aboutsummaryrefslogtreecommitdiff
path: root/disas/libvixl/a64/assembler-a64.h
diff options
context:
space:
mode:
Diffstat (limited to 'disas/libvixl/a64/assembler-a64.h')
-rw-r--r--disas/libvixl/a64/assembler-a64.h1784
1 files changed, 1784 insertions, 0 deletions
diff --git a/disas/libvixl/a64/assembler-a64.h b/disas/libvixl/a64/assembler-a64.h
new file mode 100644
index 0000000000..93b3011868
--- /dev/null
+++ b/disas/libvixl/a64/assembler-a64.h
@@ -0,0 +1,1784 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_ASSEMBLER_A64_H_
+#define VIXL_A64_ASSEMBLER_A64_H_
+
+#include <list>
+
+#include "globals.h"
+#include "utils.h"
+#include "a64/instructions-a64.h"
+
+namespace vixl {
+
+typedef uint64_t RegList;
+static const int kRegListSizeInBits = sizeof(RegList) * 8;
+
+// Registers.
+
+// Some CPURegister methods can return Register and FPRegister types, so we
+// need to declare them in advance.
+class Register;
+class FPRegister;
+
+
+class CPURegister {
+ public:
+ enum RegisterType {
+ // The kInvalid value is used to detect uninitialized static instances,
+ // which are always zero-initialized before any constructors are called.
+ kInvalid = 0,
+ kRegister,
+ kFPRegister,
+ kNoRegister
+ };
+
+ CPURegister() : code_(0), size_(0), type_(kNoRegister) {
+ ASSERT(!IsValid());
+ ASSERT(IsNone());
+ }
+
+ CPURegister(unsigned code, unsigned size, RegisterType type)
+ : code_(code), size_(size), type_(type) {
+ ASSERT(IsValidOrNone());
+ }
+
+ unsigned code() const {
+ ASSERT(IsValid());
+ return code_;
+ }
+
+ RegisterType type() const {
+ ASSERT(IsValidOrNone());
+ return type_;
+ }
+
+ RegList Bit() const {
+ ASSERT(code_ < (sizeof(RegList) * 8));
+ return IsValid() ? (static_cast<RegList>(1) << code_) : 0;
+ }
+
+ unsigned size() const {
+ ASSERT(IsValid());
+ return size_;
+ }
+
+ int SizeInBytes() const {
+ ASSERT(IsValid());
+ ASSERT(size() % 8 == 0);
+ return size_ / 8;
+ }
+
+ int SizeInBits() const {
+ ASSERT(IsValid());
+ return size_;
+ }
+
+ bool Is32Bits() const {
+ ASSERT(IsValid());
+ return size_ == 32;
+ }
+
+ bool Is64Bits() const {
+ ASSERT(IsValid());
+ return size_ == 64;
+ }
+
+ bool IsValid() const {
+ if (IsValidRegister() || IsValidFPRegister()) {
+ ASSERT(!IsNone());
+ return true;
+ } else {
+ ASSERT(IsNone());
+ return false;
+ }
+ }
+
+ bool IsValidRegister() const {
+ return IsRegister() &&
+ ((size_ == kWRegSize) || (size_ == kXRegSize)) &&
+ ((code_ < kNumberOfRegisters) || (code_ == kSPRegInternalCode));
+ }
+
+ bool IsValidFPRegister() const {
+ return IsFPRegister() &&
+ ((size_ == kSRegSize) || (size_ == kDRegSize)) &&
+ (code_ < kNumberOfFPRegisters);
+ }
+
+ bool IsNone() const {
+ // kNoRegister types should always have size 0 and code 0.
+ ASSERT((type_ != kNoRegister) || (code_ == 0));
+ ASSERT((type_ != kNoRegister) || (size_ == 0));
+
+ return type_ == kNoRegister;
+ }
+
+ bool Is(const CPURegister& other) const {
+ ASSERT(IsValidOrNone() && other.IsValidOrNone());
+ return (code_ == other.code_) && (size_ == other.size_) &&
+ (type_ == other.type_);
+ }
+
+ inline bool IsZero() const {
+ ASSERT(IsValid());
+ return IsRegister() && (code_ == kZeroRegCode);
+ }
+
+ inline bool IsSP() const {
+ ASSERT(IsValid());
+ return IsRegister() && (code_ == kSPRegInternalCode);
+ }
+
+ inline bool IsRegister() const {
+ return type_ == kRegister;
+ }
+
+ inline bool IsFPRegister() const {
+ return type_ == kFPRegister;
+ }
+
+ const Register& W() const;
+ const Register& X() const;
+ const FPRegister& S() const;
+ const FPRegister& D() const;
+
+ inline bool IsSameSizeAndType(const CPURegister& other) const {
+ return (size_ == other.size_) && (type_ == other.type_);
+ }
+
+ protected:
+ unsigned code_;
+ unsigned size_;
+ RegisterType type_;
+
+ private:
+ bool IsValidOrNone() const {
+ return IsValid() || IsNone();
+ }
+};
+
+
+class Register : public CPURegister {
+ public:
+ explicit Register() : CPURegister() {}
+ inline explicit Register(const CPURegister& other)
+ : CPURegister(other.code(), other.size(), other.type()) {
+ ASSERT(IsValidRegister());
+ }
+ explicit Register(unsigned code, unsigned size)
+ : CPURegister(code, size, kRegister) {}
+
+ bool IsValid() const {
+ ASSERT(IsRegister() || IsNone());
+ return IsValidRegister();
+ }
+
+ static const Register& WRegFromCode(unsigned code);
+ static const Register& XRegFromCode(unsigned code);
+
+ // V8 compatibility.
+ static const int kNumRegisters = kNumberOfRegisters;
+ static const int kNumAllocatableRegisters = kNumberOfRegisters - 1;
+
+ private:
+ static const Register wregisters[];
+ static const Register xregisters[];
+};
+
+
+class FPRegister : public CPURegister {
+ public:
+ inline FPRegister() : CPURegister() {}
+ inline explicit FPRegister(const CPURegister& other)
+ : CPURegister(other.code(), other.size(), other.type()) {
+ ASSERT(IsValidFPRegister());
+ }
+ inline FPRegister(unsigned code, unsigned size)
+ : CPURegister(code, size, kFPRegister) {}
+
+ bool IsValid() const {
+ ASSERT(IsFPRegister() || IsNone());
+ return IsValidFPRegister();
+ }
+
+ static const FPRegister& SRegFromCode(unsigned code);
+ static const FPRegister& DRegFromCode(unsigned code);
+
+ // V8 compatibility.
