case NEON_FCVTNS_scalar: |
| 4478 | fcvts(fpf, rd, rn, FPTieEven); |
| 4479 | break; |
| 4480 | case NEON_FCVTNU_scalar: |
| 4481 | fcvtu(fpf, rd, rn, FPTieEven); |
| 4482 | break; |
| 4483 | case NEON_FCVTPS_scalar: |
| 4484 | fcvts(fpf, rd, rn, FPPositiveInfinity); |
| 4485 | break; |
| 4486 | case NEON_FCVTPU_scalar: |
| 4487 | fcvtu(fpf, rd, rn, FPPositiveInfinity); |
| 4488 | break; |
| 4489 | case NEON_FCVTMS_scalar: |
| 4490 | fcvts(fpf, rd, rn, FPNegativeInfinity); |
| 4491 | break; |
| 4492 | case NEON_FCVTMU_scalar: |
| 4493 | fcvtu(fpf, rd, rn, FPNegativeInfinity); |
| 4494 | break; |
| 4495 | case NEON_FCVTZS_scalar: |
| 4496 | fcvts(fpf, rd, rn, FPZero); |
| 4497 | break; |
| 4498 | case NEON_FCVTZU_scalar: |
| 4499 | fcvtu(fpf, rd, rn, FPZero); |
| 4500 | break; |
| 4501 | case NEON_FCVTAS_scalar: |
| 4502 | fcvts(fpf, rd, rn, FPTieAway); |
| 4503 | break; |
| 4504 | case NEON_FCVTAU_scalar: |
| 4505 | fcvtu(fpf, rd, rn, FPTieAway); |
| 4506 | break; |
| 4507 | case NEON_FCVTXN_scalar: |
| 4508 | // Unlike all of the other FP instructions above, fcvtxn encodes dest |
| 4509 | // size S as size<0>=1. There's only one case, so we ignore the form. |
| 4510 | VIXL_ASSERT(instr->ExtractBit(22) == 1); |
| 4511 | fcvtxn(kFormatS, rd, rn); |
| 4512 | break; |
| 4513 | default: |
| 4514 | switch (instr->Mask(NEONScalar2RegMiscMask)) { |
| 4515 | case NEON_SQXTN_scalar: |
| 4516 | sqxtn(vf, rd, rn); |
| 4517 | break; |
| 4518 | case NEON_UQXTN_scalar: |
| 4519 | uqxtn(vf, rd, rn); |
| 4520 | break; |
| 4521 | case NEON_SQXTUN_scalar: |
| 4522 | sqxtun(vf, rd, rn); |
| 4523 | break; |
| 4524 | default: |
| 4525 | VIXL_UNIMPLEMENTED(); |
| 4526 | } |
| 4527 | } |
| 4528 | } |
| 4529 | } |
| 4530 | |
| 4531 | |
| 4532 | void Simulator::VisitNEONScalar3Diff(const Instruction* instr) { |
| 4533 | NEONFormatDecoder nfd(instr, NEONFormatDecoder::LongScalarFormatMap()); |
| 4534 | VectorFormat vf = nfd.GetVectorFormat(); |
| 4535 | |
| 4536 | SimVRegister& rd = ReadVRegister(instr->GetRd()); |
| 4537 | SimVRegister& rn = ReadVRegister(instr->GetRn()); |
| 4538 | SimVRegister& rm = ReadVRegister(instr->GetRm()); |
| 4539 | switch (instr->Mask(NEONScalar3DiffMask)) { |
| 4540 | case NEON_SQDMLAL_scalar: |
| 4541 | sqdmlal(vf, rd, rn, rm); |
| 4542 | break; |
| 4543 | case NEON_SQDMLSL_scalar: |
| 4544 | sqdmlsl(vf, rd, rn, rm); |
| 4545 | break; |
| 4546 | case NEON_SQDMULL_scalar: |
| 4547 | sqdmull(vf, rd, rn, rm); |
| 4548 | break; |
| 4549 | default: |
| 4550 | VIXL_UNIMPLEMENTED(); |
| 4551 | } |
| 4552 | } |
| 4553 | |
| 4554 | |
| 4555 | void Simulator::VisitNEONScalar3Same(const Instruction* instr) { |
| 4556 | NEONFormatDecoder nfd(instr, NEONFormatDecoder::ScalarFormatMap()); |
| 4557 | VectorFormat vf = nfd.GetVectorFormat(); |
| 4558 | |
| 4559 | SimVRegister& rd = ReadVRegister(instr->GetRd()); |
| 4560 | SimVRegister& rn = ReadVRegister(instr->GetRn()); |
| 4561 | SimVRegister& rm = ReadVRegister(instr->GetRm()); |
| 4562 | |
| 4563 | if (instr->Mask(NEONScalar3SameFPFMask) == NEONScalar3SameFPFixed) { |
| 4564 | vf = nfd.GetVectorFormat(nfd.FPScalarFormatMap()); |
| 4565 | switch (instr->Mask(NEONScalar3SameFPMask)) { |
| 4566 | case NEON_FMULX_scalar: |
| 4567 | fmulx(vf, rd, rn, rm); |
| 4568 | break; |
| 4569 | case NEON_FACGE_scalar: |
| 4570 | fabscmp(vf, rd, rn, rm, ge); |
| 4571 | break; |
| 4572 | case NEON_FACGT_scalar: |
| 4573 | fabscmp(vf, rd, rn, rm, gt); |
| 4574 | break; |
| 4575 | case NEON_FCMEQ_scalar: |
| 4576 | fcmp(vf, rd, rn, rm, eq); |
| 4577 | break; |
| 4578 | case NEON_FCMGE_scalar: |
| 4579 | fcmp(vf, rd, rn, rm, ge); |
| 4580 | break; |
| 4581 | case NEON_FCMGT_scalar: |
| 4582 | fcmp(vf, rd, rn, rm, gt); |
| 4583 | break; |
| 4584 | case NEON_FRECPS_scalar: |
| 4585 | frecps(vf, rd, rn, rm); |
| 4586 | break; |
| 4587 | case NEON_FRSQRTS_scalar: |
| 4588 | frsqrts(vf, rd, rn, rm); |
| 4589 | break; |
