aboutsummaryrefslogtreecommitdiff
path: root/fs/ecryptfs/crypto.c
blob: 7196f50fe152f630f8d5b839fdfa32e3d2c4a5fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
/**
 * eCryptfs: Linux filesystem encryption layer
 *
 * Copyright (C) 1997-2004 Erez Zadok
 * Copyright (C) 2001-2004 Stony Brook University
 * Copyright (C) 2004-2006 International Business Machines Corp.
 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
 *   		Michael C. Thompson <mcthomps@us.ibm.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.
 */

#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/random.h>
#include <linux/compiler.h>
#include <linux/key.h>
#include <linux/namei.h>
#include <linux/crypto.h>
#include <linux/file.h>
#include <linux/scatterlist.h>
#include "ecryptfs_kernel.h"

static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv);
static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv);

/**
 * ecryptfs_to_hex
 * @dst: Buffer to take hex character representation of contents of
 *       src; must be at least of size (src_size * 2)
 * @src: Buffer to be converted to a hex string respresentation
 * @src_size: number of bytes to convert
 */
void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
{
	int x;

	for (x = 0; x < src_size; x++)
		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
}

/**
 * ecryptfs_from_hex
 * @dst: Buffer to take the bytes from src hex; must be at least of
 *       size (src_size / 2)
 * @src: Buffer to be converted from a hex string respresentation to raw value
 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
 */
void ecryptfs_from_hex(char *dst, char *src, int dst_size)
{
	int x;
	char tmp[3] = { 0, };

	for (x = 0; x < dst_size; x++) {
		tmp[0] = src[x * 2];
		tmp[1] = src[x * 2 + 1];
		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
	}
}

/**
 * ecryptfs_calculate_md5 - calculates the md5 of @src
 * @dst: Pointer to 16 bytes of allocated memory
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 * @src: Data to be md5'd
 * @len: Length of @src
 *
 * Uses the allocated crypto context that crypt_stat references to
 * generate the MD5 sum of the contents of src.
 */
static int ecryptfs_calculate_md5(char *dst,
				  struct ecryptfs_crypt_stat *crypt_stat,
				  char *src, int len)
{
	struct scatterlist sg;
	struct hash_desc desc = {
		.tfm = crypt_stat->hash_tfm,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
	int rc = 0;

	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
	sg_init_one(&sg, (u8 *)src, len);
	if (!desc.tfm) {
		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
					     CRYPTO_ALG_ASYNC);
		if (IS_ERR(desc.tfm)) {
			rc = PTR_ERR(desc.tfm);
			ecryptfs_printk(KERN_ERR, "Error attempting to "
					"allocate crypto context; rc = [%d]\n",
					rc);
			goto out;
		}
		crypt_stat->hash_tfm = desc.tfm;
	}
	crypto_hash_init(&desc);
	crypto_hash_update(&desc, &sg, len);
	crypto_hash_final(&desc, dst);
	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
out:
	return rc;
}

int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
					   char *cipher_name,
					   char *chaining_modifier)
{
	int cipher_name_len = strlen(cipher_name);
	int chaining_modifier_len = strlen(chaining_modifier);
	int algified_name_len;
	int rc;

	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
	if (!(*algified_name)) {
		rc = -ENOMEM;
		goto out;
	}
	snprintf((*algified_name), algified_name_len, "%s(%s)",
		 chaining_modifier, cipher_name);
	rc = 0;
out:
	return rc;
}

/**
 * ecryptfs_derive_iv
 * @iv: destination for the derived iv vale
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 * @offset: Offset of the page whose's iv we are to derive
 *
 * Generate the initialization vector from the given root IV and page
 * offset.
 *
 * Returns zero on success; non-zero on error.
 */
static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
			      pgoff_t offset)
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];
	char src[ECRYPTFS_MAX_IV_BYTES + 16];

	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
	}
	/* TODO: It is probably secure to just cast the least
	 * significant bits of the root IV into an unsigned long and
	 * add the offset to that rather than go through all this
	 * hashing business. -Halcrow */
	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
	memset((src + crypt_stat->iv_bytes), 0, 16);
	snprintf((src + crypt_stat->iv_bytes), 16, "%ld", offset);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "source:\n");
		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
				    (crypt_stat->iv_bytes + 16));
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating IV for a page\n");
		goto out;
	}
	memcpy(iv, dst, crypt_stat->iv_bytes);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
	}
out:
	return rc;
}

/**
 * ecryptfs_init_crypt_stat
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Initialize the crypt_stat structure.
 */
void
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
{
	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
	mutex_init(&crypt_stat->cs_mutex);
	mutex_init(&crypt_stat->cs_tfm_mutex);
	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
	ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_STRUCT_INITIALIZED);
}

/**
 * ecryptfs_destruct_crypt_stat
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Releases all memory associated with a crypt_stat struct.
 */
void ecryptfs_destruct_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
{
	if (crypt_stat->tfm)
		crypto_free_blkcipher(crypt_stat->tfm);
	if (crypt_stat->hash_tfm)
		crypto_free_hash(crypt_stat->hash_tfm);
	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
}

void ecryptfs_destruct_mount_crypt_stat(
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	if (mount_crypt_stat->global_auth_tok_key)
		key_put(mount_crypt_stat->global_auth_tok_key);
	if (mount_crypt_stat->global_key_tfm)
		crypto_free_blkcipher(mount_crypt_stat->global_key_tfm);
	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
}

/**
 * virt_to_scatterlist
 * @addr: Virtual address
 * @size: Size of data; should be an even multiple of the block size
 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 *      the number of scatterlist structs required in array
 * @sg_size: Max array size
 *
 * Fills in a scatterlist array with page references for a passed
 * virtual address.
 *
 * Returns the number of scatterlist structs in array used
 */
int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
			int sg_size)
{
	int i = 0;
	struct page *pg;
	int offset;
	int remainder_of_page;

	while (size > 0 && i < sg_size) {
		pg = virt_to_page(addr);
		offset = offset_in_page(addr);
		if (sg) {
			sg[i].page = pg;
			sg[i].offset = offset;
		}
		remainder_of_page = PAGE_CACHE_SIZE - offset;
		if (size >= remainder_of_page) {
			if (sg)
				sg[i].length = remainder_of_page;
			addr += remainder_of_page;
			size -= remainder_of_page;
		} else {
			if (sg)
				sg[i].length = size;
			addr += size;
			size = 0;
		}
		i++;
	}
	if (size > 0)
		return -ENOMEM;
	return i;
}

