aboutsummaryrefslogtreecommitdiff
path: root/final/libomptarget/deviceRTLs/nvptx
diff options
context:
space:
mode:
Diffstat (limited to 'final/libomptarget/deviceRTLs/nvptx')
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/CMakeLists.txt181
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/docs/ReductionDesign.txt523
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/cancel.cu28
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/counter_group.h51
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/counter_groupi.h82
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/critical.cu32
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/data_sharing.cu513
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/debug.h276
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/interface.h523
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/libcall.cu462
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/loop.cu769
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/omp_data.cu59
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/omptarget-nvptx.cu194
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/omptarget-nvptx.h441
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/omptarget-nvptxi.h218
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/option.h70
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/parallel.cu479
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/reduction.cu429
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/state-queue.h52
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/state-queuei.h89
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/support.h92
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/supporti.h215
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/sync.cu153
-rw-r--r--final/libomptarget/deviceRTLs/nvptx/src/task.cu208
24 files changed, 6139 insertions, 0 deletions
diff --git a/final/libomptarget/deviceRTLs/nvptx/CMakeLists.txt b/final/libomptarget/deviceRTLs/nvptx/CMakeLists.txt
new file mode 100644
index 0000000..4fc9ef0
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/CMakeLists.txt
@@ -0,0 +1,181 @@
+##===----------------------------------------------------------------------===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is dual licensed under the MIT and the University of Illinois Open
+# Source Licenses. See LICENSE.txt for details.
+#
+##===----------------------------------------------------------------------===##
+#
+# Build the NVPTX (CUDA) Device RTL if the CUDA tools are available
+#
+##===----------------------------------------------------------------------===##
+
+set(LIBOMPTARGET_NVPTX_ALTERNATE_HOST_COMPILER "" CACHE STRING
+ "Path to alternate NVCC host compiler to be used by the NVPTX device RTL.")
+
+if(LIBOMPTARGET_NVPTX_ALTERNATE_HOST_COMPILER)
+ find_program(ALTERNATE_CUDA_HOST_COMPILER NAMES ${LIBOMPTARGET_NVPTX_ALTERNATE_HOST_COMPILER})
+ if(NOT ALTERNATE_CUDA_HOST_COMPILER)
+ libomptarget_say("Not building CUDA offloading device RTL: invalid NVPTX alternate host compiler.")
+ endif()
+ set(CUDA_HOST_COMPILER ${ALTERNATE_CUDA_HOST_COMPILER} CACHE FILEPATH "" FORCE)
+endif()
+
+# We can't use clang as nvcc host preprocessor, so we attempt to replace it with
+# gcc.
+if(CUDA_HOST_COMPILER MATCHES clang)
+
+ find_program(LIBOMPTARGET_NVPTX_ALTERNATE_GCC_HOST_COMPILER NAMES gcc)
+
+ if(NOT LIBOMPTARGET_NVPTX_ALTERNATE_GCC_HOST_COMPILER)
+ libomptarget_say("Not building CUDA offloading device RTL: clang is not supported as NVCC host compiler.")
+ libomptarget_say("Please include gcc in your path or set LIBOMPTARGET_NVPTX_ALTERNATE_HOST_COMPILER to the full path of of valid compiler.")
+ return()
+ endif()
+ set(CUDA_HOST_COMPILER "${LIBOMPTARGET_NVPTX_ALTERNATE_GCC_HOST_COMPILER}" CACHE FILEPATH "" FORCE)
+endif()
+
+if(LIBOMPTARGET_DEP_CUDA_FOUND)
+ libomptarget_say("Building CUDA offloading device RTL.")
+
+ # We really don't have any host code, so we don't need to care about
+ # propagating host flags.
+ set(CUDA_PROPAGATE_HOST_FLAGS OFF)
+
+ set(cuda_src_files
+ src/cancel.cu
+ src/critical.cu
+ src/data_sharing.cu
+ src/libcall.cu
+ src/loop.cu
+ src/omptarget-nvptx.cu
+ src/parallel.cu
+ src/reduction.cu
+ src/sync.cu
+ src/task.cu
+ )
+
+ set(omp_data_objects src/omp_data.cu)
+
+ # Get the compute capability the user requested or use SM_35 by default.
