aboutsummaryrefslogtreecommitdiff
path: root/final/runtime/src/kmp_affinity.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'final/runtime/src/kmp_affinity.cpp')
-rw-r--r--final/runtime/src/kmp_affinity.cpp5342
1 files changed, 5342 insertions, 0 deletions
diff --git a/final/runtime/src/kmp_affinity.cpp b/final/runtime/src/kmp_affinity.cpp
new file mode 100644
index 0000000..372c300
--- /dev/null
+++ b/final/runtime/src/kmp_affinity.cpp
@@ -0,0 +1,5342 @@
+/*
+ * kmp_affinity.cpp -- affinity management
+ */
+
+//===----------------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "kmp.h"
+#include "kmp_affinity.h"
+#include "kmp_i18n.h"
+#include "kmp_io.h"
+#include "kmp_str.h"
+#include "kmp_wrapper_getpid.h"
+#if KMP_USE_HIER_SCHED
+#include "kmp_dispatch_hier.h"
+#endif
+
+// Store the real or imagined machine hierarchy here
+static hierarchy_info machine_hierarchy;
+
+void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
+
+void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
+ kmp_uint32 depth;
+ // The test below is true if affinity is available, but set to "none". Need to
+ // init on first use of hierarchical barrier.
+ if (TCR_1(machine_hierarchy.uninitialized))
+ machine_hierarchy.init(NULL, nproc);
+
+ // Adjust the hierarchy in case num threads exceeds original
+ if (nproc > machine_hierarchy.base_num_threads)
+ machine_hierarchy.resize(nproc);
+
+ depth = machine_hierarchy.depth;
+ KMP_DEBUG_ASSERT(depth > 0);
+
+ thr_bar->depth = depth;
+ thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0] - 1;
+ thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
+}
+
+#if KMP_AFFINITY_SUPPORTED
+
+bool KMPAffinity::picked_api = false;
+
+void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
+void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
+void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
+void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
+void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
+void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
+
+void KMPAffinity::pick_api() {
+ KMPAffinity *affinity_dispatch;
+ if (picked_api)
+ return;
+#if KMP_USE_HWLOC
+ // Only use Hwloc if affinity isn't explicitly disabled and
+ // user requests Hwloc topology method
+ if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
+ __kmp_affinity_type != affinity_disabled) {
+ affinity_dispatch = new KMPHwlocAffinity();
+ } else
+#endif
+ {
+ affinity_dispatch = new KMPNativeAffinity();
+ }
+ __kmp_affinity_dispatch = affinity_dispatch;
+ picked_api = true;
+}
+
+void KMPAffinity::destroy_api() {
+ if (__kmp_affinity_dispatch != NULL) {
+ delete __kmp_affinity_dispatch;
+ __kmp_affinity_dispatch = NULL;
+ picked_api = false;
+ }
+}
+
+#define KMP_ADVANCE_SCAN(scan) \
+ while (*scan != '\0') { \
+ scan++; \
+ }
+
+// Print the affinity mask to the character array in a pretty format.
+// The format is a comma separated list of non-negative integers or integer
+// ranges: e.g., 1,2,3-5,7,9-15
+// The format can also be the string "{<empty>}" if no bits are set in mask
+char *__kmp_affinity_print_mask(char *buf, int buf_len,
+ kmp_affin_mask_t *mask) {
+ int start = 0, finish = 0, previous = 0;
+ bool first_range;
+ KMP_ASSERT(buf);
+ KMP_ASSERT(buf_len >= 40);
+ KMP_ASSERT(mask);
+ char *scan = buf;
+ char *end = buf + buf_len - 1;
+
+ // Check for empty set.
+ if (mask->begin() == mask->end()) {
+ KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
+ KMP_ADVANCE_SCAN(scan);
+ KMP_ASSERT(scan <= end);
+ return buf;
+ }
+
+ first_range = true;
+ start = mask->begin();
+ while (1) {
+ // Find next range
+ // [start, previous] is inclusive range of contiguous bits in mask
+ for (finish = mask->next(start), previous = start;
+ finish == previous + 1 && finish != mask->end();
+ finish = mask->next(finish)) {
+ previous = finish;
+ }
+
+ // The first range does not need a comma printed before it, but the rest
+ // of the ranges do need a comma beforehand
+ if (!first_range) {
+ KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
+ KMP_ADVANCE_SCAN(scan);
+ } else {
+ first_range = false;
+ }
+ // Range with three or more contiguous bits in the affinity mask
+ if (previous - start > 1) {
+ KMP_SNPRINTF(scan, end - scan + 1, "%d-%d", static_cast<int>(start),
+ static_cast<int>(previous));
+ } else {
+ // Range with one or two contiguous bits in the affinity mask
+ KMP_SNPRINTF(scan, end - scan + 1, "%d", static_cast<int>(start));
+ KMP_ADVANCE_SCAN(scan);
+ if (previous - start > 0) {
+ KMP_SNPRINTF(scan, end - scan + 1, ",%d", static_cast<int>(previous));
+ }
+ }
+ KMP_ADVANCE_SCAN(scan);
+ // Start over with new start point
+ start = finish;
+ if (start == mask->end())
+ break;
+ // Check for overflow
+ if (end - scan < 2)
+ break;
+ }
+
+ // Check for overflow
+ KMP_ASSERT(scan <= end);
+ return buf;
+}
+#undef KMP_ADVANCE_SCAN
+
+// Print the affinity mask to the string buffer object in a pretty format
+// The format is a comma separated list of non-negative integers or integer
+// ranges: e.g., 1,2,3-5,7,9-15
+// The format can also be the string "{<empty>}" if no bits are set in mask
+kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
+ kmp_affin_mask_t *mask) {
+ int start = 0, finish = 0, previous = 0;
+ bool first_range;
+ KMP_ASSERT(buf);
+ KMP_ASSERT(mask);
+
+ __kmp_str_buf_clear(buf);
+
+ // Check for empty set.
+ if (mask->begin() == mask->end()) {
+ __kmp_str_buf_print(buf, "%s", "{<empty>}");
+ return buf;
+ }
+
+ first_range = true;
+ start = mask->begin();
+ while (1) {
+ // Find next range
+ // [start, previous] is inclusive range of contiguous bits in mask
+ for (finish = mask->next(start), previous = start;
+ finish == previous + 1 && finish != mask->end();
+ finish = mask->next(finish)) {
+ previous = finish;
+ }
+
+ // The first range does not need a comma printed before it, but the rest
+ // of the ranges do need a comma beforehand
+ if (!first_range) {
+ __kmp_str_buf_print(buf, "%s", ",");
+ } else {
+ first_range = false;
+ }
+ // Range with three or more contiguous bits in the affinity mask
+ if (previous - start > 1) {
+ __kmp_str_buf_print(buf, "%d-%d", static_cast<int>(start),
+ static_cast<int>(previous));
+ } else {
+ // Range with one or two contiguous bits in the affinity mask
+ __kmp_str_buf_print(buf, "%d", static_cast<int>(start));
+ if (previous - start > 0) {
+ __kmp_str_buf_print(buf, ",%d", static_cast<int>(previous));
+ }
+ }
+ // Start over with new start point
+ start = finish;
+ if (start == mask->end())
+ break;
+ }
+ return buf;
+}
+
+void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
+ KMP_CPU_ZERO(mask);
+
+#if KMP_GROUP_AFFINITY
+
+ if (__kmp_num_proc_groups > 1) {
+ int group;
+ KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
+ for (group = 0; group < __kmp_num_proc_groups; group++) {
+ int i;
+ int num = __kmp_GetActiveProcessorCount(group);
+ for (i = 0; i < num; i++) {
+ KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
+ }
+ }
+ } else
+
+#endif /* KMP_GROUP_AFFINITY */
+
+ {
+ int proc;
+ for (proc = 0; proc < __kmp_xproc; proc++) {
+ KMP_CPU_SET(proc, mask);
+ }
+ }
+}
+
+// When sorting by labels, __kmp_affinity_assign_child_nums() must first be
+// called to renumber the labels from [0..n] and place them into the child_num
+// vector of the address object. This is done in case the labels used for
+// the children at one node of the hierarchy differ from those used for
+// another node at the same level. Example: suppose the machine has 2 nodes
+// with 2 packages each. The first node contains packages 601 and 602, and
+// second node contains packages 603 and 604. If we try to sort the table
+// for "scatter" affinity, the table will still be sorted 601, 602, 603, 604
+// because we are paying attention to the labels themselves, not the ordinal
+// child numbers. By using the child numbers in the sort, the result is
+// {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604.
+static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os,
+ int numAddrs) {
+ KMP_DEBUG_ASSERT(numAddrs > 0);
+ int depth = address2os->first.depth;
+ unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
+ unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
+ int labCt;
+ for (labCt = 0; labCt < depth; labCt++) {
+ address2os[0].first.childNums[labCt] = counts[labCt] = 0;
+ lastLabel[labCt] = address2os[0].first.labels[labCt];
+ }
+ int i;
+ for (i = 1; i < numAddrs; i++) {
+ for (labCt = 0; labCt < depth; labCt++) {
+ if (address2os[i].first.labels[labCt] != lastLabel[labCt]) {
+ int labCt2;
+ for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) {
+ counts[labCt2] = 0;
+ lastLabel[labCt2] = address2os[i].first.labels[labCt2];
+ }
+ counts[labCt]++;
+ lastLabel[labCt] = address2os[i].first.labels[labCt];
+ break;
+ }
+ }
+ for (labCt = 0; labCt < depth; labCt++) {
+ address2os[i].first.childNums[labCt] = counts[labCt];
+ }
+ for (; labCt < (int)Address::maxDepth; labCt++) {
+ address2os[i].first.childNums[labCt] = 0;
+ }
+ }
+ __kmp_free(lastLabel);
+ __kmp_free(counts);
+}
+
+// All of the __kmp_affinity_create_*_map() routines should set
+// __kmp_affinity_masks to a vector of affinity mask objects of length
+// __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return
+// the number of levels in the machine topology tree (zero if
+// __kmp_affinity_type == affinity_none).
+//
+// All of the __kmp_affinity_create_*_map() routines should set
+// *__kmp_affin_fullMask to the affinity mask for the initialization thread.
+// They need to save and restore the mask, and it could be needed later, so
+// saving it is just an optimization to avoid calling kmp_get_system_affinity()
+// again.
+kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
+
+static int nCoresPerPkg, nPackages;
+static int __kmp_nThreadsPerCore;
+#ifndef KMP_DFLT_NTH_CORES
+static int __kmp_ncores;
+#endif
+static int *__kmp_pu_os_idx = NULL;
+
+// __kmp_affinity_uniform_topology() doesn't work when called from
+// places which support arbitrarily many levels in the machine topology
+// map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map()
+// __kmp_affinity_create_x2apicid_map().
+inline static bool __kmp_affinity_uniform_topology() {
+ return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages);
+}
+
+// Print out the detailed machine topology map, i.e. the physical locations
+// of each OS proc.
+static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len,
+ int depth, int pkgLevel,
+ int coreLevel, int threadLevel) {
+ int proc;
+
+ KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
+ for (proc = 0; proc < len; proc++) {
+ int level;
+ kmp_str_buf_t buf;
+ __kmp_str_buf_init(&buf);
+ for (level = 0; level < depth; level++) {
+ if (level == threadLevel) {
+ __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread));
+ } else if (level == coreLevel) {
+ __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core));
+ } else if (level == pkgLevel) {
+ __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package));
+ } else if (level > pkgLevel) {
+ __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node),
+ level - pkgLevel - 1);
+ } else {
+ __kmp_str_buf_print(&buf, "L%d ", level);
+ }
+ __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]);
+ }
+ KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second,
+ buf.str);
+ __kmp_str_buf_free(&buf);
+ }
+}
+
+#if KMP_USE_HWLOC
+
+static void __kmp_affinity_print_hwloc_tp(AddrUnsPair *addrP, int len,
+ int depth, int *levels) {
+ int proc;
+ kmp_str_buf_t buf;
+ __kmp_str_buf_init(&buf);
+ KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
+ for (proc = 0; proc < len; proc++) {
+ __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Package),
+ addrP[proc].first.labels[0]);
+ if (depth > 1) {
+ int level = 1; // iterate over levels
+ int label = 1; // iterate over labels
+ if (__kmp_numa_detected)
+ // node level follows package
+ if (levels[level++] > 0)
+ __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Node),
+ addrP[proc].first.labels[label++]);
+ if (__kmp_tile_depth > 0)
+ // tile level follows node if any, or package
+ if (levels[level++] > 0)
+ __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Tile),
+ addrP[proc].first.labels[label++]);
+ if (levels[level++] > 0)
+ // core level follows
+ __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Core),
+ addrP[proc].first.labels[label++]);
+ if (levels[level++] > 0)
+ // thread level is the latest
+ __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Thread),
+ addrP[proc].first.labels[label++]);
+ KMP_DEBUG_ASSERT(label == depth);
+ }
+ KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str);
+ __kmp_str_buf_clear(&buf);
+ }
+ __kmp_str_buf_free(&buf);
+}
+
+static int nNodePerPkg, nTilePerPkg, nTilePerNode, nCorePerNode, nCorePerTile;
+
+// This function removes the topology levels that are radix 1 and don't offer
+// further information about the topology. The most common example is when you
+// have one thread context per core, we don't want the extra thread context
+// level if it offers no unique labels. So they are removed.
+// return value: the new depth of address2os
+static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh,
+ int depth, int *levels) {
+ int level;
+ int i;
+ int radix1_detected;
+ int new_depth = depth;
+ for (level = depth - 1; level > 0; --level) {
+ // Detect if this level is radix 1
+ radix1_detected = 1;
+ for (i = 1; i < nTh; ++i) {
+ if (addrP[0].first.labels[level] != addrP[i].first.labels[level]) {
+ // There are differing label values for this level so it stays
+ radix1_detected = 0;
+ break;
+ }
+ }
+ if (!radix1_detected)
+ continue;
+ // Radix 1 was detected
+ --new_depth;
+ levels[level] = -1; // mark level as not present in address2os array
+ if (level == new_depth) {
+ // "turn off" deepest level, just decrement the depth that removes
+ // the level from address2os array
+ for (i = 0; i < nTh; ++i) {
+ addrP[i].first.depth--;
+ }
+ } else {
+ // For other levels, we move labels over and also reduce the depth
+ int j;
+ for (j = level; j < new_depth; ++j) {
+ for (i = 0; i < nTh; ++i) {
+ addrP[i].first.labels[j] = addrP[i].first.labels[j + 1];
+ addrP[i].first.depth--;
+ }
+ levels[j + 1] -= 1;
+ }
+ }
+ }
+ return new_depth;
+}
+
+// Returns the number of objects of type 'type' below 'obj' within the topology
+// tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
+// HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
+// object.
+static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
+ hwloc_obj_type_t type) {
+ int retval = 0;
+ hwloc_obj_t first;
+ for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
+ obj->logical_index, type, 0);
+ first != NULL &&
+ hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) ==
+ obj;
+ first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
+ first)) {
+ ++retval;
+ }
+ return retval;
+}
+
+static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t,
+ hwloc_obj_t o,
+ kmp_hwloc_depth_t depth,
+ hwloc_obj_t *f) {
+ if (o->depth == depth) {
+ if (*f == NULL)
+ *f = o; // output first descendant found
+ return 1;
+ }
+ int sum = 0;
+ for (unsigned i = 0; i < o->arity; i++)
+ sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f);
+ return sum; // will be 0 if no one found (as PU arity is 0)
+}
+
+static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o,
+ hwloc_obj_type_t type,
+ hwloc_obj_t *f) {
+ if (!hwloc_compare_types(o->type, type)) {
+ if (*f == NULL)
+ *f = o; // output first descendant found
+ return 1;
+ }
+ int sum = 0;
+ for (unsigned i = 0; i < o->arity; i++)
+ sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f);
+ return sum; // will be 0 if no one found (as PU arity is 0)
+}
+
+static int __kmp_hwloc_process_obj_core_pu(AddrUnsPair *addrPair,
+ int &nActiveThreads,
+ int &num_active_cores,
+ hwloc_obj_t obj, int depth,
+ int *labels) {
+ hwloc_obj_t core = NULL;
+ hwloc_topology_t &tp = __kmp_hwloc_topology;
+ int NC = __kmp_hwloc_count_children_by_type(tp, obj, HWLOC_OBJ_CORE, &core);
+ for (int core_id = 0; core_id < NC; ++core_id, core = core->next_cousin) {
+ hwloc_obj_t pu = NULL;
+ KMP_DEBUG_ASSERT(core != NULL);
+ int num_active_threads = 0;
+ int NT = __kmp_hwloc_count_children_by_type(tp, core, HWLOC_OBJ_PU, &pu);
+ // int NT = core->arity; pu = core->first_child; // faster?
+ for (int pu_id = 0; pu_id < NT; ++pu_id, pu = pu->next_cousin) {
+ KMP_DEBUG_ASSERT(pu != NULL);
+ if (!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask))
+ continue; // skip inactive (inaccessible) unit
+ Address addr(depth + 2);
+ KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n",
+ obj->os_index, obj->logical_index, core->os_index,
+ core->logical_index, pu->os_index, pu->logical_index));
+ for (int i = 0; i < depth; ++i)
+ addr.labels[i] = labels[i]; // package, etc.
+ addr.labels[depth] = core_id; // core
+ addr.labels[depth + 1] = pu_id; // pu
+ addrPair[nActiveThreads] = AddrUnsPair(addr, pu->os_index);
+ __kmp_pu_os_idx[nActiveThreads] = pu->os_index;
+ nActiveThreads++;
+ ++num_active_threads; // count active threads per core
+ }
+ if (num_active_threads) { // were there any active threads on the core?
+ ++__kmp_ncores; // count total active cores
+ ++num_active_cores; // count active cores per socket
+ if (num_active_threads > __kmp_nThreadsPerCore)
+ __kmp_nThreadsPerCore = num_active_threads; // calc maximum
+ }
+ }
+ return 0;
+}
+
+// Check if NUMA node detected below the package,
+// and if tile object is detected and return its depth
+static int __kmp_hwloc_check_numa() {
+ hwloc_topology_t &tp = __kmp_hwloc_topology;
+ hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
+ int depth, l2cache_depth, package_depth;
+
+ // Get some PU
+ hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, 0);
+ if (hT == NULL) // something has gone wrong
+ return 1;
+
+ // check NUMA node below PACKAGE
+ hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
+ hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
+ KMP_DEBUG_ASSERT(hS != NULL);
+ if (hN != NULL && hN->depth > hS->depth) {
+ __kmp_numa_detected = TRUE; // socket includes node(s)
+ if (__kmp_affinity_gran == affinity_gran_node) {
+ __kmp_affinity_gran = affinity_gran_numa;
+ }
+ }
+
+ package_depth = hwloc_get_type_depth(tp, HWLOC_OBJ_PACKAGE);
+ l2cache_depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
+ // check tile, get object by depth because of multiple caches possible
+ depth = (l2cache_depth < package_depth) ? package_depth : l2cache_depth;
+ hL = hwloc_get_ancestor_obj_by_depth(tp, depth, hT);
+ hC = NULL; // not used, but reset it here just in case
+ if (hL != NULL &&
+ __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1)
+ __kmp_tile_depth = depth; // tile consists of multiple cores
+ return 0;
+}
+
+static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os,
+ kmp_i18n_id_t *const msg_id) {
+ hwloc_topology_t &tp = __kmp_hwloc_topology; // shortcut of a long name
+ *address2os = NULL;
+ *msg_id = kmp_i18n_null;
+
+ // Save the affinity mask for the current thread.