+ static const int kNumRegisters = kNumberOfFPRegisters;
+ static const int kNumAllocatableRegisters = kNumberOfFPRegisters - 1;
+
+ private:
+ static const FPRegister sregisters[];
+ static const FPRegister dregisters[];
+};
+
+
+// No*Reg is used to indicate an unused argument, or an error case. Note that
+// these all compare equal (using the Is() method). The Register and FPRegister
+// variants are provided for convenience.
+const Register NoReg;
+const FPRegister NoFPReg;
+const CPURegister NoCPUReg;
+
+
+#define DEFINE_REGISTERS(N) \
+const Register w##N(N, kWRegSize); \
+const Register x##N(N, kXRegSize);
+REGISTER_CODE_LIST(DEFINE_REGISTERS)
+#undef DEFINE_REGISTERS
+const Register wsp(kSPRegInternalCode, kWRegSize);
+const Register sp(kSPRegInternalCode, kXRegSize);
+
+
+#define DEFINE_FPREGISTERS(N) \
+const FPRegister s##N(N, kSRegSize); \
+const FPRegister d##N(N, kDRegSize);
+REGISTER_CODE_LIST(DEFINE_FPREGISTERS)
+#undef DEFINE_FPREGISTERS
+
+
+// Registers aliases.
+const Register ip0 = x16;
+const Register ip1 = x17;
+const Register lr = x30;
+const Register xzr = x31;
+const Register wzr = w31;
+
+
+// AreAliased returns true if any of the named registers overlap. Arguments
+// set to NoReg are ignored. The system stack pointer may be specified.
+bool AreAliased(const CPURegister& reg1,
+ const CPURegister& reg2,
+ const CPURegister& reg3 = NoReg,
+ const CPURegister& reg4 = NoReg,
+ const CPURegister& reg5 = NoReg,
+ const CPURegister& reg6 = NoReg,
+ const CPURegister& reg7 = NoReg,
+ const CPURegister& reg8 = NoReg);
+
+
+// AreSameSizeAndType returns true if all of the specified registers have the
+// same size, and are of the same type. The system stack pointer may be
+// specified. Arguments set to NoReg are ignored, as are any subsequent
+// arguments. At least one argument (reg1) must be valid (not NoCPUReg).
+bool AreSameSizeAndType(const CPURegister& reg1,
+ const CPURegister& reg2,
+ const CPURegister& reg3 = NoCPUReg,
+ const CPURegister& reg4 = NoCPUReg,
+ const CPURegister& reg5 = NoCPUReg,
+ const CPURegister& reg6 = NoCPUReg,
+ const CPURegister& reg7 = NoCPUReg,
+ const CPURegister& reg8 = NoCPUReg);
+
+
+// Lists of registers.
+class CPURegList {
+ public:
+ inline explicit CPURegList(CPURegister reg1,
+ CPURegister reg2 = NoCPUReg,
+ CPURegister reg3 = NoCPUReg,
+ CPURegister reg4 = NoCPUReg)
+ : list_(reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit()),
+ size_(reg1.size()), type_(reg1.type()) {
+ ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4));
+ ASSERT(IsValid());
+ }
+
+ inline CPURegList(CPURegister::RegisterType type, unsigned size, RegList list)
+ : list_(list), size_(size), type_(type) {
+ ASSERT(IsValid());
+ }
+
+ inline CPURegList(CPURegister::RegisterType type, unsigned size,
+ unsigned first_reg, unsigned last_reg)
+ : size_(size), type_(type) {
+ ASSERT(((type == CPURegister::kRegister) &&
+ (last_reg < kNumberOfRegisters)) ||
+ ((type == CPURegister::kFPRegister) &&
+ (last_reg < kNumberOfFPRegisters)));
+ ASSERT(last_reg >= first_reg);
+ list_ = (1UL << (last_reg + 1)) - 1;
+ list_ &= ~((1UL << first_reg) - 1);
+ ASSERT(IsValid());
+ }
+
+ inline CPURegister::RegisterType type() const {
+ ASSERT(IsValid());
+ return type_;
+ }
+
+ // Combine another CPURegList into this one. Registers that already exist in
+ // this list are left unchanged. The type and size of the registers in the
+ // 'other' list must match those in this list.
+ void Combine(const CPURegList& other) {
+ ASSERT(IsValid());
+ ASSERT(other.type() == type_);
+ ASSERT(other.RegisterSizeInBits() == size_);
+ list_ |= other.list();
+ }
+
+ // Remove every register in the other CPURegList from this one. Registers that
+ // do not exist in this list are ignored. The type and size of the registers
+ // in the 'other' list must match those in this list.
+ void Remove(const CPURegList& other) {
+ ASSERT(IsValid());
+ ASSERT(other.type() == type_);
+ ASSERT(other.RegisterSizeInBits() == size_);
+ list_ &= ~other.list();
+ }
+
+ // Variants of Combine and Remove which take a single register.
+ inline void Combine(const CPURegister& other) {
+ ASSERT(other.type() == type_);
+ ASSERT(other.size() == size_);
+ Combine(other.code());
+ }
+
+ inline void Remove(const CPURegister& other) {
+ ASSERT(other.type() == type_);
+ ASSERT(other.size() == size_);
+ Remove(other.code());
+ }
+
+ // Variants of Combine and Remove which take a single register by its code;
+ // the type and size of the register is inferred from this list.
+ inline void Combine(int code) {
+ ASSERT(IsValid());
+ ASSERT(CPURegister(code, size_, type_).IsValid());
+ list_ |= (1UL << code);
+ }
+
+ inline void Remove(int code) {
+ ASSERT(IsValid());
+ ASSERT(CPURegister(code, size_, type_).IsValid());
+ list_ &= ~(1UL << code);
+ }
+
+ inline RegList list() const {
+ ASSERT(IsValid());
+ return list_;
+ }
+
+ // Remove all callee-saved registers from the list. This can be useful when
+ // preparing registers for an AAPCS64 function call, for example.
+ void RemoveCalleeSaved();
+
+ CPURegister PopLowestIndex();
+ CPURegister PopHighestIndex();
+
+ // AAPCS64 callee-saved registers.
+ static CPURegList GetCalleeSaved(unsigned size = kXRegSize);
+ static CPURegList GetCalleeSavedFP(unsigned size = kDRegSize);
+
+ // AAPCS64 caller-saved registers. Note that this includes lr.