| 4590 | case NEON_FABD_scalar: |
| 4591 | fabd(vf, rd, rn, rm); |
| 4592 | break; |
| 4593 | default: |
| 4594 | VIXL_UNIMPLEMENTED(); |
| 4595 | } |
| 4596 | } else { |
| 4597 | switch (instr->Mask(NEONScalar3SameMask)) { |
| 4598 | case NEON_ADD_scalar: |
| 4599 | add(vf, rd, rn, rm); |
| 4600 | break; |
| 4601 | case NEON_SUB_scalar: |
| 4602 | sub(vf, rd, rn, rm); |
| 4603 | break; |
| 4604 | case NEON_CMEQ_scalar: |
| 4605 | cmp(vf, rd, rn, rm, eq); |
| 4606 | break; |
| 4607 | case NEON_CMGE_scalar: |
| 4608 | cmp(vf, rd, rn, rm, ge); |
| 4609 | break; |
| 4610 | case NEON_CMGT_scalar: |
| 4611 | cmp(vf, rd, rn, rm, gt); |
| 4612 | break; |
| 4613 | case NEON_CMHI_scalar: |
| 4614 | cmp(vf, rd, rn, rm, hi); |
| 4615 | break; |
| 4616 | case NEON_CMHS_scalar: |
| 4617 | cmp(vf, rd, rn, rm, hs); |
| 4618 | break; |
| 4619 | case NEON_CMTST_scalar: |
| 4620 | cmptst(vf, rd, rn, rm); |
| 4621 | break; |
| 4622 | case NEON_USHL_scalar: |
| 4623 | ushl(vf, rd, rn, rm); |
| 4624 | break; |
| 4625 | case NEON_SSHL_scalar: |
| 4626 | sshl(vf, rd, rn, rm); |
| 4627 | break; |
| 4628 | case NEON_SQDMULH_scalar: |
| 4629 | sqdmulh(vf, rd, rn, rm); |
| 4630 | break; |
| 4631 | case NEON_SQRDMULH_scalar: |
| 4632 | sqrdmulh(vf, rd, rn, rm); |
| 4633 | break; |
| 4634 | case NEON_UQADD_scalar: |
| 4635 | add(vf, rd, rn, rm).UnsignedSaturate(vf); |
| 4636 | break; |
| 4637 | case NEON_SQADD_scalar: |
| 4638 | add(vf, rd, rn, rm).SignedSaturate(vf); |
| 4639 | break; |
| 4640 | case NEON_UQSUB_scalar: |
| 4641 | sub(vf, rd, rn, rm).UnsignedSaturate(vf); |
| 4642 | break; |
| 4643 | case NEON_SQSUB_scalar: |
| 4644 | sub(vf, rd, rn, rm).SignedSaturate(vf); |
| 4645 | break; |
| 4646 | case NEON_UQSHL_scalar: |
| 4647 | ushl(vf, rd, rn, rm).UnsignedSaturate(vf); |
| 4648 | break; |
| 4649 | case NEON_SQSHL_scalar: |
| 4650 | sshl(vf, rd, rn, rm).SignedSaturate(vf); |
| 4651 | break; |
| 4652 | case NEON_URSHL_scalar: |
| 4653 | ushl(vf, rd, rn, rm).Round(vf); |
| 4654 | break; |
| 4655 | case NEON_SRSHL_scalar: |
| 4656 | sshl(vf, rd, rn, rm).Round(vf); |
| 4657 | break; |
| 4658 | case NEON_UQRSHL_scalar: |
| 4659 | ushl(vf, rd, rn, rm).Round(vf).UnsignedSaturate(vf); |
| 4660 | break; |
| 4661 | case NEON_SQRSHL_scalar: |
| 4662 | sshl(vf, rd, rn, rm).Round(vf).SignedSaturate(vf); |
| 4663 | break; |
| 4664 | default: |
| 4665 | VIXL_UNIMPLEMENTED(); |
| 4666 | } |
| 4667 | } |
| 4668 | } |
| 4669 | |
| 4670 | |
| 4671 | void Simulator::VisitNEONScalarByIndexedElement(const Instruction* instr) { |
| 4672 | NEONFormatDecoder nfd(instr, NEONFormatDecoder::LongScalarFormatMap()); |
| 4673 | VectorFormat vf = nfd.GetVectorFormat(); |
| 4674 | VectorFormat vf_r = nfd.GetVectorFormat(nfd.ScalarFormatMap()); |
| 4675 | |
| 4676 | SimVRegister& rd = ReadVRegister(instr->GetRd()); |
| 4677 | SimVRegister& rn = ReadVRegister(instr->GetRn()); |
| 4678 | ByElementOp Op = NULL; |
| 4679 | |
| 4680 | int rm_reg = instr->GetRm(); |
| 4681 | int index = (instr->GetNEONH() << 1) | instr->GetNEONL(); |
| 4682 | if (instr->GetNEONSize() == 1) { |
| 4683 | rm_reg &= 0xf; |
| 4684 | index = (index << 1) | instr->GetNEONM(); |
| 4685 | } |
| 4686 | |
| 4687 | switch (instr->Mask(NEONScalarByIndexedElementMask)) { |
| 4688 | case NEON_SQDMULL_byelement_scalar: |
| 4689 | Op = &Simulator::sqdmull; |
| 4690 | break; |
| 4691 | case NEON_SQDMLAL_byelement_scalar: |
| 4692 | Op = &Simulator::sqdmlal; |
| 4693 | break; |
| 4694 | case NEON_SQDMLSL_byelement_scalar: |
| 4695 | Op = &Simulator::sqdmlsl; |
| 4696 | break; |
| 4697 | case NEON_SQDMULH_byelement_scalar: |
| 4698 | Op = &Simulator::sqdmulh; |
| 4699 | vf = vf_r; |
| 4700 | break; |
| 4701 | case NEON_SQRDMULH_byelement_scalar: |
| 4702 | Op = &Simulator::sqrdmulh; |
| 4703 | vf = vf_r; |
| 4704 | break; |
| 4705 | default: |
| 4706 | vf = nfd.GetVectorFormat(nfd.FPScalarFormatMap()); |
| 4707 | index = instr->GetNEONH(); |
