aboutsummaryrefslogtreecommitdiff
path: root/include/hw/elf_ops.h
blob: 81cecaf27e237d30ec2e510ed4206aa6cd9911f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
static void glue(bswap_ehdr, SZ)(struct elfhdr *ehdr)
{
    bswap16s(&ehdr->e_type);			/* Object file type */
    bswap16s(&ehdr->e_machine);		/* Architecture */
    bswap32s(&ehdr->e_version);		/* Object file version */
    bswapSZs(&ehdr->e_entry);		/* Entry point virtual address */
    bswapSZs(&ehdr->e_phoff);		/* Program header table file offset */
    bswapSZs(&ehdr->e_shoff);		/* Section header table file offset */
    bswap32s(&ehdr->e_flags);		/* Processor-specific flags */
    bswap16s(&ehdr->e_ehsize);		/* ELF header size in bytes */
    bswap16s(&ehdr->e_phentsize);		/* Program header table entry size */
    bswap16s(&ehdr->e_phnum);		/* Program header table entry count */
    bswap16s(&ehdr->e_shentsize);		/* Section header table entry size */
    bswap16s(&ehdr->e_shnum);		/* Section header table entry count */
    bswap16s(&ehdr->e_shstrndx);		/* Section header string table index */
}

static void glue(bswap_phdr, SZ)(struct elf_phdr *phdr)
{
    bswap32s(&phdr->p_type);			/* Segment type */
    bswapSZs(&phdr->p_offset);		/* Segment file offset */
    bswapSZs(&phdr->p_vaddr);		/* Segment virtual address */
    bswapSZs(&phdr->p_paddr);		/* Segment physical address */
    bswapSZs(&phdr->p_filesz);		/* Segment size in file */
    bswapSZs(&phdr->p_memsz);		/* Segment size in memory */
    bswap32s(&phdr->p_flags);		/* Segment flags */
    bswapSZs(&phdr->p_align);		/* Segment alignment */
}

static void glue(bswap_shdr, SZ)(struct elf_shdr *shdr)
{
    bswap32s(&shdr->sh_name);
    bswap32s(&shdr->sh_type);
    bswapSZs(&shdr->sh_flags);
    bswapSZs(&shdr->sh_addr);
    bswapSZs(&shdr->sh_offset);
    bswapSZs(&shdr->sh_size);
    bswap32s(&shdr->sh_link);
    bswap32s(&shdr->sh_info);
    bswapSZs(&shdr->sh_addralign);
    bswapSZs(&shdr->sh_entsize);
}

static void glue(bswap_sym, SZ)(struct elf_sym *sym)
{
    bswap32s(&sym->st_name);
    bswapSZs(&sym->st_value);
    bswapSZs(&sym->st_size);
    bswap16s(&sym->st_shndx);
}

static void glue(bswap_rela, SZ)(struct elf_rela *rela)
{
    bswapSZs(&rela->r_offset);
    bswapSZs(&rela->r_info);
    bswapSZs((elf_word *)&rela->r_addend);
}

static struct elf_shdr *glue(find_section, SZ)(struct elf_shdr *shdr_table,
                                               int n, int type)
{
    int i;
    for(i=0;i<n;i++) {
        if (shdr_table[i].sh_type == type)
            return shdr_table + i;
    }
    return NULL;
}

static int glue(symfind, SZ)(const void *s0, const void *s1)
{
    hwaddr addr = *(hwaddr *)s0;
    struct elf_sym *sym = (struct elf_sym *)s1;
    int result = 0;
    if (addr < sym->st_value) {
        result = -1;
    } else if (addr >= sym->st_value + sym->st_size) {
        result = 1;
    }
    return result;
}

static const char *glue(lookup_symbol, SZ)(struct syminfo *s,
                                           hwaddr orig_addr)
{
    struct elf_sym *syms = glue(s->disas_symtab.elf, SZ);
    struct elf_sym *sym;

    sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms),
                  glue(symfind, SZ));
    if (sym != NULL) {
        return s->disas_strtab + sym->st_name;
    }

    return "";
}

static int glue(symcmp, SZ)(const void *s0, const void *s1)
{
    struct elf_sym *sym0 = (struct elf_sym *)s0;
    struct elf_sym *sym1 = (struct elf_sym *)s1;
    return (sym0->st_value < sym1->st_value)
        ? -1
        : ((sym0->st_value > sym1->st_value) ? 1 : 0);
}