+ static CPURegList GetCallerSaved(unsigned size = kXRegSize);
+ static CPURegList GetCallerSavedFP(unsigned size = kDRegSize);
+
+ inline bool IsEmpty() const {
+ ASSERT(IsValid());
+ return list_ == 0;
+ }
+
+ inline bool IncludesAliasOf(const CPURegister& other) const {
+ ASSERT(IsValid());
+ return (type_ == other.type()) && (other.Bit() & list_);
+ }
+
+ inline int Count() const {
+ ASSERT(IsValid());
+ return CountSetBits(list_, kRegListSizeInBits);
+ }
+
+ inline unsigned RegisterSizeInBits() const {
+ ASSERT(IsValid());
+ return size_;
+ }
+
+ inline unsigned RegisterSizeInBytes() const {
+ int size_in_bits = RegisterSizeInBits();
+ ASSERT((size_in_bits % 8) == 0);
+ return size_in_bits / 8;
+ }
+
+ private:
+ RegList list_;
+ unsigned size_;
+ CPURegister::RegisterType type_;
+
+ bool IsValid() const;
+};
+
+
+// AAPCS64 callee-saved registers.
+extern const CPURegList kCalleeSaved;
+extern const CPURegList kCalleeSavedFP;
+
+
+// AAPCS64 caller-saved registers. Note that this includes lr.
+extern const CPURegList kCallerSaved;
+extern const CPURegList kCallerSavedFP;
+
+
+// Operand.
+class Operand {
+ public:
+ // #<immediate>
+ // where <immediate> is int64_t.
+ // This is allowed to be an implicit constructor because Operand is
+ // a wrapper class that doesn't normally perform any type conversion.
+ Operand(int64_t immediate); // NOLINT(runtime/explicit)
+
+ // rm, {<shift> #<shift_amount>}
+ // where <shift> is one of {LSL, LSR, ASR, ROR}.
+ // <shift_amount> is uint6_t.
+ // This is allowed to be an implicit constructor because Operand is
+ // a wrapper class that doesn't normally perform any type conversion.
+ Operand(Register reg,
+ Shift shift = LSL,
+ unsigned shift_amount = 0); // NOLINT(runtime/explicit)
+
+ // rm, {<extend> {#<shift_amount>}}
+ // where <extend> is one of {UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX}.
+ // <shift_amount> is uint2_t.
+ explicit Operand(Register reg, Extend extend, unsigned shift_amount = 0);
+
+ bool IsImmediate() const;
+ bool IsShiftedRegister() const;
+ bool IsExtendedRegister() const;
+
+ // This returns an LSL shift (<= 4) operand as an equivalent extend operand,
+ // which helps in the encoding of instructions that use the stack pointer.
+ Operand ToExtendedRegister() const;
+
+ int64_t immediate() const {
+ ASSERT(IsImmediate());
+ return immediate_;
+ }
+
+ Register reg() const {
+ ASSERT(IsShiftedRegister() || IsExtendedRegister());
+ return reg_;
+ }
+
+ Shift shift() const {
+ ASSERT(IsShiftedRegister());
+ return shift_;
+ }
+
+ Extend extend() const {
+ ASSERT(IsExtendedRegister());
+ return extend_;
+ }
+
+ unsigned shift_amount() const {
+ ASSERT(IsShiftedRegister() || IsExtendedRegister());
+ return shift_amount_;
+ }
+
+ private:
+ int64_t immediate_;
+ Register reg_;
+ Shift shift_;
+ Extend extend_;
+ unsigned shift_amount_;
+};
+
+
+// MemOperand represents the addressing mode of a load or store instruction.
+class MemOperand {
+ public:
+ explicit MemOperand(Register base,
+ ptrdiff_t offset = 0,
+ AddrMode addrmode = Offset);
+ explicit MemOperand(Register base,
+ Register regoffset,
+ Shift shift = LSL,
+ unsigned shift_amount = 0);
+ explicit MemOperand(Register base,
+ Register regoffset,
+ Extend extend,
+ unsigned shift_amount = 0);
+ explicit MemOperand(Register base,
+ const Operand& offset,
+ AddrMode addrmode = Offset);
+
+ const Register& base() const { return base_; }
+ const Register& regoffset() const { return regoffset_; }
+ ptrdiff_t offset() const { return offset_; }
+ AddrMode addrmode() const { return addrmode_; }
+ Shift shift() const { return shift_; }
+ Extend extend() const { return extend_; }
+ unsigned shift_amount() const { return shift_amount_; }
+ bool IsImmediateOffset() const;
+ bool IsRegisterOffset() const;
+ bool IsPreIndex() const;
+ bool IsPostIndex() const;
+
+ private:
+ Register base_;
+ Register regoffset_;
+ ptrdiff_t offset_;
+ AddrMode addrmode_;
+ Shift shift_;
+ Extend extend_;
+ unsigned shift_amount_;
+};
+
+
+class Label {
+ public:
+ Label() : is_bound_(false), link_(NULL), target_(NULL) {}
+ ~Label() {
+ // If the label has been linked to, it needs to be bound to a target.
+ ASSERT(!IsLinked() || IsBound());
+ }
+
+ inline Instruction* link() const { return link_; }
+ inline Instruction* target() const { return target_; }
+
+ inline bool IsBound() const { return is_bound_; }
+ inline bool IsLinked() const { return link_ != NULL; }
+
+ inline void set_link(Instruction* new_link) { link_ = new_link; }
+
+ static const int kEndOfChain = 0;
+
+ private:
+ // Indicates if the label has been bound, ie its location is fixed.
+ bool is_bound_;
+ // Branches instructions branching to this label form a chained list, with
+ // their offset indicating where the next instruction is located.
+ // link_ points to the latest branch instruction generated branching to this
+ // branch.
+ // If link_ is not NULL, the label has been linked to.
+ Instruction* link_;
+ // The label location.
+ Instruction* target_;
+
+ friend class Assembler;
+};
+
+
+// TODO: Obtain better values for these, based on real-world data.
+const int kLiteralPoolCheckInterval = 4 * KBytes;
+const int kRecommendedLiteralPoolRange = 2 * kLiteralPoolCheckInterval;
+
+
+// Control whether a branch over the literal pool should also be emitted. This
+// is needed if the literal pool has to be emitted in the middle of the JITted
+// code.
+enum LiteralPoolEmitOption {
+ JumpRequired,
+ NoJumpRequired
+};
+
+
+// Literal pool entry.
+class Literal {
+ public:
+ Literal(Instruction* pc, uint64_t imm, unsigned size)
+ : pc_(pc), value_(imm), size_(size) {}
+
+ private:
+ Instruction* pc_;
+ int64_t value_;
+ unsigned size_;
+
+ friend class Assembler;
+};
+
+
+// Assembler.
+class Assembler {
+ public:
+ Assembler(byte* buffer, unsigned buffer_size);
+
+ // The destructor asserts that one of the following is true:
+ // * The Assembler object has not been used.
+ // * Nothing has been emitted since the last Reset() call.
+ // * Nothing has been emitted since the last FinalizeCode() call.
