aboutsummaryrefslogtreecommitdiff
path: root/arch/arm/kvm/vgic.c
blob: 815069f22e8b10cc0448cc931734268478938608 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <asm/kvm_emulate.h>

/*
 * How the whole thing works (courtesy of Christoffer Dall):
 *
 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
 *   something is pending
 * - VGIC pending interrupts are stored on the vgic.irq_state vgic
 *   bitmap (this bitmap is updated by both user land ioctls and guest
 *   mmio ops, and other in-kernel peripherals such as the
 *   arch. timers) and indicate the 'wire' state.
 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
 *   recalculated
 * - To calculate the oracle, we need info for each cpu from
 *   compute_pending_for_cpu, which considers:
 *   - PPI: dist->irq_state & dist->irq_enable
 *   - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target
 *   - irq_spi_target is a 'formatted' version of the GICD_ICFGR
 *     registers, stored on each vcpu. We only keep one bit of
 *     information per interrupt, making sure that only one vcpu can
 *     accept the interrupt.
 * - The same is true when injecting an interrupt, except that we only
 *   consider a single interrupt at a time. The irq_spi_cpu array
 *   contains the target CPU for each SPI.
 *
 * The handling of level interrupts adds some extra complexity. We
 * need to track when the interrupt has been EOIed, so we can sample
 * the 'line' again. This is achieved as such:
 *
 * - When a level interrupt is moved onto a vcpu, the corresponding
 *   bit in irq_active is set. As long as this bit is set, the line
 *   will be ignored for further interrupts. The interrupt is injected
 *   into the vcpu with the GICH_LR_EOI bit set (generate a
 *   maintenance interrupt on EOI).
 * - When the interrupt is EOIed, the maintenance interrupt fires,
 *   and clears the corresponding bit in irq_active. This allow the
 *   interrupt line to be sampled again.
 */

#define VGIC_ADDR_UNDEF		(-1)
#define IS_VGIC_ADDR_UNDEF(_x)  ((_x) == VGIC_ADDR_UNDEF)

#define ACCESS_READ_VALUE	(1 << 0)
#define ACCESS_READ_RAZ		(0 << 0)
#define ACCESS_READ_MASK(x)	((x) & (1 << 0))
#define ACCESS_WRITE_IGNORED	(0 << 1)
#define ACCESS_WRITE_SETBIT	(1 << 1)
#define ACCESS_WRITE_CLEARBIT	(2 << 1)
#define ACCESS_WRITE_VALUE	(3 << 1)
#define ACCESS_WRITE_MASK(x)	((x) & (3 << 1))

static void vgic_update_state(struct kvm *kvm);
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);

static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
				int cpuid, u32 offset)
{
	offset >>= 2;
	if (!offset)
		return x->percpu[cpuid].reg;
	else
		return x->shared.reg + offset - 1;
}

static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
				   int cpuid, int irq)
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
		return test_bit(irq, x->percpu[cpuid].reg_ul);

	return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
}

static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
				    int irq, int val)
{
	unsigned long *reg;

	if (irq < VGIC_NR_PRIVATE_IRQS) {
		reg = x->percpu[cpuid].reg_ul;
	} else {
		reg =  x->shared.reg_ul;
		irq -= VGIC_NR_PRIVATE_IRQS;
	}

	if (val)
		set_bit(irq, reg);
	else
		clear_bit(irq, reg);
}

static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
{
	if (unlikely(cpuid >= VGIC_MAX_CPUS))
		return NULL;
	return x->percpu[cpuid].reg_ul;
}

static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
{
	return x->shared.reg_ul;
}

static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
{
	offset >>= 2;
	BUG_ON(offset > (VGIC_NR_IRQS / 4));
	if (offset < 4)
		return x->percpu[cpuid] + offset;
	else
		return x->shared + offset - 8;
}

#define VGIC_CFG_LEVEL	0
#define VGIC_CFG_EDGE	1

static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int irq_val;

	irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
	return irq_val == VGIC_CFG_EDGE;
}

static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
}

static void vgic_dist_irq_set(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 1);
}

static void vgic_dist_irq_clear(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 0);
}

static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
		set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
	else
		set_bit(irq - VGIC_NR_PRIVATE_IRQS,
			vcpu->arch.vgic_cpu.pending_shared);
}

static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
		clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
	else
		clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
			  vcpu->arch.vgic_cpu.pending_shared);
}

static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
{
	return *((u32 *)mmio->data) & mask;
}

static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
{
	*((u32 *)mmio->data) = value & mask;
}