+ # SM_35 is what clang uses by default.
+ set(default_capabilities 35)
+ if (DEFINED LIBOMPTARGET_NVPTX_COMPUTE_CAPABILITY)
+ set(default_capabilities ${LIBOMPTARGET_NVPTX_COMPUTE_CAPABILITY})
+ libomptarget_warning_say("LIBOMPTARGET_NVPTX_COMPUTE_CAPABILITY is deprecated, please use LIBOMPTARGET_NVPTX_COMPUTE_CAPABILITIES")
+ endif()
+ set(LIBOMPTARGET_NVPTX_COMPUTE_CAPABILITIES ${default_capabilities} CACHE STRING
+ "List of CUDA Compute Capabilities to be used to compile the NVPTX device RTL.")
+ string(REPLACE "," ";" nvptx_sm_list ${LIBOMPTARGET_NVPTX_COMPUTE_CAPABILITIES})
+
+ foreach(sm ${nvptx_sm_list})
+ set(CUDA_ARCH ${CUDA_ARCH} -gencode arch=compute_${sm},code=sm_${sm})
+ endforeach()
+
+ # Activate RTL message dumps if requested by the user.
+ set(LIBOMPTARGET_NVPTX_DEBUG FALSE CACHE BOOL
+ "Activate NVPTX device RTL debug messages.")
+ if(${LIBOMPTARGET_NVPTX_DEBUG})
+ set(CUDA_DEBUG -DOMPTARGET_NVPTX_DEBUG=-1 -g --ptxas-options=-v)
+ endif()
+
+ # NVPTX runtime library has to be statically linked. Dynamic linking is not
+ # yet supported by the CUDA toolchain on the device.
+ set(BUILD_SHARED_LIBS OFF)
+ set(CUDA_SEPARABLE_COMPILATION ON)
+
+ cuda_add_library(omptarget-nvptx STATIC ${cuda_src_files} ${omp_data_objects}
+ OPTIONS ${CUDA_ARCH} ${CUDA_DEBUG})
+
+ # Install device RTL under the lib destination folder.
+ install(TARGETS omptarget-nvptx ARCHIVE DESTINATION "${OPENMP_INSTALL_LIBDIR}")
+
+ target_link_libraries(omptarget-nvptx ${CUDA_LIBRARIES})
+
+
+ # Check if we can create an LLVM bitcode implementation of the runtime library
+ # that could be inlined in the user application. For that we need to find
+ # a Clang compiler capable of compiling our CUDA files to LLVM bitcode and
+ # an LLVM linker.
+ set(LIBOMPTARGET_NVPTX_CUDA_COMPILER "" CACHE STRING
+ "Location of a CUDA compiler capable of emitting LLVM bitcode.")
+ set(LIBOMPTARGET_NVPTX_BC_LINKER "" CACHE STRING
+ "Location of a linker capable of linking LLVM bitcode objects.")
+
+ include(LibomptargetNVPTXBitcodeLibrary)
+
+ set(bclib_default FALSE)
+ if (${LIBOMPTARGET_NVPTX_BCLIB_SUPPORTED})
+ set(bclib_default TRUE)
+ endif()
+ set(LIBOMPTARGET_NVPTX_ENABLE_BCLIB ${bclib_default} CACHE BOOL
+ "Enable CUDA LLVM bitcode offloading device RTL.")
+ if (${LIBOMPTARGET_NVPTX_ENABLE_BCLIB})
+ if (NOT ${LIBOMPTARGET_NVPTX_BCLIB_SUPPORTED})
+ libomptarget_error_say("Cannot build CUDA LLVM bitcode offloading device RTL!")
+ endif()
+ libomptarget_say("Building CUDA LLVM bitcode offloading device RTL.")
+
+ # Set flags for LLVM Bitcode compilation.