static int glue(load_symbols, SZ)(struct elfhdr *ehdr, int fd, int must_swab,
                                  int clear_lsb, symbol_fn_t sym_cb)
{
    struct elf_shdr *symtab, *strtab, *shdr_table = NULL;
    struct elf_sym *syms = NULL;
    struct syminfo *s;
    int nsyms, i;
    char *str = NULL;

    shdr_table = load_at(fd, ehdr->e_shoff,
                         sizeof(struct elf_shdr) * ehdr->e_shnum);
    if (!shdr_table)
        return -1;

    if (must_swab) {
        for (i = 0; i < ehdr->e_shnum; i++) {
            glue(bswap_shdr, SZ)(shdr_table + i);
        }
    }

    symtab = glue(find_section, SZ)(shdr_table, ehdr->e_shnum, SHT_SYMTAB);
    if (!symtab)
        goto fail;
    syms = load_at(fd, symtab->sh_offset, symtab->sh_size);
    if (!syms)
        goto fail;

    nsyms = symtab->sh_size / sizeof(struct elf_sym);

    /* String table */
    if (symtab->sh_link >= ehdr->e_shnum) {
        goto fail;
    }
    strtab = &shdr_table[symtab->sh_link];

    str = load_at(fd, strtab->sh_offset, strtab->sh_size);
    if (!str) {
        goto fail;
    }

    i = 0;
    while (i < nsyms) {
        if (must_swab) {
            glue(bswap_sym, SZ)(&syms[i]);
        }
        if (sym_cb) {
            sym_cb(str + syms[i].st_name, syms[i].st_info,
                   syms[i].st_value, syms[i].st_size);
        }
        /* We are only interested in function symbols.
           Throw everything else away.  */
        if (syms[i].st_shndx == SHN_UNDEF ||
                syms[i].st_shndx >= SHN_LORESERVE ||
                ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
            nsyms--;
            if (i < nsyms) {
                syms[i] = syms[nsyms];
            }
            continue;
        }
        if (clear_lsb) {
            /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
            syms[i].st_value &= ~(glue(glue(Elf, SZ), _Addr))1;
        }
        i++;
    }
    syms = g_realloc(syms, nsyms * sizeof(*syms));

    qsort(syms, nsyms, sizeof(*syms), glue(symcmp, SZ));
    for (i = 0; i < nsyms - 1; i++) {
        if (syms[i].st_size == 0) {
            syms[i].st_size = syms[i + 1].st_value - syms[i].st_value;
        }
    }

    /* Commit */
    s = g_malloc0(sizeof(*s));
    s->lookup_symbol = glue(lookup_symbol, SZ);
    glue(s->disas_symtab.elf, SZ) = syms;
    s->disas_num_syms = nsyms;
    s->disas_strtab = str;
    s->next = syminfos;
    syminfos = s;
    g_free(shdr_table);
    return 0;
 fail:
    g_free(syms);
    g_free(str);
    g_free(shdr_table);
    return -1;
}

static int glue(elf_reloc, SZ)(struct elfhdr *ehdr, int fd, int must_swab,
                               uint64_t (*translate_fn)(void *, uint64_t),
                               void *translate_opaque, uint8_t *data,
                               struct elf_phdr *ph, int elf_machine)
{
    struct elf_shdr *reltab, *shdr_table = NULL;
    struct elf_rela *rels = NULL;
    int nrels, i, ret = -1;
    elf_word wordval;
    void *addr;

    shdr_table = load_at(fd, ehdr->e_shoff,
                         sizeof(struct elf_shdr) * ehdr->e_shnum);
    if (!shdr_table) {
        return -1;
    }
    if (must_swab) {
        for (i = 0; i < ehdr->e_shnum; i++) {
            glue(bswap_shdr, SZ)(&shdr_table[i]);
        }
    }

    reltab = glue(find_section, SZ)(shdr_table, ehdr->e_shnum, SHT_RELA);
    if (!reltab) {
        goto fail;
    }
    rels = load_at(fd, reltab->sh_offset, reltab->sh_size);
    if (!rels) {
        goto fail;
    }
    nrels = reltab->sh_size / sizeof(struct elf_rela);