+ ~Assembler();
+
+ // System functions.
+
+ // Start generating code from the beginning of the buffer, discarding any code
+ // and data that has already been emitted into the buffer.
+ //
+ // In order to avoid any accidental transfer of state, Reset ASSERTs that the
+ // constant pool is not blocked.
+ void Reset();
+
+ // Finalize a code buffer of generated instructions. This function must be
+ // called before executing or copying code from the buffer.
+ void FinalizeCode();
+
+ // Label.
+ // Bind a label to the current PC.
+ void bind(Label* label);
+ int UpdateAndGetByteOffsetTo(Label* label);
+ inline int UpdateAndGetInstructionOffsetTo(Label* label) {
+ ASSERT(Label::kEndOfChain == 0);
+ return UpdateAndGetByteOffsetTo(label) >> kInstructionSizeLog2;
+ }
+
+
+ // Instruction set functions.
+
+ // Branch / Jump instructions.
+ // Branch to register.
+ void br(const Register& xn);
+
+ // Branch with link to register.
+ void blr(const Register& xn);
+
+ // Branch to register with return hint.
+ void ret(const Register& xn = lr);
+
+ // Unconditional branch to label.
+ void b(Label* label);
+
+ // Conditional branch to label.
+ void b(Label* label, Condition cond);
+
+ // Unconditional branch to PC offset.
+ void b(int imm26);
+
+ // Conditional branch to PC offset.
+ void b(int imm19, Condition cond);
+
+ // Branch with link to label.
+ void bl(Label* label);
+
+ // Branch with link to PC offset.
+ void bl(int imm26);
+
+ // Compare and branch to label if zero.
+ void cbz(const Register& rt, Label* label);
+
+ // Compare and branch to PC offset if zero.
+ void cbz(const Register& rt, int imm19);
+
+ // Compare and branch to label if not zero.
+ void cbnz(const Register& rt, Label* label);
+
+ // Compare and branch to PC offset if not zero.
+ void cbnz(const Register& rt, int imm19);
+
+ // Test bit and branch to label if zero.
+ void tbz(const Register& rt, unsigned bit_pos, Label* label);
+
+ // Test bit and branch to PC offset if zero.
+ void tbz(const Register& rt, unsigned bit_pos, int imm14);
+
+ // Test bit and branch to label if not zero.
+ void tbnz(const Register& rt, unsigned bit_pos, Label* label);
+
+ // Test bit and branch to PC offset if not zero.
+ void tbnz(const Register& rt, unsigned bit_pos, int imm14);
+
+ // Address calculation instructions.
+ // Calculate a PC-relative address. Unlike for branches the offset in adr is
+ // unscaled (i.e. the result can be unaligned).
+
+ // Calculate the address of a label.
+ void adr(const Register& rd, Label* label);
+
+ // Calculate the address of a PC offset.
+ void adr(const Register& rd, int imm21);
+
+ // Data Processing instructions.
+ // Add.
+ void add(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Compare negative.
+ void cmn(const Register& rn, const Operand& operand);
+
+ // Subtract.
+ void sub(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Compare.
+ void cmp(const Register& rn, const Operand& operand);
+
+ // Negate.
+ void neg(const Register& rd,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Add with carry bit.
+ void adc(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Subtract with carry bit.
+ void sbc(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Negate with carry bit.
+ void ngc(const Register& rd,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Logical instructions.
+ // Bitwise and (A & B).
+ void and_(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Bit test and set flags.
+ void tst(const Register& rn, const Operand& operand);
+
+ // Bit clear (A & ~B).
+ void bic(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Bitwise or (A | B).
+ void orr(const Register& rd, const Register& rn, const Operand& operand);
+
+ // Bitwise nor (A | ~B).
+ void orn(const Register& rd, const Register& rn, const Operand& operand);
+
+ // Bitwise eor/xor (A ^ B).
+ void eor(const Register& rd, const Register& rn, const Operand& operand);
+
+ // Bitwise enor/xnor (A ^ ~B).
+ void eon(const Register& rd, const Register& rn, const Operand& operand);
+
+ // Logical shift left by variable.
+ void lslv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Logical shift right by variable.
+ void lsrv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Arithmetic shift right by variable.
+ void asrv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Rotate right by variable.
+ void rorv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Bitfield instructions.
+ // Bitfield move.
+ void bfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms);
+
+ // Signed bitfield move.
+ void sbfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms);
+
+ // Unsigned bitfield move.
+ void ubfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms);
+
+ // Bfm aliases.
+ // Bitfield insert.
+ inline void bfi(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(width >= 1);
+ ASSERT(lsb + width <= rn.size());
+ bfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
+ }
+
+ // Bitfield extract and insert low.
+ inline void bfxil(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(width >= 1);
+ ASSERT(lsb + width <= rn.size());
+ bfm(rd, rn, lsb, lsb + width - 1);
+ }
+
+ // Sbfm aliases.
+ // Arithmetic shift right.
+ inline void asr(const Register& rd, const Register& rn, unsigned shift) {
+ ASSERT(shift < rd.size());
+ sbfm(rd, rn, shift, rd.size() - 1);
+ }
+
+ // Signed bitfield insert with zero at right.
+ inline void sbfiz(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(width >= 1);
+ ASSERT(lsb + width <= rn.size());
+ sbfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
+ }
+
+ // Signed bitfield extract.
+ inline void sbfx(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(width >= 1);
+ ASSERT(lsb + width <= rn.size());
+ sbfm(rd, rn, lsb, lsb + width - 1);
+ }
+
+ // Signed extend byte.
+ inline void sxtb(const Register& rd, const Register& rn) {
+ sbfm(rd, rn, 0, 7);
+ }
+
+ // Signed extend halfword.
+ inline void sxth(const Register& rd, const Register& rn) {
+ sbfm(rd, rn, 0, 15);
+ }
+
+ // Signed extend word.
+ inline void sxtw(const Register& rd, const Register& rn) {
+ sbfm(rd, rn, 0, 31);
+ }
+
+ // Ubfm aliases.
+ // Logical shift left.
+ inline void lsl(const Register& rd, const Register& rn, unsigned shift) {
+ unsigned reg_size = rd.size();
+ ASSERT(shift < reg_size);
+ ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1);
+ }
+
+ // Logical shift right.
+ inline void lsr(const Register& rd, const Register& rn, unsigned shift) {
+ ASSERT(shift < rd.size());
+ ubfm(rd, rn, shift, rd.size() - 1);
+ }
+
+ // Unsigned bitfield insert with zero at right.
+ inline void ubfiz(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(width >= 1);
+ ASSERT(lsb + width <= rn.size());
+ ubfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
+ }
+
+ // Unsigned bitfield extract.