+ kmp_affin_mask_t *oldMask;
+ KMP_CPU_ALLOC(oldMask);
+ __kmp_get_system_affinity(oldMask, TRUE);
+ __kmp_hwloc_check_numa();
+
+ if (!KMP_AFFINITY_CAPABLE()) {
+ // Hack to try and infer the machine topology using only the data
+ // available from cpuid on the current thread, and __kmp_xproc.
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+
+ nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(
+ hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0), HWLOC_OBJ_CORE);
+ __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(
+ hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0), HWLOC_OBJ_PU);
+ __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
+ nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (__kmp_affinity_uniform_topology()) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+ KMP_CPU_FREE(oldMask);
+ return 0;
+ }
+
+ int depth = 3;
+ int levels[5] = {0, 1, 2, 3, 4}; // package, [node,] [tile,] core, thread
+ int labels[3] = {0}; // package [,node] [,tile] - head of lables array
+ if (__kmp_numa_detected)
+ ++depth;
+ if (__kmp_tile_depth)
+ ++depth;
+
+ // Allocate the data structure to be returned.
+ AddrUnsPair *retval =
+ (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
+ KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
+ __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
+
+ // When affinity is off, this routine will still be called to set
+ // __kmp_ncores, as well as __kmp_nThreadsPerCore,
+ // nCoresPerPkg, & nPackages. Make sure all these vars are set
+ // correctly, and return if affinity is not enabled.
+
+ hwloc_obj_t socket, node, tile;
+ int nActiveThreads = 0;
+ int socket_id = 0;
+ // re-calculate globals to count only accessible resources
+ __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0;
+ nNodePerPkg = nTilePerPkg = nTilePerNode = nCorePerNode = nCorePerTile = 0;
+ for (socket = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); socket != NULL;
+ socket = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, socket),
+ socket_id++) {
+ labels[0] = socket_id;
+ if (__kmp_numa_detected) {
+ int NN;
+ int n_active_nodes = 0;
+ node = NULL;
+ NN = __kmp_hwloc_count_children_by_type(tp, socket, HWLOC_OBJ_NUMANODE,
+ &node);
+ for (int node_id = 0; node_id < NN; ++node_id, node = node->next_cousin) {
+ labels[1] = node_id;
+ if (__kmp_tile_depth) {
+ // NUMA + tiles
+ int NT;
+ int n_active_tiles = 0;
+ tile = NULL;
+ NT = __kmp_hwloc_count_children_by_depth(tp, node, __kmp_tile_depth,
+ &tile);
+ for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) {
+ labels[2] = tl_id;
+ int n_active_cores = 0;
+ __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
+ n_active_cores, tile, 3, labels);
+ if (n_active_cores) { // were there any active cores on the socket?
+ ++n_active_tiles; // count active tiles per node
+ if (n_active_cores > nCorePerTile)
+ nCorePerTile = n_active_cores; // calc maximum
+ }
+ }
+ if (n_active_tiles) { // were there any active tiles on the socket?
+ ++n_active_nodes; // count active nodes per package
+ if (n_active_tiles > nTilePerNode)
+ nTilePerNode = n_active_tiles; // calc maximum
+ }
+ } else {
+ // NUMA, no tiles
+ int n_active_cores = 0;
+ __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
+ n_active_cores, node, 2, labels);
+ if (n_active_cores) { // were there any active cores on the socket?
+ ++n_active_nodes; // count active nodes per package
+ if (n_active_cores > nCorePerNode)
+ nCorePerNode = n_active_cores; // calc maximum
+ }
+ }
+ }
+ if (n_active_nodes) { // were there any active nodes on the socket?
+ ++nPackages; // count total active packages
+ if (n_active_nodes > nNodePerPkg)
+ nNodePerPkg = n_active_nodes; // calc maximum
+ }
+ } else {
+ if (__kmp_tile_depth) {
+ // no NUMA, tiles
+ int NT;
+ int n_active_tiles = 0;
+ tile = NULL;
+ NT = __kmp_hwloc_count_children_by_depth(tp, socket, __kmp_tile_depth,
+ &tile);
+ for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) {
+ labels[1] = tl_id;
+ int n_active_cores = 0;
+ __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
+ n_active_cores, tile, 2, labels);
+ if (n_active_cores) { // were there any active cores on the socket?
+ ++n_active_tiles; // count active tiles per package
+ if (n_active_cores > nCorePerTile)
+ nCorePerTile = n_active_cores; // calc maximum
+ }
+ }
+ if (n_active_tiles) { // were there any active tiles on the socket?
+ ++nPackages; // count total active packages
+ if (n_active_tiles > nTilePerPkg)
+ nTilePerPkg = n_active_tiles; // calc maximum
+ }
+ } else {
+ // no NUMA, no tiles
+ int n_active_cores = 0;
+ __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, n_active_cores,
+ socket, 1, labels);
+ if (n_active_cores) { // were there any active cores on the socket?
+ ++nPackages; // count total active packages
+ if (n_active_cores > nCoresPerPkg)
+ nCoresPerPkg = n_active_cores; // calc maximum
+ }
+ }
+ }
+ }
+
+ // If there's only one thread context to bind to, return now.
+ KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc);
+ KMP_ASSERT(nActiveThreads > 0);
+ if (nActiveThreads == 1) {
+ __kmp_ncores = nPackages = 1;
+ __kmp_nThreadsPerCore = nCoresPerPkg = 1;
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
+
+ KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+
+ if (__kmp_affinity_type == affinity_none) {
+ __kmp_free(retval);
+ KMP_CPU_FREE(oldMask);
+ return 0;
+ }
+
+ // Form an Address object which only includes the package level.
+ Address addr(1);
+ addr.labels[0] = retval[0].first.labels[0];
+ retval[0].first = addr;
+
+ if (__kmp_affinity_gran_levels < 0) {
+ __kmp_affinity_gran_levels = 0;
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
+ }
+
+ *address2os = retval;
+ KMP_CPU_FREE(oldMask);
+ return 1;
+ }
+
+ // Sort the table by physical Id.
+ qsort(retval, nActiveThreads, sizeof(*retval),
+ __kmp_affinity_cmp_Address_labels);
+
+ // Check to see if the machine topology is uniform
+ int nPUs = nPackages * __kmp_nThreadsPerCore;
+ if (__kmp_numa_detected) {
+ if (__kmp_tile_depth) { // NUMA + tiles
+ nPUs *= (nNodePerPkg * nTilePerNode * nCorePerTile);
+ } else { // NUMA, no tiles
+ nPUs *= (nNodePerPkg * nCorePerNode);
+ }
+ } else {
+ if (__kmp_tile_depth) { // no NUMA, tiles
+ nPUs *= (nTilePerPkg * nCorePerTile);
+ } else { // no NUMA, no tiles
+ nPUs *= nCoresPerPkg;
+ }
+ }
+ unsigned uniform = (nPUs == nActiveThreads);
+
+ // Print the machine topology summary.
+ if (__kmp_affinity_verbose) {
+ char mask[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (uniform) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+ if (__kmp_numa_detected) {
+ if (__kmp_tile_depth) { // NUMA + tiles
+ KMP_INFORM(TopologyExtraNoTi, "KMP_AFFINITY", nPackages, nNodePerPkg,
+ nTilePerNode, nCorePerTile, __kmp_nThreadsPerCore,
+ __kmp_ncores);
+ } else { // NUMA, no tiles
+ KMP_INFORM(TopologyExtraNode, "KMP_AFFINITY", nPackages, nNodePerPkg,
+ nCorePerNode, __kmp_nThreadsPerCore, __kmp_ncores);
+ nPUs *= (nNodePerPkg * nCorePerNode);
+ }
+ } else {
+ if (__kmp_tile_depth) { // no NUMA, tiles
+ KMP_INFORM(TopologyExtraTile, "KMP_AFFINITY", nPackages, nTilePerPkg,
+ nCorePerTile, __kmp_nThreadsPerCore, __kmp_ncores);
+ } else { // no NUMA, no tiles
+ kmp_str_buf_t buf;
+ __kmp_str_buf_init(&buf);
+ __kmp_str_buf_print(&buf, "%d", nPackages);
+ KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ __kmp_str_buf_free(&buf);
+ }
+ }
+ }
+
+ if (__kmp_affinity_type == affinity_none) {
+ __kmp_free(retval);
+ KMP_CPU_FREE(oldMask);
+ return 0;
+ }
+
+ int depth_full = depth; // number of levels before compressing
+ // Find any levels with radiix 1, and remove them from the map
+ // (except for the package level).
+ depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth,
+ levels);
+ KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default);
+ if (__kmp_affinity_gran_levels < 0) {
+ // Set the granularity level based on what levels are modeled
+ // in the machine topology map.
+ __kmp_affinity_gran_levels = 0; // lowest level (e.g. fine)
+ if (__kmp_affinity_gran > affinity_gran_thread) {
+ for (int i = 1; i <= depth_full; ++i) {
+ if (__kmp_affinity_gran <= i) // only count deeper levels
+ break;
+ if (levels[depth_full - i] > 0)
+ __kmp_affinity_gran_levels++;
+ }
+ }
+ if (__kmp_affinity_gran > affinity_gran_package)
+ __kmp_affinity_gran_levels++; // e.g. granularity = group
+ }
+
+ if (__kmp_affinity_verbose)
+ __kmp_affinity_print_hwloc_tp(retval, nActiveThreads, depth, levels);
+
+ KMP_CPU_FREE(oldMask);
+ *address2os = retval;
+ return depth;
+}
+#endif // KMP_USE_HWLOC
+
+// If we don't know how to retrieve the machine's processor topology, or
+// encounter an error in doing so, this routine is called to form a "flat"
+// mapping of os thread id's <-> processor id's.
+static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os,
+ kmp_i18n_id_t *const msg_id) {
+ *address2os = NULL;
+ *msg_id = kmp_i18n_null;
+
+ // Even if __kmp_affinity_type == affinity_none, this routine might still
+ // called to set __kmp_ncores, as well as
+ // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
+ if (!KMP_AFFINITY_CAPABLE()) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ __kmp_ncores = nPackages = __kmp_xproc;
+ __kmp_nThreadsPerCore = nCoresPerPkg = 1;
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffFlatTopology, "KMP_AFFINITY");
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+ return 0;
+ }
+
+ // When affinity is off, this routine will still be called to set
+ // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
+ // Make sure all these vars are set correctly, and return now if affinity is
+ // not enabled.
+ __kmp_ncores = nPackages = __kmp_avail_proc;
+ __kmp_nThreadsPerCore = nCoresPerPkg = 1;
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ __kmp_affin_fullMask);
+
+ KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+ KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
+ __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
+ if (__kmp_affinity_type == affinity_none) {
+ int avail_ct = 0;
+ int i;
+ KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
+ if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask))
+ continue;
+ __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat
+ }
+ return 0;
+ }
+
+ // Contruct the data structure to be returned.
+ *address2os =
+ (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
+ int avail_ct = 0;
+ int i;
+ KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
+ // Skip this proc if it is not included in the machine model.
+ if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
+ continue;
+ }
+ __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
+ Address addr(1);
+ addr.labels[0] = i;
+ (*address2os)[avail_ct++] = AddrUnsPair(addr, i);
+ }
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
+ }
+
+ if (__kmp_affinity_gran_levels < 0) {
+ // Only the package level is modeled in the machine topology map,
+ // so the #levels of granularity is either 0 or 1.
+ if (__kmp_affinity_gran > affinity_gran_package) {
+ __kmp_affinity_gran_levels = 1;
+ } else {
+ __kmp_affinity_gran_levels = 0;
+ }
+ }
+ return 1;
+}
+
+#if KMP_GROUP_AFFINITY
+
+// If multiple Windows* OS processor groups exist, we can create a 2-level
+// topology map with the groups at level 0 and the individual procs at level 1.
+// This facilitates letting the threads float among all procs in a group,
+// if granularity=group (the default when there are multiple groups).
+static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os,
+ kmp_i18n_id_t *const msg_id) {
+ *address2os = NULL;
+ *msg_id = kmp_i18n_null;
+
+ // If we aren't affinity capable, then return now.
+ // The flat mapping will be used.
+ if (!KMP_AFFINITY_CAPABLE()) {
+ // FIXME set *msg_id
+ return -1;
+ }
+
+ // Contruct the data structure to be returned.
+ *address2os =
+ (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
+ KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
+ __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
+ int avail_ct = 0;
+ int i;
+ KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
+ // Skip this proc if it is not included in the machine model.
+ if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
+ continue;
+ }
+ __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
+ Address addr(2);
+ addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR));
+ addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR));
+ (*address2os)[avail_ct++] = AddrUnsPair(addr, i);
+
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0],
+ addr.labels[1]);
+ }
+ }
+
+ if (__kmp_affinity_gran_levels < 0) {
+ if (__kmp_affinity_gran == affinity_gran_group) {
+ __kmp_affinity_gran_levels = 1;
+ } else if ((__kmp_affinity_gran == affinity_gran_fine) ||
+ (__kmp_affinity_gran == affinity_gran_thread)) {
+ __kmp_affinity_gran_levels = 0;
+ } else {
+ const char *gran_str = NULL;
+ if (__kmp_affinity_gran == affinity_gran_core) {
+ gran_str = "core";
+ } else if (__kmp_affinity_gran == affinity_gran_package) {
+ gran_str = "package";
+ } else if (__kmp_affinity_gran == affinity_gran_node) {
+ gran_str = "node";
+ } else {
+ KMP_ASSERT(0);
+ }
+
+ // Warning: can't use affinity granularity \"gran\" with group topology
+ // method, using "thread"
+ __kmp_affinity_gran_levels = 0;
+ }
+ }
+ return 2;
+}
+
+#endif /* KMP_GROUP_AFFINITY */
+
+#if KMP_ARCH_X86 || KMP_ARCH_X86_64
+
+static int __kmp_cpuid_mask_width(int count) {
+ int r = 0;
+
+ while ((1 << r) < count)
+ ++r;
+ return r;
+}
+
+class apicThreadInfo {
+public:
+ unsigned osId; // param to __kmp_affinity_bind_thread
+ unsigned apicId; // from cpuid after binding
+ unsigned maxCoresPerPkg; // ""
+ unsigned maxThreadsPerPkg; // ""
+ unsigned pkgId; // inferred from above values
+ unsigned coreId; // ""
+ unsigned threadId; // ""
+};
+
+static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
+ const void *b) {
+ const apicThreadInfo *aa = (const apicThreadInfo *)a;
+ const apicThreadInfo *bb = (const apicThreadInfo *)b;
+ if (aa->pkgId < bb->pkgId)
+ return -1;
+ if (aa->pkgId > bb->pkgId)
+ return 1;
+ if (aa->coreId < bb->coreId)
+ return -1;
+ if (aa->coreId > bb->coreId)
+ return 1;
+ if (aa->threadId < bb->threadId)
+ return -1;
+ if (aa->threadId > bb->threadId)
+ return 1;
+ return 0;
+}
+
+// On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
+// an algorithm which cycles through the available os threads, setting
+// the current thread's affinity mask to that thread, and then retrieves
+// the Apic Id for each thread context using the cpuid instruction.
+static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os,
+ kmp_i18n_id_t *const msg_id) {
+ kmp_cpuid buf;
+ *address2os = NULL;
+ *msg_id = kmp_i18n_null;
+
+ // Check if cpuid leaf 4 is supported.
+ __kmp_x86_cpuid(0, 0, &buf);
+ if (buf.eax < 4) {
+ *msg_id = kmp_i18n_str_NoLeaf4Support;
+ return -1;
+ }
+
+ // The algorithm used starts by setting the affinity to each available thread
+ // and retrieving info from the cpuid instruction, so if we are not capable of
+ // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
+ // need to do something else - use the defaults that we calculated from
+ // issuing cpuid without binding to each proc.
+ if (!KMP_AFFINITY_CAPABLE()) {
+ // Hack to try and infer the machine topology using only the data
+ // available from cpuid on the current thread, and __kmp_xproc.
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+
+ // Get an upper bound on the number of threads per package using cpuid(1).
+ // On some OS/chps combinations where HT is supported by the chip but is
+ // disabled, this value will be 2 on a single core chip. Usually, it will be
+ // 2 if HT is enabled and 1 if HT is disabled.
+ __kmp_x86_cpuid(1, 0, &buf);
+ int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
+ if (maxThreadsPerPkg == 0) {
+ maxThreadsPerPkg = 1;
+ }
+
+ // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
+ // value.
+ //
+ // The author of cpu_count.cpp treated this only an upper bound on the
+ // number of cores, but I haven't seen any cases where it was greater than
+ // the actual number of cores, so we will treat it as exact in this block of
+ // code.
+ //
+ // First, we need to check if cpuid(4) is supported on this chip. To see if
+ // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
+ // greater.
+ __kmp_x86_cpuid(0, 0, &buf);
+ if (buf.eax >= 4) {
+ __kmp_x86_cpuid(4, 0, &buf);
+ nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
+ } else {
+ nCoresPerPkg = 1;
+ }
+
+ // There is no way to reliably tell if HT is enabled without issuing the
+ // cpuid instruction from every thread, can correlating the cpuid info, so
+ // if the machine is not affinity capable, we assume that HT is off. We have
+ // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
+ // does not support HT.
+ //
+ // - Older OSes are usually found on machines with older chips, which do not
+ // support HT.
+ // - The performance penalty for mistakenly identifying a machine as HT when
+ // it isn't (which results in blocktime being incorrecly set to 0) is
+ // greater than the penalty when for mistakenly identifying a machine as
+ // being 1 thread/core when it is really HT enabled (which results in
+ // blocktime being incorrectly set to a positive value).
+ __kmp_ncores = __kmp_xproc;
+ nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
+ __kmp_nThreadsPerCore = 1;
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY");
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (__kmp_affinity_uniform_topology()) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+ return 0;
+ }
+
+ // From here on, we can assume that it is safe to call
+ // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
+ // __kmp_affinity_type = affinity_none.
+
+ // Save the affinity mask for the current thread.
+ kmp_affin_mask_t *oldMask;
+ KMP_CPU_ALLOC(oldMask);
+ KMP_ASSERT(oldMask != NULL);
+ __kmp_get_system_affinity(oldMask, TRUE);
+
+ // Run through each of the available contexts, binding the current thread
+ // to it, and obtaining the pertinent information using the cpuid instr.
+ //
+ // The relevant information is:
+ // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
+ // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
+ // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
+ // of this field determines the width of the core# + thread# fields in the
+ // Apic Id. It is also an upper bound on the number of threads per
+ // package, but it has been verified that situations happen were it is not
+ // exact. In particular, on certain OS/chip combinations where Intel(R)
+ // Hyper-Threading Technology is supported by the chip but has been
+ // disabled, the value of this field will be 2 (for a single core chip).
+ // On other OS/chip combinations supporting Intel(R) Hyper-Threading
+ // Technology, the value of this field will be 1 when Intel(R)
+ // Hyper-Threading Technology is disabled and 2 when it is enabled.
+ // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
+ // of this field (+1) determines the width of the core# field in the Apic
+ // Id. The comments in "cpucount.cpp" say that this value is an upper
+ // bound, but the IA-32 architecture manual says that it is exactly the
+ // number of cores per package, and I haven't seen any case where it
+ // wasn't.
+ //
+ // From this information, deduce the package Id, core Id, and thread Id,
+ // and set the corresponding fields in the apicThreadInfo struct.
+ unsigned i;
+ apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
+ __kmp_avail_proc * sizeof(apicThreadInfo));
+ unsigned nApics = 0;
+ KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
+ // Skip this proc if it is not included in the machine model.
+ if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
+ continue;
+ }
+ KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
+
+ __kmp_affinity_dispatch->bind_thread(i);
+ threadInfo[nApics].osId = i;
+
+ // The apic id and max threads per pkg come from cpuid(1).