| 4708 | if ((instr->GetFPType() & 1) == 0) { |
| 4709 | index = (index << 1) | instr->GetNEONL(); |
| 4710 | } |
| 4711 | switch (instr->Mask(NEONScalarByIndexedElementFPMask)) { |
| 4712 | case NEON_FMUL_byelement_scalar: |
| 4713 | Op = &Simulator::fmul; |
| 4714 | break; |
| 4715 | case NEON_FMLA_byelement_scalar: |
| 4716 | Op = &Simulator::fmla; |
| 4717 | break; |
| 4718 | case NEON_FMLS_byelement_scalar: |
| 4719 | Op = &Simulator::fmls; |
| 4720 | break; |
| 4721 | case NEON_FMULX_byelement_scalar: |
| 4722 | Op = &Simulator::fmulx; |
| 4723 | break; |
| 4724 | default: |
| 4725 | VIXL_UNIMPLEMENTED(); |
| 4726 | } |
| 4727 | } |
| 4728 | |
| 4729 | (this->*Op)(vf, rd, rn, ReadVRegister(rm_reg), index); |
| 4730 | } |
| 4731 | |
| 4732 | |
| 4733 | void Simulator::VisitNEONScalarCopy(const Instruction* instr) { |
| 4734 | NEONFormatDecoder nfd(instr, NEONFormatDecoder::TriangularScalarFormatMap()); |
| 4735 | VectorFormat vf = nfd.GetVectorFormat(); |
| 4736 | |
| 4737 | SimVRegister& rd = ReadVRegister(instr->GetRd()); |
| 4738 | SimVRegister& rn = ReadVRegister(instr->GetRn()); |
| 4739 | |
| 4740 | if (instr->Mask(NEONScalarCopyMask) == NEON_DUP_ELEMENT_scalar) { |
| 4741 | int imm5 = instr->GetImmNEON5(); |
| 4742 | int tz = CountTrailingZeros(imm5, 32); |
| 4743 | int rn_index = imm5 >> (tz + 1); |
| 4744 | dup_element(vf, rd, rn, rn_index); |
| 4745 | } else { |
| 4746 | VIXL_UNIMPLEMENTED(); |
| 4747 | } |
| 4748 | } |
| 4749 | |
| 4750 | |
| 4751 | void Simulator::VisitNEONScalarPairwise(const Instruction* instr) { |
| 4752 | NEONFormatDecoder nfd(instr, NEONFormatDecoder::FPScalarFormatMap()); |
| 4753 | VectorFormat vf = nfd.GetVectorFormat(); |
| 4754 | |
| 4755 | SimVRegister& rd = ReadVRegister(instr->GetRd()); |
| 4756 | SimVRegister& rn = ReadVRegister(instr->GetRn()); |
| 4757 | switch (instr->Mask(NEONScalarPairwiseMask)) { |
| 4758 | case NEON_ADDP_scalar: |
| 4759 | addp(vf, rd, rn); |
| 4760 | break; |
| 4761 | case NEON_FADDP_scalar: |
| 4762 | faddp(vf, rd, rn); |
| 4763 | break; |
| 4764 | case NEON_FMAXP_scalar: |
| 4765 | fmaxp(vf, rd, rn); |
| 4766 | break; |
| 4767 | case NEON_FMAXNMP_scalar: |
| 4768 | fmaxnmp(vf, rd, rn); |
| 4769 | break; |
| 4770 | case NEON_FMINP_scalar: |
| 4771 | fminp(vf, rd, rn); |
| 4772 | break; |
| 4773 | case NEON_FMINNMP_scalar: |
| 4774 | fminnmp(vf, rd, rn); |
| 4775 | break; |
| 4776 | default: |
| 4777 | VIXL_UNIMPLEMENTED(); |
| 4778 | } |
| 4779 | } |
| 4780 | |
| 4781 | |
| 4782 | void Simulator::VisitNEONScalarShiftImmediate(const Instruction* instr) { |
| 4783 | SimVRegister& rd = ReadVRegister(instr->GetRd()); |
| 4784 | SimVRegister& rn = ReadVRegister(instr->GetRn()); |
| 4785 | FPRounding fpcr_rounding = static_cast<FPRounding>(ReadFpcr().GetRMode()); |
| 4786 | |
| 4787 | static const NEONFormatMap map = {{22, 21, 20, 19}, |
| 4788 | {NF_UNDEF, |
| 4789 | NF_B, |
| 4790 | NF_H, |
| 4791 | NF_H, |
| 4792 | NF_S, |
| 4793 | NF_S, |
| 4794 | NF_S, |
| 4795 | NF_S, |
| 4796 | NF_D, |
| 4797 | NF_D, |
| 4798 | NF_D, |
| 4799 | NF_D, |
| 4800 | NF_D, |
| 4801 | NF_D, |
| 4802 | NF_D, |
| 4803 | NF_D}}; |
| 4804 | NEONFormatDecoder nfd(instr, &map); |
| 4805 | VectorFormat vf = nfd.GetVectorFormat(); |
| 4806 | |
| 4807 | int highestSetBit = HighestSetBitPosition(instr->GetImmNEONImmh()); |
| 4808 | int immhimmb = instr->GetImmNEONImmhImmb(); |
| 4809 | int right_shift = (16 << highestSetBit) - immhimmb; |
| 4810 | int left_shift = immhimmb - (8 << highestSetBit); |
| 4811 | switch (instr->Mask(NEONScalarShiftImmediateMask)) { |
| 4812 | case NEON_SHL_scalar: |
| 4813 | shl(vf, rd, rn, left_shift); |
| 4814 | break; |
| 4815 | case NEON_SLI_scalar: |
| 4816 | sli(vf, rd, rn, left_shift); |
| 4817 | break; |
| 4818 | case NEON_SQSHL_imm_scalar: |
| 4819 | sqshl(vf, rd, rn, left_shift); |
| 4820 | break; |
| 4821 | case NEON_UQSHL_imm_scalar: |
| 4822 | uqshl(vf, rd, rn, left_shift); |
| 4823 | break; |