/**
 * vgic_reg_access - access vgic register
 * @mmio:   pointer to the data describing the mmio access
 * @reg:    pointer to the virtual backing of vgic distributor data
 * @offset: least significant 2 bits used for word offset
 * @mode:   ACCESS_ mode (see defines above)
 *
 * Helper to make vgic register access easier using one of the access
 * modes defined for vgic register access
 * (read,raz,write-ignored,setbit,clearbit,write)
 */
static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
			    phys_addr_t offset, int mode)
{
	int word_offset = (offset & 3) * 8;
	u32 mask = (1UL << (mmio->len * 8)) - 1;
	u32 regval;

	/*
	 * Any alignment fault should have been delivered to the guest
	 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
	 */

	if (reg) {
		regval = *reg;
	} else {
		BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
		regval = 0;
	}

	if (mmio->is_write) {
		u32 data = mmio_data_read(mmio, mask) << word_offset;
		switch (ACCESS_WRITE_MASK(mode)) {
		case ACCESS_WRITE_IGNORED:
			return;

		case ACCESS_WRITE_SETBIT:
			regval |= data;
			break;

		case ACCESS_WRITE_CLEARBIT:
			regval &= ~data;
			break;

		case ACCESS_WRITE_VALUE:
			regval = (regval & ~(mask << word_offset)) | data;
			break;
		}
		*reg = regval;
	} else {
		switch (ACCESS_READ_MASK(mode)) {
		case ACCESS_READ_RAZ:
			regval = 0;
			/* fall through */

		case ACCESS_READ_VALUE:
			mmio_data_write(mmio, mask, regval >> word_offset);
		}
	}
}

static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
			     struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 reg;
	u32 word_offset = offset & 3;

	switch (offset & ~3) {
	case 0:			/* CTLR */
		reg = vcpu->kvm->arch.vgic.enabled;
		vgic_reg_access(mmio, &reg, word_offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
		if (mmio->is_write) {
			vcpu->kvm->arch.vgic.enabled = reg & 1;
			vgic_update_state(vcpu->kvm);
			return true;
		}
		break;

	case 4:			/* TYPER */
		reg  = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
		reg |= (VGIC_NR_IRQS >> 5) - 1;
		vgic_reg_access(mmio, &reg, word_offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
		break;

	case 8:			/* IIDR */
		reg = 0x4B00043B;
		vgic_reg_access(mmio, &reg, word_offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
		break;
	}

	return false;
}

static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
			       struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	vgic_reg_access(mmio, NULL, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
	return false;
}

static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
				       struct kvm_exit_mmio *mmio,
				       phys_addr_t offset)
{
	u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
				       vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
	if (mmio->is_write) {
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
					 struct kvm_exit_mmio *mmio,
					 phys_addr_t offset)
{
	u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
				       vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
	if (mmio->is_write) {
		if (offset < 4) /* Force SGI enabled */
			*reg |= 0xffff;
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
					struct kvm_exit_mmio *mmio,
					phys_addr_t offset)
{
	u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
				       vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
	if (mmio->is_write) {
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
					  struct kvm_exit_mmio *mmio,
					  phys_addr_t offset)
{
	u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
				       vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
	if (mmio->is_write) {
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
				     struct kvm_exit_mmio *mmio,
				     phys_addr_t offset)
{
	u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
					vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	return false;
}

#define GICD_ITARGETSR_SIZE	32
#define GICD_CPUTARGETS_BITS	8
#define GICD_IRQS_PER_ITARGETSR	(GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int i, c;
	unsigned long *bmap;
	u32 val = 0;

	irq -= VGIC_NR_PRIVATE_IRQS;

	kvm_for_each_vcpu(c, vcpu, kvm) {
		bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
		for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
			if (test_bit(irq + i, bmap))
				val |= 1 << (c + i * 8);
	}

	return val;
}

static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int i, c;
	unsigned long *bmap;
	u32 target;

	irq -= VGIC_NR_PRIVATE_IRQS;

	/*
	 * Pick the LSB in each byte. This ensures we target exactly
	 * one vcpu per IRQ. If the byte is null, assume we target
	 * CPU0.
	 */
	for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
		int shift = i * GICD_CPUTARGETS_BITS;
		target = ffs((val >> shift) & 0xffU);
		target = target ? (target - 1) : 0;
		dist->irq_spi_cpu[irq + i] = target;
		kvm_for_each_vcpu(c, vcpu, kvm) {
			bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
			if (c == target)
				set_bit(irq + i, bmap);
			else
				clear_bit(irq + i, bmap);
		}
	}
}

static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
				   struct kvm_exit_mmio *mmio,
				   phys_addr_t offset)
{
	u32 reg;