/**
 * encrypt_scatterlist
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 * @dest_sg: Destination of encrypted data
 * @src_sg: Data to be encrypted
 * @size: Length of data to be encrypted
 * @iv: iv to use during encryption
 *
 * Returns the number of bytes encrypted; negative value on error
 */
static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
			       struct scatterlist *dest_sg,
			       struct scatterlist *src_sg, int size,
			       unsigned char *iv)
{
	struct blkcipher_desc desc = {
		.tfm = crypt_stat->tfm,
		.info = iv,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
	int rc = 0;

	BUG_ON(!crypt_stat || !crypt_stat->tfm
	       || !ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
				       ECRYPTFS_STRUCT_INITIALIZED));
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
				crypt_stat->key_size);
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
	/* Consider doing this once, when the file is opened */
	mutex_lock(&crypt_stat->cs_tfm_mutex);
	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
				     crypt_stat->key_size);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
				rc);
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
		rc = -EINVAL;
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
out:
	return rc;
}

static void
ecryptfs_extent_to_lwr_pg_idx_and_offset(unsigned long *lower_page_idx,
					 int *byte_offset,
					 struct ecryptfs_crypt_stat *crypt_stat,
					 unsigned long extent_num)
{
	unsigned long lower_extent_num;
	int extents_occupied_by_headers_at_front;
	int bytes_occupied_by_headers_at_front;
	int extent_offset;
	int extents_per_page;

	bytes_occupied_by_headers_at_front =
		( crypt_stat->header_extent_size
		  * crypt_stat->num_header_extents_at_front );
	extents_occupied_by_headers_at_front =
		( bytes_occupied_by_headers_at_front
		  / crypt_stat->extent_size );
	lower_extent_num = extents_occupied_by_headers_at_front + extent_num;
	extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
	(*lower_page_idx) = lower_extent_num / extents_per_page;
	extent_offset = lower_extent_num % extents_per_page;
	(*byte_offset) = extent_offset * crypt_stat->extent_size;
	ecryptfs_printk(KERN_DEBUG, " * crypt_stat->header_extent_size = "
			"[%d]\n", crypt_stat->header_extent_size);
	ecryptfs_printk(KERN_DEBUG, " * crypt_stat->"
			"num_header_extents_at_front = [%d]\n",
			crypt_stat->num_header_extents_at_front);
	ecryptfs_printk(KERN_DEBUG, " * extents_occupied_by_headers_at_"
			"front = [%d]\n", extents_occupied_by_headers_at_front);
	ecryptfs_printk(KERN_DEBUG, " * lower_extent_num = [0x%.16x]\n",
			lower_extent_num);
	ecryptfs_printk(KERN_DEBUG, " * extents_per_page = [%d]\n",
			extents_per_page);
	ecryptfs_printk(KERN_DEBUG, " * (*lower_page_idx) = [0x%.16x]\n",
			(*lower_page_idx));
	ecryptfs_printk(KERN_DEBUG, " * extent_offset = [%d]\n",
			extent_offset);
	ecryptfs_printk(KERN_DEBUG, " * (*byte_offset) = [%d]\n",
			(*byte_offset));
}

static int ecryptfs_write_out_page(struct ecryptfs_page_crypt_context *ctx,
				   struct page *lower_page,
				   struct inode *lower_inode,
				   int byte_offset_in_page, int bytes_to_write)
{
	int rc = 0;

	if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
		rc = ecryptfs_commit_lower_page(lower_page, lower_inode,
						ctx->param.lower_file,
						byte_offset_in_page,
						bytes_to_write);
		if (rc) {
			ecryptfs_printk(KERN_ERR, "Error calling lower "
					"commit; rc = [%d]\n", rc);
			goto out;
		}
	} else {
		rc = ecryptfs_writepage_and_release_lower_page(lower_page,
							       lower_inode,
							       ctx->param.wbc);
		if (rc) {
			ecryptfs_printk(KERN_ERR, "Error calling lower "
					"writepage(); rc = [%d]\n", rc);
			goto out;
		}
	}
out:
	return rc;
}

static int ecryptfs_read_in_page(struct ecryptfs_page_crypt_context *ctx,
				 struct page **lower_page,
				 struct inode *lower_inode,
				 unsigned long lower_page_idx,
				 int byte_offset_in_page)
{
	int rc = 0;

	if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
		/* TODO: Limit this to only the data extents that are
		 * needed */
		rc = ecryptfs_get_lower_page(lower_page, lower_inode,
					     ctx->param.lower_file,
					     lower_page_idx,
					     byte_offset_in_page,
					     (PAGE_CACHE_SIZE
					      - byte_offset_in_page));
		if (rc) {
			ecryptfs_printk(
				KERN_ERR, "Error attempting to grab, map, "
				"and prepare_write lower page with index "
				"[0x%.16x]; rc = [%d]\n", lower_page_idx, rc);
			goto out;
		}
	} else {
		rc = ecryptfs_grab_and_map_lower_page(lower_page, NULL,
						      lower_inode,
						      lower_page_idx);
		if (rc) {
			ecryptfs_printk(
				KERN_ERR, "Error attempting to grab and map "
				"lower page with index [0x%.16x]; rc = [%d]\n",
				lower_page_idx, rc);
			goto out;
		}
	}
out:
	return rc;
}

