aboutsummaryrefslogtreecommitdiff
path: root/target/hppa/mem_helper.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/hppa/mem_helper.c')
-rw-r--r--target/hppa/mem_helper.c674
1 files changed, 538 insertions, 136 deletions
diff --git a/target/hppa/mem_helper.c b/target/hppa/mem_helper.c
index afc5b56c3e..84785b5a5c 100644
--- a/target/hppa/mem_helper.c
+++ b/target/hppa/mem_helper.c
@@ -18,102 +18,237 @@
*/
#include "qemu/osdep.h"
+#include "qemu/log.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "hw/core/cpu.h"
#include "trace.h"
-#ifdef CONFIG_USER_ONLY
-bool hppa_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
- MMUAccessType access_type, int mmu_idx,
- bool probe, uintptr_t retaddr)
+hwaddr hppa_abs_to_phys_pa2_w1(vaddr addr)
{
- HPPACPU *cpu = HPPA_CPU(cs);
+ /*
+ * Figure H-8 "62-bit Absolute Accesses when PSW W-bit is 1" describes
+ * an algorithm in which a 62-bit absolute address is transformed to
+ * a 64-bit physical address. This must then be combined with that
+ * pictured in Figure H-11 "Physical Address Space Mapping", in which
+ * the full physical address is truncated to the N-bit physical address
+ * supported by the implementation.
+ *
+ * Since the supported physical address space is below 54 bits, the
+ * H-8 algorithm is moot and all that is left is to truncate.
+ */
+ QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 54);
+ return sextract64(addr, 0, TARGET_PHYS_ADDR_SPACE_BITS);
+}
- /* ??? Test between data page fault and data memory protection trap,
- which would affect si_code. */
- cs->exception_index = EXCP_DMP;
- cpu->env.cr[CR_IOR] = address;
- cpu_loop_exit_restore(cs, retaddr);
+hwaddr hppa_abs_to_phys_pa2_w0(vaddr addr)
+{
+ /*
+ * See Figure H-10, "Absolute Accesses when PSW W-bit is 0",
+ * combined with Figure H-11, as above.
+ */
+ if (likely(extract32(addr, 28, 4) != 0xf)) {
+ /* Memory address space */
+ addr = (uint32_t)addr;
+ } else if (extract32(addr, 24, 4) != 0) {
+ /* I/O address space */
+ addr = (int32_t)addr;
+ } else {
+ /*
+ * PDC address space:
+ * Figures H-10 and H-11 of the parisc2.0 spec do not specify
+ * where to map into the 64-bit PDC address space.
+ * We map with an offset which equals the 32-bit address, which
+ * is what can be seen on physical machines too.
+ */
+ addr = (uint32_t)addr;
+ addr |= -1ull << (TARGET_PHYS_ADDR_SPACE_BITS - 4);
+ }
+ return addr;
}
-#else
-static hppa_tlb_entry *hppa_find_tlb(CPUHPPAState *env, vaddr addr)
+
+static HPPATLBEntry *hppa_find_tlb(CPUHPPAState *env, vaddr addr)
{
- int i;
-
- for (i = 0; i < ARRAY_SIZE(env->tlb); ++i) {
- hppa_tlb_entry *ent = &env->tlb[i];
- if (ent->va_b <= addr && addr <= ent->va_e) {
- trace_hppa_tlb_find_entry(env, ent + i, ent->entry_valid,
- ent->va_b, ent->va_e, ent->pa);
- return ent;
- }
+ IntervalTreeNode *i = interval_tree_iter_first(&env->tlb_root, addr, addr);
+
+ if (i) {
+ HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree);