| 4824 | case NEON_SQSHLU_scalar: |
| 4825 | sqshlu(vf, rd, rn, left_shift); |
| 4826 | break; |
| 4827 | case NEON_SRI_scalar: |
| 4828 | sri(vf, rd, rn, right_shift); |
| 4829 | break; |
| 4830 | case NEON_SSHR_scalar: |
| 4831 | sshr(vf, rd, rn, right_shift); |
| 4832 | break; |
| 4833 | case NEON_USHR_scalar: |
| 4834 | ushr(vf, rd, rn, right_shift); |
| 4835 | break; |
| 4836 | case NEON_SRSHR_scalar: |
| 4837 | sshr(vf, rd, rn, right_shift).Round(vf); |
| 4838 | break; |
| 4839 | case NEON_URSHR_scalar: |
| 4840 | ushr(vf, rd, rn, right_shift).Round(vf); |
| 4841 | break; |
| 4842 | case NEON_SSRA_scalar: |
| 4843 | ssra(vf, rd, rn, right_shift); |
| 4844 | break; |
| 4845 | case NEON_USRA_scalar: |
| 4846 | usra(vf, rd, rn, right_shift); |
| 4847 | break; |
| 4848 | case NEON_SRSRA_scalar: |
| 4849 | srsra(vf, rd, rn, right_shift); |
| 4850 | break; |
| 4851 | case NEON_URSRA_scalar: |
| 4852 | ursra(vf, rd, rn, right_shift); |
| 4853 | break; |
| 4854 | case NEON_UQSHRN_scalar: |
| 4855 | uqshrn(vf, rd, rn, right_shift); |
| 4856 | break; |
| 4857 | case NEON_UQRSHRN_scalar: |
| 4858 | uqrshrn(vf, rd, rn, right_shift); |
| 4859 | break; |
| 4860 | case NEON_SQSHRN_scalar: |
| 4861 | sqshrn(vf, rd, rn, right_shift); |
| 4862 | break; |
| 4863 | case NEON_SQRSHRN_scalar: |
| 4864 | sqrshrn(vf, rd, rn, right_shift); |
| 4865 | break; |
| 4866 | case NEON_SQSHRUN_scalar: |
| 4867 | sqshrun(vf, rd, rn, right_shift); |
| 4868 | break; |
| 4869 | case NEON_SQRSHRUN_scalar: |
| 4870 | sqrshrun(vf, rd, rn, right_shift); |
| 4871 | break; |
| 4872 | case NEON_FCVTZS_imm_scalar: |
| 4873 | fcvts(vf, rd, rn, FPZero, right_shift); |
| 4874 | break; |
| 4875 | case NEON_FCVTZU_imm_scalar: |
| 4876 | fcvtu(vf, rd, rn, FPZero, right_shift); |
| 4877 | break; |
| 4878 | case NEON_SCVTF_imm_scalar: |
| 4879 | scvtf(vf, rd, rn, right_shift, fpcr_rounding); |
| 4880 | break; |
| 4881 | case NEON_UCVTF_imm_scalar: |
| 4882 | ucvtf(vf, rd, rn, right_shift, fpcr_rounding); |
| 4883 | break; |
| 4884 | default: |
| 4885 | VIXL_UNIMPLEMENTED(); |
| 4886 | } |
| 4887 | } |
| 4888 | |
| 4889 | |
| 4890 | void Simulator::VisitNEONShiftImmediate(const Instruction* instr) { |
| 4891 | SimVRegister& rd = ReadVRegister(instr->GetRd()); |
| 4892 | SimVRegister& rn = ReadVRegister(instr->GetRn()); |
| 4893 | FPRounding fpcr_rounding = static_cast<FPRounding>(ReadFpcr().GetRMode()); |
| 4894 | |
| 4895 | // 00010->8B, 00011->16B, 001x0->4H, 001x1->8H, |
| 4896 | // 01xx0->2S, 01xx1->4S, 1xxx1->2D, all others undefined. |
| 4897 | static const NEONFormatMap map = {{22, 21, 20, 19, 30}, |
| 4898 | {NF_UNDEF, |
| 4899 | NF_UNDEF, |
| 4900 | NF_8B, |
| 4901 | NF_16B, |
| 4902 | NF_4H, |
| 4903 | NF_8H, |
| 4904 | NF_4H, |
| 4905 | NF_8H, |
| 4906 | NF_2S, |
| 4907 | NF_4S, |
| 4908 | NF_2S, |
| 4909 | NF_4S, |
| 4910 | NF_2S, |
| 4911 | NF_4S, |
| 4912 | NF_2S, |
| 4913 | NF_4S, |
| 4914 | NF_UNDEF, |
| 4915 | NF_2D, |
| 4916 | NF_UNDEF, |
| 4917 | NF_2D, |
| 4918 | NF_UNDEF, |
| 4919 | NF_2D, |
| 4920 | NF_UNDEF, |
| 4921 | NF_2D, |
| 4922 | NF_UNDEF, |
| 4923 | NF_2D, |
| 4924 | NF_UNDEF, |
| 4925 | NF_2D, |
| 4926 | NF_UNDEF, |
| 4927 | NF_2D, |
| 4928 | NF_UNDEF, |
| 4929 | NF_2D}}; |
| 4930 | NEONFormatDecoder nfd(instr, &map); |
| 4931 | VectorFormat vf = nfd.GetVectorFormat(); |
| 4932 | |
| 4933 | // 0001->8H, 001x->4S, 01xx->2D, all others undefined. |
| 4934 | static const NEONFormatMap map_l = |
| 4935 | {{22, 21, 20, 19}, |
| 4936 | {NF_UNDEF, NF_8H, NF_4S, NF_4S, NF_2D, NF_2D, NF_2D, NF_2D}}; |
| 4937 | VectorFormat vf_l = nfd.GetVectorFormat(&map_l); |
| 4938 | |
| 4939 | int highestSetBit = HighestSetBitPosition(instr->GetImmNEONImmh()); |
| 4940 | int immhimmb = instr->GetImmNEONImmhImmb(); |
| 4941 | int right_shift = (16 << highestSetBit) - immhimmb; |
| 4942 | int left_shift = immhimmb - (8 << highestSetBit); |
| 4943 | |
| 4944 | switch (instr->Mask(NEONShiftImmediateMask)) { |