/**
 * ecryptfs_encrypt_page
 * @ctx: The context of the page
 *
 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * The actual operations performed on each page depends on the
 * contents of the ecryptfs_page_crypt_context struct.
 *
 * Returns zero on success; negative on error
 */
int ecryptfs_encrypt_page(struct ecryptfs_page_crypt_context *ctx)
{
	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
	unsigned long base_extent;
	unsigned long extent_offset = 0;
	unsigned long lower_page_idx = 0;
	unsigned long prior_lower_page_idx = 0;
	struct page *lower_page;
	struct inode *lower_inode;
	struct ecryptfs_inode_info *inode_info;
	struct ecryptfs_crypt_stat *crypt_stat;
	int rc = 0;
	int lower_byte_offset = 0;
	int orig_byte_offset = 0;
	int num_extents_per_page;
#define ECRYPTFS_PAGE_STATE_UNREAD    0
#define ECRYPTFS_PAGE_STATE_READ      1
#define ECRYPTFS_PAGE_STATE_MODIFIED  2
#define ECRYPTFS_PAGE_STATE_WRITTEN   3
	int page_state;

	lower_inode = ecryptfs_inode_to_lower(ctx->page->mapping->host);
	inode_info = ecryptfs_inode_to_private(ctx->page->mapping->host);
	crypt_stat = &inode_info->crypt_stat;
	if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)) {
		rc = ecryptfs_copy_page_to_lower(ctx->page, lower_inode,
						 ctx->param.lower_file);
		if (rc)
			ecryptfs_printk(KERN_ERR, "Error attempting to copy "
					"page at index [0x%.16x]\n",
					ctx->page->index);
		goto out;
	}
	num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
	base_extent = (ctx->page->index * num_extents_per_page);
	page_state = ECRYPTFS_PAGE_STATE_UNREAD;
	while (extent_offset < num_extents_per_page) {
		ecryptfs_extent_to_lwr_pg_idx_and_offset(
			&lower_page_idx, &lower_byte_offset, crypt_stat,
			(base_extent + extent_offset));
		if (prior_lower_page_idx != lower_page_idx
		    && page_state == ECRYPTFS_PAGE_STATE_MODIFIED) {
			rc = ecryptfs_write_out_page(ctx, lower_page,
						     lower_inode,
						     orig_byte_offset,
						     (PAGE_CACHE_SIZE
						      - orig_byte_offset));
			if (rc) {
				ecryptfs_printk(KERN_ERR, "Error attempting "
						"to write out page; rc = [%d]"
						"\n", rc);
				goto out;
			}
			page_state = ECRYPTFS_PAGE_STATE_WRITTEN;
		}
		if (page_state == ECRYPTFS_PAGE_STATE_UNREAD
		    || page_state == ECRYPTFS_PAGE_STATE_WRITTEN) {
			rc = ecryptfs_read_in_page(ctx, &lower_page,
						   lower_inode, lower_page_idx,
						   lower_byte_offset);
			if (rc) {
				ecryptfs_printk(KERN_ERR, "Error attempting "
						"to read in lower page with "
						"index [0x%.16x]; rc = [%d]\n",
						lower_page_idx, rc);
				goto out;
			}
			orig_byte_offset = lower_byte_offset;
			prior_lower_page_idx = lower_page_idx;
			page_state = ECRYPTFS_PAGE_STATE_READ;
		}
		BUG_ON(!(page_state == ECRYPTFS_PAGE_STATE_MODIFIED
			 || page_state == ECRYPTFS_PAGE_STATE_READ));
		rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
					(base_extent + extent_offset));
		if (rc) {
			ecryptfs_printk(KERN_ERR, "Error attempting to "
					"derive IV for extent [0x%.16x]; "
					"rc = [%d]\n",
					(base_extent + extent_offset), rc);
			goto out;
		}
		if (unlikely(ecryptfs_verbosity > 0)) {
			ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
					"with iv:\n");
			ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
			ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
					"encryption:\n");
			ecryptfs_dump_hex((char *)
					  (page_address(ctx->page)
					   + (extent_offset
					      * crypt_stat->extent_size)), 8);
		}
		rc = ecryptfs_encrypt_page_offset(
			crypt_stat, lower_page, lower_byte_offset, ctx->page,
			(extent_offset * crypt_stat->extent_size),
			crypt_stat->extent_size, extent_iv);
		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
				"rc = [%d]\n",
				(base_extent + extent_offset), rc);
		if (unlikely(ecryptfs_verbosity > 0)) {
			ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
					"encryption:\n");
			ecryptfs_dump_hex((char *)(page_address(lower_page)
						   + lower_byte_offset), 8);
		}
		page_state = ECRYPTFS_PAGE_STATE_MODIFIED;
		extent_offset++;
	}
	BUG_ON(orig_byte_offset != 0);
	rc = ecryptfs_write_out_page(ctx, lower_page, lower_inode, 0,
				     (lower_byte_offset
				      + crypt_stat->extent_size));
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error attempting to write out "
				"page; rc = [%d]\n", rc);
				goto out;
	}
out:
	return rc;
}

/**
 * ecryptfs_decrypt_page
 * @file: The ecryptfs file
 * @page: The page in ecryptfs to decrypt
 *
 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
int ecryptfs_decrypt_page(struct file *file, struct page *page)
{
	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
	unsigned long base_extent;
	unsigned long extent_offset = 0;
	unsigned long lower_page_idx = 0;
	unsigned long prior_lower_page_idx = 0;
	struct page *lower_page;
	char *lower_page_virt = NULL;
	struct inode *lower_inode;
	struct ecryptfs_crypt_stat *crypt_stat;
	int rc = 0;
	int byte_offset;
	int num_extents_per_page;
	int page_state;