+ trace_hppa_tlb_find_entry(env, ent, ent->entry_valid,
+ ent->itree.start, ent->itree.last, ent->pa);
+ return ent;
}
trace_hppa_tlb_find_entry_not_found(env, addr);
return NULL;
}
-static void hppa_flush_tlb_ent(CPUHPPAState *env, hppa_tlb_entry *ent)
+static void hppa_flush_tlb_ent(CPUHPPAState *env, HPPATLBEntry *ent,
+ bool force_flush_btlb)
{
CPUState *cs = env_cpu(env);
- unsigned i, n = 1 << (2 * ent->page_size);
- uint64_t addr = ent->va_b;
+ bool is_btlb;
+
+ if (!ent->entry_valid) {
+ return;
+ }
+
+ trace_hppa_tlb_flush_ent(env, ent, ent->itree.start,
+ ent->itree.last, ent->pa);
- trace_hppa_tlb_flush_ent(env, ent, ent->va_b, ent->va_e, ent->pa);
+ tlb_flush_range_by_mmuidx(cs, ent->itree.start,
+ ent->itree.last - ent->itree.start + 1,
+ HPPA_MMU_FLUSH_MASK, TARGET_LONG_BITS);
- for (i = 0; i < n; ++i, addr += TARGET_PAGE_SIZE) {
- /* Do not flush MMU_PHYS_IDX. */
- tlb_flush_page_by_mmuidx(cs, addr, 0xf);
+ /* Never clear BTLBs, unless forced to do so. */
+ is_btlb = ent < &env->tlb[HPPA_BTLB_ENTRIES(env)];
+ if (is_btlb && !force_flush_btlb) {
+ return;
}
+ interval_tree_remove(&ent->itree, &env->tlb_root);
memset(ent, 0, sizeof(*ent));
- ent->va_b = -1;
+
+ if (!is_btlb) {
+ ent->unused_next = env->tlb_unused;
+ env->tlb_unused = ent;
+ }
+}
+
+static void hppa_flush_tlb_range(CPUHPPAState *env, vaddr va_b, vaddr va_e)
+{
+ IntervalTreeNode *i, *n;
+
+ i = interval_tree_iter_first(&env->tlb_root, va_b, va_e);
+ for (; i ; i = n) {
+ HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree);
+
+ /*
+ * Find the next entry now: In the normal case the current entry
+ * will be removed, but in the BTLB case it will remain.
+ */
+ n = interval_tree_iter_next(i, va_b, va_e);
+ hppa_flush_tlb_ent(env, ent, false);
+ }
}
-static hppa_tlb_entry *hppa_alloc_tlb_ent(CPUHPPAState *env)
+static HPPATLBEntry *hppa_alloc_tlb_ent(CPUHPPAState *env)
{
- hppa_tlb_entry *ent;
- uint32_t i = env->tlb_last;
+ HPPATLBEntry *ent = env->tlb_unused;
+
+ if (ent == NULL) {
+ uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
+ uint32_t i = env->tlb_last;
- env->tlb_last = (i == ARRAY_SIZE(env->tlb) - 1 ? 0 : i + 1);
- ent = &env->tlb[i];
+ if (i < btlb_entries || i >= ARRAY_SIZE(env->tlb)) {
+ i = btlb_entries;
+ }
+ env->tlb_last = i + 1;
+
+ ent = &env->tlb[i];
+ hppa_flush_tlb_ent(env, ent, false);
+ }
- hppa_flush_tlb_ent(env, ent);
+ env->tlb_unused = ent->unused_next;
return ent;
}
+#define ACCESS_ID_MASK 0xffff
+
+/* Return the set of protections allowed by a PID match. */
+static int match_prot_id_1(uint32_t access_id, uint32_t prot_id)
+{
+ if (((access_id ^ (prot_id >> 1)) & ACCESS_ID_MASK) == 0) {
+ return (prot_id & 1
+ ? PAGE_EXEC | PAGE_READ
+ : PAGE_EXEC | PAGE_READ | PAGE_WRITE);
+ }
+ return 0;
+}
+
+static int match_prot_id32(CPUHPPAState *env, uint32_t access_id)
+{
+ int r, i;
+
+ for (i = CR_PID1; i <= CR_PID4; ++i) {
+ r = match_prot_id_1(access_id, env->cr[i]);
+ if (r) {
+ return r;
+ }
+ }
+ return 0;
