| // Copyright 2015, VIXL authors |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are met: |
| // |
| // * Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above copyright notice, |
| // this list of conditions and the following disclaimer in the documentation |
| // and/or other materials provided with the distribution. |
| // * Neither the name of ARM Limited nor the names of its contributors may be |
| // used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND |
| // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef VIXL_UTILS_H |
| #define VIXL_UTILS_H |
| |
| #include <cmath> |
| #include <cstring> |
| #include <vector> |
| |
| #include "compiler-intrinsics-vixl.h" |
| #include "globals-vixl.h" |
| |
| namespace vixl { |
| |
| // Macros for compile-time format checking. |
| #if GCC_VERSION_OR_NEWER(4, 4, 0) |
| #define PRINTF_CHECK(format_index, varargs_index) \ |
| __attribute__((format(gnu_printf, format_index, varargs_index))) |
| #else |
| #define PRINTF_CHECK(format_index, varargs_index) |
| #endif |
| |
| #ifdef __GNUC__ |
| #define VIXL_HAS_DEPRECATED_WITH_MSG |
| #elif defined(__clang__) |
| #ifdef __has_extension(attribute_deprecated_with_message) |
| #define VIXL_HAS_DEPRECATED_WITH_MSG |
| #endif |
| #endif |
| |
| #ifdef VIXL_HAS_DEPRECATED_WITH_MSG |
| #define VIXL_DEPRECATED(replaced_by, declarator) \ |
| __attribute__((deprecated("Use \"" replaced_by "\" instead"))) declarator |
| #else |
| #define VIXL_DEPRECATED(replaced_by, declarator) declarator |
| #endif |
| |
| #ifdef VIXL_DEBUG |
| #define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_UNREACHABLE() |
| #else |
| #define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_FALLTHROUGH() |
| #endif |
| |
| // Check number width. |
| // TODO: Refactor these using templates. |
| inline bool IsIntN(unsigned n, uint32_t x) { |
| VIXL_ASSERT((0 < n) && (n < 32)); |
| uint32_t limit = UINT32_C(1) << (n - 1); |
| return x < limit; |
| } |
| inline bool IsIntN(unsigned n, int32_t x) { |
| VIXL_ASSERT((0 < n) && (n < 32)); |
| int32_t limit = INT32_C(1) << (n - 1); |
| return (-limit <= x) && (x < limit); |
| } |
| inline bool IsIntN(unsigned n, uint64_t x) { |
| VIXL_ASSERT((0 < n) && (n < 64)); |
| uint64_t limit = UINT64_C(1) << (n - 1); |
| return x < limit; |
| } |
| inline bool IsIntN(unsigned n, int64_t x) { |
| VIXL_ASSERT((0 < n) && (n < 64)); |
| int64_t limit = INT64_C(1) << (n - 1); |
| return (-limit <= x) && (x < limit); |
| } |
| VIXL_DEPRECATED("IsIntN", inline bool is_intn(unsigned n, int64_t x)) { |
| return IsIntN(n, x); |
| } |
| |
| inline bool IsUintN(unsigned n, uint32_t x) { |
| VIXL_ASSERT((0 < n) && (n < 32)); |
| return !(x >> n); |
| } |
| inline bool IsUintN(unsigned n, int32_t x) { |
| VIXL_ASSERT((0 < n) && (n < 32)); |
| // Convert to an unsigned integer to avoid implementation-defined behavior. |
| return !(static_cast<uint32_t>(x) >> n); |
| } |
| inline bool IsUintN(unsigned n, uint64_t x) { |
| VIXL_ASSERT((0 < n) && (n < 64)); |
| return !(x >> n); |
| } |
| inline bool IsUintN(unsigned n, int64_t x) { |
| VIXL_ASSERT((0 < n) && (n < 64)); |
| // Convert to an unsigned integer to avoid implementation-defined behavior. |
| return !(static_cast<uint64_t>(x) >> n); |
| } |
| VIXL_DEPRECATED("IsUintN", inline bool is_uintn(unsigned n, int64_t x)) { |
| return IsUintN(n, x); |
| } |
| |
| inline uint64_t TruncateToUintN(unsigned n, uint64_t x) { |
| VIXL_ASSERT((0 < n) && (n < 64)); |
| return static_cast<uint64_t>(x) & ((UINT64_C(1) << n) - 1); |
| } |
| VIXL_DEPRECATED("TruncateToUintN", |