	crypt_stat = &(ecryptfs_inode_to_private(
			       page->mapping->host)->crypt_stat);
	lower_inode = ecryptfs_inode_to_lower(page->mapping->host);
	if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)) {
		rc = ecryptfs_do_readpage(file, page, page->index);
		if (rc)
			ecryptfs_printk(KERN_ERR, "Error attempting to copy "
					"page at index [0x%.16x]\n",
					page->index);
		goto out;
	}
	num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
	base_extent = (page->index * num_extents_per_page);
	lower_page_virt = kmem_cache_alloc(ecryptfs_lower_page_cache,
					   GFP_KERNEL);
	if (!lower_page_virt) {
		rc = -ENOMEM;
		ecryptfs_printk(KERN_ERR, "Error getting page for encrypted "
				"lower page(s)\n");
		goto out;
	}
	lower_page = virt_to_page(lower_page_virt);
	page_state = ECRYPTFS_PAGE_STATE_UNREAD;
	while (extent_offset < num_extents_per_page) {
		ecryptfs_extent_to_lwr_pg_idx_and_offset(
			&lower_page_idx, &byte_offset, crypt_stat,
			(base_extent + extent_offset));
		if (prior_lower_page_idx != lower_page_idx
		    || page_state == ECRYPTFS_PAGE_STATE_UNREAD) {
			rc = ecryptfs_do_readpage(file, lower_page,
						  lower_page_idx);
			if (rc) {
				ecryptfs_printk(KERN_ERR, "Error reading "
						"lower encrypted page; rc = "
						"[%d]\n", rc);
				goto out;
			}
			prior_lower_page_idx = lower_page_idx;
			page_state = ECRYPTFS_PAGE_STATE_READ;
		}
		rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
					(base_extent + extent_offset));
		if (rc) {
			ecryptfs_printk(KERN_ERR, "Error attempting to "
					"derive IV for extent [0x%.16x]; rc = "
					"[%d]\n",
					(base_extent + extent_offset), rc);
			goto out;
		}
		if (unlikely(ecryptfs_verbosity > 0)) {
			ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
					"with iv:\n");
			ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
			ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
					"decryption:\n");
			ecryptfs_dump_hex((lower_page_virt + byte_offset), 8);
		}
		rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
						  (extent_offset
						   * crypt_stat->extent_size),
						  lower_page, byte_offset,
						  crypt_stat->extent_size,
						  extent_iv);
		if (rc != crypt_stat->extent_size) {
			ecryptfs_printk(KERN_ERR, "Error attempting to "
					"decrypt extent [0x%.16x]\n",
					(base_extent + extent_offset));
			goto out;
		}
		rc = 0;
		if (unlikely(ecryptfs_verbosity > 0)) {
			ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
					"decryption:\n");
			ecryptfs_dump_hex((char *)(page_address(page)
						   + byte_offset), 8);
		}
		extent_offset++;
	}
out:
	if (lower_page_virt)
		kmem_cache_free(ecryptfs_lower_page_cache, lower_page_virt);
	return rc;
}

/**
 * decrypt_scatterlist
 *
 * Returns the number of bytes decrypted; negative value on error
 */
static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
			       struct scatterlist *dest_sg,
			       struct scatterlist *src_sg, int size,
			       unsigned char *iv)
{
	struct blkcipher_desc desc = {
		.tfm = crypt_stat->tfm,
		.info = iv,
		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
	};
	int rc = 0;

	/* Consider doing this once, when the file is opened */
	mutex_lock(&crypt_stat->cs_tfm_mutex);
	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
				     crypt_stat->key_size);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
				rc);
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
		rc = -EINVAL;
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
	if (rc) {
		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
				rc);
		goto out;
	}
	rc = size;
out:
	return rc;
}

/**
 * ecryptfs_encrypt_page_offset
 *
 * Returns the number of bytes encrypted
 */
static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv)
{
	struct scatterlist src_sg, dst_sg;

	src_sg.page = src_page;
	src_sg.offset = src_offset;
	src_sg.length = size;
	dst_sg.page = dst_page;
	dst_sg.offset = dst_offset;
	dst_sg.length = size;
	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
}

/**
 * ecryptfs_decrypt_page_offset
 *
 * Returns the number of bytes decrypted
 */
static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
			     struct page *dst_page, int dst_offset,
			     struct page *src_page, int src_offset, int size,
			     unsigned char *iv)
{
	struct scatterlist src_sg, dst_sg;

	src_sg.page = src_page;
	src_sg.offset = src_offset;
	src_sg.length = size;
	dst_sg.page = dst_page;
	dst_sg.offset = dst_offset;
	dst_sg.length = size;
	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
}

#define ECRYPTFS_MAX_SCATTERLIST_LEN 4

/**
 * ecryptfs_init_crypt_ctx
 * @crypt_stat: Uninitilized crypt stats structure
 *
 * Initialize the crypto context.
 *
 * TODO: Performance: Keep a cache of initialized cipher contexts;
 * only init if needed
 */
int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
{
	char *full_alg_name;
	int rc = -EINVAL;

	if (!crypt_stat->cipher) {
		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
		goto out;
	}
	ecryptfs_printk(KERN_DEBUG,
			"Initializing cipher [%s]; strlen = [%d]; "
			"key_size_bits = [%d]\n",
			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
			crypt_stat->key_size << 3);
	if (crypt_stat->tfm) {
		rc = 0;
		goto out;
	}
	mutex_lock(&crypt_stat->cs_tfm_mutex);
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
						    crypt_stat->cipher, "cbc");
	if (rc)
		goto out;
	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
						 CRYPTO_ALG_ASYNC);
	kfree(full_alg_name);
	if (IS_ERR(crypt_stat->tfm)) {
		rc = PTR_ERR(crypt_stat->tfm);
		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
				"Error initializing cipher [%s]\n",
				crypt_stat->cipher);
		mutex_unlock(&crypt_stat->cs_tfm_mutex);
		goto out;
	}
	crypto_blkcipher_set_flags(crypt_stat->tfm,
				   (ECRYPTFS_DEFAULT_CHAINING_MODE
				    | CRYPTO_TFM_REQ_WEAK_KEY));
	mutex_unlock(&crypt_stat->cs_tfm_mutex);
	rc = 0;
out:
	return rc;
}

static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
{
	int extent_size_tmp;

	crypt_stat->extent_mask = 0xFFFFFFFF;
	crypt_stat->extent_shift = 0;
	if (crypt_stat->extent_size == 0)
		return;
	extent_size_tmp = crypt_stat->extent_size;
	while ((extent_size_tmp & 0x01) == 0) {
		extent_size_tmp >>= 1;
		crypt_stat->extent_mask <<= 1;
		crypt_stat->extent_shift++;
	}
}

void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
{
	/* Default values; may be overwritten as we are parsing the
	 * packets. */
	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
	set_extent_mask_and_shift(crypt_stat);
	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
	if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) {
		crypt_stat->header_extent_size =
			ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
	} else
		crypt_stat->header_extent_size = PAGE_CACHE_SIZE;
	crypt_stat->num_header_extents_at_front = 1;
}