+ __kmp_x86_cpuid(1, 0, &buf);
+ if (((buf.edx >> 9) & 1) == 0) {
+ __kmp_set_system_affinity(oldMask, TRUE);
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_ApicNotPresent;
+ return -1;
+ }
+ threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
+ threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
+ if (threadInfo[nApics].maxThreadsPerPkg == 0) {
+ threadInfo[nApics].maxThreadsPerPkg = 1;
+ }
+
+ // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
+ // value.
+ //
+ // First, we need to check if cpuid(4) is supported on this chip. To see if
+ // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
+ // or greater.
+ __kmp_x86_cpuid(0, 0, &buf);
+ if (buf.eax >= 4) {
+ __kmp_x86_cpuid(4, 0, &buf);
+ threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
+ } else {
+ threadInfo[nApics].maxCoresPerPkg = 1;
+ }
+
+ // Infer the pkgId / coreId / threadId using only the info obtained locally.
+ int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
+ threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
+
+ int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
+ int widthT = widthCT - widthC;
+ if (widthT < 0) {
+ // I've never seen this one happen, but I suppose it could, if the cpuid
+ // instruction on a chip was really screwed up. Make sure to restore the
+ // affinity mask before the tail call.
+ __kmp_set_system_affinity(oldMask, TRUE);
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_InvalidCpuidInfo;
+ return -1;
+ }
+
+ int maskC = (1 << widthC) - 1;
+ threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
+
+ int maskT = (1 << widthT) - 1;
+ threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
+
+ nApics++;
+ }
+
+ // We've collected all the info we need.
+ // Restore the old affinity mask for this thread.
+ __kmp_set_system_affinity(oldMask, TRUE);
+
+ // If there's only one thread context to bind to, form an Address object
+ // with depth 1 and return immediately (or, if affinity is off, set
+ // address2os to NULL and return).
+ //
+ // If it is configured to omit the package level when there is only a single
+ // package, the logic at the end of this routine won't work if there is only
+ // a single thread - it would try to form an Address object with depth 0.
+ KMP_ASSERT(nApics > 0);
+ if (nApics == 1) {
+ __kmp_ncores = nPackages = 1;
+ __kmp_nThreadsPerCore = nCoresPerPkg = 1;
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
+
+ KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+
+ if (__kmp_affinity_type == affinity_none) {
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ return 0;
+ }
+
+ *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
+ Address addr(1);
+ addr.labels[0] = threadInfo[0].pkgId;
+ (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId);
+
+ if (__kmp_affinity_gran_levels < 0) {
+ __kmp_affinity_gran_levels = 0;
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
+ }
+
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ return 1;
+ }
+
+ // Sort the threadInfo table by physical Id.
+ qsort(threadInfo, nApics, sizeof(*threadInfo),
+ __kmp_affinity_cmp_apicThreadInfo_phys_id);
+
+ // The table is now sorted by pkgId / coreId / threadId, but we really don't
+ // know the radix of any of the fields. pkgId's may be sparsely assigned among
+ // the chips on a system. Although coreId's are usually assigned
+ // [0 .. coresPerPkg-1] and threadId's are usually assigned
+ // [0..threadsPerCore-1], we don't want to make any such assumptions.
+ //
+ // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
+ // total # packages) are at this point - we want to determine that now. We
+ // only have an upper bound on the first two figures.
+ //
+ // We also perform a consistency check at this point: the values returned by
+ // the cpuid instruction for any thread bound to a given package had better
+ // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
+ nPackages = 1;
+ nCoresPerPkg = 1;
+ __kmp_nThreadsPerCore = 1;
+ unsigned nCores = 1;
+
+ unsigned pkgCt = 1; // to determine radii
+ unsigned lastPkgId = threadInfo[0].pkgId;
+ unsigned coreCt = 1;
+ unsigned lastCoreId = threadInfo[0].coreId;
+ unsigned threadCt = 1;
+ unsigned lastThreadId = threadInfo[0].threadId;
+
+ // intra-pkg consist checks
+ unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
+ unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
+
+ for (i = 1; i < nApics; i++) {
+ if (threadInfo[i].pkgId != lastPkgId) {
+ nCores++;
+ pkgCt++;
+ lastPkgId = threadInfo[i].pkgId;
+ if ((int)coreCt > nCoresPerPkg)
+ nCoresPerPkg = coreCt;
+ coreCt = 1;
+ lastCoreId = threadInfo[i].coreId;
+ if ((int)threadCt > __kmp_nThreadsPerCore)
+ __kmp_nThreadsPerCore = threadCt;
+ threadCt = 1;
+ lastThreadId = threadInfo[i].threadId;
+
+ // This is a different package, so go on to the next iteration without
+ // doing any consistency checks. Reset the consistency check vars, though.
+ prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
+ prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
+ continue;
+ }
+
+ if (threadInfo[i].coreId != lastCoreId) {
+ nCores++;
+ coreCt++;
+ lastCoreId = threadInfo[i].coreId;
+ if ((int)threadCt > __kmp_nThreadsPerCore)
+ __kmp_nThreadsPerCore = threadCt;
+ threadCt = 1;
+ lastThreadId = threadInfo[i].threadId;
+ } else if (threadInfo[i].threadId != lastThreadId) {
+ threadCt++;
+ lastThreadId = threadInfo[i].threadId;
+ } else {
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
+ return -1;
+ }
+
+ // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
+ // fields agree between all the threads bounds to a given package.
+ if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
+ (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
+ return -1;
+ }
+ }
+ nPackages = pkgCt;
+ if ((int)coreCt > nCoresPerPkg)
+ nCoresPerPkg = coreCt;
+ if ((int)threadCt > __kmp_nThreadsPerCore)
+ __kmp_nThreadsPerCore = threadCt;
+
+ // When affinity is off, this routine will still be called to set
+ // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
+ // Make sure all these vars are set correctly, and return now if affinity is
+ // not enabled.
+ __kmp_ncores = nCores;
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
+
+ KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (__kmp_affinity_uniform_topology()) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+ KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
+ KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
+ __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
+ for (i = 0; i < nApics; ++i) {
+ __kmp_pu_os_idx[i] = threadInfo[i].osId;
+ }
+ if (__kmp_affinity_type == affinity_none) {
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ return 0;
+ }
+
+ // Now that we've determined the number of packages, the number of cores per
+ // package, and the number of threads per core, we can construct the data
+ // structure that is to be returned.
+ int pkgLevel = 0;
+ int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1;
+ int threadLevel =
+ (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
+ unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
+
+ KMP_ASSERT(depth > 0);
+ *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
+
+ for (i = 0; i < nApics; ++i) {
+ Address addr(depth);
+ unsigned os = threadInfo[i].osId;
+ int d = 0;
+
+ if (pkgLevel >= 0) {
+ addr.labels[d++] = threadInfo[i].pkgId;
+ }
+ if (coreLevel >= 0) {
+ addr.labels[d++] = threadInfo[i].coreId;
+ }
+ if (threadLevel >= 0) {
+ addr.labels[d++] = threadInfo[i].threadId;
+ }
+ (*address2os)[i] = AddrUnsPair(addr, os);
+ }
+
+ if (__kmp_affinity_gran_levels < 0) {
+ // Set the granularity level based on what levels are modeled in the machine
+ // topology map.
+ __kmp_affinity_gran_levels = 0;
+ if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
+ __kmp_affinity_gran_levels++;
+ }
+ if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
+ __kmp_affinity_gran_levels++;
+ }
+ if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) {
+ __kmp_affinity_gran_levels++;
+ }
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel,
+ coreLevel, threadLevel);
+ }
+
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ return depth;
+}
+
+// Intel(R) microarchitecture code name Nehalem, Dunnington and later
+// architectures support a newer interface for specifying the x2APIC Ids,
+// based on cpuid leaf 11.
+static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os,
+ kmp_i18n_id_t *const msg_id) {
+ kmp_cpuid buf;
+ *address2os = NULL;
+ *msg_id = kmp_i18n_null;
+
+ // Check to see if cpuid leaf 11 is supported.
+ __kmp_x86_cpuid(0, 0, &buf);
+ if (buf.eax < 11) {
+ *msg_id = kmp_i18n_str_NoLeaf11Support;
+ return -1;
+ }
+ __kmp_x86_cpuid(11, 0, &buf);
+ if (buf.ebx == 0) {
+ *msg_id = kmp_i18n_str_NoLeaf11Support;
+ return -1;
+ }
+
+ // Find the number of levels in the machine topology. While we're at it, get
+ // the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to
+ // get more accurate values later by explicitly counting them, but get
+ // reasonable defaults now, in case we return early.
+ int level;
+ int threadLevel = -1;
+ int coreLevel = -1;
+ int pkgLevel = -1;
+ __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
+
+ for (level = 0;; level++) {
+ if (level > 31) {
+ // FIXME: Hack for DPD200163180
+ //
+ // If level is big then something went wrong -> exiting
+ //
+ // There could actually be 32 valid levels in the machine topology, but so
+ // far, the only machine we have seen which does not exit this loop before
+ // iteration 32 has fubar x2APIC settings.
+ //
+ // For now, just reject this case based upon loop trip count.
+ *msg_id = kmp_i18n_str_InvalidCpuidInfo;
+ return -1;
+ }
+ __kmp_x86_cpuid(11, level, &buf);
+ if (buf.ebx == 0) {
+ if (pkgLevel < 0) {
+ // Will infer nPackages from __kmp_xproc
+ pkgLevel = level;
+ level++;
+ }
+ break;
+ }
+ int kind = (buf.ecx >> 8) & 0xff;
+ if (kind == 1) {
+ // SMT level
+ threadLevel = level;
+ coreLevel = -1;
+ pkgLevel = -1;
+ __kmp_nThreadsPerCore = buf.ebx & 0xffff;
+ if (__kmp_nThreadsPerCore == 0) {
+ *msg_id = kmp_i18n_str_InvalidCpuidInfo;
+ return -1;
+ }
+ } else if (kind == 2) {
+ // core level
+ coreLevel = level;
+ pkgLevel = -1;
+ nCoresPerPkg = buf.ebx & 0xffff;
+ if (nCoresPerPkg == 0) {
+ *msg_id = kmp_i18n_str_InvalidCpuidInfo;
+ return -1;
+ }
+ } else {
+ if (level <= 0) {
+ *msg_id = kmp_i18n_str_InvalidCpuidInfo;
+ return -1;
+ }
+ if (pkgLevel >= 0) {
+ continue;
+ }
+ pkgLevel = level;
+ nPackages = buf.ebx & 0xffff;
+ if (nPackages == 0) {
+ *msg_id = kmp_i18n_str_InvalidCpuidInfo;
+ return -1;
+ }
+ }
+ }
+ int depth = level;
+
+ // In the above loop, "level" was counted from the finest level (usually
+ // thread) to the coarsest. The caller expects that we will place the labels
+ // in (*address2os)[].first.labels[] in the inverse order, so we need to
+ // invert the vars saying which level means what.
+ if (threadLevel >= 0) {
+ threadLevel = depth - threadLevel - 1;
+ }
+ if (coreLevel >= 0) {
+ coreLevel = depth - coreLevel - 1;
+ }
+ KMP_DEBUG_ASSERT(pkgLevel >= 0);
+ pkgLevel = depth - pkgLevel - 1;
+
+ // The algorithm used starts by setting the affinity to each available thread
+ // and retrieving info from the cpuid instruction, so if we are not capable of
+ // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
+ // need to do something else - use the defaults that we calculated from
+ // issuing cpuid without binding to each proc.
+ if (!KMP_AFFINITY_CAPABLE()) {
+ // Hack to try and infer the machine topology using only the data
+ // available from cpuid on the current thread, and __kmp_xproc.
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+
+ __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
+ nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (__kmp_affinity_uniform_topology()) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+ return 0;
+ }
+
+ // From here on, we can assume that it is safe to call
+ // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
+ // __kmp_affinity_type = affinity_none.
+
+ // Save the affinity mask for the current thread.
+ kmp_affin_mask_t *oldMask;
+ KMP_CPU_ALLOC(oldMask);
+ __kmp_get_system_affinity(oldMask, TRUE);
+
+ // Allocate the data structure to be returned.
+ AddrUnsPair *retval =
+ (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
+
+ // Run through each of the available contexts, binding the current thread
+ // to it, and obtaining the pertinent information using the cpuid instr.
+ unsigned int proc;
+ int nApics = 0;
+ KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
+ // Skip this proc if it is not included in the machine model.
+ if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
+ continue;
+ }
+ KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc);
+
+ __kmp_affinity_dispatch->bind_thread(proc);
+
+ // Extract labels for each level in the machine topology map from Apic ID.
+ Address addr(depth);
+ int prev_shift = 0;
+
+ for (level = 0; level < depth; level++) {
+ __kmp_x86_cpuid(11, level, &buf);
+ unsigned apicId = buf.edx;
+ if (buf.ebx == 0) {
+ if (level != depth - 1) {
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
+ return -1;
+ }
+ addr.labels[depth - level - 1] = apicId >> prev_shift;
+ level++;
+ break;
+ }
+ int shift = buf.eax & 0x1f;
+ int mask = (1 << shift) - 1;
+ addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift;
+ prev_shift = shift;
+ }
+ if (level != depth) {
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
+ return -1;
+ }
+
+ retval[nApics] = AddrUnsPair(addr, proc);
+ nApics++;
+ }
+
+ // We've collected all the info we need.
+ // Restore the old affinity mask for this thread.
+ __kmp_set_system_affinity(oldMask, TRUE);
+
+ // If there's only one thread context to bind to, return now.
+ KMP_ASSERT(nApics > 0);
+ if (nApics == 1) {
+ __kmp_ncores = nPackages = 1;
+ __kmp_nThreadsPerCore = nCoresPerPkg = 1;
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
+
+ KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+
+ if (__kmp_affinity_type == affinity_none) {
+ __kmp_free(retval);
+ KMP_CPU_FREE(oldMask);
+ return 0;
+ }
+
+ // Form an Address object which only includes the package level.
+ Address addr(1);
+ addr.labels[0] = retval[0].first.labels[pkgLevel];
+ retval[0].first = addr;
+
+ if (__kmp_affinity_gran_levels < 0) {
+ __kmp_affinity_gran_levels = 0;
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
+ }
+
+ *address2os = retval;
+ KMP_CPU_FREE(oldMask);
+ return 1;
+ }
+
+ // Sort the table by physical Id.
+ qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
+
+ // Find the radix at each of the levels.
+ unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
+ unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
+ unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
+ unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
+ for (level = 0; level < depth; level++) {
+ totals[level] = 1;
+ maxCt[level] = 1;
+ counts[level] = 1;
+ last[level] = retval[0].first.labels[level];
+ }
+
+ // From here on, the iteration variable "level" runs from the finest level to
+ // the coarsest, i.e. we iterate forward through
+ // (*address2os)[].first.labels[] - in the previous loops, we iterated
+ // backwards.
+ for (proc = 1; (int)proc < nApics; proc++) {
+ int level;
+ for (level = 0; level < depth; level++) {
+ if (retval[proc].first.labels[level] != last[level]) {
+ int j;
+ for (j = level + 1; j < depth; j++) {
+ totals[j]++;
+ counts[j] = 1;
+ // The line below causes printing incorrect topology information in
+ // case the max value for some level (maxCt[level]) is encountered
+ // earlier than some less value while going through the array. For
+ // example, let pkg0 has 4 cores and pkg1 has 2 cores. Then
+ // maxCt[1] == 2
+ // whereas it must be 4.
+ // TODO!!! Check if it can be commented safely
+ // maxCt[j] = 1;
+ last[j] = retval[proc].first.labels[j];
+ }
+ totals[level]++;
+ counts[level]++;
+ if (counts[level] > maxCt[level]) {
+ maxCt[level] = counts[level];
+ }
+ last[level] = retval[proc].first.labels[level];
+ break;
+ } else if (level == depth - 1) {
+ __kmp_free(last);
+ __kmp_free(maxCt);
+ __kmp_free(counts);
+ __kmp_free(totals);
+ __kmp_free(retval);
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
+ return -1;
+ }
+ }
+ }
+
+ // When affinity is off, this routine will still be called to set
+ // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
+ // Make sure all these vars are set correctly, and return if affinity is not
+ // enabled.
+ if (threadLevel >= 0) {
+ __kmp_nThreadsPerCore = maxCt[threadLevel];
+ } else {
+ __kmp_nThreadsPerCore = 1;
+ }
+ nPackages = totals[pkgLevel];
+
+ if (coreLevel >= 0) {
+ __kmp_ncores = totals[coreLevel];
+ nCoresPerPkg = maxCt[coreLevel];
+ } else {
+ __kmp_ncores = nPackages;
+ nCoresPerPkg = 1;
+ }
+
+ // Check to see if the machine topology is uniform
+ unsigned prod = maxCt[0];
+ for (level = 1; level < depth; level++) {
+ prod *= maxCt[level];
+ }
+ bool uniform = (prod == totals[level - 1]);
+
+ // Print the machine topology summary.
+ if (__kmp_affinity_verbose) {
+ char mask[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
+
+ KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (uniform) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+
+ kmp_str_buf_t buf;
+ __kmp_str_buf_init(&buf);
+
+ __kmp_str_buf_print(&buf, "%d", totals[0]);
+ for (level = 1; level <= pkgLevel; level++) {
+ __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
+ }
+ KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+
+ __kmp_str_buf_free(&buf);
+ }
+ KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
+ KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc);
+ __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
+ for (proc = 0; (int)proc < nApics; ++proc) {
+ __kmp_pu_os_idx[proc] = retval[proc].second;
+ }
+ if (__kmp_affinity_type == affinity_none) {
+ __kmp_free(last);
+ __kmp_free(maxCt);
+ __kmp_free(counts);
+ __kmp_free(totals);
+ __kmp_free(retval);
+ KMP_CPU_FREE(oldMask);
+ return 0;
+ }
+
+ // Find any levels with radiix 1, and remove them from the map
+ // (except for the package level).
+ int new_depth = 0;
+ for (level = 0; level < depth; level++) {
+ if ((maxCt[level] == 1) && (level != pkgLevel)) {
+ continue;
+ }
+ new_depth++;
+ }
+
+ // If we are removing any levels, allocate a new vector to return,
+ // and copy the relevant information to it.
+ if (new_depth != depth) {
+ AddrUnsPair *new_retval =
+ (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
+ for (proc = 0; (int)proc < nApics; proc++) {
+ Address addr(new_depth);
+ new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
+ }
+ int new_level = 0;
+ int newPkgLevel = -1;
+ int newCoreLevel = -1;
+ int newThreadLevel = -1;
+ for (level = 0; level < depth; level++) {
+ if ((maxCt[level] == 1) && (level != pkgLevel)) {
+ // Remove this level. Never remove the package level
+ continue;
+ }
+ if (level == pkgLevel) {
+ newPkgLevel = new_level;
+ }
+ if (level == coreLevel) {
+ newCoreLevel = new_level;
+ }
+ if (level == threadLevel) {
+ newThreadLevel = new_level;
+ }
+ for (proc = 0; (int)proc < nApics; proc++) {
+ new_retval[proc].first.labels[new_level] =
+ retval[proc].first.labels[level];
+ }
+ new_level++;
+ }
+
+ __kmp_free(retval);
+ retval = new_retval;
+ depth = new_depth;
+ pkgLevel = newPkgLevel;
+ coreLevel = newCoreLevel;
+ threadLevel = newThreadLevel;
+ }
+
+ if (__kmp_affinity_gran_levels < 0) {
+ // Set the granularity level based on what levels are modeled
+ // in the machine topology map.
