aboutsummaryrefslogtreecommitdiff
path: root/final/runtime/src/kmp_taskq.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'final/runtime/src/kmp_taskq.cpp')
-rw-r--r--final/runtime/src/kmp_taskq.cpp2029
1 files changed, 2029 insertions, 0 deletions
diff --git a/final/runtime/src/kmp_taskq.cpp b/final/runtime/src/kmp_taskq.cpp
new file mode 100644
index 0000000..6e8f2d5
--- /dev/null
+++ b/final/runtime/src/kmp_taskq.cpp
@@ -0,0 +1,2029 @@
+/*
+ * kmp_taskq.cpp -- TASKQ support for OpenMP.
+ */
+
+//===----------------------------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "kmp.h"
+#include "kmp_error.h"
+#include "kmp_i18n.h"
+#include "kmp_io.h"
+
+#define MAX_MESSAGE 512
+
+/* Taskq routines and global variables */
+
+#define KMP_DEBUG_REF_CTS(x) KF_TRACE(1, x);
+
+#define THREAD_ALLOC_FOR_TASKQ
+
+static int in_parallel_context(kmp_team_t *team) {
+ return !team->t.t_serialized;
+}
+
+static void __kmp_taskq_eo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
+ int gtid = *gtid_ref;
+ int tid = __kmp_tid_from_gtid(gtid);
+ kmp_uint32 my_token;
+ kmpc_task_queue_t *taskq;
+ kmp_taskq_t *tq = &__kmp_threads[gtid]->th.th_team->t.t_taskq;
+
+ if (__kmp_env_consistency_check)
+#if KMP_USE_DYNAMIC_LOCK
+ __kmp_push_sync(gtid, ct_ordered_in_taskq, loc_ref, NULL, 0);
+#else
+ __kmp_push_sync(gtid, ct_ordered_in_taskq, loc_ref, NULL);
+#endif
+
+ if (!__kmp_threads[gtid]->th.th_team->t.t_serialized) {
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+
+ /* GEH - need check here under stats to make sure */
+ /* inside task (curr_thunk[*tid_ref] != NULL) */
+
+ my_token = tq->tq_curr_thunk[tid]->th_tasknum;
+
+ taskq = tq->tq_curr_thunk[tid]->th.th_shareds->sv_queue;
+
+ KMP_WAIT_YIELD(&taskq->tq_tasknum_serving, my_token, KMP_EQ, NULL);
+ KMP_MB();
+ }
+}
+
+static void __kmp_taskq_xo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
+ int gtid = *gtid_ref;
+ int tid = __kmp_tid_from_gtid(gtid);
+ kmp_uint32 my_token;
+ kmp_taskq_t *tq = &__kmp_threads[gtid]->th.th_team->t.t_taskq;
+
+ if (__kmp_env_consistency_check)
+ __kmp_pop_sync(gtid, ct_ordered_in_taskq, loc_ref);
+
+ if (!__kmp_threads[gtid]->th.th_team->t.t_serialized) {
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+
+ /* GEH - need check here under stats to make sure */
+ /* inside task (curr_thunk[tid] != NULL) */
+
+ my_token = tq->tq_curr_thunk[tid]->th_tasknum;
+
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+
+ tq->tq_curr_thunk[tid]->th.th_shareds->sv_queue->tq_tasknum_serving =
+ my_token + 1;
+
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+ }
+}
+
+static void __kmp_taskq_check_ordered(kmp_int32 gtid, kmpc_thunk_t *thunk) {
+ kmp_uint32 my_token;
+ kmpc_task_queue_t *taskq;
+
+ /* assume we are always called from an active parallel context */
+
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+
+ my_token = thunk->th_tasknum;
+
+ taskq = thunk->th.th_shareds->sv_queue;
+
+ if (taskq->tq_tasknum_serving <= my_token) {
+ KMP_WAIT_YIELD(&taskq->tq_tasknum_serving, my_token, KMP_GE, NULL);
+ KMP_MB();
+ taskq->tq_tasknum_serving = my_token + 1;
+ KMP_MB();
+ }
+}
+
+#ifdef KMP_DEBUG
+
+static void __kmp_dump_TQF(kmp_int32 flags) {
+ if (flags & TQF_IS_ORDERED)
+ __kmp_printf("ORDERED ");
+ if (flags & TQF_IS_LASTPRIVATE)
+ __kmp_printf("LAST_PRIV ");
+ if (flags & TQF_IS_NOWAIT)
+ __kmp_printf("NOWAIT ");
+ if (flags & TQF_HEURISTICS)
+ __kmp_printf("HEURIST ");
+ if (flags & TQF_INTERFACE_RESERVED1)
+ __kmp_printf("RESERV1 ");
+ if (flags & TQF_INTERFACE_RESERVED2)
+ __kmp_printf("RESERV2 ");
+ if (flags & TQF_INTERFACE_RESERVED3)
+ __kmp_printf("RESERV3 ");
+ if (flags & TQF_INTERFACE_RESERVED4)
+ __kmp_printf("RESERV4 ");
+ if (flags & TQF_IS_LAST_TASK)
+ __kmp_printf("LAST_TASK ");
+ if (flags & TQF_TASKQ_TASK)
+ __kmp_printf("TASKQ_TASK ");
+ if (flags & TQF_RELEASE_WORKERS)
+ __kmp_printf("RELEASE ");
+ if (flags & TQF_ALL_TASKS_QUEUED)
+ __kmp_printf("ALL_QUEUED ");
+ if (flags & TQF_PARALLEL_CONTEXT)
+ __kmp_printf("PARALLEL ");
+ if (flags & TQF_DEALLOCATED)
+ __kmp_printf("DEALLOC ");
+ if (!(flags & (TQF_INTERNAL_FLAGS | TQF_INTERFACE_FLAGS)))
+ __kmp_printf("(NONE)");
+}
+
+static void __kmp_dump_thunk(kmp_taskq_t *tq, kmpc_thunk_t *thunk,
+ kmp_int32 global_tid) {
+ int i;
+ int nproc = __kmp_threads[global_tid]->th.th_team->t.t_nproc;
+
+ __kmp_printf("\tThunk at %p on (%d): ", thunk, global_tid);
+
+ if (thunk != NULL) {
+ for (i = 0; i < nproc; i++) {
+ if (tq->tq_curr_thunk[i] == thunk) {
+ __kmp_printf("[%i] ", i);
+ }
+ }
+ __kmp_printf("th_shareds=%p, ", thunk->th.th_shareds);
+ __kmp_printf("th_task=%p, ", thunk->th_task);
+ __kmp_printf("th_encl_thunk=%p, ", thunk->th_encl_thunk);
+ __kmp_printf("th_status=%d, ", thunk->th_status);
+ __kmp_printf("th_tasknum=%u, ", thunk->th_tasknum);
+ __kmp_printf("th_flags=");
+ __kmp_dump_TQF(thunk->th_flags);
+ }
+
+ __kmp_printf("\n");
+}
+
+static void __kmp_dump_thunk_stack(kmpc_thunk_t *thunk, kmp_int32 thread_num) {
+ kmpc_thunk_t *th;
+
+ __kmp_printf(" Thunk stack for T#%d: ", thread_num);
+
+ for (th = thunk; th != NULL; th = th->th_encl_thunk)
+ __kmp_printf("%p ", th);
+
+ __kmp_printf("\n");
+}
+
+static void __kmp_dump_task_queue(kmp_taskq_t *tq, kmpc_task_queue_t *queue,
+ kmp_int32 global_tid) {
+ int qs, count, i;
+ kmpc_thunk_t *thunk;
+ kmpc_task_queue_t *taskq;
+
+ __kmp_printf("Task Queue at %p on (%d):\n", queue, global_tid);
+
+ if (queue != NULL) {
+ int in_parallel = queue->tq_flags & TQF_PARALLEL_CONTEXT;
+
+ if (__kmp_env_consistency_check) {
+ __kmp_printf(" tq_loc : ");
+ }
+ if (in_parallel) {
+
+ // if (queue->tq.tq_parent != 0)
+ //__kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
+
+ //__kmp_acquire_lock(& queue->tq_link_lck, global_tid);
+
+ // Make sure data structures are in consistent state before querying them
+ // Seems to work without this for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+
+ __kmp_printf(" tq_parent : %p\n", queue->tq.tq_parent);
+ __kmp_printf(" tq_first_child : %p\n", queue->tq_first_child);
+ __kmp_printf(" tq_next_child : %p\n", queue->tq_next_child);
+ __kmp_printf(" tq_prev_child : %p\n", queue->tq_prev_child);
+ __kmp_printf(" tq_ref_count : %d\n", queue->tq_ref_count);
+
+ //__kmp_release_lock(& queue->tq_link_lck, global_tid);
+
+ // if (queue->tq.tq_parent != 0)
+ //__kmp_release_lock(& queue->tq.tq_parent->tq_link_lck, global_tid);
+
+ //__kmp_acquire_lock(& queue->tq_free_thunks_lck, global_tid);
+ //__kmp_acquire_lock(& queue->tq_queue_lck, global_tid);
+
+ // Make sure data structures are in consistent state before querying them
+ // Seems to work without this for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+ }
+
+ __kmp_printf(" tq_shareds : ");
+ for (i = 0; i < ((queue == tq->tq_root) ? queue->tq_nproc : 1); i++)
+ __kmp_printf("%p ", queue->tq_shareds[i].ai_data);
+ __kmp_printf("\n");
+
+ if (in_parallel) {
+ __kmp_printf(" tq_tasknum_queuing : %u\n", queue->tq_tasknum_queuing);
+ __kmp_printf(" tq_tasknum_serving : %u\n", queue->tq_tasknum_serving);
+ }
+
+ __kmp_printf(" tq_queue : %p\n", queue->tq_queue);
+ __kmp_printf(" tq_thunk_space : %p\n", queue->tq_thunk_space);
+ __kmp_printf(" tq_taskq_slot : %p\n", queue->tq_taskq_slot);
+
+ __kmp_printf(" tq_free_thunks : ");
+ for (thunk = queue->tq_free_thunks; thunk != NULL;
+ thunk = thunk->th.th_next_free)
+ __kmp_printf("%p ", thunk);
+ __kmp_printf("\n");
+
+ __kmp_printf(" tq_nslots : %d\n", queue->tq_nslots);
+ __kmp_printf(" tq_head : %d\n", queue->tq_head);
+ __kmp_printf(" tq_tail : %d\n", queue->tq_tail);
+ __kmp_printf(" tq_nfull : %d\n", queue->tq_nfull);
+ __kmp_printf(" tq_hiwat : %d\n", queue->tq_hiwat);
+ __kmp_printf(" tq_flags : ");
+ __kmp_dump_TQF(queue->tq_flags);
+ __kmp_printf("\n");
+
+ if (in_parallel) {
+ __kmp_printf(" tq_th_thunks : ");
+ for (i = 0; i < queue->tq_nproc; i++) {