+}
+
+static int match_prot_id64(CPUHPPAState *env, uint32_t access_id)
+{
+ int r, i;
+
+ for (i = CR_PID1; i <= CR_PID4; ++i) {
+ r = match_prot_id_1(access_id, env->cr[i]);
+ if (r) {
+ return r;
+ }
+ r = match_prot_id_1(access_id, env->cr[i] >> 32);
+ if (r) {
+ return r;
+ }
+ }
+ return 0;
+}
+
int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
- int type, hwaddr *pphys, int *pprot)
+ int type, hwaddr *pphys, int *pprot,
+ HPPATLBEntry **tlb_entry)
{
hwaddr phys;
- int prot, r_prot, w_prot, x_prot;
- hppa_tlb_entry *ent;
+ int prot, r_prot, w_prot, x_prot, priv;
+ HPPATLBEntry *ent;
int ret = -1;
- /* Virtual translation disabled. Direct map virtual to physical. */
- if (mmu_idx == MMU_PHYS_IDX) {
- phys = addr;
+ if (tlb_entry) {
+ *tlb_entry = NULL;
+ }
+
+ /* Virtual translation disabled. Map absolute to physical. */
+ if (MMU_IDX_MMU_DISABLED(mmu_idx)) {
+ switch (mmu_idx) {
+ case MMU_ABS_W_IDX:
+ phys = hppa_abs_to_phys_pa2_w1(addr);
+ break;
+ case MMU_ABS_IDX:
+ if (hppa_is_pa20(env)) {
+ phys = hppa_abs_to_phys_pa2_w0(addr);
+ } else {
+ phys = (uint32_t)addr;
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ }
prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
goto egress;
}
/* Find a valid tlb entry that matches the virtual address. */
ent = hppa_find_tlb(env, addr);
- if (ent == NULL || !ent->entry_valid) {
+ if (ent == NULL) {
phys = 0;
prot = 0;
ret = (type == PAGE_EXEC) ? EXCP_ITLB_MISS : EXCP_DTLB_MISS;
goto egress;
}
+ if (tlb_entry) {
+ *tlb_entry = ent;
+ }
+
/* We now know the physical address. */
- phys = ent->pa + (addr & ~TARGET_PAGE_MASK);
+ phys = ent->pa + (addr - ent->itree.start);
/* Map TLB access_rights field to QEMU protection. */
- r_prot = (mmu_idx <= ent->ar_pl1) * PAGE_READ;
- w_prot = (mmu_idx <= ent->ar_pl2) * PAGE_WRITE;
- x_prot = (ent->ar_pl2 <= mmu_idx && mmu_idx <= ent->ar_pl1) * PAGE_EXEC;
+ priv = MMU_IDX_TO_PRIV(mmu_idx);
+ r_prot = (priv <= ent->ar_pl1) * PAGE_READ;
+ w_prot = (priv <= ent->ar_pl2) * PAGE_WRITE;
+ x_prot = (ent->ar_pl2 <= priv && priv <= ent->ar_pl1) * PAGE_EXEC;
switch (ent->ar_type) {
case 0: /* read-only: data page */
prot = r_prot;
@@ -132,29 +267,30 @@ int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
break;
}
- /* access_id == 0 means public page and no check is performed */
- if ((env->psw & PSW_P) && ent->access_id) {
- /* If bits [31:1] match, and bit 0 is set, suppress write. */
- int match = ent->access_id * 2 + 1;
-
- if (match == env->cr[CR_PID1] || match == env->cr[CR_PID2] ||
- match == env->cr[CR_PID3] || match == env->cr[CR_PID4]) {
- prot &= PAGE_READ | PAGE_EXEC;
- if (type == PAGE_WRITE) {
- ret = EXCP_DMPI;
- goto egress;
- }
- }
- }
-
- /* No guest access type indicates a non-architectural access from
- within QEMU. Bypass checks for access, D, B and T bits. */
+ /*
+ * No guest access type indicates a non-architectural access from
+ * within QEMU. Bypass checks for access, D, B, P and T bits.