+ inline void ubfx(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(width >= 1);
+ ASSERT(lsb + width <= rn.size());
+ ubfm(rd, rn, lsb, lsb + width - 1);
+ }
+
+ // Unsigned extend byte.
+ inline void uxtb(const Register& rd, const Register& rn) {
+ ubfm(rd, rn, 0, 7);
+ }
+
+ // Unsigned extend halfword.
+ inline void uxth(const Register& rd, const Register& rn) {
+ ubfm(rd, rn, 0, 15);
+ }
+
+ // Unsigned extend word.
+ inline void uxtw(const Register& rd, const Register& rn) {
+ ubfm(rd, rn, 0, 31);
+ }
+
+ // Extract.
+ void extr(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ unsigned lsb);
+
+ // Conditional select: rd = cond ? rn : rm.
+ void csel(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+
+ // Conditional select increment: rd = cond ? rn : rm + 1.
+ void csinc(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+
+ // Conditional select inversion: rd = cond ? rn : ~rm.
+ void csinv(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+
+ // Conditional select negation: rd = cond ? rn : -rm.
+ void csneg(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+
+ // Conditional set: rd = cond ? 1 : 0.
+ void cset(const Register& rd, Condition cond);
+
+ // Conditional set mask: rd = cond ? -1 : 0.
+ void csetm(const Register& rd, Condition cond);
+
+ // Conditional increment: rd = cond ? rn + 1 : rn.
+ void cinc(const Register& rd, const Register& rn, Condition cond);
+
+ // Conditional invert: rd = cond ? ~rn : rn.
+ void cinv(const Register& rd, const Register& rn, Condition cond);
+
+ // Conditional negate: rd = cond ? -rn : rn.
+ void cneg(const Register& rd, const Register& rn, Condition cond);
+
+ // Rotate right.
+ inline void ror(const Register& rd, const Register& rs, unsigned shift) {
+ extr(rd, rs, rs, shift);
+ }
+
+ // Conditional comparison.
+ // Conditional compare negative.
+ void ccmn(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond);
+
+ // Conditional compare.
+ void ccmp(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond);
+
+ // Multiply.
+ void mul(const Register& rd, const Register& rn, const Register& rm);
+
+ // Negated multiply.
+ void mneg(const Register& rd, const Register& rn, const Register& rm);
+
+ // Signed long multiply: 32 x 32 -> 64-bit.
+ void smull(const Register& rd, const Register& rn, const Register& rm);
+
+ // Signed multiply high: 64 x 64 -> 64-bit <127:64>.
+ void smulh(const Register& xd, const Register& xn, const Register& xm);
+
+ // Multiply and accumulate.
+ void madd(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Multiply and subtract.
+ void msub(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Signed long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
+ void smaddl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Unsigned long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
+ void umaddl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Signed long multiply and subtract: 64 - (32 x 32) -> 64-bit.
+ void smsubl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Unsigned long multiply and subtract: 64 - (32 x 32) -> 64-bit.
+ void umsubl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Signed integer divide.
+ void sdiv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Unsigned integer divide.
+ void udiv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Bit reverse.
+ void rbit(const Register& rd, const Register& rn);
+
+ // Reverse bytes in 16-bit half words.
+ void rev16(const Register& rd, const Register& rn);
+
+ // Reverse bytes in 32-bit words.
+ void rev32(const Register& rd, const Register& rn);
+
+ // Reverse bytes.
+ void rev(const Register& rd, const Register& rn);
+
+ // Count leading zeroes.
+ void clz(const Register& rd, const Register& rn);
+
+ // Count leading sign bits.
+ void cls(const Register& rd, const Register& rn);
+
+ // Memory instructions.
+ // Load integer or FP register.
+ void ldr(const CPURegister& rt, const MemOperand& src);
+
+ // Store integer or FP register.
+ void str(const CPURegister& rt, const MemOperand& dst);
+
+ // Load word with sign extension.
+ void ldrsw(const Register& rt, const MemOperand& src);
+
+ // Load byte.
+ void ldrb(const Register& rt, const MemOperand& src);
+
+ // Store byte.
+ void strb(const Register& rt, const MemOperand& dst);
+
+ // Load byte with sign extension.
+ void ldrsb(const Register& rt, const MemOperand& src);
+
+ // Load half-word.
+ void ldrh(const Register& rt, const MemOperand& src);
+
+ // Store half-word.
+ void strh(const Register& rt, const MemOperand& dst);
+
+ // Load half-word with sign extension.
+ void ldrsh(const Register& rt, const MemOperand& src);
+
+ // Load integer or FP register pair.
+ void ldp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& src);
+
+ // Store integer or FP register pair.
+ void stp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& dst);
+
+ // Load word pair with sign extension.
+ void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src);
+
+ // Load integer or FP register pair, non-temporal.
+ void ldnp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& src);
+
+ // Store integer or FP register pair, non-temporal.
+ void stnp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& dst);
+
+ // Load literal to register.
+ void ldr(const Register& rt, uint64_t imm);
+
+ // Load literal to FP register.
+ void ldr(const FPRegister& ft, double imm);
+
+ // Move instructions. The default shift of -1 indicates that the move
+ // instruction will calculate an appropriate 16-bit immediate and left shift
+ // that is equal to the 64-bit immediate argument. If an explicit left shift
+ // is specified (0, 16, 32 or 48), the immediate must be a 16-bit value.
+ //
+ // For movk, an explicit shift can be used to indicate which half word should
+ // be overwritten, eg. movk(x0, 0, 0) will overwrite the least-significant
+ // half word with zero, whereas movk(x0, 0, 48) will overwrite the
+ // most-significant.
+
+ // Move immediate and keep.
+ void movk(const Register& rd, uint64_t imm, int shift = -1) {
+ MoveWide(rd, imm, shift, MOVK);
+ }
+
+ // Move inverted immediate.
+ void movn(const Register& rd, uint64_t imm, int shift = -1) {
+ MoveWide(rd, imm, shift, MOVN);
+ }
+
+ // Move immediate.
+ void movz(const Register& rd, uint64_t imm, int shift = -1) {
+ MoveWide(rd, imm, shift, MOVZ);
+ }
+
+ // Misc instructions.
+ // Monitor debug-mode breakpoint.
+ void brk(int code);
+
+ // Halting debug-mode breakpoint.
+ void hlt(int code);
+
+ // Move register to register.
+ void mov(const Register& rd, const Register& rn);
+
+ // Move inverted operand to register.
+ void mvn(const Register& rd, const Operand& operand);
+
+ // System instructions.
+ // Move to register from system register.
+ void mrs(const Register& rt, SystemRegister sysreg);
+
+ // Move from register to system register.