+ __kmp_printf("%d ", queue->tq_th_thunks[i].ai_data);
+ }
+ __kmp_printf("\n");
+ }
+
+ __kmp_printf("\n");
+ __kmp_printf(" Queue slots:\n");
+
+ qs = queue->tq_tail;
+ for (count = 0; count < queue->tq_nfull; ++count) {
+ __kmp_printf("(%d)", qs);
+ __kmp_dump_thunk(tq, queue->tq_queue[qs].qs_thunk, global_tid);
+ qs = (qs + 1) % queue->tq_nslots;
+ }
+
+ __kmp_printf("\n");
+
+ if (in_parallel) {
+ if (queue->tq_taskq_slot != NULL) {
+ __kmp_printf(" TaskQ slot:\n");
+ __kmp_dump_thunk(tq, CCAST(kmpc_thunk_t *, queue->tq_taskq_slot),
+ global_tid);
+ __kmp_printf("\n");
+ }
+ //__kmp_release_lock(& queue->tq_queue_lck, global_tid);
+ //__kmp_release_lock(& queue->tq_free_thunks_lck, global_tid);
+ }
+ }
+
+ __kmp_printf(" Taskq freelist: ");
+
+ //__kmp_acquire_lock( & tq->tq_freelist_lck, global_tid );
+
+ // Make sure data structures are in consistent state before querying them
+ // Seems to work without this call for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+
+ for (taskq = tq->tq_freelist; taskq != NULL; taskq = taskq->tq.tq_next_free)
+ __kmp_printf("%p ", taskq);
+
+ //__kmp_release_lock( & tq->tq_freelist_lck, global_tid );
+
+ __kmp_printf("\n\n");
+}
+
+static void __kmp_aux_dump_task_queue_tree(kmp_taskq_t *tq,
+ kmpc_task_queue_t *curr_queue,
+ kmp_int32 level,
+ kmp_int32 global_tid) {
+ int i, count, qs;
+ int nproc = __kmp_threads[global_tid]->th.th_team->t.t_nproc;
+ kmpc_task_queue_t *queue = curr_queue;
+
+ if (curr_queue == NULL)
+ return;
+
+ __kmp_printf(" ");
+
+ for (i = 0; i < level; i++)
+ __kmp_printf(" ");
+
+ __kmp_printf("%p", curr_queue);
+
+ for (i = 0; i < nproc; i++) {
+ if (tq->tq_curr_thunk[i] &&
+ tq->tq_curr_thunk[i]->th.th_shareds->sv_queue == curr_queue) {
+ __kmp_printf(" [%i]", i);
+ }
+ }
+
+ __kmp_printf(":");
+
+ //__kmp_acquire_lock(& curr_queue->tq_queue_lck, global_tid);
+
+ // Make sure data structures are in consistent state before querying them
+ // Seems to work without this call for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+
+ qs = curr_queue->tq_tail;
+
+ for (count = 0; count < curr_queue->tq_nfull; ++count) {
+ __kmp_printf("%p ", curr_queue->tq_queue[qs].qs_thunk);
+ qs = (qs + 1) % curr_queue->tq_nslots;
+ }
+
+ //__kmp_release_lock(& curr_queue->tq_queue_lck, global_tid);
+
+ __kmp_printf("\n");
+
+ if (curr_queue->tq_first_child) {
+ //__kmp_acquire_lock(& curr_queue->tq_link_lck, global_tid);
+
+ // Make sure data structures are in consistent state before querying them
+ // Seems to work without this call for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+
+ if (curr_queue->tq_first_child) {
+ for (queue = CCAST(kmpc_task_queue_t *, curr_queue->tq_first_child);
+ queue != NULL; queue = queue->tq_next_child) {
+ __kmp_aux_dump_task_queue_tree(tq, queue, level + 1, global_tid);
+ }
+ }
+
+ //__kmp_release_lock(& curr_queue->tq_link_lck, global_tid);
+ }
+}
+
+static void __kmp_dump_task_queue_tree(kmp_taskq_t *tq,
+ kmpc_task_queue_t *tqroot,
+ kmp_int32 global_tid) {
+ __kmp_printf("TaskQ Tree at root %p on (%d):\n", tqroot, global_tid);
+
+ __kmp_aux_dump_task_queue_tree(tq, tqroot, 0, global_tid);
+
+ __kmp_printf("\n");
+}
+#endif
+
+/* New taskq storage routines that try to minimize overhead of mallocs but
+ still provide cache line alignment. */
+static void *__kmp_taskq_allocate(size_t size, kmp_int32 global_tid) {
+ void *addr, *orig_addr;
+ size_t bytes;
+
+ KB_TRACE(5, ("__kmp_taskq_allocate: called size=%d, gtid=%d\n", (int)size,
+ global_tid));
+
+ bytes = sizeof(void *) + CACHE_LINE + size;
+
+#ifdef THREAD_ALLOC_FOR_TASKQ
+ orig_addr =
+ (void *)__kmp_thread_malloc(__kmp_thread_from_gtid(global_tid), bytes);
+#else
+ KE_TRACE(10, ("%%%%%% MALLOC( %d )\n", bytes));
+ orig_addr = (void *)KMP_INTERNAL_MALLOC(bytes);
+#endif /* THREAD_ALLOC_FOR_TASKQ */
+
+ if (orig_addr == 0)
+ KMP_FATAL(OutOfHeapMemory);
+
+ addr = orig_addr;
+
+ if (((kmp_uintptr_t)addr & (CACHE_LINE - 1)) != 0) {
+ KB_TRACE(50, ("__kmp_taskq_allocate: adjust for cache alignment\n"));
+ addr = (void *)(((kmp_uintptr_t)addr + CACHE_LINE) & ~(CACHE_LINE - 1));
+ }
+
+ (*(void **)addr) = orig_addr;
+
+ KB_TRACE(10,
+ ("__kmp_taskq_allocate: allocate: %p, use: %p - %p, size: %d, "
+ "gtid: %d\n",
+ orig_addr, ((void **)addr) + 1,
+ ((char *)(((void **)addr) + 1)) + size - 1, (int)size, global_tid));
+
+ return (((void **)addr) + 1);
+}
+
+static void __kmpc_taskq_free(void *p, kmp_int32 global_tid) {
+ KB_TRACE(5, ("__kmpc_taskq_free: called addr=%p, gtid=%d\n", p, global_tid));
+
+ KB_TRACE(10, ("__kmpc_taskq_free: freeing: %p, gtid: %d\n",
+ (*(((void **)p) - 1)), global_tid));
+
+#ifdef THREAD_ALLOC_FOR_TASKQ
+ __kmp_thread_free(__kmp_thread_from_gtid(global_tid), *(((void **)p) - 1));
+#else
+ KMP_INTERNAL_FREE(*(((void **)p) - 1));
+#endif /* THREAD_ALLOC_FOR_TASKQ */
+}
+
+/* Keep freed kmpc_task_queue_t on an internal freelist and recycle since
+ they're of constant size. */
+
+static kmpc_task_queue_t *
+__kmp_alloc_taskq(kmp_taskq_t *tq, int in_parallel, kmp_int32 nslots,
+ kmp_int32 nthunks, kmp_int32 nshareds, kmp_int32 nproc,
+ size_t sizeof_thunk, size_t sizeof_shareds,
+ kmpc_thunk_t **new_taskq_thunk, kmp_int32 global_tid) {
+ kmp_int32 i;
+ size_t bytes;
+ kmpc_task_queue_t *new_queue;
+ kmpc_aligned_shared_vars_t *shared_var_array;
+ char *shared_var_storage;
+ char *pt; /* for doing byte-adjusted address computations */
+
+ __kmp_acquire_lock(&tq->tq_freelist_lck, global_tid);
+
+ // Make sure data structures are in consistent state before querying them
+ // Seems to work without this call for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+
+ if (tq->tq_freelist) {
+ new_queue = tq->tq_freelist;
+ tq->tq_freelist = tq->tq_freelist->tq.tq_next_free;
+
+ KMP_DEBUG_ASSERT(new_queue->tq_flags & TQF_DEALLOCATED);
+
+ new_queue->tq_flags = 0;
+
+ __kmp_release_lock(&tq->tq_freelist_lck, global_tid);
+ } else {
+ __kmp_release_lock(&tq->tq_freelist_lck, global_tid);
+
+ new_queue = (kmpc_task_queue_t *)__kmp_taskq_allocate(
+ sizeof(kmpc_task_queue_t), global_tid);
+ new_queue->tq_flags = 0;
+ }
+
+ /* space in the task queue for queue slots (allocate as one big chunk */
+ /* of storage including new_taskq_task space) */
+
+ sizeof_thunk +=
+ (CACHE_LINE - (sizeof_thunk % CACHE_LINE)); /* pad to cache line size */
+ pt = (char *)__kmp_taskq_allocate(nthunks * sizeof_thunk, global_tid);
+ new_queue->tq_thunk_space = (kmpc_thunk_t *)pt;
+ *new_taskq_thunk = (kmpc_thunk_t *)(pt + (nthunks - 1) * sizeof_thunk);
+
+ /* chain the allocated thunks into a freelist for this queue */
+
+ new_queue->tq_free_thunks = (kmpc_thunk_t *)pt;
+
+ for (i = 0; i < (nthunks - 2); i++) {
+ ((kmpc_thunk_t *)(pt + i * sizeof_thunk))->th.th_next_free =
+ (kmpc_thunk_t *)(pt + (i + 1) * sizeof_thunk);
+#ifdef KMP_DEBUG
+ ((kmpc_thunk_t *)(pt + i * sizeof_thunk))->th_flags = TQF_DEALLOCATED;
+#endif
+ }
+
+ ((kmpc_thunk_t *)(pt + (nthunks - 2) * sizeof_thunk))->th.th_next_free = NULL;
+#ifdef KMP_DEBUG
+ ((kmpc_thunk_t *)(pt + (nthunks - 2) * sizeof_thunk))->th_flags =
+ TQF_DEALLOCATED;
+#endif
+
+ /* initialize the locks */
+
+ if (in_parallel) {
+ __kmp_init_lock(&new_queue->tq_link_lck);
+ __kmp_init_lock(&new_queue->tq_free_thunks_lck);
+ __kmp_init_lock(&new_queue->tq_queue_lck);
+ }
+
+ /* now allocate the slots */
+
+ bytes = nslots * sizeof(kmpc_aligned_queue_slot_t);
+ new_queue->tq_queue =
+ (kmpc_aligned_queue_slot_t *)__kmp_taskq_allocate(bytes, global_tid);
+
+ /* space for array of pointers to shared variable structures */
+ sizeof_shareds += sizeof(kmpc_task_queue_t *);
+ sizeof_shareds +=
+ (CACHE_LINE - (sizeof_shareds % CACHE_LINE)); /* pad to cache line size */
+
+ bytes = nshareds * sizeof(kmpc_aligned_shared_vars_t);
+ shared_var_array =
+ (kmpc_aligned_shared_vars_t *)__kmp_taskq_allocate(bytes, global_tid);