/**
 * ecryptfs_compute_root_iv
 * @crypt_stats
 *
 * On error, sets the root IV to all 0's.
 */
int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
{
	int rc = 0;
	char dst[MD5_DIGEST_SIZE];

	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
	BUG_ON(crypt_stat->iv_bytes <= 0);
	if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID)) {
		rc = -EINVAL;
		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
				"cannot generate root IV\n");
		goto out;
	}
	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
				    crypt_stat->key_size);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
				"MD5 while generating root IV\n");
		goto out;
	}
	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
out:
	if (rc) {
		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
		ECRYPTFS_SET_FLAG(crypt_stat->flags,
				  ECRYPTFS_SECURITY_WARNING);
	}
	return rc;
}

static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
{
	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
	ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
	ecryptfs_compute_root_iv(crypt_stat);
	if (unlikely(ecryptfs_verbosity > 0)) {
		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
		ecryptfs_dump_hex(crypt_stat->key,
				  crypt_stat->key_size);
	}
}

/**
 * ecryptfs_set_default_crypt_stat_vals
 * @crypt_stat
 *
 * Default values in the event that policy does not override them.
 */
static void ecryptfs_set_default_crypt_stat_vals(
	struct ecryptfs_crypt_stat *crypt_stat,
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
	ecryptfs_set_default_sizes(crypt_stat);
	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
	ECRYPTFS_CLEAR_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
	crypt_stat->mount_crypt_stat = mount_crypt_stat;
}

/**
 * ecryptfs_new_file_context
 * @ecryptfs_dentry
 *
 * If the crypto context for the file has not yet been established,
 * this is where we do that.  Establishing a new crypto context
 * involves the following decisions:
 *  - What cipher to use?
 *  - What set of authentication tokens to use?
 * Here we just worry about getting enough information into the
 * authentication tokens so that we know that they are available.
 * We associate the available authentication tokens with the new file
 * via the set of signatures in the crypt_stat struct.  Later, when
 * the headers are actually written out, we may again defer to
 * userspace to perform the encryption of the session key; for the
 * foreseeable future, this will be the case with public key packets.
 *
 * Returns zero on success; non-zero otherwise
 */
/* Associate an authentication token(s) with the file */
int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
{
	int rc = 0;
	struct ecryptfs_crypt_stat *crypt_stat =
	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
	    &ecryptfs_superblock_to_private(
		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
	int cipher_name_len;

	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
	/* See if there are mount crypt options */
	if (mount_crypt_stat->global_auth_tok) {
		ecryptfs_printk(KERN_DEBUG, "Initializing context for new "
				"file using mount_crypt_stat\n");
		ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED);
		ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID);
		memcpy(crypt_stat->keysigs[crypt_stat->num_keysigs++],
		       mount_crypt_stat->global_auth_tok_sig,
		       ECRYPTFS_SIG_SIZE_HEX);
		cipher_name_len =
		    strlen(mount_crypt_stat->global_default_cipher_name);
		memcpy(crypt_stat->cipher,
		       mount_crypt_stat->global_default_cipher_name,
		       cipher_name_len);
		crypt_stat->cipher[cipher_name_len] = '\0';
		crypt_stat->key_size =
			mount_crypt_stat->global_default_cipher_key_size;
		ecryptfs_generate_new_key(crypt_stat);
	} else
		/* We should not encounter this scenario since we
		 * should detect lack of global_auth_tok at mount time
		 * TODO: Applies to 0.1 release only; remove in future
		 * release */
		BUG();
	rc = ecryptfs_init_crypt_ctx(crypt_stat);
	if (rc)
		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
				"context for cipher [%s]: rc = [%d]\n",
				crypt_stat->cipher, rc);
	return rc;
}

/**
 * contains_ecryptfs_marker - check for the ecryptfs marker
 * @data: The data block in which to check
 *
 * Returns one if marker found; zero if not found
 */
int contains_ecryptfs_marker(char *data)
{
	u32 m_1, m_2;

	memcpy(&m_1, data, 4);
	m_1 = be32_to_cpu(m_1);
	memcpy(&m_2, (data + 4), 4);
	m_2 = be32_to_cpu(m_2);
	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
		return 1;
	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
			MAGIC_ECRYPTFS_MARKER);
	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
	return 0;
}

struct ecryptfs_flag_map_elem {
	u32 file_flag;
	u32 local_flag;
};

/* Add support for additional flags by adding elements here. */
static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
	{0x00000001, ECRYPTFS_ENABLE_HMAC},
	{0x00000002, ECRYPTFS_ENCRYPTED}
};

/**
 * ecryptfs_process_flags
 * @crypt_stat
 * @page_virt: Source data to be parsed
 * @bytes_read: Updated with the number of bytes read
 *
 * Returns zero on success; non-zero if the flag set is invalid
 */
static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
				  char *page_virt, int *bytes_read)
{
	int rc = 0;
	int i;
	u32 flags;

	memcpy(&flags, page_virt, 4);
	flags = be32_to_cpu(flags);
	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
		if (flags & ecryptfs_flag_map[i].file_flag) {
			ECRYPTFS_SET_FLAG(crypt_stat->flags,
					  ecryptfs_flag_map[i].local_flag);
		} else
			ECRYPTFS_CLEAR_FLAG(crypt_stat->flags,
					    ecryptfs_flag_map[i].local_flag);
	/* Version is in top 8 bits of the 32-bit flag vector */
	crypt_stat->file_version = ((flags >> 24) & 0xFF);
	(*bytes_read) = 4;
	return rc;
}