	/* We treat the banked interrupts targets as read-only */
	if (offset < 32) {
		u32 roreg = 1 << vcpu->vcpu_id;
		roreg |= roreg << 8;
		roreg |= roreg << 16;

		vgic_reg_access(mmio, &roreg, offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
		return false;
	}

	reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	if (mmio->is_write) {
		vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static u32 vgic_cfg_expand(u16 val)
{
	u32 res = 0;
	int i;

	/*
	 * Turn a 16bit value like abcd...mnop into a 32bit word
	 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
	 */
	for (i = 0; i < 16; i++)
		res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);

	return res;
}

static u16 vgic_cfg_compress(u32 val)
{
	u16 res = 0;
	int i;

	/*
	 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
	 * abcd...mnop which is what we really care about.
	 */
	for (i = 0; i < 16; i++)
		res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;

	return res;
}

/*
 * The distributor uses 2 bits per IRQ for the CFG register, but the
 * LSB is always 0. As such, we only keep the upper bit, and use the
 * two above functions to compress/expand the bits
 */
static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
				struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 val;
	u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
				       vcpu->vcpu_id, offset >> 1);
	if (offset & 2)
		val = *reg >> 16;
	else
		val = *reg & 0xffff;

	val = vgic_cfg_expand(val);
	vgic_reg_access(mmio, &val, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	if (mmio->is_write) {
		if (offset < 4) {
			*reg = ~0U; /* Force PPIs/SGIs to 1 */
			return false;
		}

		val = vgic_cfg_compress(val);
		if (offset & 2) {
			*reg &= 0xffff;
			*reg |= val << 16;
		} else {
			*reg &= 0xffff << 16;
			*reg |= val;
		}
	}

	return false;
}

static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
				struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 reg;
	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
	if (mmio->is_write) {
		vgic_dispatch_sgi(vcpu, reg);
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

/*
 * I would have liked to use the kvm_bus_io_*() API instead, but it
 * cannot cope with banked registers (only the VM pointer is passed
 * around, and we need the vcpu). One of these days, someone please
 * fix it!
 */
struct mmio_range {
	phys_addr_t base;
	unsigned long len;
	bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
			    phys_addr_t offset);
};

static const struct mmio_range vgic_ranges[] = {
	{
		.base		= GIC_DIST_CTRL,
		.len		= 12,
		.handle_mmio	= handle_mmio_misc,
	},
	{
		.base		= GIC_DIST_IGROUP,
		.len		= VGIC_NR_IRQS / 8,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GIC_DIST_ENABLE_SET,
		.len		= VGIC_NR_IRQS / 8,
		.handle_mmio	= handle_mmio_set_enable_reg,
	},
	{
		.base		= GIC_DIST_ENABLE_CLEAR,
		.len		= VGIC_NR_IRQS / 8,
		.handle_mmio	= handle_mmio_clear_enable_reg,
	},
	{
		.base		= GIC_DIST_PENDING_SET,
		.len		= VGIC_NR_IRQS / 8,
		.handle_mmio	= handle_mmio_set_pending_reg,
	},
	{
		.base		= GIC_DIST_PENDING_CLEAR,
		.len		= VGIC_NR_IRQS / 8,
		.handle_mmio	= handle_mmio_clear_pending_reg,
	},
	{
		.base		= GIC_DIST_ACTIVE_SET,
		.len		= VGIC_NR_IRQS / 8,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GIC_DIST_ACTIVE_CLEAR,
		.len		= VGIC_NR_IRQS / 8,
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GIC_DIST_PRI,
		.len		= VGIC_NR_IRQS,
		.handle_mmio	= handle_mmio_priority_reg,
	},
	{
		.base		= GIC_DIST_TARGET,
		.len		= VGIC_NR_IRQS,
		.handle_mmio	= handle_mmio_target_reg,
	},
	{
		.base		= GIC_DIST_CONFIG,
		.len		= VGIC_NR_IRQS / 4,
		.handle_mmio	= handle_mmio_cfg_reg,
	},
	{
		.base		= GIC_DIST_SOFTINT,
		.len		= 4,
		.handle_mmio	= handle_mmio_sgi_reg,
	},
	{}
};

static const
struct mmio_range *find_matching_range(const struct mmio_range *ranges,
				       struct kvm_exit_mmio *mmio,
				       phys_addr_t base)
{
	const struct mmio_range *r = ranges;
	phys_addr_t addr = mmio->phys_addr - base;