+ set(bc_flags ${LIBOMPTARGET_NVPTX_SELECTED_CUDA_COMPILER_FLAGS} -DOMPTARGET_NVPTX_TEST=0)
+ if(${LIBOMPTARGET_NVPTX_DEBUG})
+ set(bc_flags ${bc_flags} -DOMPTARGET_NVPTX_DEBUG=-1)
+ else()
+ set(bc_flags ${bc_flags} -DOMPTARGET_NVPTX_DEBUG=0)
+ endif()
+
+ # CUDA 9 header files use the nv_weak attribute which clang is not yet prepared
+ # to handle. Therefore, we use 'weak' instead. We are compiling only for the
+ # device, so it should be equivalent.
+ if(CUDA_VERSION_MAJOR GREATER 8)
+ set(bc_flags ${bc_flags} -Dnv_weak=weak)
+ endif()
+
+ # Generate a Bitcode library for all the compute capabilities the user requested.
+ foreach(sm ${nvptx_sm_list})
+ set(cuda_arch --cuda-gpu-arch=sm_${sm})
+
+ # Compile CUDA files to bitcode.
+ set(bc_files "")
+ foreach(src ${cuda_src_files})
+ get_filename_component(infile ${src} ABSOLUTE)
+ get_filename_component(outfile ${src} NAME)
+
+ add_custom_command(OUTPUT ${outfile}-sm_${sm}.bc
+ COMMAND ${LIBOMPTARGET_NVPTX_SELECTED_CUDA_COMPILER} ${bc_flags} ${cuda_arch}
+ -c ${infile} -o ${outfile}-sm_${sm}.bc
+ DEPENDS ${infile}
+ IMPLICIT_DEPENDS CXX ${infile}
+ COMMENT "Building LLVM bitcode ${outfile}-sm_${sm}.bc"
+ VERBATIM
+ )
+ set_property(DIRECTORY APPEND PROPERTY ADDITIONAL_MAKE_CLEAN_FILES ${outfile}-sm_${sm}.bc)
+
+ list(APPEND bc_files ${outfile}-sm_${sm}.bc)
+ endforeach()
+
+ # Link to a bitcode library.
+ add_custom_command(OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/libomptarget-nvptx-sm_${sm}.bc
+ COMMAND ${LIBOMPTARGET_NVPTX_SELECTED_BC_LINKER}
+ -o ${CMAKE_CURRENT_BINARY_DIR}/libomptarget-nvptx-sm_${sm}.bc ${bc_files}
+ DEPENDS ${bc_files}
+ COMMENT "Linking LLVM bitcode libomptarget-nvptx-sm_${sm}.bc"
+ )
+ set_property(DIRECTORY APPEND PROPERTY ADDITIONAL_MAKE_CLEAN_FILES libomptarget-nvptx-sm_${sm}.bc)
+
+ add_custom_target(omptarget-nvptx-${sm}-bc ALL DEPENDS ${CMAKE_CURRENT_BINARY_DIR}/libomptarget-nvptx-sm_${sm}.bc)
+
+ # Copy library to destination.
+ add_custom_command(TARGET omptarget-nvptx-${sm}-bc POST_BUILD
+ COMMAND ${CMAKE_COMMAND} -E copy ${CMAKE_CURRENT_BINARY_DIR}/libomptarget-nvptx-sm_${sm}.bc
+ $<TARGET_FILE_DIR:omptarget-nvptx>)
+
+ # Install bitcode library under the lib destination folder.
+ install(FILES ${CMAKE_CURRENT_BINARY_DIR}/libomptarget-nvptx-sm_${sm}.bc DESTINATION "${OPENMP_INSTALL_LIBDIR}")
+ endforeach()
+ endif()
+
+else()
+ libomptarget_say("Not building CUDA offloading device RTL: CUDA tools not found in the system.")
+endif()
diff --git a/final/libomptarget/deviceRTLs/nvptx/docs/ReductionDesign.txt b/final/libomptarget/deviceRTLs/nvptx/docs/ReductionDesign.txt
new file mode 100644
index 0000000..989a01f
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/docs/ReductionDesign.txt
@@ -0,0 +1,523 @@
+
+**Design document for OpenMP reductions on the GPU**
+
+//Abstract: //In this document we summarize the new design for an OpenMP
+implementation of reductions on NVIDIA GPUs. This document comprises
+* a succinct background review,
+* an introduction to the decoupling of reduction algorithm and
+ data-structure-specific processing routines,
+* detailed illustrations of reduction algorithms used and
+* a brief overview of steps we have made beyond the last implementation.