+
+ bytes = nshareds * sizeof_shareds;
+ shared_var_storage = (char *)__kmp_taskq_allocate(bytes, global_tid);
+
+ for (i = 0; i < nshareds; i++) {
+ shared_var_array[i].ai_data =
+ (kmpc_shared_vars_t *)(shared_var_storage + i * sizeof_shareds);
+ shared_var_array[i].ai_data->sv_queue = new_queue;
+ }
+ new_queue->tq_shareds = shared_var_array;
+
+ /* array for number of outstanding thunks per thread */
+
+ if (in_parallel) {
+ bytes = nproc * sizeof(kmpc_aligned_int32_t);
+ new_queue->tq_th_thunks =
+ (kmpc_aligned_int32_t *)__kmp_taskq_allocate(bytes, global_tid);
+ new_queue->tq_nproc = nproc;
+
+ for (i = 0; i < nproc; i++)
+ new_queue->tq_th_thunks[i].ai_data = 0;
+ }
+
+ return new_queue;
+}
+
+static void __kmp_free_taskq(kmp_taskq_t *tq, kmpc_task_queue_t *p,
+ int in_parallel, kmp_int32 global_tid) {
+ __kmpc_taskq_free(p->tq_thunk_space, global_tid);
+ __kmpc_taskq_free(p->tq_queue, global_tid);
+
+ /* free shared var structure storage */
+ __kmpc_taskq_free(CCAST(kmpc_shared_vars_t *, p->tq_shareds[0].ai_data),
+ global_tid);
+ /* free array of pointers to shared vars storage */
+ __kmpc_taskq_free(p->tq_shareds, global_tid);
+
+#ifdef KMP_DEBUG
+ p->tq_first_child = NULL;
+ p->tq_next_child = NULL;
+ p->tq_prev_child = NULL;
+ p->tq_ref_count = -10;
+ p->tq_shareds = NULL;
+ p->tq_tasknum_queuing = 0;
+ p->tq_tasknum_serving = 0;
+ p->tq_queue = NULL;
+ p->tq_thunk_space = NULL;
+ p->tq_taskq_slot = NULL;
+ p->tq_free_thunks = NULL;
+ p->tq_nslots = 0;
+ p->tq_head = 0;
+ p->tq_tail = 0;
+ p->tq_nfull = 0;
+ p->tq_hiwat = 0;
+
+ if (in_parallel) {
+ int i;
+
+ for (i = 0; i < p->tq_nproc; i++)
+ p->tq_th_thunks[i].ai_data = 0;
+ }
+ if (__kmp_env_consistency_check)
+ p->tq_loc = NULL;
+ KMP_DEBUG_ASSERT(p->tq_flags & TQF_DEALLOCATED);
+ p->tq_flags = TQF_DEALLOCATED;
+#endif /* KMP_DEBUG */
+
+ if (in_parallel) {
+ __kmpc_taskq_free(p->tq_th_thunks, global_tid);
+ __kmp_destroy_lock(&p->tq_link_lck);
+ __kmp_destroy_lock(&p->tq_queue_lck);
+ __kmp_destroy_lock(&p->tq_free_thunks_lck);
+ }
+#ifdef KMP_DEBUG
+ p->tq_th_thunks = NULL;
+#endif /* KMP_DEBUG */
+
+ // Make sure data structures are in consistent state before querying them
+ // Seems to work without this call for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+
+ __kmp_acquire_lock(&tq->tq_freelist_lck, global_tid);
+ p->tq.tq_next_free = tq->tq_freelist;
+
+ tq->tq_freelist = p;
+ __kmp_release_lock(&tq->tq_freelist_lck, global_tid);
+}
+
+/* Once a group of thunks has been allocated for use in a particular queue,
+ these are managed via a per-queue freelist.
+ We force a check that there's always a thunk free if we need one. */
+
+static kmpc_thunk_t *__kmp_alloc_thunk(kmpc_task_queue_t *queue,
+ int in_parallel, kmp_int32 global_tid) {
+ kmpc_thunk_t *fl;
+
+ if (in_parallel) {
+ __kmp_acquire_lock(&queue->tq_free_thunks_lck, global_tid);
+ // Make sure data structures are in consistent state before querying them
+ // Seems to work without this call for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+ }
+
+ fl = queue->tq_free_thunks;
+
+ KMP_DEBUG_ASSERT(fl != NULL);
+
+ queue->tq_free_thunks = fl->th.th_next_free;
+ fl->th_flags = 0;
+
+ if (in_parallel)
+ __kmp_release_lock(&queue->tq_free_thunks_lck, global_tid);
+
+ return fl;
+}
+
+static void __kmp_free_thunk(kmpc_task_queue_t *queue, kmpc_thunk_t *p,
+ int in_parallel, kmp_int32 global_tid) {
+#ifdef KMP_DEBUG
+ p->th_task = 0;
+ p->th_encl_thunk = 0;
+ p->th_status = 0;
+ p->th_tasknum = 0;
+/* Also could zero pointers to private vars */
+#endif
+
+ if (in_parallel) {
+ __kmp_acquire_lock(&queue->tq_free_thunks_lck, global_tid);
+ // Make sure data structures are in consistent state before querying them
+ // Seems to work without this call for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+ }
+
+ p->th.th_next_free = queue->tq_free_thunks;
+ queue->tq_free_thunks = p;
+
+#ifdef KMP_DEBUG
+ p->th_flags = TQF_DEALLOCATED;
+#endif
+
+ if (in_parallel)
+ __kmp_release_lock(&queue->tq_free_thunks_lck, global_tid);
+}
+
+/* returns nonzero if the queue just became full after the enqueue */
+static kmp_int32 __kmp_enqueue_task(kmp_taskq_t *tq, kmp_int32 global_tid,
+ kmpc_task_queue_t *queue,
+ kmpc_thunk_t *thunk, int in_parallel) {
+ kmp_int32 ret;
+
+ /* dkp: can we get around the lock in the TQF_RELEASE_WORKERS case (only the
+ * master is executing then) */
+ if (in_parallel) {
+ __kmp_acquire_lock(&queue->tq_queue_lck, global_tid);
+ // Make sure data structures are in consistent state before querying them
+ // Seems to work without this call for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+ }
+
+ KMP_DEBUG_ASSERT(queue->tq_nfull < queue->tq_nslots); // check queue not full
+
+ queue->tq_queue[(queue->tq_head)++].qs_thunk = thunk;
+
+ if (queue->tq_head >= queue->tq_nslots)
+ queue->tq_head = 0;
+
+ (queue->tq_nfull)++;
+
+ KMP_MB(); /* to assure that nfull is seen to increase before
+ TQF_ALL_TASKS_QUEUED is set */
+
+ ret = (in_parallel) ? (queue->tq_nfull == queue->tq_nslots) : FALSE;
+
+ if (in_parallel) {
+ /* don't need to wait until workers are released before unlocking */
+ __kmp_release_lock(&queue->tq_queue_lck, global_tid);
+
+ if (tq->tq_global_flags & TQF_RELEASE_WORKERS) {
+ // If just creating the root queue, the worker threads are waiting at a
+ // join barrier until now, when there's something in the queue for them to
+ // do; release them now to do work. This should only be done when this is
+ // the first task enqueued, so reset the flag here also.
+ tq->tq_global_flags &= ~TQF_RELEASE_WORKERS; /* no lock needed, workers
+ are still in spin mode */
+ // avoid releasing barrier twice if taskq_task switches threads
+ KMP_MB();
+
+ __kmpc_end_barrier_master(NULL, global_tid);
+ }
+ }
+
+ return ret;
+}
+
+static kmpc_thunk_t *__kmp_dequeue_task(kmp_int32 global_tid,
+ kmpc_task_queue_t *queue,
+ int in_parallel) {
+ kmpc_thunk_t *pt;
+ int tid = __kmp_tid_from_gtid(global_tid);
+
+ KMP_DEBUG_ASSERT(queue->tq_nfull > 0); /* check queue not empty */
+
+ if (queue->tq.tq_parent != NULL && in_parallel) {
+ int ct;
+ __kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
+ ct = ++(queue->tq_ref_count);
+ __kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
+ KMP_DEBUG_REF_CTS(
+ ("line %d gtid %d: Q %p inc %d\n", __LINE__, global_tid, queue, ct));
+ }
+
+ pt = queue->tq_queue[(queue->tq_tail)++].qs_thunk;
+
+ if (queue->tq_tail >= queue->tq_nslots)
+ queue->tq_tail = 0;
+
+ if (in_parallel) {
+ queue->tq_th_thunks[tid].ai_data++;
+
+ KMP_MB(); /* necessary so ai_data increment is propagated to other threads
+ immediately (digital) */
+
+ KF_TRACE(200, ("__kmp_dequeue_task: T#%d(:%d) now has %d outstanding "
+ "thunks from queue %p\n",
+ global_tid, tid, queue->tq_th_thunks[tid].ai_data, queue));
+ }
+
+ (queue->tq_nfull)--;
+
+#ifdef KMP_DEBUG
+ KMP_MB();
+
+ /* necessary so (queue->tq_nfull > 0) above succeeds after tq_nfull is
+ * decremented */
+
+ KMP_DEBUG_ASSERT(queue->tq_nfull >= 0);
+
+ if (in_parallel) {
+ KMP_DEBUG_ASSERT(queue->tq_th_thunks[tid].ai_data <=
+ __KMP_TASKQ_THUNKS_PER_TH);
+ }
+#endif
+
+ return pt;
+}
+
+/* Find the next (non-null) task to dequeue and return it.
+ * This is never called unless in_parallel=TRUE
+ *
+ * Here are the rules for deciding which queue to take the task from:
+ * 1. Walk up the task queue tree from the current queue's parent and look
+ * on the way up (for loop, below).
+ * 2. Do a depth-first search back down the tree from the root and
+ * look (find_task_in_descendant_queue()).
+ *
+ * Here are the rules for deciding which task to take from a queue
+ * (__kmp_find_task_in_queue ()):
+ * 1. Never take the last task from a queue if TQF_IS_LASTPRIVATE; this task
+ * must be staged to make sure we execute the last one with
+ * TQF_IS_LAST_TASK at the end of task queue execution.