| inline uint64_t truncate_to_intn(unsigned n, int64_t x)) { |
| return TruncateToUintN(n, x); |
| } |
| |
| // clang-format off |
| #define INT_1_TO_32_LIST(V) \ |
| V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) \ |
| V(9) V(10) V(11) V(12) V(13) V(14) V(15) V(16) \ |
| V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24) \ |
| V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32) |
| |
| #define INT_33_TO_63_LIST(V) \ |
| V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40) \ |
| V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) \ |
| V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56) \ |
| V(57) V(58) V(59) V(60) V(61) V(62) V(63) |
| |
| #define INT_1_TO_63_LIST(V) INT_1_TO_32_LIST(V) INT_33_TO_63_LIST(V) |
| |
| // clang-format on |
| |
| #define DECLARE_IS_INT_N(N) \ |
| inline bool IsInt##N(int64_t x) { return IsIntN(N, x); } \ |
| VIXL_DEPRECATED("IsInt" #N, inline bool is_int##N(int64_t x)) { \ |
| return IsIntN(N, x); \ |
| } |
| |
| #define DECLARE_IS_UINT_N(N) \ |
| inline bool IsUint##N(int64_t x) { return IsUintN(N, x); } \ |
| VIXL_DEPRECATED("IsUint" #N, inline bool is_uint##N(int64_t x)) { \ |
| return IsUintN(N, x); \ |
| } |
| |
| #define DECLARE_TRUNCATE_TO_UINT_32(N) \ |
| inline uint32_t TruncateToUint##N(uint64_t x) { \ |
| return static_cast<uint32_t>(TruncateToUintN(N, x)); \ |
| } \ |
| VIXL_DEPRECATED("TruncateToUint" #N, \ |
| inline uint32_t truncate_to_int##N(int64_t x)) { \ |
| return TruncateToUint##N(x); \ |
| } |
| |
| INT_1_TO_63_LIST(DECLARE_IS_INT_N) |
| INT_1_TO_63_LIST(DECLARE_IS_UINT_N) |
| INT_1_TO_32_LIST(DECLARE_TRUNCATE_TO_UINT_32) |
| |
| #undef DECLARE_IS_INT_N |
| #undef DECLARE_IS_UINT_N |
| #undef DECLARE_TRUNCATE_TO_INT_N |
| |
| // Bit field extraction. |
| inline uint64_t ExtractUnsignedBitfield64(int msb, int lsb, uint64_t x) { |
| VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) && |
| (msb >= lsb)); |
| if ((msb == 63) && (lsb == 0)) return x; |
| return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1); |
| } |
| |
| |
| inline uint32_t ExtractUnsignedBitfield32(int msb, int lsb, uint32_t x) { |
| VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) && |
| (msb >= lsb)); |
| return TruncateToUint32(ExtractUnsignedBitfield64(msb, lsb, x)); |
| } |
| |
| |
| inline int64_t ExtractSignedBitfield64(int msb, int lsb, int64_t x) { |
| VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) && |
| (msb >= lsb)); |
| uint64_t temp = ExtractUnsignedBitfield64(msb, lsb, x); |
| // If the highest extracted bit is set, sign extend. |
| if ((temp >> (msb - lsb)) == 1) { |
| temp |= ~UINT64_C(0) << (msb - lsb); |
| } |
| int64_t result; |
| memcpy(&result, &temp, sizeof(result)); |
| return result; |
| } |
| |
| |
| inline int32_t ExtractSignedBitfield32(int msb, int lsb, int32_t x) { |
| VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) && |
| (msb >= lsb)); |
| uint32_t temp = TruncateToUint32(ExtractSignedBitfield64(msb, lsb, x)); |
| int32_t result; |
| memcpy(&result, &temp, sizeof(result)); |
| return result; |
| } |
| |
| |
| inline uint64_t RotateRight(uint64_t value, |
| unsigned int rotate, |
| unsigned int width) { |
| VIXL_ASSERT((width > 0) && (width <= 64)); |
| uint64_t width_mask = ~UINT64_C(0) >> (64 - width); |
| rotate &= 63; |
| if (rotate > 0) { |
| value &= width_mask; |
| value = (value << (width - rotate)) | (value >> rotate); |
| } |
| return value & width_mask; |
| } |
| |
| |
| // Floating point representation. |
| uint32_t FloatToRawbits(float value); |
| VIXL_DEPRECATED("FloatToRawbits", |