    for (i = 0; i < nrels; i++) {
        if (must_swab) {
            glue(bswap_rela, SZ)(&rels[i]);
        }
        if (rels[i].r_offset < ph->p_vaddr ||
            rels[i].r_offset >= ph->p_vaddr + ph->p_filesz) {
            continue;
        }
        addr = &data[rels[i].r_offset - ph->p_vaddr];
        switch (elf_machine) {
        case EM_S390:
            switch (rels[i].r_info) {
            case R_390_RELATIVE:
                wordval = *(elf_word *)addr;
                if (must_swab) {
                    bswapSZs(&wordval);
                }
                wordval = translate_fn(translate_opaque, wordval);
                if (must_swab) {
                    bswapSZs(&wordval);
                }
                *(elf_word *)addr = wordval;
                break;
            default:
                fprintf(stderr, "Unsupported relocation type %i!\n",
                        (int)rels[i].r_info);
            }
        }
    }

    ret = 0;
fail:
    g_free(rels);
    g_free(shdr_table);
    return ret;
}

static int glue(load_elf, SZ)(const char *name, int fd,
                              uint64_t (*translate_fn)(void *, uint64_t),
                              void *translate_opaque,
                              int must_swab, uint64_t *pentry,
                              uint64_t *lowaddr, uint64_t *highaddr,
                              int elf_machine, int clear_lsb, int data_swab,
                              AddressSpace *as, bool load_rom,
                              symbol_fn_t sym_cb)
{
    struct elfhdr ehdr;
    struct elf_phdr *phdr = NULL, *ph;
    int size, i, total_size;
    elf_word mem_size, file_size;
    uint64_t addr, low = (uint64_t)-1, high = 0;
    uint8_t *data = NULL;
    char label[128];
    int ret = ELF_LOAD_FAILED;

    if (read(fd, &ehdr, sizeof(ehdr)) != sizeof(ehdr))
        goto fail;
    if (must_swab) {
        glue(bswap_ehdr, SZ)(&ehdr);
    }

    if (elf_machine <= EM_NONE) {
        /* The caller didn't specify an ARCH, we can figure it out */
        elf_machine = ehdr.e_machine;
    }

    switch (elf_machine) {
        case EM_PPC64:
            if (ehdr.e_machine != EM_PPC64) {
                if (ehdr.e_machine != EM_PPC) {
                    ret = ELF_LOAD_WRONG_ARCH;
                    goto fail;
                }
            }
            break;
        case EM_X86_64:
            if (ehdr.e_machine != EM_X86_64) {
                if (ehdr.e_machine != EM_386) {
                    ret = ELF_LOAD_WRONG_ARCH;
                    goto fail;
                }
            }
            break;
        case EM_MICROBLAZE:
            if (ehdr.e_machine != EM_MICROBLAZE) {
                if (ehdr.e_machine != EM_MICROBLAZE_OLD) {
                    ret = ELF_LOAD_WRONG_ARCH;
                    goto fail;
                }
            }
            break;
        case EM_MOXIE:
            if (ehdr.e_machine != EM_MOXIE) {
                if (ehdr.e_machine != EM_MOXIE_OLD) {
                    ret = ELF_LOAD_WRONG_ARCH;
                    goto fail;
                }
            }
            break;
        case EM_MIPS:
        case EM_NANOMIPS:
            if ((ehdr.e_machine != EM_MIPS) &&
                (ehdr.e_machine != EM_NANOMIPS)) {
                ret = ELF_LOAD_WRONG_ARCH;
                goto fail;
            }
            break;
        default:
            if (elf_machine != ehdr.e_machine) {
                ret = ELF_LOAD_WRONG_ARCH;
                goto fail;
            }
    }

    if (pentry)
   	*pentry = (uint64_t)(elf_sword)ehdr.e_entry;

    glue(load_symbols, SZ)(&ehdr, fd, must_swab, clear_lsb, sym_cb);

    size = ehdr.e_phnum * sizeof(phdr[0]);
    if (lseek(fd, ehdr.e_phoff, SEEK_SET) != ehdr.e_phoff) {
        goto fail;
    }
    phdr = g_malloc0(size);
    if (!phdr)
        goto fail;
    if (read(fd, phdr, size) != size)
        goto fail;
    if (must_swab) {
        for(i = 0; i < ehdr.e_phnum; i++) {
            ph = &phdr[i];
            glue(bswap_phdr, SZ)(ph);
        }
    }

    total_size = 0;
    for(i = 0; i < ehdr.e_phnum; i++) {
        ph = &phdr[i];
        if (ph->p_type == PT_LOAD) {
            mem_size = ph->p_memsz; /* Size of the ROM */
            file_size = ph->p_filesz; /* Size of the allocated data */
            data = g_malloc0(file_size);
            if (ph->p_filesz > 0) {
                if (lseek(fd, ph->p_offset, SEEK_SET) < 0) {
                    goto fail;
                }
                if (read(fd, data, file_size) != file_size) {
                    goto fail;
                }
            }