	while (r->len) {
		if (addr >= r->base &&
		    (addr + mmio->len) <= (r->base + r->len))
			return r;
		r++;
	}

	return NULL;
}

/**
 * vgic_handle_mmio - handle an in-kernel MMIO access
 * @vcpu:	pointer to the vcpu performing the access
 * @run:	pointer to the kvm_run structure
 * @mmio:	pointer to the data describing the access
 *
 * returns true if the MMIO access has been performed in kernel space,
 * and false if it needs to be emulated in user space.
 */
bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
		      struct kvm_exit_mmio *mmio)
{
	const struct mmio_range *range;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	unsigned long base = dist->vgic_dist_base;
	bool updated_state;
	unsigned long offset;

	if (!irqchip_in_kernel(vcpu->kvm) ||
	    mmio->phys_addr < base ||
	    (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
		return false;

	/* We don't support ldrd / strd or ldm / stm to the emulated vgic */
	if (mmio->len > 4) {
		kvm_inject_dabt(vcpu, mmio->phys_addr);
		return true;
	}

	range = find_matching_range(vgic_ranges, mmio, base);
	if (unlikely(!range || !range->handle_mmio)) {
		pr_warn("Unhandled access %d %08llx %d\n",
			mmio->is_write, mmio->phys_addr, mmio->len);
		return false;
	}

	spin_lock(&vcpu->kvm->arch.vgic.lock);
	offset = mmio->phys_addr - range->base - base;
	updated_state = range->handle_mmio(vcpu, mmio, offset);
	spin_unlock(&vcpu->kvm->arch.vgic.lock);
	kvm_prepare_mmio(run, mmio);
	kvm_handle_mmio_return(vcpu, run);

	return true;
}

static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
{
	struct kvm *kvm = vcpu->kvm;
	struct vgic_dist *dist = &kvm->arch.vgic;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	u8 target_cpus;
	int sgi, mode, c, vcpu_id;

	vcpu_id = vcpu->vcpu_id;

	sgi = reg & 0xf;
	target_cpus = (reg >> 16) & 0xff;
	mode = (reg >> 24) & 3;

	switch (mode) {
	case 0:
		if (!target_cpus)
			return;

	case 1:
		target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
		break;

	case 2:
		target_cpus = 1 << vcpu_id;
		break;
	}

	kvm_for_each_vcpu(c, vcpu, kvm) {
		if (target_cpus & 1) {
			/* Flag the SGI as pending */
			vgic_dist_irq_set(vcpu, sgi);
			dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
			kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
		}

		target_cpus >>= 1;
	}
}

static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
{
	return 0;
}

/*
 * Update the interrupt state and determine which CPUs have pending
 * interrupts. Must be called with distributor lock held.
 */
static void vgic_update_state(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int c;

	if (!dist->enabled) {
		set_bit(0, &dist->irq_pending_on_cpu);
		return;
	}

	kvm_for_each_vcpu(c, vcpu, kvm) {
		if (compute_pending_for_cpu(vcpu)) {
			pr_debug("CPU%d has pending interrupts\n", c);
			set_bit(c, &dist->irq_pending_on_cpu);
		}
	}
}

static bool vgic_ioaddr_overlap(struct kvm *kvm)
{
	phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
	phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;

	if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
		return 0;
	if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
	    (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
		return -EBUSY;
	return 0;
}

static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
			      phys_addr_t addr, phys_addr_t size)
{
	int ret;

	if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
		return -EEXIST;
	if (addr + size < addr)
		return -EINVAL;

	ret = vgic_ioaddr_overlap(kvm);
	if (ret)
		return ret;
	*ioaddr = addr;
	return ret;
}

int kvm_vgic_set_addr(struct kvm *kvm, unsigned long type, u64 addr)
{
	int r = 0;
	struct vgic_dist *vgic = &kvm->arch.vgic;

	if (addr & ~KVM_PHYS_MASK)
		return -E2BIG;

	if (addr & ~PAGE_MASK)
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (type) {
	case KVM_VGIC_V2_ADDR_TYPE_DIST:
		r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
				       addr, KVM_VGIC_V2_DIST_SIZE);
		break;
	case KVM_VGIC_V2_ADDR_TYPE_CPU:
		r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
				       addr, KVM_VGIC_V2_CPU_SIZE);
		break;
	default:
		r = -ENODEV;
	}

	mutex_unlock(&kvm->lock);
	return r;
}