| inline uint32_t float_to_rawbits(float value)) { |
| return FloatToRawbits(value); |
| } |
| |
| uint64_t DoubleToRawbits(double value); |
| VIXL_DEPRECATED("DoubleToRawbits", |
| inline uint64_t double_to_rawbits(double value)) { |
| return DoubleToRawbits(value); |
| } |
| |
| float RawbitsToFloat(uint32_t bits); |
| VIXL_DEPRECATED("RawbitsToFloat", |
| inline float rawbits_to_float(uint32_t bits)) { |
| return RawbitsToFloat(bits); |
| } |
| |
| double RawbitsToDouble(uint64_t bits); |
| VIXL_DEPRECATED("RawbitsToDouble", |
| inline double rawbits_to_double(uint64_t bits)) { |
| return RawbitsToDouble(bits); |
| } |
| |
| uint32_t FloatSign(float value); |
| VIXL_DEPRECATED("FloatSign", inline uint32_t float_sign(float value)) { |
| return FloatSign(value); |
| } |
| |
| uint32_t FloatExp(float value); |
| VIXL_DEPRECATED("FloatExp", inline uint32_t float_exp(float value)) { |
| return FloatExp(value); |
| } |
| |
| uint32_t FloatMantissa(float value); |
| VIXL_DEPRECATED("FloatMantissa", inline uint32_t float_mantissa(float value)) { |
| return FloatMantissa(value); |
| } |
| |
| uint32_t DoubleSign(double value); |
| VIXL_DEPRECATED("DoubleSign", inline uint32_t double_sign(double value)) { |
| return DoubleSign(value); |
| } |
| |
| uint32_t DoubleExp(double value); |
| VIXL_DEPRECATED("DoubleExp", inline uint32_t double_exp(double value)) { |
| return DoubleExp(value); |
| } |
| |
| uint64_t DoubleMantissa(double value); |
| VIXL_DEPRECATED("DoubleMantissa", |
| inline uint64_t double_mantissa(double value)) { |
| return DoubleMantissa(value); |
| } |
| |
| float FloatPack(uint32_t sign, uint32_t exp, uint32_t mantissa); |
| VIXL_DEPRECATED("FloatPack", |
| inline float float_pack(uint32_t sign, |
| uint32_t exp, |
| uint32_t mantissa)) { |
| return FloatPack(sign, exp, mantissa); |
| } |
| |
| double DoublePack(uint64_t sign, uint64_t exp, uint64_t mantissa); |
| VIXL_DEPRECATED("DoublePack", |
| inline double double_pack(uint32_t sign, |
| uint32_t exp, |
| uint64_t mantissa)) { |
| return DoublePack(sign, exp, mantissa); |
| } |
| |
| // An fpclassify() function for 16-bit half-precision floats. |
| int Float16Classify(float16 value); |
| VIXL_DEPRECATED("Float16Classify", inline int float16classify(float16 value)) { |
| return Float16Classify(value); |
| } |
| |
| // NaN tests. |
| inline bool IsSignallingNaN(double num) { |
| const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000); |
| uint64_t raw = DoubleToRawbits(num); |
| if (std::isnan(num) && ((raw & kFP64QuietNaNMask) == 0)) { |
| return true; |
| } |
| return false; |
| } |
| |
| |
| inline bool IsSignallingNaN(float num) { |
| const uint32_t kFP32QuietNaNMask = 0x00400000; |
| uint32_t raw = FloatToRawbits(num); |
| if (std::isnan(num) && ((raw & kFP32QuietNaNMask) == 0)) { |
| return true; |
| } |
| return false; |
| } |
| |
| |
| inline bool IsSignallingNaN(float16 num) { |
| const uint16_t kFP16QuietNaNMask = 0x0200; |
| return (Float16Classify(num) == FP_NAN) && ((num & kFP16QuietNaNMask) == 0); |
| } |
| |
| |
| template <typename T> |
| inline bool IsQuietNaN(T num) { |
| return std::isnan(num) && !IsSignallingNaN(num); |
| } |
| |
| |
| // Convert the NaN in 'num' to a quiet NaN. |
| inline double ToQuietNaN(double num) { |
| const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000); |
| VIXL_ASSERT(std::isnan(num)); |
| return RawbitsToDouble(DoubleToRawbits(num) | kFP64QuietNaNMask); |
| } |
| |
| |
| inline float ToQuietNaN(float num) { |
| const uint32_t kFP32QuietNaNMask = 0x00400000; |
| VIXL_ASSERT(std::isnan(num)); |