+ */
if (type == 0) {
goto egress;
}
+ /* access_id == 0 means public page and no check is performed */
+ if (ent->access_id && MMU_IDX_TO_P(mmu_idx)) {
+ int access_prot = (hppa_is_pa20(env)
+ ? match_prot_id64(env, ent->access_id)
+ : match_prot_id32(env, ent->access_id));
+ if (unlikely(!(type & access_prot))) {
+ /* Not allowed -- Inst/Data Memory Protection Id Fault. */
+ ret = type & PAGE_EXEC ? EXCP_IMP : EXCP_DMPI;
+ goto egress;
+ }
+ /* Otherwise exclude permissions not allowed (i.e WD). */
+ prot &= access_prot;
+ }
+
if (unlikely(!(prot & type))) {
- /* The access isn't allowed -- Inst/Data Memory Protection Fault. */
+ /* Not allowed -- Inst/Data Memory Access Rights Fault. */
ret = (type & PAGE_EXEC) ? EXCP_IMP : EXCP_DMAR;
goto egress;
}
@@ -196,17 +332,16 @@ hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
HPPACPU *cpu = HPPA_CPU(cs);
hwaddr phys;
- int prot, excp;
+ int prot, excp, mmu_idx;
/* If the (data) mmu is disabled, bypass translation. */
/* ??? We really ought to know if the code mmu is disabled too,
in order to get the correct debugging dumps. */
- if (!(cpu->env.psw & PSW_D)) {
- return addr;
- }
+ mmu_idx = (cpu->env.psw & PSW_D ? MMU_KERNEL_IDX :
+ cpu->env.psw & PSW_W ? MMU_ABS_W_IDX : MMU_ABS_IDX);
- excp = hppa_get_physical_address(&cpu->env, addr, MMU_KERNEL_IDX, 0,
- &phys, &prot);
+ excp = hppa_get_physical_address(&cpu->env, addr, mmu_idx, 0,
+ &phys, &prot, NULL);
/* Since we're translating for debugging, the only error that is a
hard error is no translation at all. Otherwise, while a real cpu
@@ -214,12 +349,81 @@ hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
return excp == EXCP_DTLB_MISS ? -1 : phys;
}
+void hppa_set_ior_and_isr(CPUHPPAState *env, vaddr addr, bool mmu_disabled)
+{
+ if (env->psw & PSW_Q) {
+ /*
+ * For pa1.x, the offset and space never overlap, and so we
+ * simply extract the high and low part of the virtual address.
+ *
+ * For pa2.0, the formation of these are described in section
+ * "Interruption Parameter Registers", page 2-15.
+ */
+ env->cr[CR_IOR] = (uint32_t)addr;
+ env->cr[CR_ISR] = addr >> 32;
+
+ if (hppa_is_pa20(env)) {
+ if (mmu_disabled) {
+ /*
+ * If data translation was disabled, the ISR contains
+ * the upper portion of the abs address, zero-extended.
+ */
+ env->cr[CR_ISR] &= 0x3fffffff;
+ } else {
+ /*
+ * If data translation was enabled, the upper two bits
+ * of the IOR (the b field) are equal to the two space
+ * bits from the base register used to form the gva.
+ */
+ uint64_t b;
+
+ b = env->unwind_breg ? env->gr[env->unwind_breg] : 0;
+ b >>= (env->psw & PSW_W ? 62 : 30);
+ env->cr[CR_IOR] |= b << 62;
+ }
+ }
+ }
+}
+
+G_NORETURN static void
+raise_exception_with_ior(CPUHPPAState *env, int excp, uintptr_t retaddr,
+ vaddr addr, bool mmu_disabled)
+{
+ CPUState *cs = env_cpu(env);
+
+ cs->exception_index = excp;
+ cpu_restore_state(cs, retaddr);
+ hppa_set_ior_and_isr(env, addr, mmu_disabled);
+
+ cpu_loop_exit(cs);
+}
+
+void hppa_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
+ vaddr addr, unsigned size,
+ MMUAccessType access_type,
+ int mmu_idx, MemTxAttrs attrs,
+ MemTxResult response, uintptr_t retaddr)
+{
+ CPUHPPAState *env = cpu_env(cs);
+
+ qemu_log_mask(LOG_GUEST_ERROR, "HPMC at " TARGET_FMT_lx ":" TARGET_FMT_lx
+ " while accessing I/O at %#08" HWADDR_PRIx "\n",
+ env->iasq_f, env->iaoq_f, physaddr);
+
+ /* FIXME: Enable HPMC exceptions when firmware has clean device probing */
+ if (0) {
+ raise_exception_with_ior(env, EXCP_HPMC, retaddr, addr,
+ MMU_IDX_MMU_DISABLED(mmu_idx));
+ }
+}
+
bool hppa_cpu_tlb_fill(CPUState *cs, vaddr addr, int size,
MMUAccessType type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
HPPACPU *cpu = HPPA_CPU(cs);
CPUHPPAState *env = &cpu->env;
+ HPPATLBEntry *ent;
int prot, excp, a_prot;
hwaddr phys;
@@ -236,71 +440,58 @@ bool hppa_cpu_tlb_fill(CPUState *cs, vaddr addr, int size,
}
excp = hppa_get_physical_address(env, addr, mmu_idx,
- a_prot, &phys, &prot);
+ a_prot, &phys, &prot, &ent);
if (unlikely(excp >= 0)) {
if (probe) {
return false;
}
trace_hppa_tlb_fill_excp(env, addr, size, type, mmu_idx);
+
/* Failure. Raise the indicated exception. */
- cs->exception_index = excp;
- if (cpu->env.psw & PSW_Q) {
- /* ??? Needs tweaking for hppa64. */
- cpu->env.cr[CR_IOR] = addr;
- cpu->env.cr[CR_ISR] = addr >> 32;
- }
- cpu_loop_exit_restore(cs, retaddr);
+ raise_exception_with_ior(env, excp, retaddr, addr,
+ MMU_IDX_MMU_DISABLED(mmu_idx));
}
trace_hppa_tlb_fill_success(env, addr & TARGET_PAGE_MASK,
phys & TARGET_PAGE_MASK, size, type, mmu_idx);
- /* Success! Store the translation into the QEMU TLB. */
+
+ /*
+ * Success! Store the translation into the QEMU TLB.