+
+**Problem Review**
+
+Consider a typical OpenMP program with reduction pragma.
+
+```
+ double foo, bar;
+ #pragma omp parallel for reduction(+:foo, bar)
+ for (int i = 0; i < N; i++) {
+ foo+=A[i]; bar+=B[i];
+ }
+```
+where 'foo' and 'bar' are reduced across all threads in the parallel region.
+Our primary goal is to efficiently aggregate the values of foo and bar in
+such manner that
+* makes the compiler logically concise.
+* efficiently reduces within warps, threads, blocks and the device.
+
+**Introduction to Decoupling**
+In this section we address the problem of making the compiler
+//logically concise// by partitioning the task of reduction into two broad
+categories: data-structure specific routines and algorithmic routines.
+
+The previous reduction implementation was highly coupled with
+the specificity of the reduction element data structures (e.g., sizes, data
+types) and operators of the reduction (e.g., addition, multiplication). In
+our implementation we strive to decouple them. In our final implementations,
+we could remove all template functions in our runtime system.
+
+The (simplified) pseudo code generated by LLVM is as follows:
+
+```
+ 1. Create private copies of variables: foo_p, bar_p
+ 2. Each thread reduces the chunk of A and B assigned to it and writes
+ to foo_p and bar_p respectively.
+ 3. ret = kmpc_nvptx_reduce_nowait(..., reduceData, shuffleReduceFn,
+ interWarpCpyFn)
+ where:
+ struct ReduceData {
+ double *foo;
+ double *bar;
+ } reduceData
+ reduceData.foo = &foo_p
+ reduceData.bar = &bar_p
+
+ shuffleReduceFn and interWarpCpyFn are two auxiliary functions
+ generated to aid the runtime performing algorithmic steps
+ while being data-structure agnostic about ReduceData.
+
+ In particular, shuffleReduceFn is a function that takes the following
+ inputs:
+ a. local copy of ReduceData
+ b. its lane_id
+ c. the offset of the lane_id which hosts a remote ReduceData
+ relative to the current one
+ d. an algorithm version paramter determining which reduction
+ algorithm to use.
+ This shuffleReduceFn retrieves the remote ReduceData through shuffle
+ intrinsics and reduces, using the algorithm specified by the 4th
+ parameter, the local ReduceData and with the remote ReduceData element
+ wise, and places the resultant values into the local ReduceData.
+
+ Different reduction algorithms are implemented with different runtime
+ functions, but they all make calls to this same shuffleReduceFn to
+ perform the essential reduction step. Therefore, based on the 4th
+ parameter, this shuffleReduceFn will behave slightly differently to
+ cooperate with the runtime function to ensure correctness under
+ different circumstances.
+
+ InterWarpCpyFn, as the name suggests, is a function that copies data
+ across warps. Its function is to tunnel all the thread private
+ ReduceData that is already reduced within a warp to a lane in the first
+ warp with minimal shared memory footprint. This is an essential step to
+ prepare for the last step of a block reduction.
+
+ (Warp, block, device level reduction routines that utilize these
+ auxiliary functions will be discussed in the next section.)
+
+ 4. if ret == 1:
+ The master thread stores the reduced result in the globals.
+ foo += reduceData.foo; bar += reduceData.bar
+```
+
+**Reduction Algorithms**
+
+On the warp level, we have three versions of the algorithms:
+
+1. Full Warp Reduction
+
+```
+gpu_regular_warp_reduce(void *reduce_data,
+ kmp_ShuffleReductFctPtr ShuffleReduceFn) {
+ for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
+ ShuffleReduceFn(reduce_data, 0, offset, 0);
+}
+```
+ShuffleReduceFn is used here with lane_id set to 0 because it is not used
+therefore we save instructions by not retrieving lane_id from the corresponding
+special registers. The 4th parameters, which represents the version of the
+algorithm being used here, is set to 0 to signify full warp reduction.