+ * 2. If the queue length is below some high water mark and the taskq task
+ * is enqueued, prefer running the taskq task.
+ * 3. Otherwise, take a (normal) task from the queue.
+ *
+ * If we do all this and return pt == NULL at the bottom of this routine,
+ * this means there are no more tasks to execute (except possibly for
+ * TQF_IS_LASTPRIVATE).
+ */
+
+static kmpc_thunk_t *__kmp_find_task_in_queue(kmp_int32 global_tid,
+ kmpc_task_queue_t *queue) {
+ kmpc_thunk_t *pt = NULL;
+ int tid = __kmp_tid_from_gtid(global_tid);
+
+ /* To prevent deadlock from tq_queue_lck if queue already deallocated */
+ if (!(queue->tq_flags & TQF_DEALLOCATED)) {
+
+ __kmp_acquire_lock(&queue->tq_queue_lck, global_tid);
+
+ /* Check again to avoid race in __kmpc_end_taskq() */
+ if (!(queue->tq_flags & TQF_DEALLOCATED)) {
+ // Make sure data structures are in consistent state before querying them
+ // Seems to work without this for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+
+ if ((queue->tq_taskq_slot != NULL) &&
+ (queue->tq_nfull <= queue->tq_hiwat)) {
+ /* if there's enough room in the queue and the dispatcher */
+ /* (taskq task) is available, schedule more tasks */
+ pt = CCAST(kmpc_thunk_t *, queue->tq_taskq_slot);
+ queue->tq_taskq_slot = NULL;
+ } else if (queue->tq_nfull == 0 ||
+ queue->tq_th_thunks[tid].ai_data >=
+ __KMP_TASKQ_THUNKS_PER_TH) {
+ /* do nothing if no thunks available or this thread can't */
+ /* run any because it already is executing too many */
+ pt = NULL;
+ } else if (queue->tq_nfull > 1) {
+ /* always safe to schedule a task even if TQF_IS_LASTPRIVATE */
+
+ pt = __kmp_dequeue_task(global_tid, queue, TRUE);
+ } else if (!(queue->tq_flags & TQF_IS_LASTPRIVATE)) {
+ // one thing in queue, always safe to schedule if !TQF_IS_LASTPRIVATE
+ pt = __kmp_dequeue_task(global_tid, queue, TRUE);
+ } else if (queue->tq_flags & TQF_IS_LAST_TASK) {
+ /* TQF_IS_LASTPRIVATE, one thing in queue, kmpc_end_taskq_task() */
+ /* has been run so this is last task, run with TQF_IS_LAST_TASK so */
+ /* instrumentation does copy-out. */
+ pt = __kmp_dequeue_task(global_tid, queue, TRUE);
+ pt->th_flags |=
+ TQF_IS_LAST_TASK; /* don't need test_then_or since already locked */
+ }
+ }
+
+ /* GEH - What happens here if is lastprivate, but not last task? */
+ __kmp_release_lock(&queue->tq_queue_lck, global_tid);
+ }
+
+ return pt;
+}
+
+/* Walk a tree of queues starting at queue's first child and return a non-NULL
+ thunk if one can be scheduled. Must only be called when in_parallel=TRUE */
+
+static kmpc_thunk_t *
+__kmp_find_task_in_descendant_queue(kmp_int32 global_tid,
+ kmpc_task_queue_t *curr_queue) {
+ kmpc_thunk_t *pt = NULL;
+ kmpc_task_queue_t *queue = curr_queue;
+
+ if (curr_queue->tq_first_child != NULL) {
+ __kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid);
+ // Make sure data structures are in consistent state before querying them
+ // Seems to work without this call for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+
+ queue = CCAST(kmpc_task_queue_t *, curr_queue->tq_first_child);
+ if (queue == NULL) {
+ __kmp_release_lock(&curr_queue->tq_link_lck, global_tid);
+ return NULL;
+ }
+
+ while (queue != NULL) {
+ int ct;
+ kmpc_task_queue_t *next;
+
+ ct = ++(queue->tq_ref_count);
+ __kmp_release_lock(&curr_queue->tq_link_lck, global_tid);
+ KMP_DEBUG_REF_CTS(
+ ("line %d gtid %d: Q %p inc %d\n", __LINE__, global_tid, queue, ct));
+
+ pt = __kmp_find_task_in_queue(global_tid, queue);
+
+ if (pt != NULL) {
+ int ct;
+
+ __kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid);
+ // Make sure data structures in consistent state before querying them
+ // Seems to work without this for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+
+ ct = --(queue->tq_ref_count);
+ KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n", __LINE__,
+ global_tid, queue, ct));
+ KMP_DEBUG_ASSERT(queue->tq_ref_count >= 0);
+
+ __kmp_release_lock(&curr_queue->tq_link_lck, global_tid);
+
+ return pt;
+ }
+
+ /* although reference count stays active during descendant walk, shouldn't
+ matter since if children still exist, reference counts aren't being
+ monitored anyway */
+
+ pt = __kmp_find_task_in_descendant_queue(global_tid, queue);
+
+ if (pt != NULL) {
+ int ct;
+
+ __kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid);
+ // Make sure data structures in consistent state before querying them
+ // Seems to work without this for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+
+ ct = --(queue->tq_ref_count);
+ KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n", __LINE__,
+ global_tid, queue, ct));
+ KMP_DEBUG_ASSERT(ct >= 0);
+
+ __kmp_release_lock(&curr_queue->tq_link_lck, global_tid);
+
+ return pt;
+ }
+
+ __kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid);
+ // Make sure data structures in consistent state before querying them
+ // Seems to work without this for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+
+ next = queue->tq_next_child;
+
+ ct = --(queue->tq_ref_count);
+ KMP_DEBUG_REF_CTS(
+ ("line %d gtid %d: Q %p dec %d\n", __LINE__, global_tid, queue, ct));
+ KMP_DEBUG_ASSERT(ct >= 0);
+
+ queue = next;
+ }
+
+ __kmp_release_lock(&curr_queue->tq_link_lck, global_tid);
+ }
+
+ return pt;
+}
+
+/* Walk up the taskq tree looking for a task to execute. If we get to the root,
+ search the tree for a descendent queue task. Must only be called when
+ in_parallel=TRUE */
+static kmpc_thunk_t *
+__kmp_find_task_in_ancestor_queue(kmp_taskq_t *tq, kmp_int32 global_tid,
+ kmpc_task_queue_t *curr_queue) {
+ kmpc_task_queue_t *queue;
+ kmpc_thunk_t *pt;
+
+ pt = NULL;
+
+ if (curr_queue->tq.tq_parent != NULL) {
+ queue = curr_queue->tq.tq_parent;
+
+ while (queue != NULL) {
+ if (queue->tq.tq_parent != NULL) {
+ int ct;
+ __kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
+ // Make sure data structures in consistent state before querying them
+ // Seems to work without this for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+
+ ct = ++(queue->tq_ref_count);
+ __kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
+ KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p inc %d\n", __LINE__,
+ global_tid, queue, ct));
+ }
+
+ pt = __kmp_find_task_in_queue(global_tid, queue);
+ if (pt != NULL) {
+ if (queue->tq.tq_parent != NULL) {
+ int ct;
+ __kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
+ // Make sure data structures in consistent state before querying them
+ // Seems to work without this for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+
+ ct = --(queue->tq_ref_count);
+ KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n", __LINE__,
+ global_tid, queue, ct));
+ KMP_DEBUG_ASSERT(ct >= 0);
+
+ __kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
+ }
+
+ return pt;
+ }
+
+ if (queue->tq.tq_parent != NULL) {
+ int ct;
+ __kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
+ // Make sure data structures in consistent state before querying them
+ // Seems to work without this for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+
+ ct = --(queue->tq_ref_count);
+ KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n", __LINE__,
+ global_tid, queue, ct));
+ KMP_DEBUG_ASSERT(ct >= 0);
+ }
+ queue = queue->tq.tq_parent;
+
+ if (queue != NULL)
+ __kmp_release_lock(&queue->tq_link_lck, global_tid);
+ }
+ }
+
+ pt = __kmp_find_task_in_descendant_queue(global_tid, tq->tq_root);
+
+ return pt;
+}
+
+static int __kmp_taskq_tasks_finished(kmpc_task_queue_t *queue) {
+ int i;
+
+ /* KMP_MB(); */ /* is this really necessary? */
+
+ for (i = 0; i < queue->tq_nproc; i++) {
+ if (queue->tq_th_thunks[i].ai_data != 0)
+ return FALSE;
+ }
+
+ return TRUE;
+}
+
+static int __kmp_taskq_has_any_children(kmpc_task_queue_t *queue) {
+ return (queue->tq_first_child != NULL);
+}
+
+static void __kmp_remove_queue_from_tree(kmp_taskq_t *tq, kmp_int32 global_tid,
+ kmpc_task_queue_t *queue,
+ int in_parallel) {
+#ifdef KMP_DEBUG
+ kmp_int32 i;
+ kmpc_thunk_t *thunk;
+#endif
+
+ KF_TRACE(50,
+ ("Before Deletion of TaskQ at %p on (%d):\n", queue, global_tid));
+ KF_DUMP(50, __kmp_dump_task_queue(tq, queue, global_tid));
+
+ /* sub-queue in a recursion, not the root task queue */
+ KMP_DEBUG_ASSERT(queue->tq.tq_parent != NULL);
+
+ if (in_parallel) {
+ __kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
+ // Make sure data structures are in consistent state before querying them
+ // Seems to work without this call for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+ }
+
+ KMP_DEBUG_ASSERT(queue->tq_first_child == NULL);
+
+ /* unlink queue from its siblings if any at this level */
+ if (queue->tq_prev_child != NULL)
+ queue->tq_prev_child->tq_next_child = queue->tq_next_child;
+ if (queue->tq_next_child != NULL)
+ queue->tq_next_child->tq_prev_child = queue->tq_prev_child;
+ if (queue->tq.tq_parent->tq_first_child == queue)
+ queue->tq.tq_parent->tq_first_child = queue->tq_next_child;
+
+ queue->tq_prev_child = NULL;
+ queue->tq_next_child = NULL;
+
+ if (in_parallel) {
+ KMP_DEBUG_REF_CTS(
+ ("line %d gtid %d: Q %p waiting for ref_count of %d to reach 1\n",
+ __LINE__, global_tid, queue, queue->tq_ref_count));
+