+ __kmp_affinity_gran_levels = 0;
+ if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
+ __kmp_affinity_gran_levels++;
+ }
+ if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
+ __kmp_affinity_gran_levels++;
+ }
+ if (__kmp_affinity_gran > affinity_gran_package) {
+ __kmp_affinity_gran_levels++;
+ }
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel,
+ threadLevel);
+ }
+
+ __kmp_free(last);
+ __kmp_free(maxCt);
+ __kmp_free(counts);
+ __kmp_free(totals);
+ KMP_CPU_FREE(oldMask);
+ *address2os = retval;
+ return depth;
+}
+
+#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
+
+#define osIdIndex 0
+#define threadIdIndex 1
+#define coreIdIndex 2
+#define pkgIdIndex 3
+#define nodeIdIndex 4
+
+typedef unsigned *ProcCpuInfo;
+static unsigned maxIndex = pkgIdIndex;
+
+static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
+ const void *b) {
+ unsigned i;
+ const unsigned *aa = *(unsigned *const *)a;
+ const unsigned *bb = *(unsigned *const *)b;
+ for (i = maxIndex;; i--) {
+ if (aa[i] < bb[i])
+ return -1;
+ if (aa[i] > bb[i])
+ return 1;
+ if (i == osIdIndex)
+ break;
+ }
+ return 0;
+}
+
+#if KMP_USE_HIER_SCHED
+// Set the array sizes for the hierarchy layers
+static void __kmp_dispatch_set_hierarchy_values() {
+ // Set the maximum number of L1's to number of cores
+ // Set the maximum number of L2's to to either number of cores / 2 for
+ // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
+ // Or the number of cores for Intel(R) Xeon(R) processors
+ // Set the maximum number of NUMA nodes and L3's to number of packages
+ __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
+ nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
+ __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
+#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
+ if (__kmp_mic_type >= mic3)
+ __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
+ else
+#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
+ __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
+ __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
+ __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
+ __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
+ // Set the number of threads per unit
+ // Number of hardware threads per L1/L2/L3/NUMA/LOOP
+ __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
+ __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
+ __kmp_nThreadsPerCore;
+#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
+ if (__kmp_mic_type >= mic3)
+ __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
+ 2 * __kmp_nThreadsPerCore;
+ else
+#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
+ __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
+ __kmp_nThreadsPerCore;
+ __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
+ nCoresPerPkg * __kmp_nThreadsPerCore;
+ __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
+ nCoresPerPkg * __kmp_nThreadsPerCore;
+ __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
+ nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
+}
+
+// Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
+// i.e., this thread's L1 or this thread's L2, etc.
+int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
+ int index = type + 1;
+ int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
+ KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
+ if (type == kmp_hier_layer_e::LAYER_THREAD)
+ return tid;
+ else if (type == kmp_hier_layer_e::LAYER_LOOP)
+ return 0;
+ KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
+ if (tid >= num_hw_threads)
+ tid = tid % num_hw_threads;
+ return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
+}
+
+// Return the number of t1's per t2
+int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
+ int i1 = t1 + 1;
+ int i2 = t2 + 1;
+ KMP_DEBUG_ASSERT(i1 <= i2);
+ KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
+ KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
+ KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
+ // (nthreads/t2) / (nthreads/t1) = t1 / t2
+ return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
+}
+#endif // KMP_USE_HIER_SCHED
+
+// Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
+// affinity map.
+static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os,
+ int *line,
+ kmp_i18n_id_t *const msg_id,
+ FILE *f) {
+ *address2os = NULL;
+ *msg_id = kmp_i18n_null;
+
+ // Scan of the file, and count the number of "processor" (osId) fields,
+ // and find the highest value of <n> for a node_<n> field.
+ char buf[256];
+ unsigned num_records = 0;
+ while (!feof(f)) {
+ buf[sizeof(buf) - 1] = 1;
+ if (!fgets(buf, sizeof(buf), f)) {
+ // Read errors presumably because of EOF
+ break;
+ }
+
+ char s1[] = "processor";
+ if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
+ num_records++;
+ continue;
+ }
+
+ // FIXME - this will match "node_<n> <garbage>"
+ unsigned level;
+ if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
+ if (nodeIdIndex + level >= maxIndex) {
+ maxIndex = nodeIdIndex + level;
+ }
+ continue;
+ }
+ }
+
+ // Check for empty file / no valid processor records, or too many. The number
+ // of records can't exceed the number of valid bits in the affinity mask.
+ if (num_records == 0) {
+ *line = 0;
+ *msg_id = kmp_i18n_str_NoProcRecords;
+ return -1;
+ }
+ if (num_records > (unsigned)__kmp_xproc) {
+ *line = 0;
+ *msg_id = kmp_i18n_str_TooManyProcRecords;
+ return -1;
+ }
+
+ // Set the file pointer back to the begginning, so that we can scan the file
+ // again, this time performing a full parse of the data. Allocate a vector of
+ // ProcCpuInfo object, where we will place the data. Adding an extra element
+ // at the end allows us to remove a lot of extra checks for termination
+ // conditions.
+ if (fseek(f, 0, SEEK_SET) != 0) {
+ *line = 0;
+ *msg_id = kmp_i18n_str_CantRewindCpuinfo;
+ return -1;
+ }
+
+ // Allocate the array of records to store the proc info in. The dummy
+ // element at the end makes the logic in filling them out easier to code.
+ unsigned **threadInfo =
+ (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
+ unsigned i;
+ for (i = 0; i <= num_records; i++) {
+ threadInfo[i] =
+ (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
+ }
+
+#define CLEANUP_THREAD_INFO \
+ for (i = 0; i <= num_records; i++) { \
+ __kmp_free(threadInfo[i]); \
+ } \
+ __kmp_free(threadInfo);
+
+ // A value of UINT_MAX means that we didn't find the field
+ unsigned __index;
+
+#define INIT_PROC_INFO(p) \
+ for (__index = 0; __index <= maxIndex; __index++) { \
+ (p)[__index] = UINT_MAX; \
+ }
+
+ for (i = 0; i <= num_records; i++) {
+ INIT_PROC_INFO(threadInfo[i]);
+ }
+
+ unsigned num_avail = 0;
+ *line = 0;
+ while (!feof(f)) {
+ // Create an inner scoping level, so that all the goto targets at the end of
+ // the loop appear in an outer scoping level. This avoids warnings about
+ // jumping past an initialization to a target in the same block.
+ {
+ buf[sizeof(buf) - 1] = 1;
+ bool long_line = false;
+ if (!fgets(buf, sizeof(buf), f)) {
+ // Read errors presumably because of EOF
+ // If there is valid data in threadInfo[num_avail], then fake
+ // a blank line in ensure that the last address gets parsed.
+ bool valid = false;
+ for (i = 0; i <= maxIndex; i++) {
+ if (threadInfo[num_avail][i] != UINT_MAX) {
+ valid = true;
+ }
+ }
+ if (!valid) {
+ break;
+ }
+ buf[0] = 0;
+ } else if (!buf[sizeof(buf) - 1]) {
+ // The line is longer than the buffer. Set a flag and don't
+ // emit an error if we were going to ignore the line, anyway.
+ long_line = true;
+
+#define CHECK_LINE \
+ if (long_line) { \
+ CLEANUP_THREAD_INFO; \
+ *msg_id = kmp_i18n_str_LongLineCpuinfo; \
+ return -1; \
+ }
+ }
+ (*line)++;
+
+ char s1[] = "processor";
+ if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
+ CHECK_LINE;
+ char *p = strchr(buf + sizeof(s1) - 1, ':');
+ unsigned val;
+ if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
+ goto no_val;
+ if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
+#if KMP_ARCH_AARCH64
+ // Handle the old AArch64 /proc/cpuinfo layout differently,
+ // it contains all of the 'processor' entries listed in a
+ // single 'Processor' section, therefore the normal looking
+ // for duplicates in that section will always fail.
+ num_avail++;
+#else
+ goto dup_field;
+#endif
+ threadInfo[num_avail][osIdIndex] = val;
+#if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
+ char path[256];
+ KMP_SNPRINTF(
+ path, sizeof(path),
+ "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
+ threadInfo[num_avail][osIdIndex]);
+ __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
+
+ KMP_SNPRINTF(path, sizeof(path),
+ "/sys/devices/system/cpu/cpu%u/topology/core_id",
+ threadInfo[num_avail][osIdIndex]);
+ __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
+ continue;
+#else
+ }
+ char s2[] = "physical id";
+ if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
+ CHECK_LINE;
+ char *p = strchr(buf + sizeof(s2) - 1, ':');
+ unsigned val;
+ if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
+ goto no_val;
+ if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
+ goto dup_field;
+ threadInfo[num_avail][pkgIdIndex] = val;
+ continue;
+ }
+ char s3[] = "core id";
+ if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
+ CHECK_LINE;
+ char *p = strchr(buf + sizeof(s3) - 1, ':');
+ unsigned val;
+ if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
+ goto no_val;
+ if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
+ goto dup_field;
+ threadInfo[num_avail][coreIdIndex] = val;
+ continue;
+#endif // KMP_OS_LINUX && USE_SYSFS_INFO
+ }
+ char s4[] = "thread id";
+ if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
+ CHECK_LINE;
+ char *p = strchr(buf + sizeof(s4) - 1, ':');
+ unsigned val;
+ if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
+ goto no_val;
+ if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
+ goto dup_field;
+ threadInfo[num_avail][threadIdIndex] = val;
+ continue;
+ }
+ unsigned level;
+ if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
+ CHECK_LINE;
+ char *p = strchr(buf + sizeof(s4) - 1, ':');
+ unsigned val;
+ if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
+ goto no_val;
+ KMP_ASSERT(nodeIdIndex + level <= maxIndex);
+ if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
+ goto dup_field;
+ threadInfo[num_avail][nodeIdIndex + level] = val;
+ continue;
+ }
+
+ // We didn't recognize the leading token on the line. There are lots of
+ // leading tokens that we don't recognize - if the line isn't empty, go on
+ // to the next line.
+ if ((*buf != 0) && (*buf != '\n')) {
+ // If the line is longer than the buffer, read characters
+ // until we find a newline.
+ if (long_line) {
+ int ch;
+ while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
+ ;
+ }
+ continue;
+ }
+
+ // A newline has signalled the end of the processor record.
+ // Check that there aren't too many procs specified.
+ if ((int)num_avail == __kmp_xproc) {
+ CLEANUP_THREAD_INFO;
+ *msg_id = kmp_i18n_str_TooManyEntries;
+ return -1;
+ }
+
+ // Check for missing fields. The osId field must be there, and we
+ // currently require that the physical id field is specified, also.
+ if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
+ CLEANUP_THREAD_INFO;
+ *msg_id = kmp_i18n_str_MissingProcField;
+ return -1;
+ }
+ if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
+ CLEANUP_THREAD_INFO;
+ *msg_id = kmp_i18n_str_MissingPhysicalIDField;
+ return -1;
+ }
+
+ // Skip this proc if it is not included in the machine model.
+ if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
+ __kmp_affin_fullMask)) {
+ INIT_PROC_INFO(threadInfo[num_avail]);
+ continue;
+ }
+
+ // We have a successful parse of this proc's info.
+ // Increment the counter, and prepare for the next proc.
+ num_avail++;
+ KMP_ASSERT(num_avail <= num_records);
+ INIT_PROC_INFO(threadInfo[num_avail]);
+ }
+ continue;
+
+ no_val:
+ CLEANUP_THREAD_INFO;
+ *msg_id = kmp_i18n_str_MissingValCpuinfo;
+ return -1;
+
+ dup_field:
+ CLEANUP_THREAD_INFO;
+ *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
+ return -1;
+ }
+ *line = 0;
+
+#if KMP_MIC && REDUCE_TEAM_SIZE
+ unsigned teamSize = 0;
+#endif // KMP_MIC && REDUCE_TEAM_SIZE
+
+ // check for num_records == __kmp_xproc ???
+
+ // If there's only one thread context to bind to, form an Address object with
+ // depth 1 and return immediately (or, if affinity is off, set address2os to
+ // NULL and return).
+ //
+ // If it is configured to omit the package level when there is only a single
+ // package, the logic at the end of this routine won't work if there is only a
+ // single thread - it would try to form an Address object with depth 0.
+ KMP_ASSERT(num_avail > 0);
+ KMP_ASSERT(num_avail <= num_records);
+ if (num_avail == 1) {
+ __kmp_ncores = 1;
+ __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
+ if (__kmp_affinity_verbose) {
+ if (!KMP_AFFINITY_CAPABLE()) {
+ KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ __kmp_affin_fullMask);
+ KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ }
+ int index;
+ kmp_str_buf_t buf;
+ __kmp_str_buf_init(&buf);
+ __kmp_str_buf_print(&buf, "1");
+ for (index = maxIndex - 1; index > pkgIdIndex; index--) {
+ __kmp_str_buf_print(&buf, " x 1");
+ }
+ KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1);
+ __kmp_str_buf_free(&buf);
+ }
+
+ if (__kmp_affinity_type == affinity_none) {
+ CLEANUP_THREAD_INFO;
+ return 0;
+ }
+
+ *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
+ Address addr(1);
+ addr.labels[0] = threadInfo[0][pkgIdIndex];
+ (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]);
+
+ if (__kmp_affinity_gran_levels < 0) {
+ __kmp_affinity_gran_levels = 0;
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
+ }
+
+ CLEANUP_THREAD_INFO;
+ return 1;
+ }
+
+ // Sort the threadInfo table by physical Id.
+ qsort(threadInfo, num_avail, sizeof(*threadInfo),
+ __kmp_affinity_cmp_ProcCpuInfo_phys_id);
+
+ // The table is now sorted by pkgId / coreId / threadId, but we really don't
+ // know the radix of any of the fields. pkgId's may be sparsely assigned among
+ // the chips on a system. Although coreId's are usually assigned
+ // [0 .. coresPerPkg-1] and threadId's are usually assigned
+ // [0..threadsPerCore-1], we don't want to make any such assumptions.
+ //
+ // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
+ // total # packages) are at this point - we want to determine that now. We
+ // only have an upper bound on the first two figures.
+ unsigned *counts =
+ (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
+ unsigned *maxCt =
+ (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
+ unsigned *totals =
+ (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
+ unsigned *lastId =
+ (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
+
+ bool assign_thread_ids = false;
+ unsigned threadIdCt;
+ unsigned index;
+
+restart_radix_check:
+ threadIdCt = 0;
+
+ // Initialize the counter arrays with data from threadInfo[0].
+ if (assign_thread_ids) {
+ if (threadInfo[0][threadIdIndex] == UINT_MAX) {
+ threadInfo[0][threadIdIndex] = threadIdCt++;
+ } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
+ threadIdCt = threadInfo[0][threadIdIndex] + 1;
+ }
+ }
+ for (index = 0; index <= maxIndex; index++) {
+ counts[index] = 1;
+ maxCt[index] = 1;
+ totals[index] = 1;
+ lastId[index] = threadInfo[0][index];
+ ;
+ }
+
+ // Run through the rest of the OS procs.
+ for (i = 1; i < num_avail; i++) {
+ // Find the most significant index whose id differs from the id for the
+ // previous OS proc.
+ for (index = maxIndex; index >= threadIdIndex; index--) {
+ if (assign_thread_ids && (index == threadIdIndex)) {
+ // Auto-assign the thread id field if it wasn't specified.
+ if (threadInfo[i][threadIdIndex] == UINT_MAX) {
+ threadInfo[i][threadIdIndex] = threadIdCt++;
+ }
+ // Apparently the thread id field was specified for some entries and not
+ // others. Start the thread id counter off at the next higher thread id.
+ else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
+ threadIdCt = threadInfo[i][threadIdIndex] + 1;
+ }
+ }
+ if (threadInfo[i][index] != lastId[index]) {
+ // Run through all indices which are less significant, and reset the
+ // counts to 1. At all levels up to and including index, we need to
+ // increment the totals and record the last id.
+ unsigned index2;
+ for (index2 = threadIdIndex; index2 < index; index2++) {
+ totals[index2]++;
+ if (counts[index2] > maxCt[index2]) {
+ maxCt[index2] = counts[index2];
+ }
+ counts[index2] = 1;
+ lastId[index2] = threadInfo[i][index2];
+ }
+ counts[index]++;
+ totals[index]++;
+ lastId[index] = threadInfo[i][index];
+
+ if (assign_thread_ids && (index > threadIdIndex)) {
+
+#if KMP_MIC && REDUCE_TEAM_SIZE
+ // The default team size is the total #threads in the machine
+ // minus 1 thread for every core that has 3 or more threads.
+ teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
+#endif // KMP_MIC && REDUCE_TEAM_SIZE
+
+ // Restart the thread counter, as we are on a new core.
+ threadIdCt = 0;
+
+ // Auto-assign the thread id field if it wasn't specified.
+ if (threadInfo[i][threadIdIndex] == UINT_MAX) {
+ threadInfo[i][threadIdIndex] = threadIdCt++;
+ }
+
+ // Aparrently the thread id field was specified for some entries and
+ // not others. Start the thread id counter off at the next higher
+ // thread id.
+ else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
+ threadIdCt = threadInfo[i][threadIdIndex] + 1;
+ }
+ }
+ break;
+ }
+ }
+ if (index < threadIdIndex) {
+ // If thread ids were specified, it is an error if they are not unique.
+ // Also, check that we waven't already restarted the loop (to be safe -
+ // shouldn't need to).
+ if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
+ __kmp_free(lastId);
+ __kmp_free(totals);
+ __kmp_free(maxCt);
+ __kmp_free(counts);
+ CLEANUP_THREAD_INFO;
+ *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
+ return -1;
+ }
+
+ // If the thread ids were not specified and we see entries entries that
+ // are duplicates, start the loop over and assign the thread ids manually.
+ assign_thread_ids = true;
+ goto restart_radix_check;
+ }
+ }
+
+#if KMP_MIC && REDUCE_TEAM_SIZE
+ // The default team size is the total #threads in the machine
+ // minus 1 thread for every core that has 3 or more threads.
+ teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
+#endif // KMP_MIC && REDUCE_TEAM_SIZE
+
+ for (index = threadIdIndex; index <= maxIndex; index++) {
+ if (counts[index] > maxCt[index]) {
+ maxCt[index] = counts[index];
+ }
+ }
+
+ __kmp_nThreadsPerCore = maxCt[threadIdIndex];
+ nCoresPerPkg = maxCt[coreIdIndex];
+ nPackages = totals[pkgIdIndex];
+
+ // Check to see if the machine topology is uniform
+ unsigned prod = totals[maxIndex];
+ for (index = threadIdIndex; index < maxIndex; index++) {
+ prod *= maxCt[index];
+ }
+ bool uniform = (prod == totals[threadIdIndex]);
+
+ // When affinity is off, this routine will still be called to set
+ // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
+ // Make sure all these vars are set correctly, and return now if affinity is
+ // not enabled.
+ __kmp_ncores = totals[coreIdIndex];
+
+ if (__kmp_affinity_verbose) {
+ if (!KMP_AFFINITY_CAPABLE()) {
+ KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (uniform) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+ } else {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ __kmp_affin_fullMask);
+ KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (uniform) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+ }
+ kmp_str_buf_t buf;
+ __kmp_str_buf_init(&buf);
+
+ __kmp_str_buf_print(&buf, "%d", totals[maxIndex]);
+ for (index = maxIndex - 1; index >= pkgIdIndex; index--) {
+ __kmp_str_buf_print(&buf, " x %d", maxCt[index]);
+ }
+ KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex],
+ maxCt[threadIdIndex], __kmp_ncores);
+
+ __kmp_str_buf_free(&buf);
+ }
+
+#if KMP_MIC && REDUCE_TEAM_SIZE
+ // Set the default team size.