| return RawbitsToFloat(FloatToRawbits(num) | kFP32QuietNaNMask); |
| } |
| |
| |
| // Fused multiply-add. |
| inline double FusedMultiplyAdd(double op1, double op2, double a) { |
| return fma(op1, op2, a); |
| } |
| |
| |
| inline float FusedMultiplyAdd(float op1, float op2, float a) { |
| return fmaf(op1, op2, a); |
| } |
| |
| |
| inline uint64_t LowestSetBit(uint64_t value) { return value & -value; } |
| |
| |
| template <typename T> |
| inline int HighestSetBitPosition(T value) { |
| VIXL_ASSERT(value != 0); |
| return (sizeof(value) * 8 - 1) - CountLeadingZeros(value); |
| } |
| |
| |
| template <typename V> |
| inline int WhichPowerOf2(V value) { |
| VIXL_ASSERT(IsPowerOf2(value)); |
| return CountTrailingZeros(value); |
| } |
| |
| |
| unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size); |
| |
| |
| int BitCount(uint64_t value); |
| |
| |
| template <typename T> |
| T ReverseBits(T value) { |
| VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) || |
| (sizeof(value) == 4) || (sizeof(value) == 8)); |
| T result = 0; |
| for (unsigned i = 0; i < (sizeof(value) * 8); i++) { |
| result = (result << 1) | (value & 1); |
| value >>= 1; |
| } |
| return result; |
| } |
| |
| |
| template <typename T> |
| inline T SignExtend(T val, int bitSize) { |
| VIXL_ASSERT(bitSize > 0); |
| T mask = (T(2) << (bitSize - 1)) - T(1); |
| val &= mask; |
| T sign = -(val >> (bitSize - 1)); |
| val |= (sign << bitSize); |
| return val; |
| } |
| |
| |
| template <typename T> |
| T ReverseBytes(T value, int block_bytes_log2) { |
| VIXL_ASSERT((sizeof(value) == 4) || (sizeof(value) == 8)); |
| VIXL_ASSERT((1U << block_bytes_log2) <= sizeof(value)); |
| // Split the 64-bit value into an 8-bit array, where b[0] is the least |
| // significant byte, and b[7] is the most significant. |
| uint8_t bytes[8]; |
| uint64_t mask = UINT64_C(0xff00000000000000); |
| for (int i = 7; i >= 0; i--) { |
| bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8); |
| mask >>= 8; |
| } |
| |
| // Permutation tables for REV instructions. |
| // permute_table[0] is used by REV16_x, REV16_w |
| // permute_table[1] is used by REV32_x, REV_w |
| // permute_table[2] is used by REV_x |
| VIXL_ASSERT((0 < block_bytes_log2) && (block_bytes_log2 < 4)); |
| static const uint8_t permute_table[3][8] = {{6, 7, 4, 5, 2, 3, 0, 1}, |
| {4, 5, 6, 7, 0, 1, 2, 3}, |
| {0, 1, 2, 3, 4, 5, 6, 7}}; |
| uint64_t temp = 0; |
| for (int i = 0; i < 8; i++) { |
| temp <<= 8; |
| temp |= bytes[permute_table[block_bytes_log2 - 1][i]]; |
| } |
| |
| T result; |
| VIXL_STATIC_ASSERT(sizeof(result) <= sizeof(temp)); |
| memcpy(&result, &temp, sizeof(result)); |
| return result; |
| } |
| |
| template <unsigned MULTIPLE, typename T> |
| inline bool IsMultiple(T value) { |
| VIXL_ASSERT(IsPowerOf2(MULTIPLE)); |
| return (value & (MULTIPLE - 1)) == 0; |
| } |
| |
| template <typename T> |
| inline bool IsMultiple(T value, unsigned multiple) { |
| VIXL_ASSERT(IsPowerOf2(multiple)); |
| return (value & (multiple - 1)) == 0; |
| } |
| |
| template <typename T> |
| inline bool IsAligned(T pointer, int alignment) { |
| VIXL_ASSERT(IsPowerOf2(alignment)); |
| return (pointer & (alignment - 1)) == 0; |
| } |
| |
| // Pointer alignment |
| // TODO: rename/refactor to make it specific to instructions. |
| template <unsigned ALIGN, typename T> |
| inline bool IsAligned(T pointer) { |
| VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t)); // NOLINT(runtime/sizeof) |
| // Use C-style casts to get static_cast behaviour for integral types (T), and |
| // reinterpret_cast behaviour for other types. |