+
+In this version specified (=0), the ShuffleReduceFn behaves, per element, as
+follows:
+
+```
+//reduce_elem refers to an element in the local ReduceData
+//remote_elem is retrieved from a remote lane
+remote_elem = shuffle_down(reduce_elem, offset, 32);
+reduce_elem = reduce_elem @ remote_elem;
+
+```
+
+An illustration of this algorithm operating on a hypothetical 8-lane full-warp
+would be:
+{F74}
+The coloring invariant follows that elements with the same color will be
+combined and reduced in the next reduction step. As can be observed, no overhead
+is present, exactly log(2, N) steps are needed.
+
+2. Contiguous Full Warp Reduction
+```
+gpu_irregular_warp_reduce(void *reduce_data,
+ kmp_ShuffleReductFctPtr ShuffleReduceFn, int size,
+ int lane_id) {
+ int curr_size;
+ int offset;
+ curr_size = size;
+ mask = curr_size/2;
+ while (offset>0) {
+ ShuffleReduceFn(reduce_data, lane_id, offset, 1);
+ curr_size = (curr_size+1)/2;
+ offset = curr_size/2;
+ }
+}
+```
+
+In this version specified (=1), the ShuffleReduceFn behaves, per element, as
+follows:
+```
+//reduce_elem refers to an element in the local ReduceData
+//remote_elem is retrieved from a remote lane
+remote_elem = shuffle_down(reduce_elem, offset, 32);
+if (lane_id < offset) {
+ reduce_elem = reduce_elem @ remote_elem
+} else {
+ reduce_elem = remote_elem
+}
+```
+
+An important invariant (also a restriction on the starting state of the
+reduction) is that this algorithm assumes that all unused ReduceData are
+located in a contiguous subset of threads in a warp starting from lane 0.
+
+With the presence of a trailing active lane with an odd-numbered lane
+id, its value will not be aggregated with any other lane. Therefore,
+in order to preserve the invariant, such ReduceData is copied to the first lane
+whose thread-local ReduceData has already being used in a previous reduction
+and would therefore be useless otherwise.
+
+An illustration of this algorithm operating on a hypothetical 8-lane partial
+warp woud be:
+{F75}
+
+As illustrated, this version of the algorithm introduces overhead whenever
+we have odd number of participating lanes in any reduction step to
+copy data between lanes.
+
+3. Dispersed Partial Warp Reduction
+```
+gpu_irregular_simt_reduce(void *reduce_data,
+ kmp_ShuffleReductFctPtr ShuffleReduceFn) {
+ int size, remote_id;
+ int logical_lane_id = find_number_of_dispersed_active_lanes_before_me() * 2;
+ do {
+ remote_id = find_the_next_active_lane_id_right_after_me();
+ // the above function returns 0 of no active lane
+ // is present right after the current thread.
+ size = get_number_of_active_lanes_in_this_warp();
+ logical_lane_id /= 2;
+ ShuffleReduceFn(reduce_data, logical_lane_id, remote_id-1-threadIdx.x, 2);
+ } while (logical_lane_id % 2 == 0 && size > 1);
+```
+
+There is no assumption made about the initial state of the reduction.
+Any number of lanes (>=1) could be active at any position. The reduction
+result is kept in the first active lane.
+
+In this version specified (=2), the ShuffleReduceFn behaves, per element, as
+follows:
+```
+//reduce_elem refers to an element in the local ReduceData
+//remote_elem is retrieved from a remote lane
+remote_elem = shuffle_down(reduce_elem, offset, 32);
+if (LaneId % 2 == 0 && Offset > 0) {
+ reduce_elem = reduce_elem @ remote_elem
+} else {
+ reduce_elem = remote_elem
+}
+```
+We will proceed with a brief explanation for some arguments passed in,
+it is important to notice that, in this section, we will introduce the
+concept of logical_lane_id, and it is important to distinguish it
+from physical lane_id as defined by nvidia.