+ if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
+ __kmp_dflt_team_nth = teamSize;
+ KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
+ "__kmp_dflt_team_nth = %d\n",
+ __kmp_dflt_team_nth));
+ }
+#endif // KMP_MIC && REDUCE_TEAM_SIZE
+
+ KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
+ KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
+ __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
+ for (i = 0; i < num_avail; ++i) { // fill the os indices
+ __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex];
+ }
+
+ if (__kmp_affinity_type == affinity_none) {
+ __kmp_free(lastId);
+ __kmp_free(totals);
+ __kmp_free(maxCt);
+ __kmp_free(counts);
+ CLEANUP_THREAD_INFO;
+ return 0;
+ }
+
+ // Count the number of levels which have more nodes at that level than at the
+ // parent's level (with there being an implicit root node of the top level).
+ // This is equivalent to saying that there is at least one node at this level
+ // which has a sibling. These levels are in the map, and the package level is
+ // always in the map.
+ bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
+ for (index = threadIdIndex; index < maxIndex; index++) {
+ KMP_ASSERT(totals[index] >= totals[index + 1]);
+ inMap[index] = (totals[index] > totals[index + 1]);
+ }
+ inMap[maxIndex] = (totals[maxIndex] > 1);
+ inMap[pkgIdIndex] = true;
+
+ int depth = 0;
+ for (index = threadIdIndex; index <= maxIndex; index++) {
+ if (inMap[index]) {
+ depth++;
+ }
+ }
+ KMP_ASSERT(depth > 0);
+
+ // Construct the data structure that is to be returned.
+ *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail);
+ int pkgLevel = -1;
+ int coreLevel = -1;
+ int threadLevel = -1;
+
+ for (i = 0; i < num_avail; ++i) {
+ Address addr(depth);
+ unsigned os = threadInfo[i][osIdIndex];
+ int src_index;
+ int dst_index = 0;
+
+ for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
+ if (!inMap[src_index]) {
+ continue;
+ }
+ addr.labels[dst_index] = threadInfo[i][src_index];
+ if (src_index == pkgIdIndex) {
+ pkgLevel = dst_index;
+ } else if (src_index == coreIdIndex) {
+ coreLevel = dst_index;
+ } else if (src_index == threadIdIndex) {
+ threadLevel = dst_index;
+ }
+ dst_index++;
+ }
+ (*address2os)[i] = AddrUnsPair(addr, os);
+ }
+
+ if (__kmp_affinity_gran_levels < 0) {
+ // Set the granularity level based on what levels are modeled
+ // in the machine topology map.
+ unsigned src_index;
+ __kmp_affinity_gran_levels = 0;
+ for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) {
+ if (!inMap[src_index]) {
+ continue;
+ }
+ switch (src_index) {
+ case threadIdIndex:
+ if (__kmp_affinity_gran > affinity_gran_thread) {
+ __kmp_affinity_gran_levels++;
+ }
+
+ break;
+ case coreIdIndex:
+ if (__kmp_affinity_gran > affinity_gran_core) {
+ __kmp_affinity_gran_levels++;
+ }
+ break;
+
+ case pkgIdIndex:
+ if (__kmp_affinity_gran > affinity_gran_package) {
+ __kmp_affinity_gran_levels++;
+ }
+ break;
+ }
+ }
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel,
+ coreLevel, threadLevel);
+ }
+
+ __kmp_free(inMap);
+ __kmp_free(lastId);
+ __kmp_free(totals);
+ __kmp_free(maxCt);
+ __kmp_free(counts);
+ CLEANUP_THREAD_INFO;
+ return depth;
+}
+
+// Create and return a table of affinity masks, indexed by OS thread ID.
+// This routine handles OR'ing together all the affinity masks of threads
+// that are sufficiently close, if granularity > fine.
+static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex,
+ unsigned *numUnique,
+ AddrUnsPair *address2os,
+ unsigned numAddrs) {
+ // First form a table of affinity masks in order of OS thread id.
+ unsigned depth;
+ unsigned maxOsId;
+ unsigned i;
+
+ KMP_ASSERT(numAddrs > 0);
+ depth = address2os[0].first.depth;
+
+ maxOsId = 0;
+ for (i = numAddrs - 1;; --i) {
+ unsigned osId = address2os[i].second;
+ if (osId > maxOsId) {
+ maxOsId = osId;
+ }
+ if (i == 0)
+ break;
+ }
+ kmp_affin_mask_t *osId2Mask;
+ KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1));
+
+ // Sort the address2os table according to physical order. Doing so will put
+ // all threads on the same core/package/node in consecutive locations.
+ qsort(address2os, numAddrs, sizeof(*address2os),
+ __kmp_affinity_cmp_Address_labels);
+
+ KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
+ if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
+ KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
+ }
+ if (__kmp_affinity_gran_levels >= (int)depth) {
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffThreadsMayMigrate);
+ }
+ }
+
+ // Run through the table, forming the masks for all threads on each core.
+ // Threads on the same core will have identical "Address" objects, not
+ // considering the last level, which must be the thread id. All threads on a
+ // core will appear consecutively.
+ unsigned unique = 0;
+ unsigned j = 0; // index of 1st thread on core
+ unsigned leader = 0;
+ Address *leaderAddr = &(address2os[0].first);
+ kmp_affin_mask_t *sum;
+ KMP_CPU_ALLOC_ON_STACK(sum);
+ KMP_CPU_ZERO(sum);
+ KMP_CPU_SET(address2os[0].second, sum);
+ for (i = 1; i < numAddrs; i++) {
+ // If this thread is sufficiently close to the leader (within the
+ // granularity setting), then set the bit for this os thread in the
+ // affinity mask for this group, and go on to the next thread.
+ if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) {
+ KMP_CPU_SET(address2os[i].second, sum);
+ continue;
+ }
+
+ // For every thread in this group, copy the mask to the thread's entry in
+ // the osId2Mask table. Mark the first address as a leader.
+ for (; j < i; j++) {
+ unsigned osId = address2os[j].second;
+ KMP_DEBUG_ASSERT(osId <= maxOsId);
+ kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
+ KMP_CPU_COPY(mask, sum);
+ address2os[j].first.leader = (j == leader);
+ }
+ unique++;
+
+ // Start a new mask.
+ leader = i;
+ leaderAddr = &(address2os[i].first);
+ KMP_CPU_ZERO(sum);
+ KMP_CPU_SET(address2os[i].second, sum);
+ }
+
+ // For every thread in last group, copy the mask to the thread's
+ // entry in the osId2Mask table.
+ for (; j < i; j++) {
+ unsigned osId = address2os[j].second;
+ KMP_DEBUG_ASSERT(osId <= maxOsId);
+ kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
+ KMP_CPU_COPY(mask, sum);
+ address2os[j].first.leader = (j == leader);
+ }
+ unique++;
+ KMP_CPU_FREE_FROM_STACK(sum);
+
+ *maxIndex = maxOsId;
+ *numUnique = unique;
+ return osId2Mask;
+}
+
+// Stuff for the affinity proclist parsers. It's easier to declare these vars
+// as file-static than to try and pass them through the calling sequence of
+// the recursive-descent OMP_PLACES parser.
+static kmp_affin_mask_t *newMasks;
+static int numNewMasks;
+static int nextNewMask;
+
+#define ADD_MASK(_mask) \
+ { \
+ if (nextNewMask >= numNewMasks) { \
+ int i; \
+ numNewMasks *= 2; \
+ kmp_affin_mask_t *temp; \
+ KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
+ for (i = 0; i < numNewMasks / 2; i++) { \
+ kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
+ kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
+ KMP_CPU_COPY(dest, src); \
+ } \
+ KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
+ newMasks = temp; \
+ } \
+ KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
+ nextNewMask++; \
+ }
+
+#define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
+ { \
+ if (((_osId) > _maxOsId) || \
+ (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
+ if (__kmp_affinity_verbose || \
+ (__kmp_affinity_warnings && \
+ (__kmp_affinity_type != affinity_none))) { \
+ KMP_WARNING(AffIgnoreInvalidProcID, _osId); \
+ } \
+ } else { \
+ ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
+ } \
+ }
+
+// Re-parse the proclist (for the explicit affinity type), and form the list
+// of affinity newMasks indexed by gtid.
+static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
+ unsigned int *out_numMasks,
+ const char *proclist,
+ kmp_affin_mask_t *osId2Mask,
+ int maxOsId) {
+ int i;
+ const char *scan = proclist;
+ const char *next = proclist;
+
+ // We use malloc() for the temporary mask vector, so that we can use
+ // realloc() to extend it.
+ numNewMasks = 2;
+ KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
+ nextNewMask = 0;
+ kmp_affin_mask_t *sumMask;
+ KMP_CPU_ALLOC(sumMask);
+ int setSize = 0;
+
+ for (;;) {
+ int start, end, stride;
+
+ SKIP_WS(scan);
+ next = scan;
+ if (*next == '\0') {
+ break;
+ }
+
+ if (*next == '{') {
+ int num;
+ setSize = 0;
+ next++; // skip '{'
+ SKIP_WS(next);
+ scan = next;
+
+ // Read the first integer in the set.
+ KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
+ SKIP_DIGITS(next);
+ num = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT2(num >= 0, "bad explicit proc list");
+
+ // Copy the mask for that osId to the sum (union) mask.
+ if ((num > maxOsId) ||
+ (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings &&
+ (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, num);
+ }
+ KMP_CPU_ZERO(sumMask);
+ } else {
+ KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
+ setSize = 1;
+ }
+
+ for (;;) {
+ // Check for end of set.
+ SKIP_WS(next);
+ if (*next == '}') {
+ next++; // skip '}'
+ break;
+ }
+
+ // Skip optional comma.
+ if (*next == ',') {
+ next++;
+ }
+ SKIP_WS(next);
+
+ // Read the next integer in the set.
+ scan = next;
+ KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
+
+ SKIP_DIGITS(next);
+ num = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT2(num >= 0, "bad explicit proc list");
+
+ // Add the mask for that osId to the sum mask.
+ if ((num > maxOsId) ||
+ (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings &&
+ (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, num);
+ }
+ } else {
+ KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
+ setSize++;
+ }
+ }
+ if (setSize > 0) {
+ ADD_MASK(sumMask);
+ }
+
+ SKIP_WS(next);
+ if (*next == ',') {
+ next++;
+ }
+ scan = next;
+ continue;
+ }
+
+ // Read the first integer.
+ KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
+ SKIP_DIGITS(next);
+ start = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT2(start >= 0, "bad explicit proc list");
+ SKIP_WS(next);
+
+ // If this isn't a range, then add a mask to the list and go on.
+ if (*next != '-') {
+ ADD_MASK_OSID(start, osId2Mask, maxOsId);
+
+ // Skip optional comma.
+ if (*next == ',') {
+ next++;
+ }
+ scan = next;
+ continue;
+ }
+
+ // This is a range. Skip over the '-' and read in the 2nd int.
+ next++; // skip '-'
+ SKIP_WS(next);
+ scan = next;
+ KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
+ SKIP_DIGITS(next);
+ end = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT2(end >= 0, "bad explicit proc list");
+
+ // Check for a stride parameter
+ stride = 1;
+ SKIP_WS(next);
+ if (*next == ':') {
+ // A stride is specified. Skip over the ':" and read the 3rd int.
+ int sign = +1;
+ next++; // skip ':'
+ SKIP_WS(next);
+ scan = next;
+ if (*next == '-') {
+ sign = -1;
+ next++;
+ SKIP_WS(next);
+ scan = next;
+ }
+ KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
+ SKIP_DIGITS(next);
+ stride = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT2(stride >= 0, "bad explicit proc list");
+ stride *= sign;
+ }
+
+ // Do some range checks.
+ KMP_ASSERT2(stride != 0, "bad explicit proc list");
+ if (stride > 0) {
+ KMP_ASSERT2(start <= end, "bad explicit proc list");
+ } else {
+ KMP_ASSERT2(start >= end, "bad explicit proc list");
+ }
+ KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
+
+ // Add the mask for each OS proc # to the list.
+ if (stride > 0) {
+ do {
+ ADD_MASK_OSID(start, osId2Mask, maxOsId);
+ start += stride;
+ } while (start <= end);
+ } else {
+ do {
+ ADD_MASK_OSID(start, osId2Mask, maxOsId);
+ start += stride;
+ } while (start >= end);
+ }
+
+ // Skip optional comma.
+ SKIP_WS(next);
+ if (*next == ',') {
+ next++;
+ }
+ scan = next;
+ }
+
+ *out_numMasks = nextNewMask;
+ if (nextNewMask == 0) {
+ *out_masks = NULL;
+ KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
+ return;
+ }
+ KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
+ for (i = 0; i < nextNewMask; i++) {
+ kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
+ kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
+ KMP_CPU_COPY(dest, src);
+ }
+ KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
+ KMP_CPU_FREE(sumMask);
+}
+
+/*-----------------------------------------------------------------------------
+Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
+places. Again, Here is the grammar:
+
+place_list := place
+place_list := place , place_list
+place := num
+place := place : num
+place := place : num : signed
+place := { subplacelist }
+place := ! place // (lowest priority)
+subplace_list := subplace
+subplace_list := subplace , subplace_list
+subplace := num
+subplace := num : num
+subplace := num : num : signed
+signed := num
+signed := + signed
+signed := - signed
+-----------------------------------------------------------------------------*/
+static void __kmp_process_subplace_list(const char **scan,
+ kmp_affin_mask_t *osId2Mask,
+ int maxOsId, kmp_affin_mask_t *tempMask,
+ int *setSize) {
+ const char *next;
+
+ for (;;) {
+ int start, count, stride, i;
+
+ // Read in the starting proc id
+ SKIP_WS(*scan);
+ KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
+ next = *scan;
+ SKIP_DIGITS(next);
+ start = __kmp_str_to_int(*scan, *next);
+ KMP_ASSERT(start >= 0);
+ *scan = next;
+
+ // valid follow sets are ',' ':' and '}'
+ SKIP_WS(*scan);
+ if (**scan == '}' || **scan == ',') {
+ if ((start > maxOsId) ||
+ (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings &&
+ (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, start);
+ }
+ } else {
+ KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
+ (*setSize)++;
+ }
+ if (**scan == '}') {
+ break;
+ }
+ (*scan)++; // skip ','
+ continue;
+ }
+ KMP_ASSERT2(**scan == ':', "bad explicit places list");
+ (*scan)++; // skip ':'
+
+ // Read count parameter
+ SKIP_WS(*scan);
+ KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
+ next = *scan;
+ SKIP_DIGITS(next);
+ count = __kmp_str_to_int(*scan, *next);
+ KMP_ASSERT(count >= 0);
+ *scan = next;
+
+ // valid follow sets are ',' ':' and '}'
+ SKIP_WS(*scan);
+ if (**scan == '}' || **scan == ',') {
+ for (i = 0; i < count; i++) {
+ if ((start > maxOsId) ||
+ (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings &&
+ (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, start);
+ }
+ break; // don't proliferate warnings for large count
+ } else {
+ KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
+ start++;
+ (*setSize)++;
+ }
+ }
+ if (**scan == '}') {
+ break;
+ }
+ (*scan)++; // skip ','
+ continue;
+ }
+ KMP_ASSERT2(**scan == ':', "bad explicit places list");
+ (*scan)++; // skip ':'
+
+ // Read stride parameter
+ int sign = +1;
+ for (;;) {
+ SKIP_WS(*scan);
+ if (**scan == '+') {
+ (*scan)++; // skip '+'
+ continue;
+ }
+ if (**scan == '-') {
+ sign *= -1;
+ (*scan)++; // skip '-'
+ continue;
+ }
+ break;
+ }
+ SKIP_WS(*scan);
+ KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
+ next = *scan;
+ SKIP_DIGITS(next);
+ stride = __kmp_str_to_int(*scan, *next);
+ KMP_ASSERT(stride >= 0);
+ *scan = next;
+ stride *= sign;
+
+ // valid follow sets are ',' and '}'
+ SKIP_WS(*scan);
+ if (**scan == '}' || **scan == ',') {
+ for (i = 0; i < count; i++) {
+ if ((start > maxOsId) ||
+ (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings &&
+ (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, start);
+ }
+ break; // don't proliferate warnings for large count
+ } else {
+ KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
+ start += stride;
+ (*setSize)++;
+ }
+ }
+ if (**scan == '}') {
+ break;
+ }
+ (*scan)++; // skip ','
+ continue;
+ }
+
+ KMP_ASSERT2(0, "bad explicit places list");
+ }
+}
+
+static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
+ int maxOsId, kmp_affin_mask_t *tempMask,
+ int *setSize) {
+ const char *next;
+
+ // valid follow sets are '{' '!' and num
+ SKIP_WS(*scan);
+ if (**scan == '{') {
+ (*scan)++; // skip '{'
+ __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize);
+ KMP_ASSERT2(**scan == '}', "bad explicit places list");
+ (*scan)++; // skip '}'
+ } else if (**scan == '!') {
+ (*scan)++; // skip '!'