| return IsAligned((intptr_t)(pointer), ALIGN); |
| } |
| |
| template <typename T> |
| bool IsWordAligned(T pointer) { |
| return IsAligned<4>(pointer); |
| } |
| |
| // Increment a pointer until it has the specified alignment. The alignment must |
| // be a power of two. |
| template <class T> |
| T AlignUp(T pointer, |
| typename Unsigned<sizeof(T) * kBitsPerByte>::type alignment) { |
| VIXL_ASSERT(IsPowerOf2(alignment)); |
| // Use C-style casts to get static_cast behaviour for integral types (T), and |
| // reinterpret_cast behaviour for other types. |
| |
| typename Unsigned<sizeof(T)* kBitsPerByte>::type pointer_raw = |
| (typename Unsigned<sizeof(T) * kBitsPerByte>::type)pointer; |
| VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw)); |
| |
| size_t mask = alignment - 1; |
| T result = (T)((pointer_raw + mask) & ~mask); |
| VIXL_ASSERT(result >= pointer); |
| |
| return result; |
| } |
| |
| // Decrement a pointer until it has the specified alignment. The alignment must |
| // be a power of two. |
| template <class T> |
| T AlignDown(T pointer, |
| typename Unsigned<sizeof(T) * kBitsPerByte>::type alignment) { |
| VIXL_ASSERT(IsPowerOf2(alignment)); |
| // Use C-style casts to get static_cast behaviour for integral types (T), and |
| // reinterpret_cast behaviour for other types. |
| |
| typename Unsigned<sizeof(T)* kBitsPerByte>::type pointer_raw = |
| (typename Unsigned<sizeof(T) * kBitsPerByte>::type)pointer; |
| VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw)); |
| |
| size_t mask = alignment - 1; |
| return (T)(pointer_raw & ~mask); |
| } |
| |
| |
| template <typename T> |
| inline T ExtractBit(T value, unsigned bit) { |
| return (value >> bit) & T(1); |
| } |
| |
| template <typename Ts, typename Td> |
| inline Td ExtractBits(Ts value, int least_significant_bit, Td mask) { |
| return Td((value >> least_significant_bit) & Ts(mask)); |
| } |
| |
| template <typename Ts, typename Td> |
| inline void AssignBit(Td& dst, // NOLINT(runtime/references) |
| int bit, |
| Ts value) { |
| VIXL_ASSERT((value == Ts(0)) || (value == Ts(1))); |
| VIXL_ASSERT(bit >= 0); |
| VIXL_ASSERT(bit < static_cast<int>(sizeof(Td) * 8)); |
| Td mask(1); |
| dst &= ~(mask << bit); |
| dst |= Td(value) << bit; |
| } |
| |
| template <typename Td, typename Ts> |
| inline void AssignBits(Td& dst, // NOLINT(runtime/references) |
| int least_significant_bit, |
| Ts mask, |
| Ts value) { |
| VIXL_ASSERT(least_significant_bit >= 0); |
| VIXL_ASSERT(least_significant_bit < static_cast<int>(sizeof(Td) * 8)); |
| VIXL_ASSERT(((Td(mask) << least_significant_bit) >> least_significant_bit) == |
| Td(mask)); |
| VIXL_ASSERT((value & mask) == value); |
| dst &= ~(Td(mask) << least_significant_bit); |
| dst |= Td(value) << least_significant_bit; |
| } |
| |
| class VFP { |
| public: |
| static uint32_t FP32ToImm8(float imm) { |
| // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000 |
| uint32_t bits = FloatToRawbits(imm); |
| // bit7: a000.0000 |
| uint32_t bit7 = ((bits >> 31) & 0x1) << 7; |
| // bit6: 0b00.0000 |
| uint32_t bit6 = ((bits >> 29) & 0x1) << 6; |
| // bit5_to_0: 00cd.efgh |
| uint32_t bit5_to_0 = (bits >> 19) & 0x3f; |
| return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0); |
| } |
| static uint32_t FP64ToImm8(double imm) { |
| // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 |
| // 0000.0000.0000.0000.0000.0000.0000.0000 |
| uint64_t bits = DoubleToRawbits(imm); |
| // bit7: a000.0000 |
| uint64_t bit7 = ((bits >> 63) & 0x1) << 7; |
| // bit6: 0b00.0000 |
| uint64_t bit6 = ((bits >> 61) & 0x1) << 6; |