+ /* wait until all other threads have stopped accessing this queue */
+ while (queue->tq_ref_count > 1) {
+ __kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
+
+ KMP_WAIT_YIELD((volatile kmp_uint32 *)&queue->tq_ref_count, 1, KMP_LE,
+ NULL);
+
+ __kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
+ // Make sure data structures are in consistent state before querying them
+ // Seems to work without this for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+ }
+
+ __kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
+ }
+
+ KMP_DEBUG_REF_CTS(
+ ("line %d gtid %d: Q %p freeing queue\n", __LINE__, global_tid, queue));
+
+#ifdef KMP_DEBUG
+ KMP_DEBUG_ASSERT(queue->tq_flags & TQF_ALL_TASKS_QUEUED);
+ KMP_DEBUG_ASSERT(queue->tq_nfull == 0);
+
+ for (i = 0; i < queue->tq_nproc; i++) {
+ KMP_DEBUG_ASSERT(queue->tq_th_thunks[i].ai_data == 0);
+ }
+
+ i = 0;
+ for (thunk = queue->tq_free_thunks; thunk != NULL;
+ thunk = thunk->th.th_next_free)
+ ++i;
+
+ KMP_ASSERT(i ==
+ queue->tq_nslots + (queue->tq_nproc * __KMP_TASKQ_THUNKS_PER_TH));
+#endif
+
+ /* release storage for queue entry */
+ __kmp_free_taskq(tq, queue, TRUE, global_tid);
+
+ KF_TRACE(50, ("After Deletion of TaskQ at %p on (%d):\n", queue, global_tid));
+ KF_DUMP(50, __kmp_dump_task_queue_tree(tq, tq->tq_root, global_tid));
+}
+
+/* Starting from indicated queue, proceed downward through tree and remove all
+ taskqs which are finished, but only go down to taskqs which have the "nowait"
+ clause present. Assume this is only called when in_parallel=TRUE. */
+
+static void __kmp_find_and_remove_finished_child_taskq(
+ kmp_taskq_t *tq, kmp_int32 global_tid, kmpc_task_queue_t *curr_queue) {
+ kmpc_task_queue_t *queue = curr_queue;
+
+ if (curr_queue->tq_first_child != NULL) {
+ __kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid);
+ // Make sure data structures are in consistent state before querying them
+ // Seems to work without this call for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+
+ queue = CCAST(kmpc_task_queue_t *, curr_queue->tq_first_child);
+ if (queue != NULL) {
+ __kmp_release_lock(&curr_queue->tq_link_lck, global_tid);
+ return;
+ }
+
+ while (queue != NULL) {
+ kmpc_task_queue_t *next;
+ int ct = ++(queue->tq_ref_count);
+ KMP_DEBUG_REF_CTS(
+ ("line %d gtid %d: Q %p inc %d\n", __LINE__, global_tid, queue, ct));
+
+ /* although reference count stays active during descendant walk, */
+ /* shouldn't matter since if children still exist, reference */
+ /* counts aren't being monitored anyway */
+
+ if (queue->tq_flags & TQF_IS_NOWAIT) {
+ __kmp_find_and_remove_finished_child_taskq(tq, global_tid, queue);
+
+ if ((queue->tq_flags & TQF_ALL_TASKS_QUEUED) &&
+ (queue->tq_nfull == 0) && __kmp_taskq_tasks_finished(queue) &&
+ !__kmp_taskq_has_any_children(queue)) {
+
+ /* Only remove this if we have not already marked it for deallocation.
+ This should prevent multiple threads from trying to free this. */
+
+ if (__kmp_test_lock(&queue->tq_queue_lck, global_tid)) {
+ if (!(queue->tq_flags & TQF_DEALLOCATED)) {
+ queue->tq_flags |= TQF_DEALLOCATED;
+ __kmp_release_lock(&queue->tq_queue_lck, global_tid);
+
+ __kmp_remove_queue_from_tree(tq, global_tid, queue, TRUE);
+
+ /* Can't do any more here since can't be sure where sibling queue
+ * is so just exit this level */
+ return;
+ } else {
+ __kmp_release_lock(&queue->tq_queue_lck, global_tid);
+ }
+ }
+ /* otherwise, just fall through and decrement reference count */
+ }
+ }
+
+ __kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid);
+ // Make sure data structures are in consistent state before querying them
+ // Seems to work without this for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+
+ next = queue->tq_next_child;
+
+ ct = --(queue->tq_ref_count);
+ KMP_DEBUG_REF_CTS(
+ ("line %d gtid %d: Q %p dec %d\n", __LINE__, global_tid, queue, ct));
+ KMP_DEBUG_ASSERT(ct >= 0);
+
+ queue = next;
+ }
+
+ __kmp_release_lock(&curr_queue->tq_link_lck, global_tid);
+ }
+}
+
+/* Starting from indicated queue, proceed downward through tree and remove all
+ taskq's assuming all are finished and assuming NO other threads are executing
+ at this point. */
+static void __kmp_remove_all_child_taskq(kmp_taskq_t *tq, kmp_int32 global_tid,
+ kmpc_task_queue_t *queue) {
+ kmpc_task_queue_t *next_child;
+
+ queue = CCAST(kmpc_task_queue_t *, queue->tq_first_child);
+
+ while (queue != NULL) {
+ __kmp_remove_all_child_taskq(tq, global_tid, queue);
+
+ next_child = queue->tq_next_child;
+ queue->tq_flags |= TQF_DEALLOCATED;
+ __kmp_remove_queue_from_tree(tq, global_tid, queue, FALSE);
+ queue = next_child;
+ }
+}
+
+static void __kmp_execute_task_from_queue(kmp_taskq_t *tq, ident_t *loc,
+ kmp_int32 global_tid,
+ kmpc_thunk_t *thunk,
+ int in_parallel) {
+ kmpc_task_queue_t *queue = thunk->th.th_shareds->sv_queue;
+ kmp_int32 tid = __kmp_tid_from_gtid(global_tid);
+
+ KF_TRACE(100, ("After dequeueing this Task on (%d):\n", global_tid));
+ KF_DUMP(100, __kmp_dump_thunk(tq, thunk, global_tid));
+ KF_TRACE(100, ("Task Queue: %p looks like this (%d):\n", queue, global_tid));
+ KF_DUMP(100, __kmp_dump_task_queue(tq, queue, global_tid));
+
+ /* For the taskq task, the curr_thunk pushes and pop pairs are set up as
+ * follows:
+ *
+ * happens exactly once:
+ * 1) __kmpc_taskq : push (if returning thunk only)
+ * 4) __kmpc_end_taskq_task : pop
+ *
+ * optionally happens *each* time taskq task is dequeued/enqueued:
+ * 2) __kmpc_taskq_task : pop
+ * 3) __kmp_execute_task_from_queue : push
+ *
+ * execution ordering: 1,(2,3)*,4
+ */
+
+ if (!(thunk->th_flags & TQF_TASKQ_TASK)) {
+ kmp_int32 index = (queue == tq->tq_root) ? tid : 0;
+ thunk->th.th_shareds =
+ CCAST(kmpc_shared_vars_t *, queue->tq_shareds[index].ai_data);
+
+ if (__kmp_env_consistency_check) {
+ __kmp_push_workshare(global_tid,
+ (queue->tq_flags & TQF_IS_ORDERED) ? ct_task_ordered
+ : ct_task,
+ queue->tq_loc);
+ }
+ } else {
+ if (__kmp_env_consistency_check)
+ __kmp_push_workshare(global_tid, ct_taskq, queue->tq_loc);
+ }
+
+ if (in_parallel) {
+ thunk->th_encl_thunk = tq->tq_curr_thunk[tid];
+ tq->tq_curr_thunk[tid] = thunk;
+
+ KF_DUMP(200, __kmp_dump_thunk_stack(tq->tq_curr_thunk[tid], global_tid));
+ }
+
+ KF_TRACE(50, ("Begin Executing Thunk %p from queue %p on (%d)\n", thunk,
+ queue, global_tid));
+ thunk->th_task(global_tid, thunk);
+ KF_TRACE(50, ("End Executing Thunk %p from queue %p on (%d)\n", thunk, queue,
+ global_tid));
+
+ if (!(thunk->th_flags & TQF_TASKQ_TASK)) {
+ if (__kmp_env_consistency_check)
+ __kmp_pop_workshare(global_tid,
+ (queue->tq_flags & TQF_IS_ORDERED) ? ct_task_ordered
+ : ct_task,
+ queue->tq_loc);
+
+ if (in_parallel) {
+ tq->tq_curr_thunk[tid] = thunk->th_encl_thunk;
+ thunk->th_encl_thunk = NULL;
+ KF_DUMP(200, __kmp_dump_thunk_stack(tq->tq_curr_thunk[tid], global_tid));
+ }
+
+ if ((thunk->th_flags & TQF_IS_ORDERED) && in_parallel) {
+ __kmp_taskq_check_ordered(global_tid, thunk);
+ }
+
+ __kmp_free_thunk(queue, thunk, in_parallel, global_tid);
+
+ KF_TRACE(100, ("T#%d After freeing thunk: %p, TaskQ looks like this:\n",
+ global_tid, thunk));
+ KF_DUMP(100, __kmp_dump_task_queue(tq, queue, global_tid));
+
+ if (in_parallel) {
+ KMP_MB(); /* needed so thunk put on free list before outstanding thunk
+ count is decremented */
+
+ KMP_DEBUG_ASSERT(queue->tq_th_thunks[tid].ai_data >= 1);
+
+ KF_TRACE(
+ 200,
+ ("__kmp_execute_task_from_queue: T#%d has %d thunks in queue %p\n",
+ global_tid, queue->tq_th_thunks[tid].ai_data - 1, queue));
+
+ queue->tq_th_thunks[tid].ai_data--;
+
+ /* KMP_MB(); */ /* is MB really necessary ? */
+ }
+
+ if (queue->tq.tq_parent != NULL && in_parallel) {
+ int ct;
+ __kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
+ ct = --(queue->tq_ref_count);
+ __kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
+ KMP_DEBUG_REF_CTS(
+ ("line %d gtid %d: Q %p dec %d\n", __LINE__, global_tid, queue, ct));
+ KMP_DEBUG_ASSERT(ct >= 0);
+ }
+ }
+}
+
+/* starts a taskq; creates and returns a thunk for the taskq_task */
+/* also, returns pointer to shared vars for this thread in "shareds" arg */
+kmpc_thunk_t *__kmpc_taskq(ident_t *loc, kmp_int32 global_tid,
+ kmpc_task_t taskq_task, size_t sizeof_thunk,
+ size_t sizeof_shareds, kmp_int32 flags,
+ kmpc_shared_vars_t **shareds) {
+ int in_parallel;
+ kmp_int32 nslots, nthunks, nshareds, nproc;
+ kmpc_task_queue_t *new_queue, *curr_queue;
+ kmpc_thunk_t *new_taskq_thunk;
+ kmp_info_t *th;
+ kmp_team_t *team;
+ kmp_taskq_t *tq;
+ kmp_int32 tid;
+
+ KE_TRACE(10, ("__kmpc_taskq called (%d)\n", global_tid));
+
+ th = __kmp_threads[global_tid];
+ team = th->th.th_team;
+ tq = &team->t.t_taskq;
+ nproc = team->t.t_nproc;
+ tid = __kmp_tid_from_gtid(global_tid);
+
+ /* find out whether this is a parallel taskq or serialized one. */
+ in_parallel = in_parallel_context(team);
+
+ if (!tq->tq_root) {
+ if (in_parallel) {
+ /* Vector ORDERED SECTION to taskq version */
+ th->th.th_dispatch->th_deo_fcn = __kmp_taskq_eo;
+
+ /* Vector ORDERED SECTION to taskq version */
+ th->th.th_dispatch->th_dxo_fcn = __kmp_taskq_xo;
+ }
+
+ if (in_parallel) {
+ // This shouldn't be a barrier region boundary, it will confuse the user.