+ __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
+ KMP_CPU_COMPLEMENT(maxOsId, tempMask);
+ } else if ((**scan >= '0') && (**scan <= '9')) {
+ next = *scan;
+ SKIP_DIGITS(next);
+ int num = __kmp_str_to_int(*scan, *next);
+ KMP_ASSERT(num >= 0);
+ if ((num > maxOsId) ||
+ (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, num);
+ }
+ } else {
+ KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
+ (*setSize)++;
+ }
+ *scan = next; // skip num
+ } else {
+ KMP_ASSERT2(0, "bad explicit places list");
+ }
+}
+
+// static void
+void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
+ unsigned int *out_numMasks,
+ const char *placelist,
+ kmp_affin_mask_t *osId2Mask,
+ int maxOsId) {
+ int i, j, count, stride, sign;
+ const char *scan = placelist;
+ const char *next = placelist;
+
+ numNewMasks = 2;
+ KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
+ nextNewMask = 0;
+
+ // tempMask is modified based on the previous or initial
+ // place to form the current place
+ // previousMask contains the previous place
+ kmp_affin_mask_t *tempMask;
+ kmp_affin_mask_t *previousMask;
+ KMP_CPU_ALLOC(tempMask);
+ KMP_CPU_ZERO(tempMask);
+ KMP_CPU_ALLOC(previousMask);
+ KMP_CPU_ZERO(previousMask);
+ int setSize = 0;
+
+ for (;;) {
+ __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
+
+ // valid follow sets are ',' ':' and EOL
+ SKIP_WS(scan);
+ if (*scan == '\0' || *scan == ',') {
+ if (setSize > 0) {
+ ADD_MASK(tempMask);
+ }
+ KMP_CPU_ZERO(tempMask);
+ setSize = 0;
+ if (*scan == '\0') {
+ break;
+ }
+ scan++; // skip ','
+ continue;
+ }
+
+ KMP_ASSERT2(*scan == ':', "bad explicit places list");
+ scan++; // skip ':'
+
+ // Read count parameter
+ SKIP_WS(scan);
+ KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
+ next = scan;
+ SKIP_DIGITS(next);
+ count = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT(count >= 0);
+ scan = next;
+
+ // valid follow sets are ',' ':' and EOL
+ SKIP_WS(scan);
+ if (*scan == '\0' || *scan == ',') {
+ stride = +1;
+ } else {
+ KMP_ASSERT2(*scan == ':', "bad explicit places list");
+ scan++; // skip ':'
+
+ // Read stride parameter
+ sign = +1;
+ for (;;) {
+ SKIP_WS(scan);
+ if (*scan == '+') {
+ scan++; // skip '+'
+ continue;
+ }
+ if (*scan == '-') {
+ sign *= -1;
+ scan++; // skip '-'
+ continue;
+ }
+ break;
+ }
+ SKIP_WS(scan);
+ KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
+ next = scan;
+ SKIP_DIGITS(next);
+ stride = __kmp_str_to_int(scan, *next);
+ KMP_DEBUG_ASSERT(stride >= 0);
+ scan = next;
+ stride *= sign;
+ }
+
+ // Add places determined by initial_place : count : stride
+ for (i = 0; i < count; i++) {
+ if (setSize == 0) {
+ break;
+ }
+ // Add the current place, then build the next place (tempMask) from that
+ KMP_CPU_COPY(previousMask, tempMask);
+ ADD_MASK(previousMask);
+ KMP_CPU_ZERO(tempMask);
+ setSize = 0;
+ KMP_CPU_SET_ITERATE(j, previousMask) {
+ if (!KMP_CPU_ISSET(j, previousMask)) {
+ continue;
+ }
+ if ((j + stride > maxOsId) || (j + stride < 0) ||
+ (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
+ (!KMP_CPU_ISSET(j + stride,
+ KMP_CPU_INDEX(osId2Mask, j + stride)))) {
+ if ((__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings &&
+ (__kmp_affinity_type != affinity_none))) &&
+ i < count - 1) {
+ KMP_WARNING(AffIgnoreInvalidProcID, j + stride);
+ }
+ continue;
+ }
+ KMP_CPU_SET(j + stride, tempMask);
+ setSize++;
+ }
+ }
+ KMP_CPU_ZERO(tempMask);
+ setSize = 0;
+
+ // valid follow sets are ',' and EOL
+ SKIP_WS(scan);
+ if (*scan == '\0') {
+ break;
+ }
+ if (*scan == ',') {
+ scan++; // skip ','
+ continue;
+ }
+
+ KMP_ASSERT2(0, "bad explicit places list");
+ }
+
+ *out_numMasks = nextNewMask;
+ if (nextNewMask == 0) {
+ *out_masks = NULL;
+ KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
+ return;
+ }
+ KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
+ KMP_CPU_FREE(tempMask);
+ KMP_CPU_FREE(previousMask);
+ for (i = 0; i < nextNewMask; i++) {
+ kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
+ kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
+ KMP_CPU_COPY(dest, src);
+ }
+ KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
+}
+
+#undef ADD_MASK
+#undef ADD_MASK_OSID
+
+#if KMP_USE_HWLOC
+static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) {
+ // skip PUs descendants of the object o
+ int skipped = 0;
+ hwloc_obj_t hT = NULL;
+ int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
+ for (int i = 0; i < N; ++i) {
+ KMP_DEBUG_ASSERT(hT);
+ unsigned idx = hT->os_index;
+ if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
+ KMP_CPU_CLR(idx, __kmp_affin_fullMask);
+ KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
+ ++skipped;
+ }
+ hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
+ }
+ return skipped; // count number of skipped units
+}
+
+static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) {
+ // check if obj has PUs present in fullMask
+ hwloc_obj_t hT = NULL;
+ int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
+ for (int i = 0; i < N; ++i) {
+ KMP_DEBUG_ASSERT(hT);
+ unsigned idx = hT->os_index;
+ if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask))
+ return 1; // found PU
+ hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
+ }
+ return 0; // no PUs found
+}
+#endif // KMP_USE_HWLOC
+
+static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) {
+ AddrUnsPair *newAddr;
+ if (__kmp_hws_requested == 0)
+ goto _exit; // no topology limiting actions requested, exit
+#if KMP_USE_HWLOC
+ if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
+ // Number of subobjects calculated dynamically, this works fine for
+ // any non-uniform topology.
+ // L2 cache objects are determined by depth, other objects - by type.
+ hwloc_topology_t tp = __kmp_hwloc_topology;
+ int nS = 0, nN = 0, nL = 0, nC = 0,
+ nT = 0; // logical index including skipped
+ int nCr = 0, nTr = 0; // number of requested units
+ int nPkg = 0, nCo = 0, n_new = 0, n_old = 0, nCpP = 0, nTpC = 0; // counters
+ hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
+ int L2depth, idx;
+
+ // check support of extensions ----------------------------------
+ int numa_support = 0, tile_support = 0;
+ if (__kmp_pu_os_idx)
+ hT = hwloc_get_pu_obj_by_os_index(tp,
+ __kmp_pu_os_idx[__kmp_avail_proc - 1]);
+ else
+ hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1);
+ if (hT == NULL) { // something's gone wrong
+ KMP_WARNING(AffHWSubsetUnsupported);
+ goto _exit;
+ }
+ // check NUMA node
+ hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
+ hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
+ if (hN != NULL && hN->depth > hS->depth) {
+ numa_support = 1; // 1 in case socket includes node(s)
+ } else if (__kmp_hws_node.num > 0) {
+ // don't support sockets inside NUMA node (no such HW found for testing)
+ KMP_WARNING(AffHWSubsetUnsupported);
+ goto _exit;
+ }
+ // check L2 cahce, get object by depth because of multiple caches
+ L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
+ hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT);
+ if (hL != NULL &&
+ __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) {
+ tile_support = 1; // no sense to count L2 if it includes single core
+ } else if (__kmp_hws_tile.num > 0) {
+ if (__kmp_hws_core.num == 0) {
+ __kmp_hws_core = __kmp_hws_tile; // replace L2 with core
+ __kmp_hws_tile.num = 0;
+ } else {
+ // L2 and core are both requested, but represent same object
+ KMP_WARNING(AffHWSubsetInvalid);
+ goto _exit;
+ }
+ }
+ // end of check of extensions -----------------------------------
+
+ // fill in unset items, validate settings -----------------------
+ if (__kmp_hws_socket.num == 0)
+ __kmp_hws_socket.num = nPackages; // use all available sockets
+ if (__kmp_hws_socket.offset >= nPackages) {
+ KMP_WARNING(AffHWSubsetManySockets);
+ goto _exit;
+ }
+ if (numa_support) {
+ hN = NULL;
+ int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE,
+ &hN); // num nodes in socket
+ if (__kmp_hws_node.num == 0)
+ __kmp_hws_node.num = NN; // use all available nodes
+ if (__kmp_hws_node.offset >= NN) {
+ KMP_WARNING(AffHWSubsetManyNodes);
+ goto _exit;
+ }
+ if (tile_support) {
+ // get num tiles in node
+ int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
+ if (__kmp_hws_tile.num == 0) {
+ __kmp_hws_tile.num = NL + 1;
+ } // use all available tiles, some node may have more tiles, thus +1
+ if (__kmp_hws_tile.offset >= NL) {
+ KMP_WARNING(AffHWSubsetManyTiles);
+ goto _exit;
+ }
+ int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
+ &hC); // num cores in tile
+ if (__kmp_hws_core.num == 0)
+ __kmp_hws_core.num = NC; // use all available cores
+ if (__kmp_hws_core.offset >= NC) {
+ KMP_WARNING(AffHWSubsetManyCores);
+ goto _exit;
+ }
+ } else { // tile_support
+ int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE,
+ &hC); // num cores in node
+ if (__kmp_hws_core.num == 0)
+ __kmp_hws_core.num = NC; // use all available cores
+ if (__kmp_hws_core.offset >= NC) {
+ KMP_WARNING(AffHWSubsetManyCores);
+ goto _exit;
+ }
+ } // tile_support
+ } else { // numa_support
+ if (tile_support) {
+ // get num tiles in socket
+ int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
+ if (__kmp_hws_tile.num == 0)
+ __kmp_hws_tile.num = NL; // use all available tiles
+ if (__kmp_hws_tile.offset >= NL) {
+ KMP_WARNING(AffHWSubsetManyTiles);
+ goto _exit;
+ }
+ int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
+ &hC); // num cores in tile
+ if (__kmp_hws_core.num == 0)
+ __kmp_hws_core.num = NC; // use all available cores
+ if (__kmp_hws_core.offset >= NC) {
+ KMP_WARNING(AffHWSubsetManyCores);
+ goto _exit;
+ }
+ } else { // tile_support
+ int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE,
+ &hC); // num cores in socket
+ if (__kmp_hws_core.num == 0)
+ __kmp_hws_core.num = NC; // use all available cores
+ if (__kmp_hws_core.offset >= NC) {
+ KMP_WARNING(AffHWSubsetManyCores);
+ goto _exit;
+ }
+ } // tile_support
+ }
+ if (__kmp_hws_proc.num == 0)
+ __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs
+ if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) {
+ KMP_WARNING(AffHWSubsetManyProcs);
+ goto _exit;
+ }
+ // end of validation --------------------------------------------
+
+ if (pAddr) // pAddr is NULL in case of affinity_none
+ newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) *
+ __kmp_avail_proc); // max size
+ // main loop to form HW subset ----------------------------------
+ hS = NULL;
+ int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE);
+ for (int s = 0; s < NP; ++s) {
+ // Check Socket -----------------------------------------------
+ hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS);
+ if (!__kmp_hwloc_obj_has_PUs(tp, hS))
+ continue; // skip socket if all PUs are out of fullMask
+ ++nS; // only count objects those have PUs in affinity mask
+ if (nS <= __kmp_hws_socket.offset ||
+ nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) {
+ n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket
+ continue; // move to next socket
+ }
+ nCr = 0; // count number of cores per socket
+ // socket requested, go down the topology tree
+ // check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile)
+ if (numa_support) {
+ nN = 0;
+ hN = NULL;
+ // num nodes in current socket
+ int NN =
+ __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, &hN);
+ for (int n = 0; n < NN; ++n) {
+ // Check NUMA Node ----------------------------------------
+ if (!__kmp_hwloc_obj_has_PUs(tp, hN)) {
+ hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
+ continue; // skip node if all PUs are out of fullMask
+ }
+ ++nN;
+ if (nN <= __kmp_hws_node.offset ||
+ nN > __kmp_hws_node.num + __kmp_hws_node.offset) {
+ // skip node as not requested
+ n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node
+ hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
+ continue; // move to next node
+ }
+ // node requested, go down the topology tree
+ if (tile_support) {
+ nL = 0;
+ hL = NULL;
+ int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
+ for (int l = 0; l < NL; ++l) {
+ // Check L2 (tile) ------------------------------------
+ if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
+ hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
+ continue; // skip tile if all PUs are out of fullMask
+ }
+ ++nL;
+ if (nL <= __kmp_hws_tile.offset ||
+ nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
+ // skip tile as not requested
+ n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
+ hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
+ continue; // move to next tile
+ }
+ // tile requested, go down the topology tree
+ nC = 0;
+ hC = NULL;
+ // num cores in current tile
+ int NC = __kmp_hwloc_count_children_by_type(tp, hL,
+ HWLOC_OBJ_CORE, &hC);
+ for (int c = 0; c < NC; ++c) {
+ // Check Core ---------------------------------------
+ if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
+ hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
+ continue; // skip core if all PUs are out of fullMask
+ }
+ ++nC;
+ if (nC <= __kmp_hws_core.offset ||
+ nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
+ // skip node as not requested
+ n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
+ hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
+ continue; // move to next node
+ }
+ // core requested, go down to PUs
+ nT = 0;
+ nTr = 0;
+ hT = NULL;
+ // num procs in current core
+ int NT = __kmp_hwloc_count_children_by_type(tp, hC,
+ HWLOC_OBJ_PU, &hT);
+ for (int t = 0; t < NT; ++t) {
+ // Check PU ---------------------------------------
+ idx = hT->os_index;
+ if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
+ hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
+ continue; // skip PU if not in fullMask
+ }
+ ++nT;
+ if (nT <= __kmp_hws_proc.offset ||
+ nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
+ // skip PU
+ KMP_CPU_CLR(idx, __kmp_affin_fullMask);
+ ++n_old;
+ KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
+ hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
+ continue; // move to next node
+ }
+ ++nTr;
+ if (pAddr) // collect requested thread's data
+ newAddr[n_new] = (*pAddr)[n_old];
+ ++n_new;
+ ++n_old;
+ hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
+ } // threads loop
+ if (nTr > 0) {
+ ++nCr; // num cores per socket
+ ++nCo; // total num cores
+ if (nTr > nTpC)
+ nTpC = nTr; // calc max threads per core
+ }
+ hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
+ } // cores loop
+ hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
+ } // tiles loop
+ } else { // tile_support
+ // no tiles, check cores
+ nC = 0;
+ hC = NULL;
+ // num cores in current node
+ int NC =
+ __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, &hC);
+ for (int c = 0; c < NC; ++c) {
+ // Check Core ---------------------------------------
+ if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
+ hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
+ continue; // skip core if all PUs are out of fullMask
+ }
+ ++nC;
+ if (nC <= __kmp_hws_core.offset ||
+ nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
+ // skip node as not requested
+ n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
+ hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
+ continue; // move to next node
+ }
+ // core requested, go down to PUs
+ nT = 0;
+ nTr = 0;
+ hT = NULL;
+ int NT =
+ __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
+ for (int t = 0; t < NT; ++t) {
+ // Check PU ---------------------------------------
+ idx = hT->os_index;
+ if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
+ hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
+ continue; // skip PU if not in fullMask
+ }
+ ++nT;
+ if (nT <= __kmp_hws_proc.offset ||
+ nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
+ // skip PU
+ KMP_CPU_CLR(idx, __kmp_affin_fullMask);
+ ++n_old;
+ KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
+ hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
+ continue; // move to next node
+ }
+ ++nTr;
+ if (pAddr) // collect requested thread's data
+ newAddr[n_new] = (*pAddr)[n_old];
+ ++n_new;
+ ++n_old;
+ hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
+ } // threads loop
+ if (nTr > 0) {
+ ++nCr; // num cores per socket
+ ++nCo; // total num cores
+ if (nTr > nTpC)
+ nTpC = nTr; // calc max threads per core
+ }
+ hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
+ } // cores loop
+ } // tiles support
+ hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
+ } // nodes loop
+ } else { // numa_support
+ // no NUMA support
+ if (tile_support) {
+ nL = 0;
+ hL = NULL;
+ // num tiles in current socket
+ int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
+ for (int l = 0; l < NL; ++l) {
+ // Check L2 (tile) ------------------------------------
+ if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
+ hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
+ continue; // skip tile if all PUs are out of fullMask
+ }
+ ++nL;
+ if (nL <= __kmp_hws_tile.offset ||
+ nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
+ // skip tile as not requested
+ n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
+ hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
+ continue; // move to next tile
+ }
+ // tile requested, go down the topology tree
+ nC = 0;
+ hC = NULL;
+ // num cores per tile
+ int NC =
+ __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC);
+ for (int c = 0; c < NC; ++c) {
+ // Check Core ---------------------------------------
+ if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
+ hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
+ continue; // skip core if all PUs are out of fullMask
+ }
+ ++nC;
+ if (nC <= __kmp_hws_core.offset ||
+ nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
+ // skip node as not requested
+ n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
+ hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
+ continue; // move to next node
+ }
+ // core requested, go down to PUs
+ nT = 0;
+ nTr = 0;
+ hT = NULL;
+ // num procs per core
+ int NT =
+ __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
+ for (int t = 0; t < NT; ++t) {
+ // Check PU ---------------------------------------
+ idx = hT->os_index;
+ if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
+ hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
+ continue; // skip PU if not in fullMask
+ }
+ ++nT;
+ if (nT <= __kmp_hws_proc.offset ||
+ nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
+ // skip PU
+ KMP_CPU_CLR(idx, __kmp_affin_fullMask);
+ ++n_old;
+ KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
+ hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
+ continue; // move to next node
+ }
+ ++nTr;
+ if (pAddr) // collect requested thread's data
+ newAddr[n_new] = (*pAddr)[n_old];
+ ++n_new;
+ ++n_old;
+ hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
+ } // threads loop
+ if (nTr > 0) {
+ ++nCr; // num cores per socket
+ ++nCo; // total num cores
+ if (nTr > nTpC)
+ nTpC = nTr; // calc max threads per core
+ }
+ hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
+ } // cores loop
+ hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
+ } // tiles loop
+ } else { // tile_support
+ // no tiles, check cores
+ nC = 0;
+ hC = NULL;
+ // num cores in socket
+ int NC =
+ __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, &hC);
+ for (int c = 0; c < NC; ++c) {
+ // Check Core -------------------------------------------
+ if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
+ hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
+ continue; // skip core if all PUs are out of fullMask
+ }
+ ++nC;
+ if (nC <= __kmp_hws_core.offset ||
+ nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
+ // skip node as not requested
+ n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
+ hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
+ continue; // move to next node
+ }
+ // core requested, go down to PUs
+ nT = 0;
+ nTr = 0;
+ hT = NULL;
+ // num procs per core
+ int NT =
+ __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
+ for (int t = 0; t < NT; ++t) {
+ // Check PU ---------------------------------------
+ idx = hT->os_index;
+ if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
+ hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
+ continue; // skip PU if not in fullMask
+ }
+ ++nT;
+ if (nT <= __kmp_hws_proc.offset ||
+ nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
+ // skip PU
+ KMP_CPU_CLR(idx, __kmp_affin_fullMask);
+ ++n_old;
+ KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
+ hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
+ continue; // move to next node
+ }
+ ++nTr;
+ if (pAddr) // collect requested thread's data
+ newAddr[n_new] = (*pAddr)[n_old];
+ ++n_new;
+ ++n_old;
+ hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
+ } // threads loop
+ if (nTr > 0) {
+ ++nCr; // num cores per socket
+ ++nCo; // total num cores
+ if (nTr > nTpC)
+ nTpC = nTr; // calc max threads per core
+ }
+ hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
+ } // cores loop
+ } // tiles support
+ } // numa_support
+ if (nCr > 0) { // found cores?