| // bit5_to_0: 00cd.efgh |
| uint64_t bit5_to_0 = (bits >> 48) & 0x3f; |
| |
| return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0); |
| } |
| static float Imm8ToFP32(uint32_t imm8) { |
| // Imm8: abcdefgh (8 bits) |
| // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits) |
| // where B is b ^ 1 |
| uint32_t bits = imm8; |
| uint32_t bit7 = (bits >> 7) & 0x1; |
| uint32_t bit6 = (bits >> 6) & 0x1; |
| uint32_t bit5_to_0 = bits & 0x3f; |
| uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19); |
| |
| return RawbitsToFloat(result); |
| } |
| static double Imm8ToFP64(uint32_t imm8) { |
| // Imm8: abcdefgh (8 bits) |
| // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 |
| // 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits) |
| // where B is b ^ 1 |
| uint32_t bits = imm8; |
| uint64_t bit7 = (bits >> 7) & 0x1; |
| uint64_t bit6 = (bits >> 6) & 0x1; |
| uint64_t bit5_to_0 = bits & 0x3f; |
| uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48); |
| return RawbitsToDouble(result); |
| } |
| static bool IsImmFP32(float imm) { |
| // Valid values will have the form: |
| // aBbb.bbbc.defg.h000.0000.0000.0000.0000 |
| uint32_t bits = FloatToRawbits(imm); |
| // bits[19..0] are cleared. |
| if ((bits & 0x7ffff) != 0) { |
| return false; |
| } |
| |
| |
| // bits[29..25] are all set or all cleared. |
| uint32_t b_pattern = (bits >> 16) & 0x3e00; |
| if (b_pattern != 0 && b_pattern != 0x3e00) { |
| return false; |
| } |
| // bit[30] and bit[29] are opposite. |
| if (((bits ^ (bits << 1)) & 0x40000000) == 0) { |
| return false; |
| } |
| return true; |
| } |
| static bool IsImmFP64(double imm) { |
| // Valid values will have the form: |
| // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 |
| // 0000.0000.0000.0000.0000.0000.0000.0000 |
| uint64_t bits = DoubleToRawbits(imm); |
| // bits[47..0] are cleared. |
| if ((bits & 0x0000ffffffffffff) != 0) { |
| return false; |
| } |
| // bits[61..54] are all set or all cleared. |
| uint32_t b_pattern = (bits >> 48) & 0x3fc0; |
| if ((b_pattern != 0) && (b_pattern != 0x3fc0)) { |
| return false; |
| } |
| // bit[62] and bit[61] are opposite. |
| if (((bits ^ (bits << 1)) & (UINT64_C(1) << 62)) == 0) { |
| return false; |
| } |
| return true; |
| } |
| }; |
| |
| class BitField { |
| // ForEachBitHelper is a functor that will call |
| // bool ForEachBitHelper::execute(ElementType id) const |
| // and expects a boolean in return whether to continue (if true) |
| // or stop (if false) |
| // check_set will check if the bits are on (true) or off(false) |
| template <typename ForEachBitHelper, bool check_set> |
| bool ForEachBit(const ForEachBitHelper& helper) { |
| for (int i = 0; static_cast<size_t>(i) < bitfield_.size(); i++) { |
| if (bitfield_[i] == check_set) |
| if (!helper.execute(i)) return false; |
| } |
| return true; |
| } |
| |
| public: |
| explicit BitField(unsigned size) : bitfield_(size, 0) {} |
| |
| void Set(int i) { |
| VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size())); |
| bitfield_[i] = true; |
| } |
| |
| void Unset(int i) { |
| VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size())); |
| bitfield_[i] = true; |
| } |
| |
| bool IsSet(int i) const { return bitfield_[i]; } |
| |
| // For each bit not set in the bitfield call the execute functor |
| // execute. |
| // ForEachBitSetHelper::execute returns true if the iteration through |
| // the bits can continue, otherwise it will stop. |
| // struct ForEachBitSetHelper { |
| // bool execute(int /*id*/) { return false; } |
| // }; |