+ * Note that we always install a single-page entry, because that
+ * is what works best with softmmu -- anything else will trigger
+ * the large page protection mask. We do not require this,
+ * because we record the large page here in the hppa tlb.
+ */
tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK,
prot, mmu_idx, TARGET_PAGE_SIZE);
return true;
}
/* Insert (Insn/Data) TLB Address. Note this is PA 1.1 only. */
-void HELPER(itlba)(CPUHPPAState *env, target_ulong addr, target_ureg reg)
+void HELPER(itlba_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg)
{
- hppa_tlb_entry *empty = NULL;
- int i;
-
- /* Zap any old entries covering ADDR; notice empty entries on the way. */
- for (i = 0; i < ARRAY_SIZE(env->tlb); ++i) {
- hppa_tlb_entry *ent = &env->tlb[i];
- if (ent->va_b <= addr && addr <= ent->va_e) {
- if (ent->entry_valid) {
- hppa_flush_tlb_ent(env, ent);
- }
- if (!empty) {
- empty = ent;
- }
- }
- }
+ HPPATLBEntry *ent;
- /* If we didn't see an empty entry, evict one. */
- if (empty == NULL) {
- empty = hppa_alloc_tlb_ent(env);
+ /* Zap any old entries covering ADDR. */
+ addr &= TARGET_PAGE_MASK;
+ hppa_flush_tlb_range(env, addr, addr + TARGET_PAGE_SIZE - 1);
+
+ ent = env->tlb_partial;
+ if (ent == NULL) {
+ ent = hppa_alloc_tlb_ent(env);
+ env->tlb_partial = ent;
}
- /* Note that empty->entry_valid == 0 already. */
- empty->va_b = addr & TARGET_PAGE_MASK;
- empty->va_e = empty->va_b + TARGET_PAGE_SIZE - 1;
- empty->pa = extract32(reg, 5, 20) << TARGET_PAGE_BITS;
- trace_hppa_tlb_itlba(env, empty, empty->va_b, empty->va_e, empty->pa);
+ /* Note that ent->entry_valid == 0 already. */
+ ent->itree.start = addr;
+ ent->itree.last = addr + TARGET_PAGE_SIZE - 1;
+ ent->pa = extract32(reg, 5, 20) << TARGET_PAGE_BITS;
+ trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa);
}
-/* Insert (Insn/Data) TLB Protection. Note this is PA 1.1 only. */
-void HELPER(itlbp)(CPUHPPAState *env, target_ulong addr, target_ureg reg)
+static void set_access_bits_pa11(CPUHPPAState *env, HPPATLBEntry *ent,
+ target_ulong reg)
{
- hppa_tlb_entry *ent = hppa_find_tlb(env, addr);
-
- if (unlikely(ent == NULL)) {
- qemu_log_mask(LOG_GUEST_ERROR, "ITLBP not following ITLBA\n");
- return;
- }
-
ent->access_id = extract32(reg, 1, 18);
ent->u = extract32(reg, 19, 1);
ent->ar_pl2 = extract32(reg, 20, 2);
@@ -310,36 +501,159 @@ void HELPER(itlbp)(CPUHPPAState *env, target_ulong addr, target_ureg reg)
ent->d = extract32(reg, 28, 1);
ent->t = extract32(reg, 29, 1);
ent->entry_valid = 1;
+
+ interval_tree_insert(&ent->itree, &env->tlb_root);
trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, ent->ar_pl2,
ent->ar_pl1, ent->ar_type, ent->b, ent->d, ent->t);
}
-/* Purge (Insn/Data) TLB. This is explicitly page-based, and is