+1. //logical_lane_id//: as the name suggests, it refers to the calculated
+ lane_id (instead of the physical one defined by nvidia) that would make
+ our algorithm logically concise. A thread with logical_lane_id k means
+ there are (k-1) threads before it.
+2. //remote_id-1-threadIdx.x//: remote_id is indeed the nvidia-defined lane
+ id of the remote lane from which we will retrieve the ReduceData. We
+ subtract (threadIdx+1) from it because we would like to maintain only one
+ underlying shuffle intrinsic (which is used to communicate among lanes in a
+ warp). This particular version of shuffle intrinsic we take accepts only
+ offsets, instead of absolute lane_id. Therefore the subtraction is performed
+ on the absolute lane_id we calculated to obtain the offset.
+
+This algorithm is slightly different in 2 ways and it is not, conceptually, a
+generalization of the above algorithms.
+1. It reduces elements close to each other. For instance, values in the 0th lane
+ is to be combined with that of the 1st lane; values in the 2nd lane is to be
+ combined with that of the 3rd lane. We did not use the previous algorithm
+ where the first half of the (partial) warp is reduced with the second half
+ of the (partial) warp. This is because, the mapping
+ f(x): logical_lane_id -> physical_lane_id;
+ can be easily calculated whereas its inverse
+ f^-1(x): physical_lane_id -> logical_lane_id
+ cannot and performing such reduction requires the inverse to be known.
+2. Because this algorithm is agnostic about the positions of the lanes that are
+ active, we do not need to perform the coping step as in the second
+ algorithm.
+An illustrative run would look like
+{F76}
+As observed, overhead is high because in each and every step of reduction,
+logical_lane_id is recalculated; so is the remote_id.
+
+On a block level, we have implemented the following block reduce algorithm:
+
+```
+gpu_irregular_block_reduce(void *reduce_data,
+ kmp_ShuffleReductFctPtr shuflReduceFn,
+ kmp_InterWarpCopyFctPtr interWarpCpyFn,
+ int size) {
+
+ int wid = threadIdx.x/WARPSIZE;
+ int lane_id = threadIdx.x%WARPSIZE;
+
+ int warp_needed = (size+WARPSIZE-1)/WARPSIZE; //ceiling of division
+
+ unsigned tnum = __ballot(1);
+ int thread_num = __popc(tnum);
+
+ //full warp reduction
+ if (thread_num == WARPSIZE) {
+ gpu_regular_warp_reduce(reduce_data, shuflReduceFn);
+ }
+ //partial warp reduction
+ if (thread_num < WARPSIZE) {
+ gpu_irregular_warp_reduce(reduce_data, shuflReduceFn, thread_num,
+ lane_id);
+ }
+ //Gather all the reduced values from each warp
+ //to the first warp
+ //named_barrier inside this function to ensure
+ //correctness. It is effectively a sync_thread
+ //that won't deadlock.
+ interWarpCpyFn(reduce_data, warp_needed);
+
+ //This is to reduce data gathered from each "warp master".
+ if (wid==0) {
+ gpu_irregular_warp_reduce(reduce_data, shuflReduceFn, warp_needed,
+ lane_id);
+ }
+
+ return;
+}
+```
+In this function, no ShuffleReduceFn is directly called as it makes calls
+to various versions of the warp-reduction functions. It first reduces
+ReduceData warp by warp; in the end, we end up with the number of
+ReduceData equal to the number of warps present in this thread
+block. We then proceed to gather all such ReduceData to the first warp.
+
+As observed, in this algorithm we make use of the function InterWarpCpyFn,
+which copies data from each of the "warp master" (0th lane of each warp, where
+a warp-reduced ReduceData is held) to the 0th warp. This step reduces (in a
+mathematical sense) the problem of reduction across warp masters in a block to
+the problem of warp reduction which we already have solutions to.
+
+We can thus completely avoid the use of atomics to reduce in a threadblock.
+
+**Efficient Cross Block Reduce**
+
+The next challenge is to reduce values across threadblocks. We aim to do this
+without atomics or critical sections.