| template <typename ForEachBitNotSetHelper> |
| bool ForEachBitNotSet(const ForEachBitNotSetHelper& helper) { |
| return ForEachBit<ForEachBitNotSetHelper, false>(helper); |
| } |
| |
| // For each bit set in the bitfield call the execute functor |
| // execute. |
| template <typename ForEachBitSetHelper> |
| bool ForEachBitSet(const ForEachBitSetHelper& helper) { |
| return ForEachBit<ForEachBitSetHelper, true>(helper); |
| } |
| |
| private: |
| std::vector<bool> bitfield_; |
| }; |
| |
| typedef int64_t Int64; |
| class Uint64; |
| class Uint128; |
| |
| class Uint32 { |
| uint32_t data_; |
| |
| public: |
| // Unlike uint32_t, Uint32 has a default constructor. |
| Uint32() { data_ = 0; } |
| explicit Uint32(uint32_t data) : data_(data) {} |
| inline explicit Uint32(Uint64 data); |
| uint32_t Get() const { return data_; } |
| template <int N> |
| int32_t GetSigned() const { |
| return ExtractSignedBitfield32(N - 1, 0, data_); |
| } |
| int32_t GetSigned() const { return data_; } |
| Uint32 operator~() const { return Uint32(~data_); } |
| Uint32 operator-() const { return Uint32(-data_); } |
| bool operator==(Uint32 value) const { return data_ == value.data_; } |
| bool operator!=(Uint32 value) const { return data_ != value.data_; } |
| bool operator>(Uint32 value) const { return data_ > value.data_; } |
| Uint32 operator+(Uint32 value) const { return Uint32(data_ + value.data_); } |
| Uint32 operator-(Uint32 value) const { return Uint32(data_ - value.data_); } |
| Uint32 operator&(Uint32 value) const { return Uint32(data_ & value.data_); } |
| Uint32 operator&=(Uint32 value) { |
| data_ &= value.data_; |
| return *this; |
| } |
| Uint32 operator^(Uint32 value) const { return Uint32(data_ ^ value.data_); } |
| Uint32 operator^=(Uint32 value) { |
| data_ ^= value.data_; |
| return *this; |
| } |
| Uint32 operator|(Uint32 value) const { return Uint32(data_ | value.data_); } |
| Uint32 operator|=(Uint32 value) { |
| data_ |= value.data_; |
| return *this; |
| } |
| // Unlike uint32_t, the shift functions can accept negative shift and |
| // return 0 when the shift is too big. |
| Uint32 operator>>(int shift) const { |
| if (shift == 0) return *this; |
| if (shift < 0) { |
| int tmp = -shift; |
| if (tmp >= 32) return Uint32(0); |
| return Uint32(data_ << tmp); |
| } |
| int tmp = shift; |
| if (tmp >= 32) return Uint32(0); |
| return Uint32(data_ >> tmp); |
| } |
| Uint32 operator<<(int shift) const { |
| if (shift == 0) return *this; |
| if (shift < 0) { |
| int tmp = -shift; |
| if (tmp >= 32) return Uint32(0); |
| return Uint32(data_ >> tmp); |
| } |
| int tmp = shift; |
| if (tmp >= 32) return Uint32(0); |
| return Uint32(data_ << tmp); |
| } |
| }; |
| |
| class Uint64 { |
| uint64_t data_; |
| |
| public: |
| // Unlike uint64_t, Uint64 has a default constructor. |
| Uint64() { data_ = 0; } |
| explicit Uint64(uint64_t data) : data_(data) {} |
| explicit Uint64(Uint32 data) : data_(data.Get()) {} |
| inline explicit Uint64(Uint128 data); |
| uint64_t Get() const { return data_; } |
| int64_t GetSigned(int N) const { |
| return ExtractSignedBitfield64(N - 1, 0, data_); |
| } |
| int64_t GetSigned() const { return data_; } |
| Uint32 ToUint32() const { |
| VIXL_ASSERT((data_ >> 32) == 0); |
| return Uint32(static_cast<uint32_t>(data_)); |
| } |
| Uint32 GetHigh32() const { return Uint32(data_ >> 32); } |
| Uint32 GetLow32() const { return Uint32(data_ & 0xffffffff); } |
| Uint64 operator~() const { return Uint64(~data_); } |
| Uint64 operator-() const { return Uint64(-data_); } |
| bool operator==(Uint64 value) const { return data_ == value.data_; } |