| 4945 | case NEON_SHL: |
| 4946 | shl(vf, rd, rn, left_shift); |
| 4947 | break; |
| 4948 | case NEON_SLI: |
| 4949 | sli(vf, rd, rn, left_shift); |
| 4950 | break; |
| 4951 | case NEON_SQSHLU: |
| 4952 | sqshlu(vf, rd, rn, left_shift); |
| 4953 | break; |
| 4954 | case NEON_SRI: |
| 4955 | sri(vf, rd, rn, right_shift); |
| 4956 | break; |
| 4957 | case NEON_SSHR: |
| 4958 | sshr(vf, rd, rn, right_shift); |
| 4959 | break; |
| 4960 | case NEON_USHR: |
| 4961 | ushr(vf, rd, rn, right_shift); |
| 4962 | break; |
| 4963 | case NEON_SRSHR: |
| 4964 | sshr(vf, rd, rn, right_shift).Round(vf); |
| 4965 | break; |
| 4966 | case NEON_URSHR: |
| 4967 | ushr(vf, rd, rn, right_shift).Round(vf); |
| 4968 | break; |
| 4969 | case NEON_SSRA: |
| 4970 | ssra(vf, rd, rn, right_shift); |
| 4971 | break; |
| 4972 | case NEON_USRA: |
| 4973 | usra(vf, rd, rn, right_shift); |
| 4974 | break; |
| 4975 | case NEON_SRSRA: |
| 4976 | srsra(vf, rd, rn, right_shift); |
| 4977 | break; |
| 4978 | case NEON_URSRA: |
| 4979 | ursra(vf, rd, rn, right_shift); |
| 4980 | break; |
| 4981 | case NEON_SQSHL_imm: |
| 4982 | sqshl(vf, rd, rn, left_shift); |
| 4983 | break; |
| 4984 | case NEON_UQSHL_imm: |
| 4985 | uqshl(vf, rd, rn, left_shift); |
| 4986 | break; |
| 4987 | case NEON_SCVTF_imm: |
| 4988 | scvtf(vf, rd, rn, right_shift, fpcr_rounding); |
| 4989 | break; |
| 4990 | case NEON_UCVTF_imm: |
| 4991 | ucvtf(vf, rd, rn, right_shift, fpcr_rounding); |
| 4992 | break; |
| 4993 | case NEON_FCVTZS_imm: |
| 4994 | fcvts(vf, rd, rn, FPZero, right_shift); |
| 4995 | break; |
| 4996 | case NEON_FCVTZU_imm: |
| 4997 | fcvtu(vf, rd, rn, FPZero, right_shift); |
| 4998 | break; |
| 4999 | case NEON_SSHLL: |
| 5000 | vf = vf_l; |
| 5001 | if (instr->Mask(NEON_Q)) { |
| 5002 | sshll2(vf, rd, rn, left_shift); |
| 5003 | } else { |
| 5004 | sshll(vf, rd, rn, left_shift); |
| 5005 | } |
| 5006 | break; |
| 5007 | case NEON_USHLL: |
| 5008 | vf = vf_l; |
| 5009 | if (instr->Mask(NEON_Q)) { |
| 5010 | ushll2(vf, rd, rn, left_shift); |
| 5011 | } else { |
| 5012 | ushll(vf, rd, rn, left_shift); |
| 5013 | } |
| 5014 | break; |
| 5015 | case NEON_SHRN: |
| 5016 | if (instr->Mask(NEON_Q)) { |
| 5017 | shrn2(vf, rd, rn, right_shift); |
| 5018 | } else { |
| 5019 | shrn(vf, rd, rn, right_shift); |
| 5020 | } |
| 5021 | break; |
| 5022 | case NEON_RSHRN: |
| 5023 | if (instr->Mask(NEON_Q)) { |
| 5024 | rshrn2(vf, rd, rn, right_shift); |
| 5025 | } else { |
| 5026 | rshrn(vf, rd, rn, right_shift); |
| 5027 | } |
| 5028 | break; |
| 5029 | case NEON_UQSHRN: |
| 5030 | if (instr->Mask(NEON_Q)) { |
| 5031 | uqshrn2(vf, rd, rn, right_shift); |
| 5032 | } else { |
| 5033 | uqshrn(vf, rd, rn, right_shift); |
| 5034 | } |
| 5035 | break; |
| 5036 | case NEON_UQRSHRN: |
| 5037 | if (instr->Mask(NEON_Q)) { |
| 5038 | uqrshrn2(vf, rd, rn, right_shift); |
| 5039 | } else { |
| 5040 | uqrshrn(vf, rd, rn, right_shift); |
| 5041 | } |
| 5042 | break; |
| 5043 | case NEON_SQSHRN: |
| 5044 | if (instr->Mask(NEON_Q)) { |
| 5045 | sqshrn2(vf, rd, rn, right_shift); |
| 5046 | } else { |
| 5047 | sqshrn(vf, rd, rn, right_shift); |
| 5048 | } |
| 5049 | break; |
| 5050 | case NEON_SQRSHRN: |
| 5051 | if (instr->Mask(NEON_Q)) { |
| 5052 | sqrshrn2(vf, rd, rn, right_shift); |
| 5053 | } else { |
| 5054 | sqrshrn(vf, rd, rn, right_shift); |
| 5055 | } |
| 5056 | break; |
| 5057 | case NEON_SQSHRUN: |
| 5058 | if (instr->Mask(NEON_Q)) { |
| 5059 | sqshrun2(vf, rd, rn, right_shift); |
| 5060 | } else { |
| 5061 | sqshrun(vf, rd, rn, right_shift); |
| 5062 | } |
| 5063 | break; |
| 5064 | case NEON_SQRSHRUN: |
| 5065 | if (instr->Mask(NEON_Q)) { |
| 5066 | sqrshrun2(vf, rd, rn, right_shift); |
| 5067 | } else { |
| 5068 | sqrshrun(vf, rd, rn, right_shift); |
| 5069 | } |
| 5070 | break; |
| 5071 | default: |
| 5072 | VIXL_UNIMPLEMENTED(); |
| 5073 | } |
| 5074 | } |
| 5075 | |
| 5076 | |