- synchronous across all processors. */
-static void ptlb_work(CPUState *cpu, run_on_cpu_data data)
+/* Insert (Insn/Data) TLB Protection. Note this is PA 1.1 only. */
+void HELPER(itlbp_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg)
{
- CPUHPPAState *env = cpu->env_ptr;
- target_ulong addr = (target_ulong) data.target_ptr;
- hppa_tlb_entry *ent = hppa_find_tlb(env, addr);
+ HPPATLBEntry *ent = env->tlb_partial;
- if (ent && ent->entry_valid) {
- hppa_flush_tlb_ent(env, ent);
+ if (ent) {
+ env->tlb_partial = NULL;
+ if (ent->itree.start <= addr && addr <= ent->itree.last) {
+ set_access_bits_pa11(env, ent, reg);
+ return;
+ }
}
+ qemu_log_mask(LOG_GUEST_ERROR, "ITLBP not following ITLBA\n");
+}
+
+static void itlbt_pa20(CPUHPPAState *env, target_ulong r1,
+ target_ulong r2, vaddr va_b)
+{
+ HPPATLBEntry *ent;
+ vaddr va_e;
+ uint64_t va_size;
+ int mask_shift;
+
+ mask_shift = 2 * (r1 & 0xf);
+ va_size = (uint64_t)TARGET_PAGE_SIZE << mask_shift;
+ va_b &= -va_size;
+ va_e = va_b + va_size - 1;
+
+ hppa_flush_tlb_range(env, va_b, va_e);
+ ent = hppa_alloc_tlb_ent(env);
+
+ ent->itree.start = va_b;
+ ent->itree.last = va_e;
+
+ /* Extract all 52 bits present in the page table entry. */
+ ent->pa = r1 << (TARGET_PAGE_BITS - 5);
+ /* Align per the page size. */
+ ent->pa &= TARGET_PAGE_MASK << mask_shift;
+ /* Ignore the bits beyond physical address space. */
+ ent->pa = sextract64(ent->pa, 0, TARGET_PHYS_ADDR_SPACE_BITS);
+
+ ent->t = extract64(r2, 61, 1);
+ ent->d = extract64(r2, 60, 1);
+ ent->b = extract64(r2, 59, 1);
+ ent->ar_type = extract64(r2, 56, 3);
+ ent->ar_pl1 = extract64(r2, 54, 2);
+ ent->ar_pl2 = extract64(r2, 52, 2);
+ ent->u = extract64(r2, 51, 1);
+ /* o = bit 50 */
+ /* p = bit 49 */
+ ent->access_id = extract64(r2, 1, 31);
+ ent->entry_valid = 1;
+
+ interval_tree_insert(&ent->itree, &env->tlb_root);
+ trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa);
+ trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u,
+ ent->ar_pl2, ent->ar_pl1, ent->ar_type,
+ ent->b, ent->d, ent->t);
}
+void HELPER(idtlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2)
+{
+ vaddr va_b = deposit64(env->cr[CR_IOR], 32, 32, env->cr[CR_ISR]);
+ itlbt_pa20(env, r1, r2, va_b);
+}
+
+void HELPER(iitlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2)
+{
+ vaddr va_b = deposit64(env->cr[CR_IIAOQ], 32, 32, env->cr[CR_IIASQ]);
+ itlbt_pa20(env, r1, r2, va_b);
+}
+
+/* Purge (Insn/Data) TLB. */
+static void ptlb_work(CPUState *cpu, run_on_cpu_data data)
+{
+ vaddr start = data.target_ptr;
+ vaddr end;
+
+ /*
+ * PA2.0 allows a range of pages encoded into GR[b], which we have
+ * copied into the bottom bits of the otherwise page-aligned address.
+ * PA1.x will always provide zero here, for a single page flush.