+ void msr(SystemRegister sysreg, const Register& rt);
+
+ // System hint.
+ void hint(SystemHint code);
+
+ // Alias for system instructions.
+ // No-op.
+ void nop() {
+ hint(NOP);
+ }
+
+ // FP instructions.
+ // Move immediate to FP register.
+ void fmov(FPRegister fd, double imm);
+
+ // Move FP register to register.
+ void fmov(Register rd, FPRegister fn);
+
+ // Move register to FP register.
+ void fmov(FPRegister fd, Register rn);
+
+ // Move FP register to FP register.
+ void fmov(FPRegister fd, FPRegister fn);
+
+ // FP add.
+ void fadd(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+ // FP subtract.
+ void fsub(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+ // FP multiply.
+ void fmul(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+ // FP multiply and subtract.
+ void fmsub(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ const FPRegister& fa);
+
+ // FP divide.
+ void fdiv(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+ // FP maximum.
+ void fmax(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+ // FP minimum.
+ void fmin(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+ // FP absolute.
+ void fabs(const FPRegister& fd, const FPRegister& fn);
+
+ // FP negate.
+ void fneg(const FPRegister& fd, const FPRegister& fn);
+
+ // FP square root.
+ void fsqrt(const FPRegister& fd, const FPRegister& fn);
+
+ // FP round to integer (nearest with ties to even).
+ void frintn(const FPRegister& fd, const FPRegister& fn);
+
+ // FP round to integer (towards zero).
+ void frintz(const FPRegister& fd, const FPRegister& fn);
+
+ // FP compare registers.
+ void fcmp(const FPRegister& fn, const FPRegister& fm);
+
+ // FP compare immediate.
+ void fcmp(const FPRegister& fn, double value);
+
+ // FP conditional compare.
+ void fccmp(const FPRegister& fn,
+ const FPRegister& fm,
+ StatusFlags nzcv,
+ Condition cond);
+
+ // FP conditional select.
+ void fcsel(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ Condition cond);
+
+ // Common FP Convert function.
+ void FPConvertToInt(const Register& rd,
+ const FPRegister& fn,
+ FPIntegerConvertOp op);
+
+ // FP convert between single and double precision.
+ void fcvt(const FPRegister& fd, const FPRegister& fn);
+
+ // Convert FP to unsigned integer (round towards -infinity).
+ void fcvtmu(const Register& rd, const FPRegister& fn);
+
+ // Convert FP to signed integer (round towards -infinity).
+ void fcvtms(const Register& rd, const FPRegister& fn);
+
+ // Convert FP to unsigned integer (nearest with ties to even).
+ void fcvtnu(const Register& rd, const FPRegister& fn);
+
+ // Convert FP to signed integer (nearest with ties to even).
+ void fcvtns(const Register& rd, const FPRegister& fn);
+
+ // Convert FP to unsigned integer (round towards zero).
+ void fcvtzu(const Register& rd, const FPRegister& fn);
+
+ // Convert FP to signed integer (round towards zero).
+ void fcvtzs(const Register& rd, const FPRegister& fn);
+
+ // Convert signed integer or fixed point to FP.
+ void scvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);
+
+ // Convert unsigned integer or fixed point to FP.
+ void ucvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);
+
+ // Emit generic instructions.
+ // Emit raw instructions into the instruction stream.
+ inline void dci(Instr raw_inst) { Emit(raw_inst); }
+
+ // Emit 32 bits of data into the instruction stream.
+ inline void dc32(uint32_t data) { EmitData(&data, sizeof(data)); }
+
+ // Emit 64 bits of data into the instruction stream.
+ inline void dc64(uint64_t data) { EmitData(&data, sizeof(data)); }
+
+ // Copy a string into the instruction stream, including the terminating NULL
+ // character. The instruction pointer (pc_) is then aligned correctly for
+ // subsequent instructions.
+ void EmitStringData(const char * string) {
+ ASSERT(string != NULL);
+
+ size_t len = strlen(string) + 1;
+ EmitData(string, len);
+
+ // Pad with NULL characters until pc_ is aligned.
+ const char pad[] = {'\0', '\0', '\0', '\0'};
+ ASSERT(sizeof(pad) == kInstructionSize);
+ Instruction* next_pc = AlignUp(pc_, kInstructionSize);
+ EmitData(&pad, next_pc - pc_);
+ }
+
+ // Code generation helpers.
+
+ // Register encoding.
+ static Instr Rd(CPURegister rd) {
+ ASSERT(rd.code() != kSPRegInternalCode);
+ return rd.code() << Rd_offset;
+ }
+
+ static Instr Rn(CPURegister rn) {
+ ASSERT(rn.code() != kSPRegInternalCode);
+ return rn.code() << Rn_offset;
+ }
+
+ static Instr Rm(CPURegister rm) {
+ ASSERT(rm.code() != kSPRegInternalCode);
+ return rm.code() << Rm_offset;
+ }
+
+ static Instr Ra(CPURegister ra) {
+ ASSERT(ra.code() != kSPRegInternalCode);
+ return ra.code() << Ra_offset;
+ }
+
+ static Instr Rt(CPURegister rt) {
+ ASSERT(rt.code() != kSPRegInternalCode);
+ return rt.code() << Rt_offset;
+ }
+
+ static Instr Rt2(CPURegister rt2) {
+ ASSERT(rt2.code() != kSPRegInternalCode);
+ return rt2.code() << Rt2_offset;
+ }
+
+ // These encoding functions allow the stack pointer to be encoded, and
+ // disallow the zero register.
+ static Instr RdSP(Register rd) {
+ ASSERT(!rd.IsZero());
+ return (rd.code() & kRegCodeMask) << Rd_offset;
+ }
+
+ static Instr RnSP(Register rn) {
+ ASSERT(!rn.IsZero());
+ return (rn.code() & kRegCodeMask) << Rn_offset;
+ }
+
+ // Flags encoding.
+ static Instr Flags(FlagsUpdate S) {
+ if (S == SetFlags) {
+ return 1 << FlagsUpdate_offset;
+ } else if (S == LeaveFlags) {
+ return 0 << FlagsUpdate_offset;
+ }
+ UNREACHABLE();
+ return 0;
+ }
+
+ static Instr Cond(Condition cond) {
+ return cond << Condition_offset;
+ }
+
+ // PC-relative address encoding.
+ static Instr ImmPCRelAddress(int imm21) {
+ ASSERT(is_int21(imm21));
+ Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
+ Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
+ Instr immlo = imm << ImmPCRelLo_offset;
+ return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
+ }
+
+ // Branch encoding.