| 5077 | void Simulator::VisitNEONTable(const Instruction* instr) { |
| 5078 | NEONFormatDecoder nfd(instr, NEONFormatDecoder::LogicalFormatMap()); |
| 5079 | VectorFormat vf = nfd.GetVectorFormat(); |
| 5080 | |
| 5081 | SimVRegister& rd = ReadVRegister(instr->GetRd()); |
| 5082 | SimVRegister& rn = ReadVRegister(instr->GetRn()); |
| 5083 | SimVRegister& rn2 = ReadVRegister((instr->GetRn() + 1) % kNumberOfVRegisters); |
| 5084 | SimVRegister& rn3 = ReadVRegister((instr->GetRn() + 2) % kNumberOfVRegisters); |
| 5085 | SimVRegister& rn4 = ReadVRegister((instr->GetRn() + 3) % kNumberOfVRegisters); |
| 5086 | SimVRegister& rm = ReadVRegister(instr->GetRm()); |
| 5087 | |
| 5088 | switch (instr->Mask(NEONTableMask)) { |
| 5089 | case NEON_TBL_1v: |
| 5090 | tbl(vf, rd, rn, rm); |
| 5091 | break; |
| 5092 | case NEON_TBL_2v: |
| 5093 | tbl(vf, rd, rn, rn2, rm); |
| 5094 | break; |
| 5095 | case NEON_TBL_3v: |
| 5096 | tbl(vf, rd, rn, rn2, rn3, rm); |
| 5097 | break; |
| 5098 | case NEON_TBL_4v: |
| 5099 | tbl(vf, rd, rn, rn2, rn3, rn4, rm); |
| 5100 | break; |
| 5101 | case NEON_TBX_1v: |
| 5102 | tbx(vf, rd, rn, rm); |
| 5103 | break; |
| 5104 | case NEON_TBX_2v: |
| 5105 | tbx(vf, rd, rn, rn2, rm); |
| 5106 | break; |
| 5107 | case NEON_TBX_3v: |
| 5108 | tbx(vf, rd, rn, rn2, rn3, rm); |
| 5109 | break; |
| 5110 | case NEON_TBX_4v: |
| 5111 | tbx(vf, rd, rn, rn2, rn3, rn4, rm); |
| 5112 | break; |
| 5113 | default: |
| 5114 | VIXL_UNIMPLEMENTED(); |
| 5115 | } |
| 5116 | } |
| 5117 | |
| 5118 | |
| 5119 | void Simulator::VisitNEONPerm(const Instruction* instr) { |
| 5120 | NEONFormatDecoder nfd(instr); |
| 5121 | VectorFormat vf = nfd.GetVectorFormat(); |
| 5122 | |
| 5123 | SimVRegister& rd = ReadVRegister(instr->GetRd()); |
| 5124 | SimVRegister& rn = ReadVRegister(instr->GetRn()); |
| 5125 | SimVRegister& rm = ReadVRegister(instr->GetRm()); |
| 5126 | |
| 5127 | switch (instr->Mask(NEONPermMask)) { |
| 5128 | case NEON_TRN1: |
| 5129 | trn1(vf, rd, rn, rm); |
| 5130 | break; |
| 5131 | case NEON_TRN2: |
| 5132 | trn2(vf, rd, rn, rm); |
| 5133 | break; |
| 5134 | case NEON_UZP1: |
| 5135 | uzp1(vf, rd, rn, rm); |
| 5136 | break; |
| 5137 | case NEON_UZP2: |
| 5138 | uzp2(vf, rd, rn, rm); |
| 5139 | break; |
| 5140 | case NEON_ZIP1: |
| 5141 | zip1(vf, rd, rn, rm); |
| 5142 | break; |
| 5143 | case NEON_ZIP2: |
| 5144 | zip2(vf, rd, rn, rm); |
| 5145 | break; |
| 5146 | default: |
| 5147 | VIXL_UNIMPLEMENTED(); |
| 5148 | } |
| 5149 | } |
| 5150 | |
| 5151 | |
| 5152 | void Simulator::DoUnreachable(const Instruction* instr) { |
| 5153 | VIXL_ASSERT((instr->Mask(ExceptionMask) == HLT) && |
| 5154 | (instr->GetImmException() == kUnreachableOpcode)); |
| 5155 | |
| 5156 | fprintf(stream_, |
| 5157 | "Hit UNREACHABLE marker at pc=%p.\n", |
| 5158 | reinterpret_cast<const void*>(instr)); |
| 5159 | abort(); |
| 5160 | } |
| 5161 | |
| 5162 | |
| 5163 | void Simulator::DoTrace(const Instruction* instr) { |
| 5164 | VIXL_ASSERT((instr->Mask(ExceptionMask) == HLT) && |
| 5165 | (instr->GetImmException() == kTraceOpcode)); |
| 5166 | |
| 5167 | // Read the arguments encoded inline in the instruction stream. |
| 5168 | uint32_t parameters; |
| 5169 | uint32_t command; |
| 5170 | |
| 5171 | VIXL_STATIC_ASSERT(sizeof(*instr) == 1); |
| 5172 | memcpy(¶meters, instr + kTraceParamsOffset, sizeof(parameters)); |
| 5173 | memcpy(&command, instr + kTraceCommandOffset, sizeof(command)); |
| 5174 | |
| 5175 | switch (command) { |
| 5176 | case TRACE_ENABLE: |
| 5177 | SetTraceParameters(GetTraceParameters() | parameters); |
| 5178 | break; |
| 5179 | case TRACE_DISABLE: |
| 5180 | SetTraceParameters(GetTraceParameters() & ~parameters); |
| 5181 | break; |
| 5182 | default: |
| 5183 | VIXL_UNREACHABLE(); |
| 5184 | } |
| 5185 | |
| 5186 | WritePc(instr->GetInstructionAtOffset(kTraceLength)); |
| 5187 | } |
| 5188 | |
| 5189 | |
| 5190 | void Simulator::DoLog(const Instruction* instr) { |
