aboutsummaryrefslogtreecommitdiff
path: root/arch/x86/kernel/trace-clock.c
blob: 37cf125a940b1bfb355a849648b8326edee586be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/*
 * arch/x86/kernel/trace-clock.c
 *
 * Trace clock for x86.
 *
 * Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>, October 2008
 */

#include <linux/module.h>
#include <linux/trace-clock.h>
#include <linux/jiffies.h>
#include <linux/timer.h>
#include <linux/cpu.h>

static cycles_t trace_clock_last_tsc;
static DEFINE_PER_CPU(struct timer_list, update_timer);
static DEFINE_SPINLOCK(async_tsc_lock);
static int async_tsc_refcount;	/* Number of readers */
static int async_tsc_enabled;	/* Async TSC enabled on all online CPUs */

int _trace_clock_is_sync = 1;
EXPORT_SYMBOL_GPL(_trace_clock_is_sync);

/*
 * Called by check_tsc_sync_source from CPU hotplug.
 */
void set_trace_clock_is_sync(int state)
{
	_trace_clock_is_sync = state;
}

#if BITS_PER_LONG == 64
static cycles_t read_last_tsc(void)
{
	return trace_clock_last_tsc;
}
#else
/*
 * A cmpxchg64 update can happen concurrently. Based on the assumption that
 * two cmpxchg64 will never update it to the same value (the count always
 * increases), reading it twice insures that we read a coherent value with the
 * same "sequence number".
 */
static cycles_t read_last_tsc(void)
{
	cycles_t val1, val2;

	val1 = trace_clock_last_tsc;
	for (;;) {
		val2 = val1;
		barrier();
		val1 = trace_clock_last_tsc;
		if (likely(val1 == val2))
			break;
	}
	return val1;
}
#endif

/*
 * Support for architectures with non-sync TSCs.
 * When the local TSC is discovered to lag behind the highest TSC counter, we
 * increment the TSC count of an amount that should be, ideally, lower than the
 * execution time of this routine, in cycles : this is the granularity we look
 * for : we must be able to order the events.
 */
notrace cycles_t trace_clock_async_tsc_read(void)
{
	cycles_t new_tsc, last_tsc;

	WARN_ON(!async_tsc_refcount || !async_tsc_enabled);
	new_tsc = get_cycles();
	last_tsc = read_last_tsc();
	do {
		if (new_tsc < last_tsc)
			new_tsc = last_tsc + TRACE_CLOCK_MIN_PROBE_DURATION;
		/*
		 * If cmpxchg fails with a value higher than the new_tsc, don't
		 * retry : the value has been incremented and the events
		 * happened almost at the same time.
		 * We must retry if cmpxchg fails with a lower value :
		 * it means that we are the CPU with highest frequency and
		 * therefore MUST update the value.
		 */
		last_tsc = cmpxchg64(&trace_clock_last_tsc, last_tsc, new_tsc);
	} while (unlikely(last_tsc < new_tsc));
	return new_tsc;
}
EXPORT_SYMBOL_GPL(trace_clock_async_tsc_read);

static void update_timer_ipi(void *info)
{
	(void)trace_clock_async_tsc_read();
}

/*
 * update_timer_fct : - Timer function to resync the clocks
 * @data: unused
 *
 * Fires every jiffy.
 */
static void update_timer_fct(unsigned long data)
{
	(void)trace_clock_async_tsc_read();
	mod_timer_pinned(&per_cpu(update_timer, smp_processor_id()),
			 jiffies + 1);
}

static void enable_trace_clock(int cpu)
{
	init_timer(&per_cpu(update_timer, cpu));
	per_cpu(update_timer, cpu).function = update_timer_fct;
	per_cpu(update_timer, cpu).expires = jiffies + 1;
	smp_call_function_single(cpu, update_timer_ipi, NULL, 1);
	add_timer_on(&per_cpu(update_timer, cpu), cpu);
}

static void disable_trace_clock(int cpu)
{
	del_timer_sync(&per_cpu(update_timer, cpu));
}

/*
 * 	hotcpu_callback - CPU hotplug callback
 * 	@nb: notifier block
 * 	@action: hotplug action to take
 * 	@hcpu: CPU number
 *
 * 	Returns the success/failure of the operation. (NOTIFY_OK, NOTIFY_BAD)
 */
static int __cpuinit hotcpu_callback(struct notifier_block *nb,
				unsigned long action,
				void *hcpu)
{
	unsigned int hotcpu = (unsigned long)hcpu;
	int cpu;

	spin_lock(&async_tsc_lock);
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
		break;
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		/*
		 * trace_clock_is_sync() is updated by set_trace_clock_is_sync()
		 * code, protected by cpu hotplug disable.
		 * It is ok to let the hotplugged CPU read the timebase before
		 * the CPU_ONLINE notification. It's just there to give a
		 * maximum bound to the TSC error.
		 */
		if (async_tsc_refcount && !trace_clock_is_sync()) {
			if (!async_tsc_enabled) {
				async_tsc_enabled = 1;
				for_each_online_cpu(cpu)
					enable_trace_clock(cpu);
			} else {
				enable_trace_clock(hotcpu);
			}
		}
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
		if (!async_tsc_refcount && num_online_cpus() == 1)
			set_trace_clock_is_sync(1);
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		/*
		 * We cannot stop the trace clock on other CPUs when readers are
		 * active even if we go back to a synchronized state (1 CPU)
		 * because the CPU left could be the one lagging behind.
		 */
		if (async_tsc_refcount && async_tsc_enabled)
			disable_trace_clock(hotcpu);
		if (!async_tsc_refcount && num_online_cpus() == 1)
			set_trace_clock_is_sync(1);
		break;
#endif /* CONFIG_HOTPLUG_CPU */
	}
	spin_unlock(&async_tsc_lock);

	return NOTIFY_OK;
}

int get_trace_clock(void)
{
	int cpu;

	if (!trace_clock_is_sync()) {
		printk(KERN_WARNING
			"Trace clock falls back on cache-line bouncing\n"
			"workaround due to non-synchronized TSCs.\n"
			"This workaround preserves event order across CPUs.\n"
			"Please consider disabling Speedstep or PowerNow and\n"
			"using kernel parameters "
			"\"force_tsc_sync=1 idle=poll\"\n"
			"for accurate and fast tracing clock source.\n");
	}

	get_online_cpus();
	spin_lock(&async_tsc_lock);
	if (async_tsc_refcount++ || trace_clock_is_sync())
		goto end;

	async_tsc_enabled = 1;
	for_each_online_cpu(cpu)
		enable_trace_clock(cpu);
end:
	spin_unlock(&async_tsc_lock);
	put_online_cpus();
	return 0;
}
EXPORT_SYMBOL_GPL(get_trace_clock);

void put_trace_clock(void)
{
	int cpu;

	get_online_cpus();
	spin_lock(&async_tsc_lock);
	WARN_ON(async_tsc_refcount <= 0);
	if (async_tsc_refcount != 1 || !async_tsc_enabled)
		goto end;

	for_each_online_cpu(cpu)
		disable_trace_clock(cpu);
	async_tsc_enabled = 0;
end:
	async_tsc_refcount--;
	if (!async_tsc_refcount && num_online_cpus() == 1)
		set_trace_clock_is_sync(1);
	spin_unlock(&async_tsc_lock);
	put_online_cpus();
}
EXPORT_SYMBOL_GPL(put_trace_clock);

static __init int init_unsync_trace_clock(void)
{
	hotcpu_notifier(hotcpu_callback, 4);
	return 0;
}
early_initcall(init_unsync_trace_clock);