| bool operator!=(Uint64 value) const { return data_ != value.data_; } |
| Uint64 operator+(Uint64 value) const { return Uint64(data_ + value.data_); } |
| Uint64 operator-(Uint64 value) const { return Uint64(data_ - value.data_); } |
| Uint64 operator&(Uint64 value) const { return Uint64(data_ & value.data_); } |
| Uint64 operator&=(Uint64 value) { |
| data_ &= value.data_; |
| return *this; |
| } |
| Uint64 operator^(Uint64 value) const { return Uint64(data_ ^ value.data_); } |
| Uint64 operator^=(Uint64 value) { |
| data_ ^= value.data_; |
| return *this; |
| } |
| Uint64 operator|(Uint64 value) const { return Uint64(data_ | value.data_); } |
| Uint64 operator|=(Uint64 value) { |
| data_ |= value.data_; |
| return *this; |
| } |
| // Unlike uint64_t, the shift functions can accept negative shift and |
| // return 0 when the shift is too big. |
| Uint64 operator>>(int shift) const { |
| if (shift == 0) return *this; |
| if (shift < 0) { |
| int tmp = -shift; |
| if (tmp >= 64) return Uint64(0); |
| return Uint64(data_ << tmp); |
| } |
| int tmp = shift; |
| if (tmp >= 64) return Uint64(0); |
| return Uint64(data_ >> tmp); |
| } |
| Uint64 operator<<(int shift) const { |
| if (shift == 0) return *this; |
| if (shift < 0) { |
| int tmp = -shift; |
| if (tmp >= 64) return Uint64(0); |
| return Uint64(data_ >> tmp); |
| } |
| int tmp = shift; |
| if (tmp >= 64) return Uint64(0); |
| return Uint64(data_ << tmp); |
| } |
| }; |
| |
| class Uint128 { |
| uint64_t data_high_; |
| uint64_t data_low_; |
| |
| public: |
| Uint128() : data_high_(0), data_low_(0) {} |
| explicit Uint128(uint64_t data_low) : data_high_(0), data_low_(data_low) {} |
| explicit Uint128(Uint64 data_low) |
| : data_high_(0), data_low_(data_low.Get()) {} |
| Uint128(uint64_t data_high, uint64_t data_low) |
| : data_high_(data_high), data_low_(data_low) {} |
| Uint64 ToUint64() const { |
| VIXL_ASSERT(data_high_ == 0); |
| return Uint64(data_low_); |
| } |
| Uint64 GetHigh64() const { return Uint64(data_high_); } |
| Uint64 GetLow64() const { return Uint64(data_low_); } |
| Uint128 operator~() const { return Uint128(~data_high_, ~data_low_); } |
| bool operator==(Uint128 value) const { |
| return (data_high_ == value.data_high_) && (data_low_ == value.data_low_); |
| } |
| Uint128 operator&(Uint128 value) const { |
| return Uint128(data_high_ & value.data_high_, data_low_ & value.data_low_); |
| } |
| Uint128 operator&=(Uint128 value) { |
| data_high_ &= value.data_high_; |
| data_low_ &= value.data_low_; |
| return *this; |
| } |
| Uint128 operator|=(Uint128 value) { |
| data_high_ |= value.data_high_; |
| data_low_ |= value.data_low_; |
| return *this; |
| } |
| Uint128 operator>>(int shift) const { |
| VIXL_ASSERT((shift >= 0) && (shift < 128)); |
| if (shift == 0) return *this; |
| if (shift >= 64) { |
| return Uint128(0, data_high_ >> (shift - 64)); |
| } |
| uint64_t tmp = (data_high_ << (64 - shift)) | (data_low_ >> shift); |
| return Uint128(data_high_ >> shift, tmp); |
| } |
| Uint128 operator<<(int shift) const { |
| VIXL_ASSERT((shift >= 0) && (shift < 128)); |
| if (shift == 0) return *this; |
| if (shift >= 64) { |
| return Uint128(data_low_ << (shift - 64), 0); |
| } |
| uint64_t tmp = (data_high_ << shift) | (data_low_ >> (64 - shift)); |
| return Uint128(tmp, data_low_ << shift); |
| } |
| }; |
| |
| Uint32::Uint32(Uint64 data) : data_(data.ToUint32().Get()) {} |
| Uint64::Uint64(Uint128 data) : data_(data.ToUint64().Get()) {} |
| |
| Int64 BitCount(Uint32 value); |
| |
| } // namespace vixl |
| |
| #endif // VIXL_UTILS_H |