| 5191 | VIXL_ASSERT((instr->Mask(ExceptionMask) == HLT) && |
| 5192 | (instr->GetImmException() == kLogOpcode)); |
| 5193 | |
| 5194 | // Read the arguments encoded inline in the instruction stream. |
| 5195 | uint32_t parameters; |
| 5196 | |
| 5197 | VIXL_STATIC_ASSERT(sizeof(*instr) == 1); |
| 5198 | memcpy(¶meters, instr + kTraceParamsOffset, sizeof(parameters)); |
| 5199 | |
| 5200 | // We don't support a one-shot LOG_DISASM. |
| 5201 | VIXL_ASSERT((parameters & LOG_DISASM) == 0); |
| 5202 | // Print the requested information. |
| 5203 | if (parameters & LOG_SYSREGS) PrintSystemRegisters(); |
| 5204 | if (parameters & LOG_REGS) PrintRegisters(); |
| 5205 | if (parameters & LOG_VREGS) PrintVRegisters(); |
| 5206 | |
| 5207 | WritePc(instr->GetInstructionAtOffset(kLogLength)); |
| 5208 | } |
| 5209 | |
| 5210 | |
| 5211 | void Simulator::DoPrintf(const Instruction* instr) { |
| 5212 | VIXL_ASSERT((instr->Mask(ExceptionMask) == HLT) && |
| 5213 | (instr->GetImmException() == kPrintfOpcode)); |
| 5214 | |
| 5215 | // Read the arguments encoded inline in the instruction stream. |
| 5216 | uint32_t arg_count; |
| 5217 | uint32_t arg_pattern_list; |
| 5218 | VIXL_STATIC_ASSERT(sizeof(*instr) == 1); |
| 5219 | memcpy(&arg_count, instr + kPrintfArgCountOffset, sizeof(arg_count)); |
| 5220 | memcpy(&arg_pattern_list, |
| 5221 | instr + kPrintfArgPatternListOffset, |
| 5222 | sizeof(arg_pattern_list)); |
| 5223 | |
| 5224 | VIXL_ASSERT(arg_count <= kPrintfMaxArgCount); |
| 5225 | VIXL_ASSERT((arg_pattern_list >> (kPrintfArgPatternBits * arg_count)) == 0); |
| 5226 | |
| 5227 | // We need to call the host printf function with a set of arguments defined by |
| 5228 | // arg_pattern_list. Because we don't know the types and sizes of the |
| 5229 | // arguments, this is very difficult to do in a robust and portable way. To |
| 5230 | // work around the problem, we pick apart the format string, and print one |
| 5231 | // format placeholder at a time. |
| 5232 | |
| 5233 | // Allocate space for the format string. We take a copy, so we can modify it. |
| 5234 | // Leave enough space for one extra character per expected argument (plus the |
| 5235 | // '\0' termination). |
| 5236 | const char* format_base = ReadRegister<const char*>(0); |
| 5237 | VIXL_ASSERT(format_base != NULL); |
| 5238 | size_t length = strlen(format_base) + 1; |
| 5239 | char* const format = new char[length + arg_count]; |
| 5240 | |
| 5241 | // A list of chunks, each with exactly one format placeholder. |
| 5242 | const char* chunks[kPrintfMaxArgCount]; |
| 5243 | |
| 5244 | // Copy the format string and search for format placeholders. |
| 5245 | uint32_t placeholder_count = 0; |
| 5246 | char* format_scratch = format; |
| 5247 | for (size_t i = 0; i < length; i++) { |
| 5248 | if (format_base[i] != '%') { |
| 5249 | *format_scratch++ = format_base[i]; |
| 5250 | } else { |
| 5251 | if (format_base[i + 1] == '%') { |
| 5252 | // Ignore explicit "%%" sequences. |
| 5253 | *format_scratch++ = format_base[i]; |
| 5254 | i++; |
| 5255 | // Chunks after the first are passed as format strings to printf, so we |
| 5256 | // need to escape '%' characters in those chunks. |
| 5257 | if (placeholder_count > 0) *format_scratch++ = format_base[i]; |
| 5258 | } else { |
| 5259 | VIXL_CHECK(placeholder_count < arg_count); |
| 5260 | // Insert '\0' before placeholders, and store their locations. |
| 5261 | *format_scratch++ = '\0'; |
| 5262 | chunks[placeholder_count++] = format_scratch; |
| 5263 | *format_scratch++ = format_base[i]; |
| 5264 | } |
| 5265 | } |
| 5266 | } |
| 5267 | VIXL_CHECK(placeholder_count == arg_count); |
| 5268 | |
| 5269 | // Finally, call printf with each chunk, passing the appropriate register |
| 5270 | // argument. Normally, printf returns the number of bytes transmitted, so we |
| 5271 | // can emulate a single printf call by adding the result from each chunk. If |