+ ++nPkg; // num sockets
+ if (nCr > nCpP)
+ nCpP = nCr; // calc max cores per socket
+ }
+ } // sockets loop
+
+ // check the subset is valid
+ KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc);
+ KMP_DEBUG_ASSERT(nPkg > 0);
+ KMP_DEBUG_ASSERT(nCpP > 0);
+ KMP_DEBUG_ASSERT(nTpC > 0);
+ KMP_DEBUG_ASSERT(nCo > 0);
+ KMP_DEBUG_ASSERT(nPkg <= nPackages);
+ KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg);
+ KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore);
+ KMP_DEBUG_ASSERT(nCo <= __kmp_ncores);
+
+ nPackages = nPkg; // correct num sockets
+ nCoresPerPkg = nCpP; // correct num cores per socket
+ __kmp_nThreadsPerCore = nTpC; // correct num threads per core
+ __kmp_avail_proc = n_new; // correct num procs
+ __kmp_ncores = nCo; // correct num cores
+ // hwloc topology method end
+ } else
+#endif // KMP_USE_HWLOC
+ {
+ int n_old = 0, n_new = 0, proc_num = 0;
+ if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) {
+ KMP_WARNING(AffHWSubsetNoHWLOC);
+ goto _exit;
+ }
+ if (__kmp_hws_socket.num == 0)
+ __kmp_hws_socket.num = nPackages; // use all available sockets
+ if (__kmp_hws_core.num == 0)
+ __kmp_hws_core.num = nCoresPerPkg; // use all available cores
+ if (__kmp_hws_proc.num == 0 || __kmp_hws_proc.num > __kmp_nThreadsPerCore)
+ __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts
+ if (!__kmp_affinity_uniform_topology()) {
+ KMP_WARNING(AffHWSubsetNonUniform);
+ goto _exit; // don't support non-uniform topology
+ }
+ if (depth > 3) {
+ KMP_WARNING(AffHWSubsetNonThreeLevel);
+ goto _exit; // don't support not-3-level topology
+ }
+ if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) {
+ KMP_WARNING(AffHWSubsetManySockets);
+ goto _exit;
+ }
+ if (__kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg) {
+ KMP_WARNING(AffHWSubsetManyCores);
+ goto _exit;
+ }
+ // Form the requested subset
+ if (pAddr) // pAddr is NULL in case of affinity_none
+ newAddr = (AddrUnsPair *)__kmp_allocate(
+ sizeof(AddrUnsPair) * __kmp_hws_socket.num * __kmp_hws_core.num *
+ __kmp_hws_proc.num);
+ for (int i = 0; i < nPackages; ++i) {
+ if (i < __kmp_hws_socket.offset ||
+ i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) {
+ // skip not-requested socket
+ n_old += nCoresPerPkg * __kmp_nThreadsPerCore;
+ if (__kmp_pu_os_idx != NULL) {
+ // walk through skipped socket
+ for (int j = 0; j < nCoresPerPkg; ++j) {
+ for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
+ KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
+ ++proc_num;
+ }
+ }
+ }
+ } else {
+ // walk through requested socket
+ for (int j = 0; j < nCoresPerPkg; ++j) {
+ if (j < __kmp_hws_core.offset ||
+ j >= __kmp_hws_core.offset +
+ __kmp_hws_core.num) { // skip not-requested core
+ n_old += __kmp_nThreadsPerCore;
+ if (__kmp_pu_os_idx != NULL) {
+ for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
+ KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
+ ++proc_num;
+ }
+ }
+ } else {
+ // walk through requested core
+ for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
+ if (k < __kmp_hws_proc.num) {
+ if (pAddr) // collect requested thread's data
+ newAddr[n_new] = (*pAddr)[n_old];
+ n_new++;
+ } else {
+ if (__kmp_pu_os_idx != NULL)
+ KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
+ }
+ n_old++;
+ ++proc_num;
+ }
+ }
+ }
+ }
+ }
+ KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore);
+ KMP_DEBUG_ASSERT(n_new ==
+ __kmp_hws_socket.num * __kmp_hws_core.num *
+ __kmp_hws_proc.num);
+ nPackages = __kmp_hws_socket.num; // correct nPackages
+ nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg
+ __kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore
+ __kmp_avail_proc = n_new; // correct avail_proc
+ __kmp_ncores = nPackages * __kmp_hws_core.num; // correct ncores
+ } // non-hwloc topology method
+ if (pAddr) {
+ __kmp_free(*pAddr);
+ *pAddr = newAddr; // replace old topology with new one
+ }
+ if (__kmp_affinity_verbose) {
+ char m[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(m, KMP_AFFIN_MASK_PRINT_LEN,
+ __kmp_affin_fullMask);
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_HW_SUBSET", m);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_HW_SUBSET", m);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc);
+ kmp_str_buf_t buf;
+ __kmp_str_buf_init(&buf);
+ __kmp_str_buf_print(&buf, "%d", nPackages);
+ KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ __kmp_str_buf_free(&buf);
+ }
+_exit:
+ if (__kmp_pu_os_idx != NULL) {
+ __kmp_free(__kmp_pu_os_idx);
+ __kmp_pu_os_idx = NULL;
+ }
+}
+
+// This function figures out the deepest level at which there is at least one
+// cluster/core with more than one processing unit bound to it.
+static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os,
+ int nprocs, int bottom_level) {
+ int core_level = 0;
+
+ for (int i = 0; i < nprocs; i++) {
+ for (int j = bottom_level; j > 0; j--) {
+ if (address2os[i].first.labels[j] > 0) {
+ if (core_level < (j - 1)) {
+ core_level = j - 1;
+ }
+ }
+ }
+ }
+ return core_level;
+}
+
+// This function counts number of clusters/cores at given level.
+static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os,
+ int nprocs, int bottom_level,
+ int core_level) {
+ int ncores = 0;
+ int i, j;
+
+ j = bottom_level;
+ for (i = 0; i < nprocs; i++) {
+ for (j = bottom_level; j > core_level; j--) {
+ if ((i + 1) < nprocs) {
+ if (address2os[i + 1].first.labels[j] > 0) {
+ break;
+ }
+ }
+ }
+ if (j == core_level) {
+ ncores++;
+ }
+ }
+ if (j > core_level) {
+ // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one
+ // core. May occur when called from __kmp_affinity_find_core().
+ ncores++;
+ }
+ return ncores;
+}
+
+// This function finds to which cluster/core given processing unit is bound.
+static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc,
+ int bottom_level, int core_level) {
+ return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level,
+ core_level) -
+ 1;
+}
+
+// This function finds maximal number of processing units bound to a
+// cluster/core at given level.
+static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os,
+ int nprocs, int bottom_level,
+ int core_level) {
+ int maxprocpercore = 0;
+
+ if (core_level < bottom_level) {
+ for (int i = 0; i < nprocs; i++) {
+ int percore = address2os[i].first.labels[core_level + 1] + 1;
+
+ if (percore > maxprocpercore) {
+ maxprocpercore = percore;
+ }
+ }
+ } else {
+ maxprocpercore = 1;
+ }
+ return maxprocpercore;
+}
+
+static AddrUnsPair *address2os = NULL;
+static int *procarr = NULL;
+static int __kmp_aff_depth = 0;
+
+#if KMP_USE_HIER_SCHED
+#define KMP_EXIT_AFF_NONE \
+ KMP_ASSERT(__kmp_affinity_type == affinity_none); \
+ KMP_ASSERT(address2os == NULL); \
+ __kmp_apply_thread_places(NULL, 0); \
+ __kmp_create_affinity_none_places(); \
+ __kmp_dispatch_set_hierarchy_values(); \
+ return;
+#else
+#define KMP_EXIT_AFF_NONE \
+ KMP_ASSERT(__kmp_affinity_type == affinity_none); \
+ KMP_ASSERT(address2os == NULL); \
+ __kmp_apply_thread_places(NULL, 0); \
+ __kmp_create_affinity_none_places(); \
+ return;
+#endif
+
+// Create a one element mask array (set of places) which only contains the
+// initial process's affinity mask
+static void __kmp_create_affinity_none_places() {
+ KMP_ASSERT(__kmp_affin_fullMask != NULL);
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ __kmp_affinity_num_masks = 1;
+ KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
+ kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0);
+ KMP_CPU_COPY(dest, __kmp_affin_fullMask);
+}
+
+static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) {
+ const Address *aa = &(((const AddrUnsPair *)a)->first);
+ const Address *bb = &(((const AddrUnsPair *)b)->first);
+ unsigned depth = aa->depth;
+ unsigned i;
+ KMP_DEBUG_ASSERT(depth == bb->depth);
+ KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth);
+ KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0);
+ for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) {
+ int j = depth - i - 1;
+ if (aa->childNums[j] < bb->childNums[j])
+ return -1;
+ if (aa->childNums[j] > bb->childNums[j])
+ return 1;
+ }
+ for (; i < depth; i++) {
+ int j = i - __kmp_affinity_compact;
+ if (aa->childNums[j] < bb->childNums[j])
+ return -1;
+ if (aa->childNums[j] > bb->childNums[j])
+ return 1;
+ }
+ return 0;
+}
+
+static void __kmp_aux_affinity_initialize(void) {
+ if (__kmp_affinity_masks != NULL) {
+ KMP_ASSERT(__kmp_affin_fullMask != NULL);
+ return;
+ }
+
+ // Create the "full" mask - this defines all of the processors that we
+ // consider to be in the machine model. If respect is set, then it is the
+ // initialization thread's affinity mask. Otherwise, it is all processors that
+ // we know about on the machine.
+ if (__kmp_affin_fullMask == NULL) {
+ KMP_CPU_ALLOC(__kmp_affin_fullMask);
+ }
+ if (KMP_AFFINITY_CAPABLE()) {
+ if (__kmp_affinity_respect_mask) {
+ __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
+
+ // Count the number of available processors.
+ unsigned i;
+ __kmp_avail_proc = 0;
+ KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
+ if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
+ continue;
+ }
+ __kmp_avail_proc++;
+ }
+ if (__kmp_avail_proc > __kmp_xproc) {
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings &&
+ (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(ErrorInitializeAffinity);
+ }
+ __kmp_affinity_type = affinity_none;
+ KMP_AFFINITY_DISABLE();
+ return;
+ }
+ } else {
+ __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
+ __kmp_avail_proc = __kmp_xproc;
+ }
+ }
+
+ if (__kmp_affinity_gran == affinity_gran_tile &&
+ // check if user's request is valid
+ __kmp_affinity_dispatch->get_api_type() == KMPAffinity::NATIVE_OS) {
+ KMP_WARNING(AffTilesNoHWLOC, "KMP_AFFINITY");
+ __kmp_affinity_gran = affinity_gran_package;
+ }
+
+ int depth = -1;
+ kmp_i18n_id_t msg_id = kmp_i18n_null;
+
+ // For backward compatibility, setting KMP_CPUINFO_FILE =>
+ // KMP_TOPOLOGY_METHOD=cpuinfo
+ if ((__kmp_cpuinfo_file != NULL) &&
+ (__kmp_affinity_top_method == affinity_top_method_all)) {
+ __kmp_affinity_top_method = affinity_top_method_cpuinfo;
+ }
+
+ if (__kmp_affinity_top_method == affinity_top_method_all) {
+ // In the default code path, errors are not fatal - we just try using
+ // another method. We only emit a warning message if affinity is on, or the
+ // verbose flag is set, an the nowarnings flag was not set.
+ const char *file_name = NULL;
+ int line = 0;
+#if KMP_USE_HWLOC
+ if (depth < 0 &&
+ __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
+ }
+ if (!__kmp_hwloc_error) {
+ depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_EXIT_AFF_NONE;
+ } else if (depth < 0 && __kmp_affinity_verbose) {
+ KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
+ }
+ } else if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
+ }
+ }
+#endif
+
+#if KMP_ARCH_X86 || KMP_ARCH_X86_64
+
+ if (depth < 0) {
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
+ }
+
+ file_name = NULL;
+ depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_EXIT_AFF_NONE;
+ }
+
+ if (depth < 0) {
+ if (__kmp_affinity_verbose) {
+ if (msg_id != kmp_i18n_null) {
+ KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY",
+ __kmp_i18n_catgets(msg_id),
+ KMP_I18N_STR(DecodingLegacyAPIC));
+ } else {
+ KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
+ KMP_I18N_STR(DecodingLegacyAPIC));
+ }
+ }
+
+ file_name = NULL;
+ depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_EXIT_AFF_NONE;
+ }
+ }
+ }
+
+#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
+
+#if KMP_OS_LINUX
+
+ if (depth < 0) {
+ if (__kmp_affinity_verbose) {
+ if (msg_id != kmp_i18n_null) {
+ KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY",
+ __kmp_i18n_catgets(msg_id), "/proc/cpuinfo");
+ } else {
+ KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo");
+ }
+ }
+
+ FILE *f = fopen("/proc/cpuinfo", "r");
+ if (f == NULL) {
+ msg_id = kmp_i18n_str_CantOpenCpuinfo;
+ } else {
+ file_name = "/proc/cpuinfo";
+ depth =
+ __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
+ fclose(f);
+ if (depth == 0) {
+ KMP_EXIT_AFF_NONE;
+ }
+ }
+ }
+
+#endif /* KMP_OS_LINUX */
+
+#if KMP_GROUP_AFFINITY
+
+ if ((depth < 0) && (__kmp_num_proc_groups > 1)) {
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
+ }
+
+ depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
+ KMP_ASSERT(depth != 0);
+ }
+
+#endif /* KMP_GROUP_AFFINITY */
+
+ if (depth < 0) {
+ if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) {
+ if (file_name == NULL) {
+ KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id));
+ } else if (line == 0) {
+ KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id));
+ } else {
+ KMP_INFORM(UsingFlatOSFileLine, file_name, line,
+ __kmp_i18n_catgets(msg_id));
+ }
+ }
+ // FIXME - print msg if msg_id = kmp_i18n_null ???
+
+ file_name = "";
+ depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_EXIT_AFF_NONE;
+ }
+ KMP_ASSERT(depth > 0);
+ KMP_ASSERT(address2os != NULL);
+ }
+ }
+
+#if KMP_USE_HWLOC
+ else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
+ KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
+ }
+ depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_EXIT_AFF_NONE;
+ }
+ }
+#endif // KMP_USE_HWLOC
+
+// If the user has specified that a paricular topology discovery method is to be
+// used, then we abort if that method fails. The exception is group affinity,
+// which might have been implicitly set.
+
+#if KMP_ARCH_X86 || KMP_ARCH_X86_64
+
+ else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
+ }
+
+ depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_EXIT_AFF_NONE;
+ }
+ if (depth < 0) {
+ KMP_ASSERT(msg_id != kmp_i18n_null);
+ KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
+ }
+ } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
+ }
+
+ depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_EXIT_AFF_NONE;
+ }
+ if (depth < 0) {
+ KMP_ASSERT(msg_id != kmp_i18n_null);
+ KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
+ }
+ }
+
+#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
+
+ else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
+ const char *filename;
+ if (__kmp_cpuinfo_file != NULL) {
+ filename = __kmp_cpuinfo_file;
+ } else {
+ filename = "/proc/cpuinfo";
+ }
+
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
+ }
+
+ FILE *f = fopen(filename, "r");
+ if (f == NULL) {
+ int code = errno;
+ if (__kmp_cpuinfo_file != NULL) {
+ __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
+ KMP_HNT(NameComesFrom_CPUINFO_FILE), __kmp_msg_null);
+ } else {
+ __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
+ __kmp_msg_null);
+ }
+ }
+ int line = 0;
+ depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
+ fclose(f);
+ if (depth < 0) {
+ KMP_ASSERT(msg_id != kmp_i18n_null);
+ if (line > 0) {
+ KMP_FATAL(FileLineMsgExiting, filename, line,
+ __kmp_i18n_catgets(msg_id));
+ } else {
+ KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
+ }
+ }
+ if (__kmp_affinity_type == affinity_none) {
+ KMP_ASSERT(depth == 0);
+ KMP_EXIT_AFF_NONE;
+ }
+ }
+
+#if KMP_GROUP_AFFINITY
+
+ else if (__kmp_affinity_top_method == affinity_top_method_group) {
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
+ }
+
+ depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
+ KMP_ASSERT(depth != 0);
+ if (depth < 0) {
+ KMP_ASSERT(msg_id != kmp_i18n_null);
+ KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
+ }
+ }
+
+#endif /* KMP_GROUP_AFFINITY */
+
+ else if (__kmp_affinity_top_method == affinity_top_method_flat) {
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY");
+ }
+
+ depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_EXIT_AFF_NONE;
+ }
+ // should not fail
+ KMP_ASSERT(depth > 0);
+ KMP_ASSERT(address2os != NULL);
+ }
+
+#if KMP_USE_HIER_SCHED
+ __kmp_dispatch_set_hierarchy_values();
+#endif
+
+ if (address2os == NULL) {
+ if (KMP_AFFINITY_CAPABLE() &&
+ (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) {
+ KMP_WARNING(ErrorInitializeAffinity);
+ }
+ __kmp_affinity_type = affinity_none;
+ __kmp_create_affinity_none_places();
+ KMP_AFFINITY_DISABLE();
+ return;
+ }
+
+ if (__kmp_affinity_gran == affinity_gran_tile
+#if KMP_USE_HWLOC
+ && __kmp_tile_depth == 0
+#endif
+ ) {
+ // tiles requested but not detected, warn user on this
+ KMP_WARNING(AffTilesNoTiles, "KMP_AFFINITY");
+ }
+
+ __kmp_apply_thread_places(&address2os, depth);
+
+ // Create the table of masks, indexed by thread Id.
+ unsigned maxIndex;
+ unsigned numUnique;
+ kmp_affin_mask_t *osId2Mask =
+ __kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc);
+ if (__kmp_affinity_gran_levels == 0) {
+ KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
+ }
+
+ // Set the childNums vector in all Address objects. This must be done before
+ // we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into
+ // account the setting of __kmp_affinity_compact.
+ __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc);
+
+ switch (__kmp_affinity_type) {
+
+ case affinity_explicit:
+ KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
+ if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
+ __kmp_affinity_process_proclist(
+ &__kmp_affinity_masks, &__kmp_affinity_num_masks,
+ __kmp_affinity_proclist, osId2Mask, maxIndex);
+ } else {
+ __kmp_affinity_process_placelist(
+ &__kmp_affinity_masks, &__kmp_affinity_num_masks,
+ __kmp_affinity_proclist, osId2Mask, maxIndex);
+ }
+ if (__kmp_affinity_num_masks == 0) {
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffNoValidProcID);
+ }
+ __kmp_affinity_type = affinity_none;
+ __kmp_create_affinity_none_places();
+ return;
+ }
+ break;
+
+ // The other affinity types rely on sorting the Addresses according to some
+ // permutation of the machine topology tree. Set __kmp_affinity_compact and
+ // __kmp_affinity_offset appropriately, then jump to a common code fragment
+ // to do the sort and create the array of affinity masks.
+
+ case affinity_logical:
+ __kmp_affinity_compact = 0;
+ if (__kmp_affinity_offset) {
+ __kmp_affinity_offset =
+ __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
+ }
+ goto sortAddresses;
+
+ case affinity_physical:
+ if (__kmp_nThreadsPerCore > 1) {
+ __kmp_affinity_compact = 1;
+ if (__kmp_affinity_compact >= depth) {
+ __kmp_affinity_compact = 0;
+ }
+ } else {
+ __kmp_affinity_compact = 0;
+ }
+ if (__kmp_affinity_offset) {
+ __kmp_affinity_offset =
+ __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
+ }
+ goto sortAddresses;
+
+ case affinity_scatter:
+ if (__kmp_affinity_compact >= depth) {
+ __kmp_affinity_compact = 0;
+ } else {
+ __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
+ }
+ goto sortAddresses;
+
+ case affinity_compact:
+ if (__kmp_affinity_compact >= depth) {
+ __kmp_affinity_compact = depth - 1;
+ }
+ goto sortAddresses;
+
+ case affinity_balanced:
+ if (depth <= 1) {
+ if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
+ KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
+ }
+ __kmp_affinity_type = affinity_none;
+ __kmp_create_affinity_none_places();
+ return;
+ } else if (!__kmp_affinity_uniform_topology()) {
+ // Save the depth for further usage
+ __kmp_aff_depth = depth;
+
+ int core_level = __kmp_affinity_find_core_level(
+ address2os, __kmp_avail_proc, depth - 1);
+ int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
+ depth - 1, core_level);
+ int maxprocpercore = __kmp_affinity_max_proc_per_core(
+ address2os, __kmp_avail_proc, depth - 1, core_level);
+
+ int nproc = ncores * maxprocpercore;
+ if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
+ if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
+ KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
+ }
+ __kmp_affinity_type = affinity_none;
+ return;
+ }
+
+ procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
+ for (int i = 0; i < nproc; i++) {
+ procarr[i] = -1;
+ }
+
+ int lastcore = -1;
+ int inlastcore = 0;
+ for (int i = 0; i < __kmp_avail_proc; i++) {
+ int proc = address2os[i].second;
+ int core =
+ __kmp_affinity_find_core(address2os, i, depth - 1, core_level);
+
+ if (core == lastcore) {
+ inlastcore++;
+ } else {
+ inlastcore = 0;
+ }
+ lastcore = core;
+
+ procarr[core * maxprocpercore + inlastcore] = proc;
+ }
+ }
+ if (__kmp_affinity_compact >= depth) {
+ __kmp_affinity_compact = depth - 1;
+ }
+
+ sortAddresses:
+ // Allocate the gtid->affinity mask table.