/**
 * write_ecryptfs_marker
 * @page_virt: The pointer to in a page to begin writing the marker
 * @written: Number of bytes written
 *
 * Marker = 0x3c81b7f5
 */
static void write_ecryptfs_marker(char *page_virt, size_t *written)
{
	u32 m_1, m_2;

	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
	m_1 = cpu_to_be32(m_1);
	memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
	m_2 = cpu_to_be32(m_2);
	memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
	       (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
}

static void
write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
		     size_t *written)
{
	u32 flags = 0;
	int i;

	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
		if (ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
					ecryptfs_flag_map[i].local_flag))
			flags |= ecryptfs_flag_map[i].file_flag;
	/* Version is in top 8 bits of the 32-bit flag vector */
	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
	flags = cpu_to_be32(flags);
	memcpy(page_virt, &flags, 4);
	(*written) = 4;
}

struct ecryptfs_cipher_code_str_map_elem {
	char cipher_str[16];
	u16 cipher_code;
};

/* Add support for additional ciphers by adding elements here. The
 * cipher_code is whatever OpenPGP applicatoins use to identify the
 * ciphers. List in order of probability. */
static struct ecryptfs_cipher_code_str_map_elem
ecryptfs_cipher_code_str_map[] = {
	{"aes",RFC2440_CIPHER_AES_128 },
	{"blowfish", RFC2440_CIPHER_BLOWFISH},
	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
	{"cast5", RFC2440_CIPHER_CAST_5},
	{"twofish", RFC2440_CIPHER_TWOFISH},
	{"cast6", RFC2440_CIPHER_CAST_6},
	{"aes", RFC2440_CIPHER_AES_192},
	{"aes", RFC2440_CIPHER_AES_256}
};

/**
 * ecryptfs_code_for_cipher_string
 * @str: The string representing the cipher name
 *
 * Returns zero on no match, or the cipher code on match
 */
u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
{
	int i;
	u16 code = 0;
	struct ecryptfs_cipher_code_str_map_elem *map =
		ecryptfs_cipher_code_str_map;

	if (strcmp(crypt_stat->cipher, "aes") == 0) {
		switch (crypt_stat->key_size) {
		case 16:
			code = RFC2440_CIPHER_AES_128;
			break;
		case 24:
			code = RFC2440_CIPHER_AES_192;
			break;
		case 32:
			code = RFC2440_CIPHER_AES_256;
		}
	} else {
		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
			if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
				code = map[i].cipher_code;
				break;
			}
	}
	return code;
}

/**
 * ecryptfs_cipher_code_to_string
 * @str: Destination to write out the cipher name
 * @cipher_code: The code to convert to cipher name string
 *
 * Returns zero on success
 */
int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code)
{
	int rc = 0;
	int i;

	str[0] = '\0';
	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
	if (str[0] == '\0') {
		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
				"[%d]\n", cipher_code);
		rc = -EINVAL;
	}
	return rc;
}

/**
 * ecryptfs_read_header_region
 * @data
 * @dentry
 * @nd
 *
 * Returns zero on success; non-zero otherwise
 */
int ecryptfs_read_header_region(char *data, struct dentry *dentry,
				struct vfsmount *mnt)
{
	struct file *lower_file;
	mm_segment_t oldfs;
	int rc;

	if ((rc = ecryptfs_open_lower_file(&lower_file, dentry, mnt,
					   O_RDONLY))) {
		printk(KERN_ERR
		       "Error opening lower_file to read header region\n");
		goto out;
	}
	lower_file->f_pos = 0;
	oldfs = get_fs();
	set_fs(get_ds());
	/* For releases 0.1 and 0.2, all of the header information
	 * fits in the first data extent-sized region. */
	rc = lower_file->f_op->read(lower_file, (char __user *)data,
			      ECRYPTFS_DEFAULT_EXTENT_SIZE, &lower_file->f_pos);
	set_fs(oldfs);
	if ((rc = ecryptfs_close_lower_file(lower_file))) {
		printk(KERN_ERR "Error closing lower_file\n");
		goto out;
	}
	rc = 0;
out:
	return rc;
}

static void
write_header_metadata(char *virt, struct ecryptfs_crypt_stat *crypt_stat,
		      size_t *written)
{
	u32 header_extent_size;
	u16 num_header_extents_at_front;

	header_extent_size = (u32)crypt_stat->header_extent_size;
	num_header_extents_at_front =
		(u16)crypt_stat->num_header_extents_at_front;
	header_extent_size = cpu_to_be32(header_extent_size);
	memcpy(virt, &header_extent_size, 4);
	virt += 4;
	num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
	memcpy(virt, &num_header_extents_at_front, 2);
	(*written) = 6;
}

struct kmem_cache *ecryptfs_header_cache_0;
struct kmem_cache *ecryptfs_header_cache_1;
struct kmem_cache *ecryptfs_header_cache_2;

/**
 * ecryptfs_write_headers_virt
 * @page_virt
 * @crypt_stat
 * @ecryptfs_dentry
 *
 * Format version: 1
 *
 *   Header Extent:
 *     Octets 0-7:        Unencrypted file size (big-endian)
 *     Octets 8-15:       eCryptfs special marker
 *     Octets 16-19:      Flags
 *      Octet 16:         File format version number (between 0 and 255)
 *      Octets 17-18:     Reserved
 *      Octet 19:         Bit 1 (lsb): Reserved
 *                        Bit 2: Encrypted?
 *                        Bits 3-8: Reserved
 *     Octets 20-23:      Header extent size (big-endian)
 *     Octets 24-25:      Number of header extents at front of file
 *                        (big-endian)
 *     Octet  26:         Begin RFC 2440 authentication token packet set
 *   Data Extent 0:
 *     Lower data (CBC encrypted)
 *   Data Extent 1:
 *     Lower data (CBC encrypted)
 *   ...
 *
 * Returns zero on success
 */
int ecryptfs_write_headers_virt(char *page_virt,
				struct ecryptfs_crypt_stat *crypt_stat,
				struct dentry *ecryptfs_dentry)
{
	int rc;
	size_t written;
	size_t offset;

	offset = ECRYPTFS_FILE_SIZE_BYTES;
	write_ecryptfs_marker((page_virt + offset), &written);
	offset += written;
	write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
	offset += written;
	write_header_metadata((page_virt + offset), crypt_stat, &written);
	offset += written;
	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
					      ecryptfs_dentry, &written,
					      PAGE_CACHE_SIZE - offset);
	if (rc)
		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
				"set; rc = [%d]\n", rc);
	return rc;
}