+ /* Need the boundary to be at the end taskq instead. */
+ if (__kmp_barrier(bs_plain_barrier, global_tid, TRUE, 0, NULL, NULL)) {
+ /* Creating the active root queue, and we are not the master thread. */
+ /* The master thread below created the queue and tasks have been */
+ /* enqueued, and the master thread released this barrier. This */
+ /* worker thread can now proceed and execute tasks. See also the */
+ /* TQF_RELEASE_WORKERS which is used to handle this case. */
+ *shareds =
+ CCAST(kmpc_shared_vars_t *, tq->tq_root->tq_shareds[tid].ai_data);
+ KE_TRACE(10, ("__kmpc_taskq return (%d)\n", global_tid));
+
+ return NULL;
+ }
+ }
+
+ /* master thread only executes this code */
+ if (tq->tq_curr_thunk_capacity < nproc) {
+ if (tq->tq_curr_thunk)
+ __kmp_free(tq->tq_curr_thunk);
+ else {
+ /* only need to do this once at outer level, i.e. when tq_curr_thunk is
+ * still NULL */
+ __kmp_init_lock(&tq->tq_freelist_lck);
+ }
+
+ tq->tq_curr_thunk =
+ (kmpc_thunk_t **)__kmp_allocate(nproc * sizeof(kmpc_thunk_t *));
+ tq->tq_curr_thunk_capacity = nproc;
+ }
+
+ if (in_parallel)
+ tq->tq_global_flags = TQF_RELEASE_WORKERS;
+ }
+
+ /* dkp: in future, if flags & TQF_HEURISTICS, will choose nslots based */
+ /* on some heuristics (e.g., depth of queue nesting?). */
+ nslots = (in_parallel) ? (2 * nproc) : 1;
+
+ /* There must be nproc * __KMP_TASKQ_THUNKS_PER_TH extra slots for pending */
+ /* jobs being executed by other threads, and one extra for taskq slot */
+ nthunks = (in_parallel) ? (nslots + (nproc * __KMP_TASKQ_THUNKS_PER_TH) + 1)
+ : nslots + 2;
+
+ /* Only the root taskq gets a per-thread array of shareds. */
+ /* The rest of the taskq's only get one copy of the shared vars. */
+ nshareds = (!tq->tq_root && in_parallel) ? nproc : 1;
+
+ /* create overall queue data structure and its components that require
+ * allocation */
+ new_queue = __kmp_alloc_taskq(tq, in_parallel, nslots, nthunks, nshareds,
+ nproc, sizeof_thunk, sizeof_shareds,
+ &new_taskq_thunk, global_tid);
+
+ /* rest of new_queue initializations */
+ new_queue->tq_flags = flags & TQF_INTERFACE_FLAGS;
+
+ if (in_parallel) {
+ new_queue->tq_tasknum_queuing = 0;
+ new_queue->tq_tasknum_serving = 0;
+ new_queue->tq_flags |= TQF_PARALLEL_CONTEXT;
+ }
+
+ new_queue->tq_taskq_slot = NULL;
+ new_queue->tq_nslots = nslots;
+ new_queue->tq_hiwat = HIGH_WATER_MARK(nslots);
+ new_queue->tq_nfull = 0;
+ new_queue->tq_head = 0;
+ new_queue->tq_tail = 0;
+ new_queue->tq_loc = loc;
+
+ if ((new_queue->tq_flags & TQF_IS_ORDERED) && in_parallel) {
+ /* prepare to serve the first-queued task's ORDERED directive */
+ new_queue->tq_tasknum_serving = 1;
+
+ /* Vector ORDERED SECTION to taskq version */
+ th->th.th_dispatch->th_deo_fcn = __kmp_taskq_eo;
+
+ /* Vector ORDERED SECTION to taskq version */
+ th->th.th_dispatch->th_dxo_fcn = __kmp_taskq_xo;
+ }
+
+ /* create a new thunk for the taskq_task in the new_queue */
+ *shareds = CCAST(kmpc_shared_vars_t *, new_queue->tq_shareds[0].ai_data);
+
+ new_taskq_thunk->th.th_shareds = *shareds;
+ new_taskq_thunk->th_task = taskq_task;
+ new_taskq_thunk->th_flags = new_queue->tq_flags | TQF_TASKQ_TASK;
+ new_taskq_thunk->th_status = 0;
+
+ KMP_DEBUG_ASSERT(new_taskq_thunk->th_flags & TQF_TASKQ_TASK);
+
+ // Make sure these inits complete before threads start using this queue
+ /* KMP_MB(); */ // (necessary?)
+
+ /* insert the new task queue into the tree, but only after all fields
+ * initialized */
+
+ if (in_parallel) {
+ if (!tq->tq_root) {
+ new_queue->tq.tq_parent = NULL;
+ new_queue->tq_first_child = NULL;
+ new_queue->tq_next_child = NULL;
+ new_queue->tq_prev_child = NULL;
+ new_queue->tq_ref_count = 1;
+ tq->tq_root = new_queue;
+ } else {
+ curr_queue = tq->tq_curr_thunk[tid]->th.th_shareds->sv_queue;
+ new_queue->tq.tq_parent = curr_queue;
+ new_queue->tq_first_child = NULL;
+ new_queue->tq_prev_child = NULL;
+ new_queue->tq_ref_count =
+ 1; /* for this the thread that built the queue */
+
+ KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p alloc %d\n", __LINE__,
+ global_tid, new_queue, new_queue->tq_ref_count));
+
+ __kmp_acquire_lock(&curr_queue->tq_link_lck, global_tid);
+
+ // Make sure data structures are in consistent state before querying them
+ // Seems to work without this for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+
+ new_queue->tq_next_child =
+ CCAST(struct kmpc_task_queue_t *, curr_queue->tq_first_child);
+
+ if (curr_queue->tq_first_child != NULL)
+ curr_queue->tq_first_child->tq_prev_child = new_queue;
+
+ curr_queue->tq_first_child = new_queue;
+
+ __kmp_release_lock(&curr_queue->tq_link_lck, global_tid);
+ }
+
+ /* set up thunk stack only after code that determines curr_queue above */
+ new_taskq_thunk->th_encl_thunk = tq->tq_curr_thunk[tid];
+ tq->tq_curr_thunk[tid] = new_taskq_thunk;
+
+ KF_DUMP(200, __kmp_dump_thunk_stack(tq->tq_curr_thunk[tid], global_tid));
+ } else {
+ new_taskq_thunk->th_encl_thunk = 0;
+ new_queue->tq.tq_parent = NULL;
+ new_queue->tq_first_child = NULL;
+ new_queue->tq_next_child = NULL;
+ new_queue->tq_prev_child = NULL;
+ new_queue->tq_ref_count = 1;
+ }
+
+#ifdef KMP_DEBUG
+ KF_TRACE(150, ("Creating TaskQ Task on (%d):\n", global_tid));
+ KF_DUMP(150, __kmp_dump_thunk(tq, new_taskq_thunk, global_tid));
+
+ if (in_parallel) {
+ KF_TRACE(25,
+ ("After TaskQ at %p Creation on (%d):\n", new_queue, global_tid));
+ } else {
+ KF_TRACE(25, ("After Serial TaskQ at %p Creation on (%d):\n", new_queue,
+ global_tid));
+ }
+
+ KF_DUMP(25, __kmp_dump_task_queue(tq, new_queue, global_tid));
+
+ if (in_parallel) {
+ KF_DUMP(50, __kmp_dump_task_queue_tree(tq, tq->tq_root, global_tid));
+ }
+#endif /* KMP_DEBUG */
+
+ if (__kmp_env_consistency_check)
+ __kmp_push_workshare(global_tid, ct_taskq, new_queue->tq_loc);
+
+ KE_TRACE(10, ("__kmpc_taskq return (%d)\n", global_tid));
+
+ return new_taskq_thunk;
+}
+
+/* ends a taskq; last thread out destroys the queue */
+
+void __kmpc_end_taskq(ident_t *loc, kmp_int32 global_tid,
+ kmpc_thunk_t *taskq_thunk) {
+#ifdef KMP_DEBUG
+ kmp_int32 i;
+#endif
+ kmp_taskq_t *tq;
+ int in_parallel;
+ kmp_info_t *th;
+ kmp_int32 is_outermost;
+ kmpc_task_queue_t *queue;
+ kmpc_thunk_t *thunk;
+ int nproc;
+
+ KE_TRACE(10, ("__kmpc_end_taskq called (%d)\n", global_tid));
+
+ tq = &__kmp_threads[global_tid]->th.th_team->t.t_taskq;
+ nproc = __kmp_threads[global_tid]->th.th_team->t.t_nproc;
+
+ /* For the outermost taskq only, all but one thread will have taskq_thunk ==
+ * NULL */
+ queue = (taskq_thunk == NULL) ? tq->tq_root
+ : taskq_thunk->th.th_shareds->sv_queue;
+
+ KE_TRACE(50, ("__kmpc_end_taskq queue=%p (%d) \n", queue, global_tid));
+ is_outermost = (queue == tq->tq_root);
+ in_parallel = (queue->tq_flags & TQF_PARALLEL_CONTEXT);
+
+ if (in_parallel) {
+ kmp_uint32 spins;
+
+ /* this is just a safeguard to release the waiting threads if */
+ /* the outermost taskq never queues a task */
+
+ if (is_outermost && (KMP_MASTER_GTID(global_tid))) {
+ if (tq->tq_global_flags & TQF_RELEASE_WORKERS) {
+ /* no lock needed, workers are still in spin mode */
+ tq->tq_global_flags &= ~TQF_RELEASE_WORKERS;
+
+ __kmp_end_split_barrier(bs_plain_barrier, global_tid);
+ }
+ }
+
+ /* keep dequeueing work until all tasks are queued and dequeued */
+
+ do {
+ /* wait until something is available to dequeue */
+ KMP_INIT_YIELD(spins);
+
+ while ((queue->tq_nfull == 0) && (queue->tq_taskq_slot == NULL) &&
+ (!__kmp_taskq_has_any_children(queue)) &&
+ (!(queue->tq_flags & TQF_ALL_TASKS_QUEUED))) {
+ KMP_YIELD_WHEN(TRUE, spins);
+ }
+
+ /* check to see if we can execute tasks in the queue */