            /* The ELF spec is somewhat vague about the purpose of the
             * physical address field. One common use in the embedded world
             * is that physical address field specifies the load address
             * and the virtual address field specifies the execution address.
             * Segments are packed into ROM or flash, and the relocation
             * and zero-initialization of data is done at runtime. This
             * means that the memsz header represents the runtime size of the
             * segment, but the filesz represents the loadtime size. If
             * we try to honour the memsz value for an ELF file like this
             * we will end up with overlapping segments (which the
             * loader.c code will later reject).
             * We support ELF files using this scheme by by checking whether
             * paddr + memsz for this segment would overlap with any other
             * segment. If so, then we assume it's using this scheme and
             * truncate the loaded segment to the filesz size.
             * If the segment considered as being memsz size doesn't overlap
             * then we use memsz for the segment length, to handle ELF files
             * which assume that the loader will do the zero-initialization.
             */
            if (mem_size > file_size) {
                /* If this segment's zero-init portion overlaps another
                 * segment's data or zero-init portion, then truncate this one.
                 * Invalid ELF files where the segments overlap even when
                 * only file_size bytes are loaded will be rejected by
                 * the ROM overlap check in loader.c, so we don't try to
                 * explicitly detect those here.
                 */
                int j;
                elf_word zero_start = ph->p_paddr + file_size;
                elf_word zero_end = ph->p_paddr + mem_size;

                for (j = 0; j < ehdr.e_phnum; j++) {
                    struct elf_phdr *jph = &phdr[j];

                    if (i != j && jph->p_type == PT_LOAD) {
                        elf_word other_start = jph->p_paddr;
                        elf_word other_end = jph->p_paddr + jph->p_memsz;

                        if (!(other_start >= zero_end ||
                              zero_start >= other_end)) {
                            mem_size = file_size;
                            break;
                        }
                    }
                }
            }

            /* address_offset is hack for kernel images that are
               linked at the wrong physical address.  */
            if (translate_fn) {
                addr = translate_fn(translate_opaque, ph->p_paddr);
                glue(elf_reloc, SZ)(&ehdr, fd, must_swab,  translate_fn,
                                    translate_opaque, data, ph, elf_machine);
            } else {
                addr = ph->p_paddr;
            }

            if (data_swab) {
                int j;
                for (j = 0; j < file_size; j += (1 << data_swab)) {
                    uint8_t *dp = data + j;
                    switch (data_swab) {
                    case (1):
                        *(uint16_t *)dp = bswap16(*(uint16_t *)dp);
                        break;
                    case (2):
                        *(uint32_t *)dp = bswap32(*(uint32_t *)dp);
                        break;
                    case (3):
                        *(uint64_t *)dp = bswap64(*(uint64_t *)dp);
                        break;
                    default:
                        g_assert_not_reached();
                    }
                }
            }

            /* the entry pointer in the ELF header is a virtual
             * address, if the text segments paddr and vaddr differ
             * we need to adjust the entry */
            if (pentry && !translate_fn &&
                    ph->p_vaddr != ph->p_paddr &&
                    ehdr.e_entry >= ph->p_vaddr &&
                    ehdr.e_entry < ph->p_vaddr + ph->p_filesz &&
                    ph->p_flags & PF_X) {
                *pentry = ehdr.e_entry - ph->p_vaddr + ph->p_paddr;
            }

            if (mem_size == 0) {
                /* Some ELF files really do have segments of zero size;
                 * just ignore them rather than trying to create empty
                 * ROM blobs, because the zero-length blob can falsely
                 * trigger the overlapping-ROM-blobs check.
                 */
                g_free(data);
            } else {
                if (load_rom) {
                    snprintf(label, sizeof(label), "phdr #%d: %s", i, name);

                    /* rom_add_elf_program() seize the ownership of 'data' */
                    rom_add_elf_program(label, data, file_size, mem_size,
                                        addr, as);
                } else {
                    cpu_physical_memory_write(addr, data, file_size);
                    g_free(data);
                }
            }

            total_size += mem_size;
            if (addr < low)
                low = addr;
            if ((addr + mem_size) > high)
                high = addr + mem_size;

            data = NULL;
        }
    }
    g_free(phdr);
    if (lowaddr)
        *lowaddr = (uint64_t)(elf_sword)low;
    if (highaddr)
        *highaddr = (uint64_t)(elf_sword)high;
    return total_size;
 fail:
    g_free(data);
    g_free(phdr);
    return ret;
}