aboutsummaryrefslogtreecommitdiff
path: root/Documentation/filesystems/index.rst
blob: 605befab300b2065159424b307d02828af1e4937 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
=====================
Linux Filesystems API
=====================

The Linux VFS
=============

The Filesystem types
--------------------

.. kernel-doc:: include/linux/fs.h
   :internal:

The Directory Cache
-------------------

.. kernel-doc:: fs/dcache.c
   :export:

.. kernel-doc:: include/linux/dcache.h
   :internal:

Inode Handling
--------------

.. kernel-doc:: fs/inode.c
   :export:

.. kernel-doc:: fs/bad_inode.c
   :export:

Registration and Superblocks
----------------------------

.. kernel-doc:: fs/super.c
   :export:

File Locks
----------

.. kernel-doc:: fs/locks.c
   :export:

.. kernel-doc:: fs/locks.c
   :internal:

Other Functions
---------------

.. kernel-doc:: fs/mpage.c
   :export:

.. kernel-doc:: fs/namei.c
   :export:

.. kernel-doc:: fs/buffer.c
   :export:

.. kernel-doc:: block/bio.c
   :export:

.. kernel-doc:: fs/seq_file.c
   :export:

.. kernel-doc:: fs/filesystems.c
   :export:

.. kernel-doc:: fs/fs-writeback.c
   :export:

.. kernel-doc:: fs/block_dev.c
   :export:

.. kernel-doc:: fs/anon_inodes.c
   :export:

.. kernel-doc:: fs/attr.c
   :export:

.. kernel-doc:: fs/d_path.c
   :export:

.. kernel-doc:: fs/dax.c
   :export:

.. kernel-doc:: fs/direct-io.c
   :export:

.. kernel-doc:: fs/file_table.c
   :export:

.. kernel-doc:: fs/libfs.c
   :export:

.. kernel-doc:: fs/posix_acl.c
   :export:

.. kernel-doc:: fs/stat.c
   :export:

.. kernel-doc:: fs/sync.c
   :export:

.. kernel-doc:: fs/xattr.c
   :export:

The proc filesystem
===================

sysctl interface
----------------

.. kernel-doc:: kernel/sysctl.c
   :export:

proc filesystem interface
-------------------------

.. kernel-doc:: fs/proc/base.c
   :internal:

Events based on file descriptors
================================

.. kernel-doc:: fs/eventfd.c
   :export:

The Filesystem for Exporting Kernel Objects
===========================================

.. kernel-doc:: fs/sysfs/file.c
   :export:

.. kernel-doc:: fs/sysfs/symlink.c
   :export:

The debugfs filesystem
======================

debugfs interface
-----------------

.. kernel-doc:: fs/debugfs/inode.c
   :export:

.. kernel-doc:: fs/debugfs/file.c
   :export:

The Linux Journalling API
=========================

Overview
--------

Details
~~~~~~~

The journalling layer is easy to use. You need to first of all create a
journal_t data structure. There are two calls to do this dependent on
how you decide to allocate the physical media on which the journal
resides. The :c:func:`jbd2_journal_init_inode` call is for journals stored in
filesystem inodes, or the :c:func:`jbd2_journal_init_dev` call can be used
for journal stored on a raw device (in a continuous range of blocks). A
journal_t is a typedef for a struct pointer, so when you are finally
finished make sure you call :c:func:`jbd2_journal_destroy` on it to free up
any used kernel memory.

Once you have got your journal_t object you need to 'mount' or load the
journal file. The journalling layer expects the space for the journal
was already allocated and initialized properly by the userspace tools.
When loading the journal you must call :c:func:`jbd2_journal_load` to process
journal contents. If the client file system detects the journal contents
does not need to be processed (or even need not have valid contents), it
may call :c:func:`jbd2_journal_wipe` to clear the journal contents before
calling :c:func:`jbd2_journal_load`.

Note that jbd2_journal_wipe(..,0) calls
:c:func:`jbd2_journal_skip_recovery` for you if it detects any outstanding
transactions in the journal and similarly :c:func:`jbd2_journal_load` will
call :c:func:`jbd2_journal_recover` if necessary. I would advise reading
:c:func:`ext4_load_journal` in fs/ext4/super.c for examples on this stage.

Now you can go ahead and start modifying the underlying filesystem.
Almost.

You still need to actually journal your filesystem changes, this is done
by wrapping them into transactions. Additionally you also need to wrap
the modification of each of the buffers with calls to the journal layer,
so it knows what the modifications you are actually making are. To do
this use :c:func:`jbd2_journal_start` which returns a transaction handle.

:c:func:`jbd2_journal_start` and its counterpart :c:func:`jbd2_journal_stop`,
which indicates the end of a transaction are nestable calls, so you can
reenter a transaction if necessary, but remember you must call
:c:func:`jbd2_journal_stop` the same number of times as
:c:func:`jbd2_journal_start` before the transaction is completed (or more
accurately leaves the update phase). Ext4/VFS makes use of this feature to
simplify handling of inode dirtying, quota support, etc.

Inside each transaction you need to wrap the modifications to the
individual buffers (blocks). Before you start to modify a buffer you
need to call :c:func:`jbd2_journal_get_create_access()` /
:c:func:`jbd2_journal_get_write_access()` /
:c:func:`jbd2_journal_get_undo_access()` as appropriate, this allows the
journalling layer to copy the unmodified
data if it needs to. After all the buffer may be part of a previously
uncommitted transaction. At this point you are at last ready to modify a
buffer, and once you are have done so you need to call
:c:func:`jbd2_journal_dirty_metadata`. Or if you've asked for access to a
buffer you now know is now longer required to be pushed back on the
device you can call :c:func:`jbd2_journal_forget` in much the same way as you
might have used :c:func:`bforget` in the past.

A :c:func:`jbd2_journal_flush` may be called at any time to commit and
checkpoint all your transactions.

Then at umount time , in your :c:func:`put_super` you can then call
:c:func:`jbd2_journal_destroy` to clean up your in-core journal object.

Unfortunately there a couple of ways the journal layer can cause a
deadlock. The first thing to note is that each task can only have a
single outstanding transaction at any one time, remember nothing commits
until the outermost :c:func:`jbd2_journal_stop`. This means you must complete
the transaction at the end of each file/inode/address etc. operation you
perform, so that the journalling system isn't re-entered on another
journal. Since transactions can't be nested/batched across differing
journals, and another filesystem other than yours (say ext4) may be
modified in a later syscall.

The second case to bear in mind is that :c:func:`jbd2_journal_start` can block
if there isn't enough space in the journal for your transaction (based
on the passed nblocks param) - when it blocks it merely(!) needs to wait
for transactions to complete and be committed from other tasks, so
essentially we are waiting for :c:func:`jbd2_journal_stop`. So to avoid
deadlocks you must treat :c:func:`jbd2_journal_start` /
:c:func:`jbd2_journal_stop` as if they were semaphores and include them in
your semaphore ordering rules to prevent
deadlocks. Note that :c:func:`jbd2_journal_extend` has similar blocking
behaviour to :c:func:`jbd2_journal_start` so you can deadlock here just as
easily as on :c:func:`jbd2_journal_start`.

Try to reserve the right number of blocks the first time. ;-). This will
be the maximum number of blocks you are going to touch in this
transaction. I advise having a look at at least ext4_jbd.h to see the
basis on which ext4 uses to make these decisions.

Another wriggle to watch out for is your on-disk block allocation
strategy. Why? Because, if you do a delete, you need to ensure you
haven't reused any of the freed blocks until the transaction freeing
these blocks commits. If you reused these blocks and crash happens,
there is no way to restore the contents of the reallocated blocks at the
end of the last fully committed transaction. One simple way of doing
this is to mark blocks as free in internal in-memory block allocation
structures only after the transaction freeing them commits. Ext4 uses
journal commit callback for this purpose.

With journal commit callbacks you can ask the journalling layer to call
a callback function when the transaction is finally committed to disk,
so that you can do some of your own management. You ask the journalling
layer for calling the callback by simply setting
``journal->j_commit_callback`` function pointer and that function is
called after each transaction commit. You can also use
``transaction->t_private_list`` for attaching entries to a transaction
that need processing when the transaction commits.

JBD2 also provides a way to block all transaction updates via
:c:func:`jbd2_journal_lock_updates()` /
:c:func:`jbd2_journal_unlock_updates()`. Ext4 uses this when it wants a
window with a clean and stable fs for a moment. E.g.

::


        jbd2_journal_lock_updates() //stop new stuff happening..
        jbd2_journal_flush()        // checkpoint everything.
        ..do stuff on stable fs
        jbd2_journal_unlock_updates() // carry on with filesystem use.

The opportunities for abuse and DOS attacks with this should be obvious,
if you allow unprivileged userspace to trigger codepaths containing
these calls.

Summary
~~~~~~~

Using the journal is a matter of wrapping the different context changes,
being each mount, each modification (transaction) and each changed
buffer to tell the journalling layer about them.

Data Types
----------

The journalling layer uses typedefs to 'hide' the concrete definitions
of the structures used. As a client of the JBD2 layer you can just rely
on the using the pointer as a magic cookie of some sort. Obviously the
hiding is not enforced as this is 'C'.

Structures
~~~~~~~~~~

.. kernel-doc:: include/linux/jbd2.h
   :internal:

Functions
---------

The functions here are split into two groups those that affect a journal
as a whole, and those which are used to manage transactions

Journal Level
~~~~~~~~~~~~~

.. kernel-doc:: fs/jbd2/journal.c
   :export:

.. kernel-doc:: fs/jbd2/recovery.c
   :internal:

Transasction Level
~~~~~~~~~~~~~~~~~~

.. kernel-doc:: fs/jbd2/transaction.c

See also
--------

`Journaling the Linux ext2fs Filesystem, LinuxExpo 98, Stephen
Tweedie <http://kernel.org/pub/linux/kernel/people/sct/ext3/journal-design.ps.gz>`__

`Ext3 Journalling FileSystem, OLS 2000, Dr. Stephen
Tweedie <http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html>`__

splice API
==========

splice is a method for moving blocks of data around inside the kernel,
without continually transferring them between the kernel and user space.

.. kernel-doc:: fs/splice.c

pipes API
=========

Pipe interfaces are all for in-kernel (builtin image) use. They are not
exported for use by modules.

.. kernel-doc:: include/linux/pipe_fs_i.h
   :internal:

.. kernel-doc:: fs/pipe.c

Encryption API
==============

A library which filesystems can hook into to support transparent
encryption of files and directories.

.. toctree::
    :maxdepth: 2

    fscrypt

Pathname lookup
===============


This write-up is based on three articles published at lwn.net:

- <https://lwn.net/Articles/649115/> Pathname lookup in Linux
- <https://lwn.net/Articles/649729/> RCU-walk: faster pathname lookup in Linux
- <https://lwn.net/Articles/650786/> A walk among the symlinks

Written by Neil Brown with help from Al Viro and Jon Corbet.
It has subsequently been updated to reflect changes in the kernel
including:

- per-directory parallel name lookup.

.. toctree::
   :maxdepth: 2

   path-lookup.rst