+ if (__kmp_affinity_dups) {
+ __kmp_affinity_num_masks = __kmp_avail_proc;
+ } else {
+ __kmp_affinity_num_masks = numUnique;
+ }
+
+ if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
+ (__kmp_affinity_num_places > 0) &&
+ ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) {
+ __kmp_affinity_num_masks = __kmp_affinity_num_places;
+ }
+
+ KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
+
+ // Sort the address2os table according to the current setting of
+ // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
+ qsort(address2os, __kmp_avail_proc, sizeof(*address2os),
+ __kmp_affinity_cmp_Address_child_num);
+ {
+ int i;
+ unsigned j;
+ for (i = 0, j = 0; i < __kmp_avail_proc; i++) {
+ if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) {
+ continue;
+ }
+ unsigned osId = address2os[i].second;
+ kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
+ kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j);
+ KMP_ASSERT(KMP_CPU_ISSET(osId, src));
+ KMP_CPU_COPY(dest, src);
+ if (++j >= __kmp_affinity_num_masks) {
+ break;
+ }
+ }
+ KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
+ }
+ break;
+
+ default:
+ KMP_ASSERT2(0, "Unexpected affinity setting");
+ }
+
+ KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1);
+ machine_hierarchy.init(address2os, __kmp_avail_proc);
+}
+#undef KMP_EXIT_AFF_NONE
+
+void __kmp_affinity_initialize(void) {
+ // Much of the code above was written assumming that if a machine was not
+ // affinity capable, then __kmp_affinity_type == affinity_none. We now
+ // explicitly represent this as __kmp_affinity_type == affinity_disabled.
+ // There are too many checks for __kmp_affinity_type == affinity_none
+ // in this code. Instead of trying to change them all, check if
+ // __kmp_affinity_type == affinity_disabled, and if so, slam it with
+ // affinity_none, call the real initialization routine, then restore
+ // __kmp_affinity_type to affinity_disabled.
+ int disabled = (__kmp_affinity_type == affinity_disabled);
+ if (!KMP_AFFINITY_CAPABLE()) {
+ KMP_ASSERT(disabled);
+ }
+ if (disabled) {
+ __kmp_affinity_type = affinity_none;
+ }
+ __kmp_aux_affinity_initialize();
+ if (disabled) {
+ __kmp_affinity_type = affinity_disabled;
+ }
+}
+
+void __kmp_affinity_uninitialize(void) {
+ if (__kmp_affinity_masks != NULL) {
+ KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
+ __kmp_affinity_masks = NULL;
+ }
+ if (__kmp_affin_fullMask != NULL) {
+ KMP_CPU_FREE(__kmp_affin_fullMask);
+ __kmp_affin_fullMask = NULL;
+ }
+ __kmp_affinity_num_masks = 0;
+ __kmp_affinity_type = affinity_default;
+ __kmp_affinity_num_places = 0;
+ if (__kmp_affinity_proclist != NULL) {
+ __kmp_free(__kmp_affinity_proclist);
+ __kmp_affinity_proclist = NULL;
+ }
+ if (address2os != NULL) {
+ __kmp_free(address2os);
+ address2os = NULL;
+ }
+ if (procarr != NULL) {
+ __kmp_free(procarr);
+ procarr = NULL;
+ }
+#if KMP_USE_HWLOC
+ if (__kmp_hwloc_topology != NULL) {
+ hwloc_topology_destroy(__kmp_hwloc_topology);
+ __kmp_hwloc_topology = NULL;
+ }
+#endif
+ KMPAffinity::destroy_api();
+}
+
+void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
+ if (!KMP_AFFINITY_CAPABLE()) {
+ return;
+ }
+
+ kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
+ if (th->th.th_affin_mask == NULL) {
+ KMP_CPU_ALLOC(th->th.th_affin_mask);
+ } else {
+ KMP_CPU_ZERO(th->th.th_affin_mask);
+ }
+
+ // Copy the thread mask to the kmp_info_t strucuture. If
+ // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that
+ // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set,
+ // then the full mask is the same as the mask of the initialization thread.
+ kmp_affin_mask_t *mask;
+ int i;
+
+ if (KMP_AFFINITY_NON_PROC_BIND) {
+ if ((__kmp_affinity_type == affinity_none) ||
+ (__kmp_affinity_type == affinity_balanced)) {
+#if KMP_GROUP_AFFINITY
+ if (__kmp_num_proc_groups > 1) {
+ return;
+ }
+#endif
+ KMP_ASSERT(__kmp_affin_fullMask != NULL);
+ i = 0;
+ mask = __kmp_affin_fullMask;
+ } else {
+ KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
+ i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
+ mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
+ }
+ } else {
+ if ((!isa_root) ||
+ (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
+#if KMP_GROUP_AFFINITY
+ if (__kmp_num_proc_groups > 1) {
+ return;
+ }
+#endif
+ KMP_ASSERT(__kmp_affin_fullMask != NULL);
+ i = KMP_PLACE_ALL;
+ mask = __kmp_affin_fullMask;
+ } else {
+ // int i = some hash function or just a counter that doesn't
+ // always start at 0. Use gtid for now.
+ KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
+ i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
+ mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
+ }
+ }
+
+ th->th.th_current_place = i;
+ if (isa_root) {
+ th->th.th_new_place = i;
+ th->th.th_first_place = 0;
+ th->th.th_last_place = __kmp_affinity_num_masks - 1;
+ } else if (KMP_AFFINITY_NON_PROC_BIND) {
+ // When using a Non-OMP_PROC_BIND affinity method,
+ // set all threads' place-partition-var to the entire place list
+ th->th.th_first_place = 0;
+ th->th.th_last_place = __kmp_affinity_num_masks - 1;
+ }
+
+ if (i == KMP_PLACE_ALL) {
+ KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
+ gtid));
+ } else {
+ KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
+ gtid, i));
+ }
+
+ KMP_CPU_COPY(th->th.th_affin_mask, mask);
+
+ if (__kmp_affinity_verbose
+ /* to avoid duplicate printing (will be correctly printed on barrier) */
+ && (__kmp_affinity_type == affinity_none ||
+ (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ th->th.th_affin_mask);
+ KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
+ __kmp_gettid(), gtid, buf);
+ }
+
+#if KMP_OS_WINDOWS
+ // On Windows* OS, the process affinity mask might have changed. If the user
+ // didn't request affinity and this call fails, just continue silently.
+ // See CQ171393.
+ if (__kmp_affinity_type == affinity_none) {
+ __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
+ } else
+#endif
+ __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
+}
+
+void __kmp_affinity_set_place(int gtid) {
+ if (!KMP_AFFINITY_CAPABLE()) {
+ return;
+ }
+
+ kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
+
+ KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
+ "place = %d)\n",
+ gtid, th->th.th_new_place, th->th.th_current_place));
+
+ // Check that the new place is within this thread's partition.
+ KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
+ KMP_ASSERT(th->th.th_new_place >= 0);
+ KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
+ if (th->th.th_first_place <= th->th.th_last_place) {
+ KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
+ (th->th.th_new_place <= th->th.th_last_place));
+ } else {
+ KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
+ (th->th.th_new_place >= th->th.th_last_place));
+ }
+
+ // Copy the thread mask to the kmp_info_t strucuture,
+ // and set this thread's affinity.
+ kmp_affin_mask_t *mask =
+ KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place);
+ KMP_CPU_COPY(th->th.th_affin_mask, mask);
+ th->th.th_current_place = th->th.th_new_place;
+
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ th->th.th_affin_mask);
+ KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
+ __kmp_gettid(), gtid, buf);
+ }
+ __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
+}
+
+int __kmp_aux_set_affinity(void **mask) {
+ int gtid;
+ kmp_info_t *th;
+ int retval;
+
+ if (!KMP_AFFINITY_CAPABLE()) {
+ return -1;
+ }
+
+ gtid = __kmp_entry_gtid();
+ KA_TRACE(1000, (""); {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ (kmp_affin_mask_t *)(*mask));
+ __kmp_debug_printf(
+ "kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid,
+ buf);
+ });
+
+ if (__kmp_env_consistency_check) {
+ if ((mask == NULL) || (*mask == NULL)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
+ } else {
+ unsigned proc;
+ int num_procs = 0;
+
+ KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
+ if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
+ }
+ if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
+ continue;
+ }
+ num_procs++;
+ }
+ if (num_procs == 0) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
+ }
+
+#if KMP_GROUP_AFFINITY
+ if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
+ }
+#endif /* KMP_GROUP_AFFINITY */
+ }
+ }
+
+ th = __kmp_threads[gtid];
+ KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
+ retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
+ if (retval == 0) {
+ KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
+ }
+
+ th->th.th_current_place = KMP_PLACE_UNDEFINED;
+ th->th.th_new_place = KMP_PLACE_UNDEFINED;
+ th->th.th_first_place = 0;
+ th->th.th_last_place = __kmp_affinity_num_masks - 1;
+
+ // Turn off 4.0 affinity for the current tread at this parallel level.
+ th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
+
+ return retval;
+}
+
+int __kmp_aux_get_affinity(void **mask) {
+ int gtid;
+ int retval;
+ kmp_info_t *th;
+
+ if (!KMP_AFFINITY_CAPABLE()) {
+ return -1;
+ }
+
+ gtid = __kmp_entry_gtid();
+ th = __kmp_threads[gtid];
+ KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
+
+ KA_TRACE(1000, (""); {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ th->th.th_affin_mask);
+ __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n",
+ gtid, buf);
+ });
+
+ if (__kmp_env_consistency_check) {
+ if ((mask == NULL) || (*mask == NULL)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
+ }
+ }
+
+#if !KMP_OS_WINDOWS
+
+ retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
+ KA_TRACE(1000, (""); {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ (kmp_affin_mask_t *)(*mask));
+ __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n",
+ gtid, buf);
+ });
+ return retval;
+
+#else
+
+ KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
+ return 0;
+
+#endif /* KMP_OS_WINDOWS */
+}
+
+int __kmp_aux_get_affinity_max_proc() {
+ if (!KMP_AFFINITY_CAPABLE()) {
+ return 0;
+ }
+#if KMP_GROUP_AFFINITY
+ if (__kmp_num_proc_groups > 1) {
+ return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
+ }
+#endif
+ return __kmp_xproc;
+}
+
+int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
+ if (!KMP_AFFINITY_CAPABLE()) {
+ return -1;
+ }
+
+ KA_TRACE(1000, (""); {
+ int gtid = __kmp_entry_gtid();
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ (kmp_affin_mask_t *)(*mask));
+ __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
+ "affinity mask for thread %d = %s\n",
+ proc, gtid, buf);
+ });
+
+ if (__kmp_env_consistency_check) {
+ if ((mask == NULL) || (*mask == NULL)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
+ }
+ }
+
+ if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
+ return -1;
+ }
+ if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
+ return -2;
+ }
+
+ KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
+ return 0;
+}
+
+int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
+ if (!KMP_AFFINITY_CAPABLE()) {
+ return -1;
+ }
+
+ KA_TRACE(1000, (""); {
+ int gtid = __kmp_entry_gtid();
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ (kmp_affin_mask_t *)(*mask));
+ __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
+ "affinity mask for thread %d = %s\n",
+ proc, gtid, buf);
+ });
+
+ if (__kmp_env_consistency_check) {
+ if ((mask == NULL) || (*mask == NULL)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
+ }
+ }
+
+ if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
+ return -1;
+ }
+ if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
+ return -2;
+ }
+
+ KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
+ return 0;
+}
+
+int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
+ if (!KMP_AFFINITY_CAPABLE()) {
+ return -1;
+ }
+
+ KA_TRACE(1000, (""); {
+ int gtid = __kmp_entry_gtid();
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ (kmp_affin_mask_t *)(*mask));
+ __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
+ "affinity mask for thread %d = %s\n",
+ proc, gtid, buf);
+ });
+
+ if (__kmp_env_consistency_check) {
+ if ((mask == NULL) || (*mask == NULL)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
+ }
+ }
+
+ if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
+ return -1;
+ }
+ if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
+ return 0;
+ }
+
+ return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
+}
+
+// Dynamic affinity settings - Affinity balanced
+void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
+ KMP_DEBUG_ASSERT(th);
+ bool fine_gran = true;
+ int tid = th->th.th_info.ds.ds_tid;
+
+ switch (__kmp_affinity_gran) {
+ case affinity_gran_fine:
+ case affinity_gran_thread:
+ break;
+ case affinity_gran_core:
+ if (__kmp_nThreadsPerCore > 1) {
+ fine_gran = false;
+ }
+ break;
+ case affinity_gran_package:
+ if (nCoresPerPkg > 1) {
+ fine_gran = false;
+ }
+ break;
+ default:
+ fine_gran = false;
+ }
+
+ if (__kmp_affinity_uniform_topology()) {
+ int coreID;
+ int threadID;
+ // Number of hyper threads per core in HT machine
+ int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
+ // Number of cores
+ int ncores = __kmp_ncores;
+ if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
+ __kmp_nth_per_core = __kmp_avail_proc / nPackages;
+ ncores = nPackages;
+ }
+ // How many threads will be bound to each core
+ int chunk = nthreads / ncores;
+ // How many cores will have an additional thread bound to it - "big cores"
+ int big_cores = nthreads % ncores;
+ // Number of threads on the big cores
+ int big_nth = (chunk + 1) * big_cores;
+ if (tid < big_nth) {
+ coreID = tid / (chunk + 1);
+ threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
+ } else { // tid >= big_nth
+ coreID = (tid - big_cores) / chunk;
+ threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
+ }
+
+ KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
+ "Illegal set affinity operation when not capable");
+
+ kmp_affin_mask_t *mask = th->th.th_affin_mask;
+ KMP_CPU_ZERO(mask);
+
+ if (fine_gran) {
+ int osID = address2os[coreID * __kmp_nth_per_core + threadID].second;
+ KMP_CPU_SET(osID, mask);
+ } else {
+ for (int i = 0; i < __kmp_nth_per_core; i++) {
+ int osID;
+ osID = address2os[coreID * __kmp_nth_per_core + i].second;
+ KMP_CPU_SET(osID, mask);
+ }
+ }
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
+ KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
+ __kmp_gettid(), tid, buf);
+ }
+ __kmp_set_system_affinity(mask, TRUE);
+ } else { // Non-uniform topology
+
+ kmp_affin_mask_t *mask = th->th.th_affin_mask;
+ KMP_CPU_ZERO(mask);
+
+ int core_level = __kmp_affinity_find_core_level(
+ address2os, __kmp_avail_proc, __kmp_aff_depth - 1);
+ int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
+ __kmp_aff_depth - 1, core_level);
+ int nth_per_core = __kmp_affinity_max_proc_per_core(
+ address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
+
+ // For performance gain consider the special case nthreads ==
+ // __kmp_avail_proc
+ if (nthreads == __kmp_avail_proc) {
+ if (fine_gran) {
+ int osID = address2os[tid].second;
+ KMP_CPU_SET(osID, mask);
+ } else {
+ int core = __kmp_affinity_find_core(address2os, tid,
+ __kmp_aff_depth - 1, core_level);
+ for (int i = 0; i < __kmp_avail_proc; i++) {
+ int osID = address2os[i].second;
+ if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1,
+ core_level) == core) {
+ KMP_CPU_SET(osID, mask);
+ }
+ }
+ }
+ } else if (nthreads <= ncores) {
+
+ int core = 0;
+ for (int i = 0; i < ncores; i++) {
+ // Check if this core from procarr[] is in the mask
+ int in_mask = 0;
+ for (int j = 0; j < nth_per_core; j++) {
+ if (procarr[i * nth_per_core + j] != -1) {
+ in_mask = 1;
+ break;
+ }
+ }
+ if (in_mask) {
+ if (tid == core) {
+ for (int j = 0; j < nth_per_core; j++) {
+ int osID = procarr[i * nth_per_core + j];
+ if (osID != -1) {
+ KMP_CPU_SET(osID, mask);
+ // For fine granularity it is enough to set the first available
+ // osID for this core
+ if (fine_gran) {
+ break;
+ }
+ }
+ }
+ break;
+ } else {
+ core++;
+ }
+ }
+ }
+ } else { // nthreads > ncores
+ // Array to save the number of processors at each core
+ int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
+ // Array to save the number of cores with "x" available processors;
+ int *ncores_with_x_procs =
+ (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
+ // Array to save the number of cores with # procs from x to nth_per_core
+ int *ncores_with_x_to_max_procs =
+ (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
+
+ for (int i = 0; i <= nth_per_core; i++) {
+ ncores_with_x_procs[i] = 0;
+ ncores_with_x_to_max_procs[i] = 0;
+ }
+
+ for (int i = 0; i < ncores; i++) {
+ int cnt = 0;
+ for (int j = 0; j < nth_per_core; j++) {
+ if (procarr[i * nth_per_core + j] != -1) {
+ cnt++;
+ }
+ }
+ nproc_at_core[i] = cnt;
+ ncores_with_x_procs[cnt]++;
+ }
+
+ for (int i = 0; i <= nth_per_core; i++) {
+ for (int j = i; j <= nth_per_core; j++) {
+ ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
+ }
+ }
+
+ // Max number of processors
+ int nproc = nth_per_core * ncores;
+ // An array to keep number of threads per each context
+ int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
+ for (int i = 0; i < nproc; i++) {
+ newarr[i] = 0;
+ }
+
+ int nth = nthreads;
+ int flag = 0;
+ while (nth > 0) {
+ for (int j = 1; j <= nth_per_core; j++) {
+ int cnt = ncores_with_x_to_max_procs[j];
+ for (int i = 0; i < ncores; i++) {
+ // Skip the core with 0 processors
+ if (nproc_at_core[i] == 0) {
+ continue;
+ }
+ for (int k = 0; k < nth_per_core; k++) {
+ if (procarr[i * nth_per_core + k] != -1) {
+ if (newarr[i * nth_per_core + k] == 0) {
+ newarr[i * nth_per_core + k] = 1;
+ cnt--;
+ nth--;
+ break;
+ } else {
+ if (flag != 0) {
+ newarr[i * nth_per_core + k]++;
+ cnt--;
+ nth--;
+ break;
+ }
+ }
+ }
+ }
+ if (cnt == 0 || nth == 0) {
+ break;
+ }
+ }
+ if (nth == 0) {
+ break;
+ }
+ }
+ flag = 1;
+ }
+ int sum = 0;
+ for (int i = 0; i < nproc; i++) {
+ sum += newarr[i];
+ if (sum > tid) {
+ if (fine_gran) {
+ int osID = procarr[i];
+ KMP_CPU_SET(osID, mask);
+ } else {
+ int coreID = i / nth_per_core;
+ for (int ii = 0; ii < nth_per_core; ii++) {
+ int osID = procarr[coreID * nth_per_core + ii];
+ if (osID != -1) {
+ KMP_CPU_SET(osID, mask);
+ }
+ }
+ }
+ break;
+ }
+ }
+ __kmp_free(newarr);
+ }
+
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
+ KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
+ __kmp_gettid(), tid, buf);
+ }
+ __kmp_set_system_affinity(mask, TRUE);
+ }
+}
+
+#if KMP_OS_LINUX
+// We don't need this entry for Windows because
+// there is GetProcessAffinityMask() api
+//
+// The intended usage is indicated by these steps:
+// 1) The user gets the current affinity mask
+// 2) Then sets the affinity by calling this function
+// 3) Error check the return value
+// 4) Use non-OpenMP parallelization
+// 5) Reset the affinity to what was stored in step 1)
+#ifdef __cplusplus
+extern "C"
+#endif
+ int
+ kmp_set_thread_affinity_mask_initial()
+// the function returns 0 on success,
+// -1 if we cannot bind thread
+// >0 (errno) if an error happened during binding
+{
+ int gtid = __kmp_get_gtid();
+ if (gtid < 0) {
+ // Do not touch non-omp threads
+ KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
+ "non-omp thread, returning\n"));
+ return -1;
+ }
+ if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
+ KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
+ "affinity not initialized, returning\n"));
+ return -1;
+ }
+ KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
+ "set full mask for thread %d\n",
+ gtid));
+ KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
+ return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
+}
+#endif
+
+#endif // KMP_AFFINITY_SUPPORTED