+ */
+ end = start & 0xf;
+ start &= TARGET_PAGE_MASK;
+ end = (vaddr)TARGET_PAGE_SIZE << (2 * end);
+ end = start + end - 1;
+
+ hppa_flush_tlb_range(cpu_env(cpu), start, end);
+}
+
+/* This is local to the current cpu. */
+void HELPER(ptlb_l)(CPUHPPAState *env, target_ulong addr)
+{
+ trace_hppa_tlb_ptlb_local(env);
+ ptlb_work(env_cpu(env), RUN_ON_CPU_TARGET_PTR(addr));
+}
+
+/* This is synchronous across all processors. */
void HELPER(ptlb)(CPUHPPAState *env, target_ulong addr)
{
CPUState *src = env_cpu(env);
CPUState *cpu;
+ bool wait = false;
+
trace_hppa_tlb_ptlb(env);
run_on_cpu_data data = RUN_ON_CPU_TARGET_PTR(addr);
CPU_FOREACH(cpu) {
if (cpu != src) {
async_run_on_cpu(cpu, ptlb_work, data);
+ wait = true;
+ }
+ }
+ if (wait) {
+ async_safe_run_on_cpu(src, ptlb_work, data);
+ } else {
+ ptlb_work(src, data);
+ }
+}
+
+void hppa_ptlbe(CPUHPPAState *env)
+{
+ uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
+ uint32_t i;
+
+ /* Zap the (non-btlb) tlb entries themselves. */
+ memset(&env->tlb[btlb_entries], 0,
+ sizeof(env->tlb) - btlb_entries * sizeof(env->tlb[0]));
+ env->tlb_last = btlb_entries;
+ env->tlb_partial = NULL;
+
+ /* Put them all onto the unused list. */
+ env->tlb_unused = &env->tlb[btlb_entries];
+ for (i = btlb_entries; i < ARRAY_SIZE(env->tlb) - 1; ++i) {
+ env->tlb[i].unused_next = &env->tlb[i + 1];
+ }
+
+ /* Re-initialize the interval tree with only the btlb entries. */
+ memset(&env->tlb_root, 0, sizeof(env->tlb_root));
+ for (i = 0; i < btlb_entries; ++i) {
+ if (env->tlb[i].entry_valid) {
+ interval_tree_insert(&env->tlb[i].itree, &env->tlb_root);
}
}
- async_safe_run_on_cpu(src, ptlb_work, data);
+
+ tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_MASK);
}
/* Purge (Insn/Data) TLB entry. This affects an implementation-defined
@@ -347,15 +661,13 @@ void HELPER(ptlb)(CPUHPPAState *env, target_ulong addr)
void HELPER(ptlbe)(CPUHPPAState *env)
{
trace_hppa_tlb_ptlbe(env);
- memset(env->tlb, 0, sizeof(env->tlb));
- tlb_flush_by_mmuidx(env_cpu(env), 0xf);
+ qemu_log_mask(CPU_LOG_MMU, "FLUSH ALL TLB ENTRIES\n");
+ hppa_ptlbe(env);
}
void cpu_hppa_change_prot_id(CPUHPPAState *env)
{
- if (env->psw & PSW_P) {
- tlb_flush_by_mmuidx(env_cpu(env), 0xf);
- }
+ tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_P_MASK);
}
void HELPER(change_prot_id)(CPUHPPAState *env)
@@ -363,24 +675,19 @@ void HELPER(change_prot_id)(CPUHPPAState *env)
cpu_hppa_change_prot_id(env);
}
-target_ureg HELPER(lpa)(CPUHPPAState *env, target_ulong addr)
+target_ulong HELPER(lpa)(CPUHPPAState *env, target_ulong addr)
{
hwaddr phys;
int prot, excp;
excp = hppa_get_physical_address(env, addr, MMU_KERNEL_IDX, 0,
- &phys, &prot);
+ &phys, &prot, NULL);
if (excp >= 0) {
- if (env->psw & PSW_Q) {
- /* ??? Needs tweaking for hppa64. */
- env->cr[CR_IOR] = addr;
- env->cr[CR_ISR] = addr >> 32;
- }
if (excp == EXCP_DTLB_MISS) {
excp = EXCP_NA_DTLB_MISS;
}
trace_hppa_tlb_lpa_failed(env, addr);
- hppa_dynamic_excp(env, excp, GETPC());
+ raise_exception_with_ior(env, excp, GETPC(), addr, false);
}
trace_hppa_tlb_lpa_success(env, addr, phys);
return phys;
@@ -389,7 +696,102 @@ target_ureg HELPER(lpa)(CPUHPPAState *env, target_ulong addr)
/* Return the ar_type of the TLB at VADDR, or -1. */
int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr)
{
- hppa_tlb_entry *ent = hppa_find_tlb(env, vaddr);
+ HPPATLBEntry *ent = hppa_find_tlb(env, vaddr);
return ent ? ent->ar_type : -1;
}
-#endif /* CONFIG_USER_ONLY */
+
+/*
+ * diag_btlb() emulates the PDC PDC_BLOCK_TLB firmware call to
+ * allow operating systems to modify the Block TLB (BTLB) entries.