+ while (((queue->tq_nfull != 0) || (queue->tq_taskq_slot != NULL)) &&
+ (thunk = __kmp_find_task_in_queue(global_tid, queue)) != NULL) {
+ KF_TRACE(50, ("Found thunk: %p in primary queue %p (%d)\n", thunk,
+ queue, global_tid));
+ __kmp_execute_task_from_queue(tq, loc, global_tid, thunk, in_parallel);
+ }
+
+ /* see if work found can be found in a descendant queue */
+ if ((__kmp_taskq_has_any_children(queue)) &&
+ (thunk = __kmp_find_task_in_descendant_queue(global_tid, queue)) !=
+ NULL) {
+
+ KF_TRACE(50,
+ ("Stole thunk: %p in descendant queue: %p while waiting in "
+ "queue: %p (%d)\n",
+ thunk, thunk->th.th_shareds->sv_queue, queue, global_tid));
+
+ __kmp_execute_task_from_queue(tq, loc, global_tid, thunk, in_parallel);
+ }
+
+ } while ((!(queue->tq_flags & TQF_ALL_TASKS_QUEUED)) ||
+ (queue->tq_nfull != 0));
+
+ KF_TRACE(50, ("All tasks queued and dequeued in queue: %p (%d)\n", queue,
+ global_tid));
+
+ /* wait while all tasks are not finished and more work found
+ in descendant queues */
+
+ while ((!__kmp_taskq_tasks_finished(queue)) &&
+ (thunk = __kmp_find_task_in_descendant_queue(global_tid, queue)) !=
+ NULL) {
+
+ KF_TRACE(50, ("Stole thunk: %p in descendant queue: %p while waiting in "
+ "queue: %p (%d)\n",
+ thunk, thunk->th.th_shareds->sv_queue, queue, global_tid));
+
+ __kmp_execute_task_from_queue(tq, loc, global_tid, thunk, in_parallel);
+ }
+
+ KF_TRACE(50, ("No work found in descendent queues or all work finished in "
+ "queue: %p (%d)\n",
+ queue, global_tid));
+
+ if (!is_outermost) {
+ /* need to return if NOWAIT present and not outermost taskq */
+
+ if (queue->tq_flags & TQF_IS_NOWAIT) {
+ __kmp_acquire_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
+ queue->tq_ref_count--;
+ KMP_DEBUG_ASSERT(queue->tq_ref_count >= 0);
+ __kmp_release_lock(&queue->tq.tq_parent->tq_link_lck, global_tid);
+
+ KE_TRACE(
+ 10, ("__kmpc_end_taskq return for nowait case (%d)\n", global_tid));
+
+ return;
+ }
+
+ __kmp_find_and_remove_finished_child_taskq(tq, global_tid, queue);
+
+ /* WAIT until all tasks are finished and no child queues exist before
+ * proceeding */
+ KMP_INIT_YIELD(spins);
+
+ while (!__kmp_taskq_tasks_finished(queue) ||
+ __kmp_taskq_has_any_children(queue)) {
+ thunk = __kmp_find_task_in_ancestor_queue(tq, global_tid, queue);
+
+ if (thunk != NULL) {
+ KF_TRACE(50,
+ ("Stole thunk: %p in ancestor queue: %p while waiting in "
+ "queue: %p (%d)\n",
+ thunk, thunk->th.th_shareds->sv_queue, queue, global_tid));
+ __kmp_execute_task_from_queue(tq, loc, global_tid, thunk,
+ in_parallel);
+ }
+
+ KMP_YIELD_WHEN(thunk == NULL, spins);
+
+ __kmp_find_and_remove_finished_child_taskq(tq, global_tid, queue);
+ }
+
+ __kmp_acquire_lock(&queue->tq_queue_lck, global_tid);
+ if (!(queue->tq_flags & TQF_DEALLOCATED)) {
+ queue->tq_flags |= TQF_DEALLOCATED;
+ }
+ __kmp_release_lock(&queue->tq_queue_lck, global_tid);
+
+ /* only the allocating thread can deallocate the queue */
+ if (taskq_thunk != NULL) {
+ __kmp_remove_queue_from_tree(tq, global_tid, queue, TRUE);
+ }
+
+ KE_TRACE(
+ 10,
+ ("__kmpc_end_taskq return for non_outermost queue, wait case (%d)\n",
+ global_tid));
+
+ return;
+ }
+
+ // Outermost Queue: steal work from descendants until all tasks are finished
+
+ KMP_INIT_YIELD(spins);
+
+ while (!__kmp_taskq_tasks_finished(queue)) {
+ thunk = __kmp_find_task_in_descendant_queue(global_tid, queue);
+
+ if (thunk != NULL) {
+ KF_TRACE(50,
+ ("Stole thunk: %p in descendant queue: %p while waiting in "
+ "queue: %p (%d)\n",
+ thunk, thunk->th.th_shareds->sv_queue, queue, global_tid));
+
+ __kmp_execute_task_from_queue(tq, loc, global_tid, thunk, in_parallel);
+ }
+
+ KMP_YIELD_WHEN(thunk == NULL, spins);
+ }
+
+ /* Need this barrier to prevent destruction of queue before threads have all
+ * executed above code */
+ /* This may need to be done earlier when NOWAIT is implemented for the
+ * outermost level */
+
+ if (!__kmp_barrier(bs_plain_barrier, global_tid, TRUE, 0, NULL, NULL)) {
+ /* the queue->tq_flags & TQF_IS_NOWAIT case is not yet handled here; */
+ /* for right now, everybody waits, and the master thread destroys the */
+ /* remaining queues. */
+
+ __kmp_remove_all_child_taskq(tq, global_tid, queue);
+
+ /* Now destroy the root queue */
+ KF_TRACE(100, ("T#%d Before Deletion of top-level TaskQ at %p:\n",
+ global_tid, queue));
+ KF_DUMP(100, __kmp_dump_task_queue(tq, queue, global_tid));
+
+#ifdef KMP_DEBUG
+ /* the root queue entry */
+ KMP_DEBUG_ASSERT((queue->tq.tq_parent == NULL) &&
+ (queue->tq_next_child == NULL));
+
+ /* children must all be gone by now because of barrier above */
+ KMP_DEBUG_ASSERT(queue->tq_first_child == NULL);
+
+ for (i = 0; i < nproc; i++) {
+ KMP_DEBUG_ASSERT(queue->tq_th_thunks[i].ai_data == 0);
+ }
+
+ for (i = 0, thunk = queue->tq_free_thunks; thunk != NULL;
+ i++, thunk = thunk->th.th_next_free)
+ ;
+
+ KMP_DEBUG_ASSERT(i ==
+ queue->tq_nslots + (nproc * __KMP_TASKQ_THUNKS_PER_TH));
+
+ for (i = 0; i < nproc; i++) {
+ KMP_DEBUG_ASSERT(!tq->tq_curr_thunk[i]);
+ }
+#endif
+ /* unlink the root queue entry */
+ tq->tq_root = NULL;
+
+ /* release storage for root queue entry */
+ KF_TRACE(50, ("After Deletion of top-level TaskQ at %p on (%d):\n", queue,
+ global_tid));
+
+ queue->tq_flags |= TQF_DEALLOCATED;
+ __kmp_free_taskq(tq, queue, in_parallel, global_tid);
+
+ KF_DUMP(50, __kmp_dump_task_queue_tree(tq, tq->tq_root, global_tid));
+
+ /* release the workers now that the data structures are up to date */
+ __kmp_end_split_barrier(bs_plain_barrier, global_tid);
+ }
+
+ th = __kmp_threads[global_tid];
+
+ /* Reset ORDERED SECTION to parallel version */
+ th->th.th_dispatch->th_deo_fcn = 0;
+
+ /* Reset ORDERED SECTION to parallel version */
+ th->th.th_dispatch->th_dxo_fcn = 0;
+ } else {
+ /* in serial execution context, dequeue the last task */
+ /* and execute it, if there were any tasks encountered */
+
+ if (queue->tq_nfull > 0) {
+ KMP_DEBUG_ASSERT(queue->tq_nfull == 1);
+
+ thunk = __kmp_dequeue_task(global_tid, queue, in_parallel);
+
+ if (queue->tq_flags & TQF_IS_LAST_TASK) {
+ /* TQF_IS_LASTPRIVATE, one thing in queue, __kmpc_end_taskq_task() */
+ /* has been run so this is last task, run with TQF_IS_LAST_TASK so */
+ /* instrumentation does copy-out. */
+
+ /* no need for test_then_or call since already locked */
+ thunk->th_flags |= TQF_IS_LAST_TASK;
+ }
+
+ KF_TRACE(50, ("T#%d found thunk: %p in serial queue: %p\n", global_tid,
+ thunk, queue));
+
+ __kmp_execute_task_from_queue(tq, loc, global_tid, thunk, in_parallel);
+ }
+
+ // destroy the unattached serial queue now that there is no more work to do
+ KF_TRACE(100, ("Before Deletion of Serialized TaskQ at %p on (%d):\n",
+ queue, global_tid));
+ KF_DUMP(100, __kmp_dump_task_queue(tq, queue, global_tid));
+
+#ifdef KMP_DEBUG
+ i = 0;
+ for (thunk = queue->tq_free_thunks; thunk != NULL;
+ thunk = thunk->th.th_next_free)
+ ++i;
+ KMP_DEBUG_ASSERT(i == queue->tq_nslots + 1);
+#endif
+ /* release storage for unattached serial queue */
+ KF_TRACE(50,
+ ("Serialized TaskQ at %p deleted on (%d).\n", queue, global_tid));
+
+ queue->tq_flags |= TQF_DEALLOCATED;
+ __kmp_free_taskq(tq, queue, in_parallel, global_tid);
+ }
+
+ KE_TRACE(10, ("__kmpc_end_taskq return (%d)\n", global_tid));
+}
+
+/* Enqueues a task for thunk previously created by __kmpc_task_buffer. */
+/* Returns nonzero if just filled up queue */
+
+kmp_int32 __kmpc_task(ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk) {
+ kmp_int32 ret;
+ kmpc_task_queue_t *queue;
+ int in_parallel;
+ kmp_taskq_t *tq;
+
+ KE_TRACE(10, ("__kmpc_task called (%d)\n", global_tid));
+
+ KMP_DEBUG_ASSERT(!(thunk->th_flags &