+ static Instr ImmUncondBranch(int imm26) {
+ ASSERT(is_int26(imm26));
+ return truncate_to_int26(imm26) << ImmUncondBranch_offset;
+ }
+
+ static Instr ImmCondBranch(int imm19) {
+ ASSERT(is_int19(imm19));
+ return truncate_to_int19(imm19) << ImmCondBranch_offset;
+ }
+
+ static Instr ImmCmpBranch(int imm19) {
+ ASSERT(is_int19(imm19));
+ return truncate_to_int19(imm19) << ImmCmpBranch_offset;
+ }
+
+ static Instr ImmTestBranch(int imm14) {
+ ASSERT(is_int14(imm14));
+ return truncate_to_int14(imm14) << ImmTestBranch_offset;
+ }
+
+ static Instr ImmTestBranchBit(unsigned bit_pos) {
+ ASSERT(is_uint6(bit_pos));
+ // Subtract five from the shift offset, as we need bit 5 from bit_pos.
+ unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
+ unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
+ b5 &= ImmTestBranchBit5_mask;
+ b40 &= ImmTestBranchBit40_mask;
+ return b5 | b40;
+ }
+
+ // Data Processing encoding.
+ static Instr SF(Register rd) {
+ return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
+ }
+
+ static Instr ImmAddSub(int64_t imm) {
+ ASSERT(IsImmAddSub(imm));
+ if (is_uint12(imm)) { // No shift required.
+ return imm << ImmAddSub_offset;
+ } else {
+ return ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
+ }
+ }
+
+ static inline Instr ImmS(unsigned imms, unsigned reg_size) {
+ ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) ||
+ ((reg_size == kWRegSize) && is_uint5(imms)));
+ USE(reg_size);
+ return imms << ImmS_offset;
+ }
+
+ static inline Instr ImmR(unsigned immr, unsigned reg_size) {
+ ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
+ ((reg_size == kWRegSize) && is_uint5(immr)));
+ USE(reg_size);
+ ASSERT(is_uint6(immr));
+ return immr << ImmR_offset;
+ }
+
+ static inline Instr ImmSetBits(unsigned imms, unsigned reg_size) {
+ ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ ASSERT(is_uint6(imms));
+ ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3));
+ USE(reg_size);
+ return imms << ImmSetBits_offset;
+ }
+
+ static inline Instr ImmRotate(unsigned immr, unsigned reg_size) {
+ ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
+ ((reg_size == kWRegSize) && is_uint5(immr)));
+ USE(reg_size);
+ return immr << ImmRotate_offset;
+ }
+
+ static inline Instr ImmLLiteral(int imm19) {
+ ASSERT(is_int19(imm19));
+ return truncate_to_int19(imm19) << ImmLLiteral_offset;
+ }
+
+ static inline Instr BitN(unsigned bitn, unsigned reg_size) {
+ ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ ASSERT((reg_size == kXRegSize) || (bitn == 0));
+ USE(reg_size);
+ return bitn << BitN_offset;
+ }
+
+ static Instr ShiftDP(Shift shift) {
+ ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
+ return shift << ShiftDP_offset;
+ }
+
+ static Instr ImmDPShift(unsigned amount) {
+ ASSERT(is_uint6(amount));
+ return amount << ImmDPShift_offset;
+ }
+
+ static Instr ExtendMode(Extend extend) {
+ return extend << ExtendMode_offset;
+ }
+
+ static Instr ImmExtendShift(unsigned left_shift) {
+ ASSERT(left_shift <= 4);
+ return left_shift << ImmExtendShift_offset;
+ }
+
+ static Instr ImmCondCmp(unsigned imm) {
+ ASSERT(is_uint5(imm));
+ return imm << ImmCondCmp_offset;
+ }
+
+ static Instr Nzcv(StatusFlags nzcv) {
+ return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
+ }
+
+ // MemOperand offset encoding.
+ static Instr ImmLSUnsigned(int imm12) {
+ ASSERT(is_uint12(imm12));
+ return imm12 << ImmLSUnsigned_offset;
+ }
+
+ static Instr ImmLS(int imm9) {
+ ASSERT(is_int9(imm9));
+ return truncate_to_int9(imm9) << ImmLS_offset;
+ }
+
+ static Instr ImmLSPair(int imm7, LSDataSize size) {
+ ASSERT(((imm7 >> size) << size) == imm7);
+ int scaled_imm7 = imm7 >> size;
+ ASSERT(is_int7(scaled_imm7));
+ return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
+ }
+
+ static Instr ImmShiftLS(unsigned shift_amount) {
+ ASSERT(is_uint1(shift_amount));
+ return shift_amount << ImmShiftLS_offset;
+ }
+
+ static Instr ImmException(int imm16) {
+ ASSERT(is_uint16(imm16));
+ return imm16 << ImmException_offset;
+ }
+
+ static Instr ImmSystemRegister(int imm15) {
+ ASSERT(is_uint15(imm15));
+ return imm15 << ImmSystemRegister_offset;
+ }
+
+ static Instr ImmHint(int imm7) {
+ ASSERT(is_uint7(imm7));
+ return imm7 << ImmHint_offset;
+ }
+
+ static LSDataSize CalcLSDataSize(LoadStoreOp op) {
+ ASSERT((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
+ return static_cast<LSDataSize>(op >> SizeLS_offset);
+ }
+
+ // Move immediates encoding.
+ static Instr ImmMoveWide(uint64_t imm) {
+ ASSERT(is_uint16(imm));
+ return imm << ImmMoveWide_offset;
+ }
+
+ static Instr ShiftMoveWide(int64_t shift) {
+ ASSERT(is_uint2(shift));
+ return shift << ShiftMoveWide_offset;
+ }
+
+ // FP Immediates.
+ static Instr ImmFP32(float imm);
+ static Instr ImmFP64(double imm);
+
+ // FP register type.
+ static Instr FPType(FPRegister fd) {
+ return fd.Is64Bits() ? FP64 : FP32;
+ }
+
+ static Instr FPScale(unsigned scale) {
+ ASSERT(is_uint6(scale));
+ return scale << FPScale_offset;
+ }
+
+ // Size of the code generated in bytes
+ uint64_t SizeOfCodeGenerated() const {
+ ASSERT((pc_ >= buffer_) && (pc_ < (buffer_ + buffer_size_)));
+ return pc_ - buffer_;
+ }
+
+ // Size of the code generated since label to the current position.
+ uint64_t SizeOfCodeGeneratedSince(Label* label) const {
+ ASSERT(label->IsBound());
+ ASSERT((pc_ >= label->target()) && (pc_ < (buffer_ + buffer_size_)));
+ return pc_ - label->target();
+ }
+
+
+ inline void BlockLiteralPool() {
+ literal_pool_monitor_++;
+ }
+
+ inline void ReleaseLiteralPool() {
+ if (--literal_pool_monitor_ == 0) {
+ // Has the literal pool been blocked for too long?