/**
 * ecryptfs_write_headers
 * @lower_file: The lower file struct, which was returned from dentry_open
 *
 * Write the file headers out.  This will likely involve a userspace
 * callout, in which the session key is encrypted with one or more
 * public keys and/or the passphrase necessary to do the encryption is
 * retrieved via a prompt.  Exactly what happens at this point should
 * be policy-dependent.
 *
 * Returns zero on success; non-zero on error
 */
int ecryptfs_write_headers(struct dentry *ecryptfs_dentry,
			   struct file *lower_file)
{
	mm_segment_t oldfs;
	struct ecryptfs_crypt_stat *crypt_stat;
	char *page_virt;
	int current_header_page;
	int header_pages;
	int rc = 0;

	crypt_stat = &ecryptfs_inode_to_private(
		ecryptfs_dentry->d_inode)->crypt_stat;
	if (likely(ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
				       ECRYPTFS_ENCRYPTED))) {
		if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags,
					 ECRYPTFS_KEY_VALID)) {
			ecryptfs_printk(KERN_DEBUG, "Key is "
					"invalid; bailing out\n");
			rc = -EINVAL;
			goto out;
		}
	} else {
		rc = -EINVAL;
		ecryptfs_printk(KERN_WARNING,
				"Called with crypt_stat->encrypted == 0\n");
		goto out;
	}
	/* Released in this function */
	page_virt = kmem_cache_alloc(ecryptfs_header_cache_0, GFP_USER);
	if (!page_virt) {
		ecryptfs_printk(KERN_ERR, "Out of memory\n");
		rc = -ENOMEM;
		goto out;
	}
	memset(page_virt, 0, PAGE_CACHE_SIZE);
	rc = ecryptfs_write_headers_virt(page_virt, crypt_stat,
					 ecryptfs_dentry);
	if (unlikely(rc)) {
		ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n");
		memset(page_virt, 0, PAGE_CACHE_SIZE);
		goto out_free;
	}
	ecryptfs_printk(KERN_DEBUG,
			"Writing key packet set to underlying file\n");
	lower_file->f_pos = 0;
	oldfs = get_fs();
	set_fs(get_ds());
	ecryptfs_printk(KERN_DEBUG, "Calling lower_file->f_op->"
			"write() w/ header page; lower_file->f_pos = "
			"[0x%.16x]\n", lower_file->f_pos);
	lower_file->f_op->write(lower_file, (char __user *)page_virt,
				PAGE_CACHE_SIZE, &lower_file->f_pos);
	header_pages = ((crypt_stat->header_extent_size
			 * crypt_stat->num_header_extents_at_front)
			/ PAGE_CACHE_SIZE);
	memset(page_virt, 0, PAGE_CACHE_SIZE);
	current_header_page = 1;
	while (current_header_page < header_pages) {
		ecryptfs_printk(KERN_DEBUG, "Calling lower_file->f_op->"
				"write() w/ zero'd page; lower_file->f_pos = "
				"[0x%.16x]\n", lower_file->f_pos);
		lower_file->f_op->write(lower_file, (char __user *)page_virt,
					PAGE_CACHE_SIZE, &lower_file->f_pos);
		current_header_page++;
	}
	set_fs(oldfs);
	ecryptfs_printk(KERN_DEBUG,
			"Done writing key packet set to underlying file.\n");
out_free:
	kmem_cache_free(ecryptfs_header_cache_0, page_virt);
out:
	return rc;
}

static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
				 char *virt, int *bytes_read)
{
	int rc = 0;
	u32 header_extent_size;
	u16 num_header_extents_at_front;

	memcpy(&header_extent_size, virt, 4);
	header_extent_size = be32_to_cpu(header_extent_size);
	virt += 4;
	memcpy(&num_header_extents_at_front, virt, 2);
	num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
	crypt_stat->header_extent_size = (int)header_extent_size;
	crypt_stat->num_header_extents_at_front =
		(int)num_header_extents_at_front;
	(*bytes_read) = 6;
	if ((crypt_stat->header_extent_size
	     * crypt_stat->num_header_extents_at_front)
	    < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) {
		rc = -EINVAL;
		ecryptfs_printk(KERN_WARNING, "Invalid header extent size: "
				"[%d]\n", crypt_stat->header_extent_size);
	}
	return rc;
}

/**
 * set_default_header_data
 *
 * For version 0 file format; this function is only for backwards
 * compatibility for files created with the prior versions of
 * eCryptfs.
 */
static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
{
	crypt_stat->header_extent_size = 4096;
	crypt_stat->num_header_extents_at_front = 1;
}

/**
 * ecryptfs_read_headers_virt
 *
 * Read/parse the header data. The header format is detailed in the
 * comment block for the ecryptfs_write_headers_virt() function.
 *
 * Returns zero on success
 */
static int ecryptfs_read_headers_virt(char *page_virt,
				      struct ecryptfs_crypt_stat *crypt_stat,
				      struct dentry *ecryptfs_dentry)
{
	int rc = 0;
	int offset;
	int bytes_read;

	ecryptfs_set_default_sizes(crypt_stat);
	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
		ecryptfs_dentry->d_sb)->mount_crypt_stat;
	offset = ECRYPTFS_FILE_SIZE_BYTES;
	rc = contains_ecryptfs_marker(page_virt + offset);
	if (rc == 0) {
		rc = -EINVAL;
		goto out;
	}
	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
				    &bytes_read);
	if (rc) {
		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
		goto out;
	}
	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
				"file version [%d] is supported by this "
				"version of eCryptfs\n",
				crypt_stat->file_version,
				ECRYPTFS_SUPPORTED_FILE_VERSION);
		rc = -EINVAL;
		goto out;
	}
	offset += bytes_read;
	if (crypt_stat->file_version >= 1) {
		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
					   &bytes_read);
		if (rc) {
			ecryptfs_printk(KERN_WARNING, "Error reading header "
					"metadata; rc = [%d]\n", rc);
		}
		offset += bytes_read;
	} else
		set_default_header_data(crypt_stat);
	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
				       ecryptfs_dentry);
out:
	return rc;
}