+
+Let a kernel be started with TB threadblocks.
+Let the GPU have S SMs.
+There can be at most N active threadblocks per SM at any time.
+
+Consider a threadblock tb (tb < TB) running on SM s (s < SM). 'tb' is one of
+at most 'N' active threadblocks on SM s. Let each threadblock active on an SM
+be given an instance identifier id (0 <= id < N). Therefore, the tuple (s, id)
+uniquely identifies an active threadblock on the GPU.
+
+To efficiently implement cross block reduce, we first allocate an array for
+each value to be reduced of size S*N (which is the maximum number of active
+threadblocks at any time on the device).
+
+Each threadblock reduces its value to slot [s][id]. This can be done without
+locking since no other threadblock can write to the same slot concurrently.
+
+As a final stage, we reduce the values in the array as follows:
+
+```
+// Compiler generated wrapper function for each target region with a reduction
+clause.
+target_function_wrapper(map_args, reduction_array) <--- start with 1 team and 1
+ thread.
+ // Use dynamic parallelism to launch M teams, N threads as requested by the
+ user to execute the target region.
+
+ target_function<<M, N>>(map_args)
+
+ Reduce values in reduction_array
+
+```
+
+**Comparison with Last Version**
+
+
+The (simplified) pseudo code generated by LLVM on the host is as follows:
+
+
+```
+ 1. Create private copies of variables: foo_p, bar_p
+ 2. Each thread reduces the chunk of A and B assigned to it and writes
+ to foo_p and bar_p respectively.
+ 3. ret = kmpc_reduce_nowait(..., reduceData, reduceFn, lock)
+ where:
+ struct ReduceData {
+ double *foo;
+ double *bar;
+ } reduceData
+ reduceData.foo = &foo_p
+ reduceData.bar = &bar_p
+
+ reduceFn is a pointer to a function that takes in two inputs
+ of type ReduceData, "reduces" them element wise, and places the
+ result in the first input:
+ reduceFn(ReduceData *a, ReduceData *b)
+ a = a @ b
+
+ Every thread in the parallel region calls kmpc_reduce_nowait with
+ its private copy of reduceData. The runtime reduces across the
+ threads (using tree reduction on the operator 'reduceFn?) and stores
+ the final result in the master thread if successful.
+ 4. if ret == 1:
+ The master thread stores the reduced result in the globals.
+ foo += reduceData.foo; bar += reduceData.bar
+ 5. else if ret == 2:
+ In this case kmpc_reduce_nowait() could not use tree reduction,
+ so use atomics instead:
+ each thread atomically writes to foo
+ each thread atomically writes to bar
+```
+
+On a GPU, a similar reduction may need to be performed across SIMT threads,
+warps, and threadblocks. The challenge is to do so efficiently in a fashion
+that is compatible with the LLVM OpenMP implementation.
+
+In the previously released 0.1 version of the LLVM OpenMP compiler for GPUs,
+the salient steps of the code generated are as follows:
+
+
+```
+ 1. Create private copies of variables: foo_p, bar_p
+ 2. Each thread reduces the chunk of A and B assigned to it and writes
+ to foo_p and bar_p respectively.
+ 3. ret = kmpc_reduce_nowait(..., reduceData, reduceFn, lock)
+ status = can_block_reduce()
+ if status == 1:
+ reduce efficiently to thread 0 using shuffles and shared memory.
+ return 1
+ else
+ cannot use efficient block reduction, fallback to atomics
+ return 2
+ 4. if ret == 1:
+ The master thread stores the reduced result in the globals.
+ foo += reduceData.foo; bar += reduceData.bar
+ 5. else if ret == 2:
+ In this case kmpc_reduce_nowait() could not use tree reduction,
+ so use atomics instead:
+ each thread atomically writes to foo
+ each thread atomically writes to bar
+```
+
+The function can_block_reduce() is defined as follows:
+
+
+```
+int32_t can_block_reduce() {
+ int tid = GetThreadIdInTeam();
+ int nt = GetNumberOfOmpThreads(tid);
+ if (nt != blockDim.x)
+ return 0;
+ unsigned tnum = __ballot(1);
+ if (tnum != (~0x0)) {
+ return 0;
+ }
+ return 1;
+}
+```
+
+This function permits the use of the efficient block reduction algorithm
+using shuffles and shared memory (return 1) only if (a) all SIMT threads in
+a warp are active (i.e., number of threads in the parallel region is a
+multiple of 32) and (b) the number of threads in the parallel region
+(set by the num_threads clause) equals blockDim.x.