+ TQF_TASKQ_TASK)); /* thunk->th_task is a regular task */
+
+ tq = &__kmp_threads[global_tid]->th.th_team->t.t_taskq;
+ queue = thunk->th.th_shareds->sv_queue;
+ in_parallel = (queue->tq_flags & TQF_PARALLEL_CONTEXT);
+
+ if (in_parallel && (thunk->th_flags & TQF_IS_ORDERED))
+ thunk->th_tasknum = ++queue->tq_tasknum_queuing;
+
+ /* For serial execution dequeue the preceding task and execute it, if one
+ * exists */
+ /* This cannot be the last task. That one is handled in __kmpc_end_taskq */
+
+ if (!in_parallel && queue->tq_nfull > 0) {
+ kmpc_thunk_t *prev_thunk;
+
+ KMP_DEBUG_ASSERT(queue->tq_nfull == 1);
+
+ prev_thunk = __kmp_dequeue_task(global_tid, queue, in_parallel);
+
+ KF_TRACE(50, ("T#%d found thunk: %p in serial queue: %p\n", global_tid,
+ prev_thunk, queue));
+
+ __kmp_execute_task_from_queue(tq, loc, global_tid, prev_thunk, in_parallel);
+ }
+
+ /* The instrumentation sequence is: __kmpc_task_buffer(), initialize private
+ variables, __kmpc_task(). The __kmpc_task_buffer routine checks that the
+ task queue is not full and allocates a thunk (which is then passed to
+ __kmpc_task()). So, the enqueue below should never fail due to a full
+ queue. */
+
+ KF_TRACE(100, ("After enqueueing this Task on (%d):\n", global_tid));
+ KF_DUMP(100, __kmp_dump_thunk(tq, thunk, global_tid));
+
+ ret = __kmp_enqueue_task(tq, global_tid, queue, thunk, in_parallel);
+
+ KF_TRACE(100, ("Task Queue looks like this on (%d):\n", global_tid));
+ KF_DUMP(100, __kmp_dump_task_queue(tq, queue, global_tid));
+
+ KE_TRACE(10, ("__kmpc_task return (%d)\n", global_tid));
+
+ return ret;
+}
+
+/* enqueues a taskq_task for thunk previously created by __kmpc_taskq */
+/* this should never be called unless in a parallel context */
+
+void __kmpc_taskq_task(ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk,
+ kmp_int32 status) {
+ kmpc_task_queue_t *queue;
+ kmp_taskq_t *tq = &__kmp_threads[global_tid]->th.th_team->t.t_taskq;
+ int tid = __kmp_tid_from_gtid(global_tid);
+
+ KE_TRACE(10, ("__kmpc_taskq_task called (%d)\n", global_tid));
+ KF_TRACE(100, ("TaskQ Task argument thunk on (%d):\n", global_tid));
+ KF_DUMP(100, __kmp_dump_thunk(tq, thunk, global_tid));
+
+ queue = thunk->th.th_shareds->sv_queue;
+
+ if (__kmp_env_consistency_check)
+ __kmp_pop_workshare(global_tid, ct_taskq, loc);
+
+ /* thunk->th_task is the taskq_task */
+ KMP_DEBUG_ASSERT(thunk->th_flags & TQF_TASKQ_TASK);
+
+ /* not supposed to call __kmpc_taskq_task if it's already enqueued */
+ KMP_DEBUG_ASSERT(queue->tq_taskq_slot == NULL);
+
+ /* dequeue taskq thunk from curr_thunk stack */
+ tq->tq_curr_thunk[tid] = thunk->th_encl_thunk;
+ thunk->th_encl_thunk = NULL;
+
+ KF_DUMP(200, __kmp_dump_thunk_stack(tq->tq_curr_thunk[tid], global_tid));
+
+ thunk->th_status = status;
+
+ // Flush thunk->th_status before taskq_task enqueued to avoid race condition
+ KMP_MB();
+
+ /* enqueue taskq_task in thunk into special slot in queue */
+ /* GEH - probably don't need to lock taskq slot since only one */
+ /* thread enqueues & already a lock set at dequeue point */
+
+ queue->tq_taskq_slot = thunk;
+
+ KE_TRACE(10, ("__kmpc_taskq_task return (%d)\n", global_tid));
+}
+
+/* ends a taskq_task; done generating tasks */
+
+void __kmpc_end_taskq_task(ident_t *loc, kmp_int32 global_tid,
+ kmpc_thunk_t *thunk) {
+ kmp_taskq_t *tq;
+ kmpc_task_queue_t *queue;
+ int in_parallel;
+ int tid;
+
+ KE_TRACE(10, ("__kmpc_end_taskq_task called (%d)\n", global_tid));
+
+ tq = &__kmp_threads[global_tid]->th.th_team->t.t_taskq;
+ queue = thunk->th.th_shareds->sv_queue;
+ in_parallel = (queue->tq_flags & TQF_PARALLEL_CONTEXT);
+ tid = __kmp_tid_from_gtid(global_tid);
+
+ if (__kmp_env_consistency_check)
+ __kmp_pop_workshare(global_tid, ct_taskq, loc);
+
+ if (in_parallel) {
+#if KMP_ARCH_X86 || KMP_ARCH_X86_64
+ KMP_TEST_THEN_OR32(RCAST(volatile kmp_uint32 *, &queue->tq_flags),
+ TQF_ALL_TASKS_QUEUED);
+#else
+ {
+ __kmp_acquire_lock(&queue->tq_queue_lck, global_tid);
+
+ // Make sure data structures are in consistent state before querying them
+ // Seems to work without this for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+
+ queue->tq_flags |= TQF_ALL_TASKS_QUEUED;
+ __kmp_release_lock(&queue->tq_queue_lck, global_tid);
+ }
+#endif
+ }
+
+ if (thunk->th_flags & TQF_IS_LASTPRIVATE) {
+ /* Normally, __kmp_find_task_in_queue() refuses to schedule the last task in
+ the queue if TQF_IS_LASTPRIVATE so we can positively identify that last
+ task and run it with its TQF_IS_LAST_TASK bit turned on in th_flags.
+ When __kmpc_end_taskq_task() is called we are done generating all the
+ tasks, so we know the last one in the queue is the lastprivate task.
+ Mark the queue as having gotten to this state via tq_flags &
+ TQF_IS_LAST_TASK; when that task actually executes mark it via th_flags &
+ TQF_IS_LAST_TASK (this th_flags bit signals the instrumented code to do
+ copy-outs after execution). */
+ if (!in_parallel) {
+ /* No synchronization needed for serial context */
+ queue->tq_flags |= TQF_IS_LAST_TASK;
+ } else {
+#if KMP_ARCH_X86 || KMP_ARCH_X86_64
+ KMP_TEST_THEN_OR32(RCAST(volatile kmp_uint32 *, &queue->tq_flags),
+ TQF_IS_LAST_TASK);
+#else
+ {
+ __kmp_acquire_lock(&queue->tq_queue_lck, global_tid);
+
+ // Make sure data structures in consistent state before querying them
+ // Seems to work without this for digital/alpha, needed for IBM/RS6000
+ KMP_MB();
+
+ queue->tq_flags |= TQF_IS_LAST_TASK;
+ __kmp_release_lock(&queue->tq_queue_lck, global_tid);
+ }
+#endif
+ /* to prevent race condition where last task is dequeued but */
+ /* flag isn't visible yet (not sure about this) */
+ KMP_MB();
+ }
+ }
+
+ /* dequeue taskq thunk from curr_thunk stack */
+ if (in_parallel) {
+ tq->tq_curr_thunk[tid] = thunk->th_encl_thunk;
+ thunk->th_encl_thunk = NULL;
+
+ KF_DUMP(200, __kmp_dump_thunk_stack(tq->tq_curr_thunk[tid], global_tid));
+ }
+
+ KE_TRACE(10, ("__kmpc_end_taskq_task return (%d)\n", global_tid));
+}
+
+/* returns thunk for a regular task based on taskq_thunk */
+/* (__kmpc_taskq_task does the analogous thing for a TQF_TASKQ_TASK) */
+
+kmpc_thunk_t *__kmpc_task_buffer(ident_t *loc, kmp_int32 global_tid,
+ kmpc_thunk_t *taskq_thunk, kmpc_task_t task) {
+ kmp_taskq_t *tq;
+ kmpc_task_queue_t *queue;
+ kmpc_thunk_t *new_thunk;
+ int in_parallel;
+
+ KE_TRACE(10, ("__kmpc_task_buffer called (%d)\n", global_tid));
+
+ KMP_DEBUG_ASSERT(
+ taskq_thunk->th_flags &
+ TQF_TASKQ_TASK); /* taskq_thunk->th_task is the taskq_task */
+
+ tq = &__kmp_threads[global_tid]->th.th_team->t.t_taskq;
+ queue = taskq_thunk->th.th_shareds->sv_queue;
+ in_parallel = (queue->tq_flags & TQF_PARALLEL_CONTEXT);
+
+ /* The instrumentation sequence is: __kmpc_task_buffer(), initialize private
+ variables, __kmpc_task(). The __kmpc_task_buffer routine checks that the
+ task queue is not full and allocates a thunk (which is then passed to
+ __kmpc_task()). So, we can pre-allocate a thunk here assuming it will be
+ the next to be enqueued in __kmpc_task(). */
+
+ new_thunk = __kmp_alloc_thunk(queue, in_parallel, global_tid);
+ new_thunk->th.th_shareds =
+ CCAST(kmpc_shared_vars_t *, queue->tq_shareds[0].ai_data);
+ new_thunk->th_encl_thunk = NULL;
+ new_thunk->th_task = task;
+
+ /* GEH - shouldn't need to lock the read of tq_flags here */
+ new_thunk->th_flags = queue->tq_flags & TQF_INTERFACE_FLAGS;
+
+ new_thunk->th_status = 0;
+
+ KMP_DEBUG_ASSERT(!(new_thunk->th_flags & TQF_TASKQ_TASK));
+
+ KF_TRACE(100, ("Creating Regular Task on (%d):\n", global_tid));
+ KF_DUMP(100, __kmp_dump_thunk(tq, new_thunk, global_tid));
+
+ KE_TRACE(10, ("__kmpc_task_buffer return (%d)\n", global_tid));
+
+ return new_thunk;
+}