/**
 * ecryptfs_read_headers
 *
 * Returns zero if valid headers found and parsed; non-zero otherwise
 */
int ecryptfs_read_headers(struct dentry *ecryptfs_dentry,
			  struct file *lower_file)
{
	int rc = 0;
	char *page_virt = NULL;
	mm_segment_t oldfs;
	ssize_t bytes_read;
	struct ecryptfs_crypt_stat *crypt_stat =
	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;

	/* Read the first page from the underlying file */
	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
	if (!page_virt) {
		rc = -ENOMEM;
		ecryptfs_printk(KERN_ERR, "Unable to allocate page_virt\n");
		goto out;
	}
	lower_file->f_pos = 0;
	oldfs = get_fs();
	set_fs(get_ds());
	bytes_read = lower_file->f_op->read(lower_file,
					    (char __user *)page_virt,
					    ECRYPTFS_DEFAULT_EXTENT_SIZE,
					    &lower_file->f_pos);
	set_fs(oldfs);
	if (bytes_read != ECRYPTFS_DEFAULT_EXTENT_SIZE) {
		rc = -EINVAL;
		goto out;
	}
	rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
					ecryptfs_dentry);
	if (rc) {
		ecryptfs_printk(KERN_DEBUG, "Valid eCryptfs headers not "
				"found\n");
		rc = -EINVAL;
	}
out:
	if (page_virt) {
		memset(page_virt, 0, PAGE_CACHE_SIZE);
		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
	}
	return rc;
}

/**
 * ecryptfs_encode_filename - converts a plaintext file name to cipher text
 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
 * @name: The plaintext name
 * @length: The length of the plaintext
 * @encoded_name: The encypted name
 *
 * Encrypts and encodes a filename into something that constitutes a
 * valid filename for a filesystem, with printable characters.
 *
 * We assume that we have a properly initialized crypto context,
 * pointed to by crypt_stat->tfm.
 *
 * TODO: Implement filename decoding and decryption here, in place of
 * memcpy. We are keeping the framework around for now to (1)
 * facilitate testing of the components needed to implement filename
 * encryption and (2) to provide a code base from which other
 * developers in the community can easily implement this feature.
 *
 * Returns the length of encoded filename; negative if error
 */
int
ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
			 const char *name, int length, char **encoded_name)
{
	int error = 0;

	(*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
	if (!(*encoded_name)) {
		error = -ENOMEM;
		goto out;
	}
	/* TODO: Filename encryption is a scheduled feature for a
	 * future version of eCryptfs. This function is here only for
	 * the purpose of providing a framework for other developers
	 * to easily implement filename encryption. Hint: Replace this
	 * memcpy() with a call to encrypt and encode the
	 * filename, the set the length accordingly. */
	memcpy((void *)(*encoded_name), (void *)name, length);
	(*encoded_name)[length] = '\0';
	error = length + 1;
out:
	return error;
}

/**
 * ecryptfs_decode_filename - converts the cipher text name to plaintext
 * @crypt_stat: The crypt_stat struct associated with the file
 * @name: The filename in cipher text
 * @length: The length of the cipher text name
 * @decrypted_name: The plaintext name
 *
 * Decodes and decrypts the filename.
 *
 * We assume that we have a properly initialized crypto context,
 * pointed to by crypt_stat->tfm.
 *
 * TODO: Implement filename decoding and decryption here, in place of
 * memcpy. We are keeping the framework around for now to (1)
 * facilitate testing of the components needed to implement filename
 * encryption and (2) to provide a code base from which other
 * developers in the community can easily implement this feature.
 *
 * Returns the length of decoded filename; negative if error
 */
int
ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
			 const char *name, int length, char **decrypted_name)
{
	int error = 0;

	(*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
	if (!(*decrypted_name)) {
		error = -ENOMEM;
		goto out;
	}
	/* TODO: Filename encryption is a scheduled feature for a
	 * future version of eCryptfs. This function is here only for
	 * the purpose of providing a framework for other developers
	 * to easily implement filename encryption. Hint: Replace this
	 * memcpy() with a call to decode and decrypt the
	 * filename, the set the length accordingly. */
	memcpy((void *)(*decrypted_name), (void *)name, length);
	(*decrypted_name)[length + 1] = '\0';	/* Only for convenience
						 * in printing out the
						 * string in debug
						 * messages */
	error = length;
out:
	return error;
}

/**
 * ecryptfs_process_cipher - Perform cipher initialization.
 * @key_tfm: Crypto context for key material, set by this function
 * @cipher_name: Name of the cipher
 * @key_size: Size of the key in bytes
 *
 * Returns zero on success. Any crypto_tfm structs allocated here
 * should be released by other functions, such as on a superblock put
 * event, regardless of whether this function succeeds for fails.
 */
int
ecryptfs_process_cipher(struct crypto_blkcipher **key_tfm, char *cipher_name,
			size_t *key_size)
{
	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
	char *full_alg_name;
	int rc;

	*key_tfm = NULL;
	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
		rc = -EINVAL;
		printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
		goto out;
	}
	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
						    "ecb");
	if (rc)
		goto out;
	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
	kfree(full_alg_name);
	if (IS_ERR(*key_tfm)) {
		rc = PTR_ERR(*key_tfm);
		printk(KERN_ERR "Unable to allocate crypto cipher with name "
		       "[%s]; rc = [%d]\n", cipher_name, rc);
		goto out;
	}
	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
	if (*key_size == 0) {
		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);

		*key_size = alg->max_keysize;
	}
	get_random_bytes(dummy_key, *key_size);
	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
	if (rc) {
		printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
		       "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
		rc = -EINVAL;
		goto out;
	}
out:
	return rc;
}