+ * For implementation details see page 1-13 in
+ * https://parisc.wiki.kernel.org/images-parisc/e/ef/Pdc11-v0.96-Ch1-procs.pdf
+ */
+void HELPER(diag_btlb)(CPUHPPAState *env)
+{
+ unsigned int phys_page, len, slot;
+ int mmu_idx = cpu_mmu_index(env_cpu(env), 0);
+ uintptr_t ra = GETPC();
+ HPPATLBEntry *btlb;
+ uint64_t virt_page;
+ uint32_t *vaddr;
+ uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
+
+ /* BTLBs are not supported on 64-bit CPUs */
+ if (btlb_entries == 0) {
+ env->gr[28] = -1; /* nonexistent procedure */
+ return;
+ }
+
+ env->gr[28] = 0; /* PDC_OK */
+
+ switch (env->gr[25]) {
+ case 0:
+ /* return BTLB parameters */
+ qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INFO\n");
+ vaddr = probe_access(env, env->gr[24], 4 * sizeof(uint32_t),
+ MMU_DATA_STORE, mmu_idx, ra);
+ if (vaddr == NULL) {
+ env->gr[28] = -10; /* invalid argument */
+ } else {
+ vaddr[0] = cpu_to_be32(1);
+ vaddr[1] = cpu_to_be32(16 * 1024);
+ vaddr[2] = cpu_to_be32(PA10_BTLB_FIXED);
+ vaddr[3] = cpu_to_be32(PA10_BTLB_VARIABLE);
+ }
+ break;
+ case 1:
+ /* insert BTLB entry */
+ virt_page = env->gr[24]; /* upper 32 bits */
+ virt_page <<= 32;
+ virt_page |= env->gr[23]; /* lower 32 bits */
+ phys_page = env->gr[22];
+ len = env->gr[21];
+ slot = env->gr[19];
+ qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INSERT "
+ "0x%08llx-0x%08llx: vpage 0x%llx for phys page 0x%04x len %d "
+ "into slot %d\n",
+ (long long) virt_page << TARGET_PAGE_BITS,
+ (long long) (virt_page + len) << TARGET_PAGE_BITS,
+ (long long) virt_page, phys_page, len, slot);
+ if (slot < btlb_entries) {
+ btlb = &env->tlb[slot];
+
+ /* Force flush of possibly existing BTLB entry. */
+ hppa_flush_tlb_ent(env, btlb, true);
+
+ /* Create new BTLB entry */
+ btlb->itree.start = virt_page << TARGET_PAGE_BITS;
+ btlb->itree.last = btlb->itree.start + len * TARGET_PAGE_SIZE - 1;
+ btlb->pa = phys_page << TARGET_PAGE_BITS;
+ set_access_bits_pa11(env, btlb, env->gr[20]);
+ btlb->t = 0;
+ btlb->d = 1;
+ } else {
+ env->gr[28] = -10; /* invalid argument */
+ }
+ break;
+ case 2:
+ /* Purge BTLB entry */
+ slot = env->gr[22];
+ qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE slot %d\n",
+ slot);
+ if (slot < btlb_entries) {
+ btlb = &env->tlb[slot];
+ hppa_flush_tlb_ent(env, btlb, true);
+ } else {
+ env->gr[28] = -10; /* invalid argument */
+ }
+ break;
+ case 3:
+ /* Purge all BTLB entries */
+ qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE_ALL\n");
+ for (slot = 0; slot < btlb_entries; slot++) {
+ btlb = &env->tlb[slot];
+ hppa_flush_tlb_ent(env, btlb, true);
+ }
+ break;
+ default:
+ env->gr[28] = -2; /* nonexistent option */
+ break;
+ }
+}