+ ASSERT(literals_.empty() ||
+ (pc_ < (literals_.back()->pc_ + kMaxLoadLiteralRange)));
+ }
+ }
+
+ inline bool IsLiteralPoolBlocked() {
+ return literal_pool_monitor_ != 0;
+ }
+
+ void CheckLiteralPool(LiteralPoolEmitOption option = JumpRequired);
+ void EmitLiteralPool(LiteralPoolEmitOption option = NoJumpRequired);
+ size_t LiteralPoolSize();
+
+ protected:
+ inline const Register& AppropriateZeroRegFor(const CPURegister& reg) const {
+ return reg.Is64Bits() ? xzr : wzr;
+ }
+
+
+ void LoadStore(const CPURegister& rt,
+ const MemOperand& addr,
+ LoadStoreOp op);
+ static bool IsImmLSUnscaled(ptrdiff_t offset);
+ static bool IsImmLSScaled(ptrdiff_t offset, LSDataSize size);
+
+ void Logical(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ LogicalOp op);
+ void LogicalImmediate(const Register& rd,
+ const Register& rn,
+ unsigned n,
+ unsigned imm_s,
+ unsigned imm_r,
+ LogicalOp op);
+ static bool IsImmLogical(uint64_t value,
+ unsigned width,
+ unsigned* n,
+ unsigned* imm_s,
+ unsigned* imm_r);
+
+ void ConditionalCompare(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond,
+ ConditionalCompareOp op);
+ static bool IsImmConditionalCompare(int64_t immediate);
+
+ void AddSubWithCarry(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubWithCarryOp op);
+
+ // Functions for emulating operands not directly supported by the instruction
+ // set.
+ void EmitShift(const Register& rd,
+ const Register& rn,
+ Shift shift,
+ unsigned amount);
+ void EmitExtendShift(const Register& rd,
+ const Register& rn,
+ Extend extend,
+ unsigned left_shift);
+
+ void AddSub(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubOp op);
+ static bool IsImmAddSub(int64_t immediate);
+
+ // Find an appropriate LoadStoreOp or LoadStorePairOp for the specified
+ // registers. Only simple loads are supported; sign- and zero-extension (such
+ // as in LDPSW_x or LDRB_w) are not supported.
+ static LoadStoreOp LoadOpFor(const CPURegister& rt);
+ static LoadStorePairOp LoadPairOpFor(const CPURegister& rt,
+ const CPURegister& rt2);
+ static LoadStoreOp StoreOpFor(const CPURegister& rt);
+ static LoadStorePairOp StorePairOpFor(const CPURegister& rt,
+ const CPURegister& rt2);
+ static LoadStorePairNonTemporalOp LoadPairNonTemporalOpFor(
+ const CPURegister& rt, const CPURegister& rt2);
+ static LoadStorePairNonTemporalOp StorePairNonTemporalOpFor(
+ const CPURegister& rt, const CPURegister& rt2);
+
+
+ private:
+ // Instruction helpers.
+ void MoveWide(const Register& rd,
+ uint64_t imm,
+ int shift,
+ MoveWideImmediateOp mov_op);
+ void DataProcShiftedRegister(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ Instr op);
+ void DataProcExtendedRegister(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ Instr op);
+ void LoadStorePair(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& addr,
+ LoadStorePairOp op);
+ void LoadStorePairNonTemporal(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& addr,
+ LoadStorePairNonTemporalOp op);
+ void LoadLiteral(const CPURegister& rt, uint64_t imm, LoadLiteralOp op);
+ void ConditionalSelect(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond,
+ ConditionalSelectOp op);
+ void DataProcessing1Source(const Register& rd,
+ const Register& rn,
+ DataProcessing1SourceOp op);
+ void DataProcessing3Source(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra,
+ DataProcessing3SourceOp op);
+ void FPDataProcessing1Source(const FPRegister& fd,
+ const FPRegister& fn,
+ FPDataProcessing1SourceOp op);
+ void FPDataProcessing2Source(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ FPDataProcessing2SourceOp op);
+ void FPDataProcessing3Source(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ const FPRegister& fa,
+ FPDataProcessing3SourceOp op);
+
+ // Encoding helpers.
+ static bool IsImmFP32(float imm);
+ static bool IsImmFP64(double imm);
+
+ void RecordLiteral(int64_t imm, unsigned size);
+
+ // Emit the instruction at pc_.
+ void Emit(Instr instruction) {
+ ASSERT(sizeof(*pc_) == 1);
+ ASSERT(sizeof(instruction) == kInstructionSize);
+ ASSERT((pc_ + sizeof(instruction)) <= (buffer_ + buffer_size_));
+
+#ifdef DEBUG
+ finalized_ = false;
+#endif
+
+ memcpy(pc_, &instruction, sizeof(instruction));
+ pc_ += sizeof(instruction);
+ CheckBufferSpace();
+ }
+
+ // Emit data inline in the instruction stream.
+ void EmitData(void const * data, unsigned size) {
+ ASSERT(sizeof(*pc_) == 1);
+ ASSERT((pc_ + size) <= (buffer_ + buffer_size_));
+
+#ifdef DEBUG
+ finalized_ = false;
+#endif
+
+ // TODO: Record this 'instruction' as data, so that it can be disassembled
+ // correctly.
+ memcpy(pc_, data, size);
+ pc_ += size;
+ CheckBufferSpace();
+ }
+
+ inline void CheckBufferSpace() {
+ ASSERT(pc_ < (buffer_ + buffer_size_));
+ if (pc_ > next_literal_pool_check_) {
+ CheckLiteralPool();
+ }
+ }
+
+ // The buffer into which code and relocation info are generated.
+ Instruction* buffer_;
+ // Buffer size, in bytes.
+ unsigned buffer_size_;
+ Instruction* pc_;
+ std::list<Literal*> literals_;
+ Instruction* next_literal_pool_check_;
+ unsigned literal_pool_monitor_;
+
+ friend class BlockLiteralPoolScope;
+
+#ifdef DEBUG
+ bool finalized_;
+#endif
+};
+
+class BlockLiteralPoolScope {
+ public:
+ explicit BlockLiteralPoolScope(Assembler* assm) : assm_(assm) {
+ assm_->BlockLiteralPool();
+ }
+
+ ~BlockLiteralPoolScope() {
+ assm_->ReleaseLiteralPool();
+ }
+
+ private:
+ Assembler* assm_;
+};
+} // namespace vixl
+
+#endif // VIXL_A64_ASSEMBLER_A64_H_