| 5272 | // any call returns a negative (error) value, though, just return that value. |
| 5273 | |
| 5274 | printf("%s", clr_printf); |
| 5275 | |
| 5276 | // Because '\0' is inserted before each placeholder, the first string in |
| 5277 | // 'format' contains no format placeholders and should be printed literally. |
| 5278 | int result = printf("%s", format); |
| 5279 | int pcs_r = 1; // Start at x1. x0 holds the format string. |
| 5280 | int pcs_f = 0; // Start at d0. |
| 5281 | if (result >= 0) { |
| 5282 | for (uint32_t i = 0; i < placeholder_count; i++) { |
| 5283 | int part_result = -1; |
| 5284 | |
| 5285 | uint32_t arg_pattern = arg_pattern_list >> (i * kPrintfArgPatternBits); |
| 5286 | arg_pattern &= (1 << kPrintfArgPatternBits) - 1; |
| 5287 | switch (arg_pattern) { |
| 5288 | case kPrintfArgW: |
| 5289 | part_result = printf(chunks[i], ReadWRegister(pcs_r++)); |
| 5290 | break; |
| 5291 | case kPrintfArgX: |
| 5292 | part_result = printf(chunks[i], ReadXRegister(pcs_r++)); |
| 5293 | break; |
| 5294 | case kPrintfArgD: |
| 5295 | part_result = printf(chunks[i], ReadDRegister(pcs_f++)); |
| 5296 | break; |
| 5297 | default: |
| 5298 | VIXL_UNREACHABLE(); |
| 5299 | } |
| 5300 | |
| 5301 | if (part_result < 0) { |
| 5302 | // Handle error values. |
| 5303 | result = part_result; |
| 5304 | break; |
| 5305 | } |
| 5306 | |
| 5307 | result += part_result; |
| 5308 | } |
| 5309 | } |
| 5310 | |
| 5311 | printf("%s", clr_normal); |
| 5312 | |
| 5313 | // Printf returns its result in x0 (just like the C library's printf). |
| 5314 | WriteXRegister(0, result); |
| 5315 | |
| 5316 | // The printf parameters are inlined in the code, so skip them. |
| 5317 | WritePc(instr->GetInstructionAtOffset(kPrintfLength)); |
| 5318 | |
| 5319 | // Set LR as if we'd just called a native printf function. |
| 5320 | WriteLr(ReadPc()); |
| 5321 | |
| 5322 | delete[] format; |
| 5323 | } |
| 5324 | |
Alexandre Rames | 064e02d | 2016-07-12 11:53:13 +0100 | [diff] [blame] | 5325 | |
Alexandre Rames | ca73ba0 | 2016-07-28 09:16:03 +0100 | [diff] [blame] | 5326 | #ifdef VIXL_HAS_SIMULATED_RUNTIME_CALL_SUPPORT |
Alexandre Rames | 064e02d | 2016-07-12 11:53:13 +0100 | [diff] [blame] | 5327 | void Simulator::DoRuntimeCall(const Instruction* instr) { |
Alexandre Rames | 0d2a3d5 | 2016-08-15 14:24:44 +0100 | [diff] [blame] | 5328 | VIXL_STATIC_ASSERT(kRuntimeCallAddressSize == sizeof(uintptr_t)); |
Alexandre Rames | 064e02d | 2016-07-12 11:53:13 +0100 | [diff] [blame] | 5329 | // The appropriate `Simulator::SimulateRuntimeCall()` wrapper and the function |
| 5330 | // to call are passed inlined in the assembly. |
Alexandre Rames | 0d2a3d5 | 2016-08-15 14:24:44 +0100 | [diff] [blame] | 5331 | uintptr_t call_wrapper_address = |
| 5332 | Memory::Read<uintptr_t>(instr + kRuntimeCallWrapperOffset); |
| 5333 | uintptr_t function_address = |
| 5334 | Memory::Read<uintptr_t>(instr + kRuntimeCallFunctionOffset); |
Alexandre Rames | 064e02d | 2016-07-12 11:53:13 +0100 | [diff] [blame] | 5335 | auto runtime_call_wrapper = |
Jacob Bramley | 482d4df | 2016-08-05 16:58:17 +0100 | [diff] [blame] | 5336 | reinterpret_cast<void (*)(Simulator*, uintptr_t)>(call_wrapper_address); |
Alexandre Rames | 0d2a3d5 | 2016-08-15 14:24:44 +0100 | [diff] [blame] | 5337 | runtime_call_wrapper(this, function_address); |
Alexandre Rames | 064e02d | 2016-07-12 11:53:13 +0100 | [diff] [blame] | 5338 | WritePc(instr->GetInstructionAtOffset(kRuntimeCallLength)); |
| 5339 | } |
| 5340 | #else |
| 5341 | void Simulator::DoRuntimeCall(const Instruction* instr) { |
| 5342 | USE(instr); |
| 5343 | VIXL_UNREACHABLE(); |
| 5344 | } |
| 5345 | #endif |
| 5346 | |
Alexandre Rames | d383296 | 2016-07-04 15:03:43 +0100 | [diff] [blame] | 5347 | } // namespace aarch64 |
| 5348 | } // namespace vixl |
| 5349 | |
Pierre Langlois | 1e85b7f | 2016-08-05 14:20:36 +0100 | [diff] [blame] | 5350 | #endif // VIXL_INCLUDE_SIMULATOR_AARCH64 |