+
+If either of these preconditions is not true, each thread in the threadblock
+updates the global value using atomics.
+
+Atomics and compare-and-swap operations are expensive on many threaded
+architectures such as GPUs and we must avoid them completely.
+
+
+**Appendix: Implementation Details**
+
+
+```
+// Compiler generated function.
+reduceFn(ReduceData *a, ReduceData *b)
+ a->foo = a->foo + b->foo
+ a->bar = a->bar + b->bar
+
+// Compiler generated function.
+swapAndReduceFn(ReduceData *thread_private, int lane)
+ ReduceData *remote = new ReduceData()
+ remote->foo = shuffle_double(thread_private->foo, lane)
+ remote->bar = shuffle_double(thread_private->bar, lane)
+ reduceFn(thread_private, remote)
+
+// OMP runtime function.
+warpReduce_regular(ReduceData *thread_private, Fn *swapAndReduceFn):
+ offset = 16
+ while (offset > 0)
+ swapAndReduceFn(thread_private, offset)
+ offset /= 2
+
+// OMP runtime function.
+warpReduce_irregular():
+ ...
+
+// OMP runtime function.
+kmpc_reduce_warp(reduceData, swapAndReduceFn)
+ if all_lanes_active:
+ warpReduce_regular(reduceData, swapAndReduceFn)
+ else:
+ warpReduce_irregular(reduceData, swapAndReduceFn)
+ if in_simd_region:
+ // all done, reduce to global in simd lane 0
+ return 1
+ else if in_parallel_region:
+ // done reducing to one value per warp, now reduce across warps
+ return 3
+
+// OMP runtime function; one for each basic type.
+kmpc_reduce_block_double(double *a)
+ if lane == 0:
+ shared[wid] = *a
+ named_barrier(1, num_threads)
+ if wid == 0
+ block_reduce(shared)
+ if lane == 0
+ *a = shared[0]
+ named_barrier(1, num_threads)
+ if wid == 0 and lane == 0
+ return 1 // write back reduced result
+ else
+ return 0 // don't do anything
+
+```
+
+
+
+```
+// Compiler generated code.
+ 1. Create private copies of variables: foo_p, bar_p
+ 2. Each thread reduces the chunk of A and B assigned to it and writes
+ to foo_p and bar_p respectively.
+ 3. ret = kmpc_reduce_warp(reduceData, swapAndReduceFn)
+ 4. if ret == 1:
+ The master thread stores the reduced result in the globals.
+ foo += reduceData.foo; bar += reduceData.bar
+ 5. else if ret == 3:
+ ret = block_reduce_double(reduceData.foo)
+ if ret == 1:
+ foo += reduceData.foo
+ ret = block_reduce_double(reduceData.bar)
+ if ret == 1:
+ bar += reduceData.bar
+```
+
+**Notes**
+
+ 1. This scheme requires that the CUDA OMP runtime can call llvm generated
+ functions. This functionality now works.
+ 2. If the user inlines the CUDA OMP runtime bitcode, all of the machinery
+ (including calls through function pointers) are optimized away.
+ 3. If we are reducing multiple to multiple variables in a parallel region,
+ the reduce operations are all performed in warpReduce_[ir]regular(). This
+ results in more instructions in the loop and should result in fewer
+ stalls due to data dependencies. Unfortunately we cannot do the same in
+ kmpc_reduce_block_double() without increasing shared memory usage.
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/cancel.cu b/final/libomptarget/deviceRTLs/nvptx/src/cancel.cu
new file mode 100644
index 0000000..77033db
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/cancel.cu
@@ -0,0 +1,28 @@
+//===------ cancel.cu - NVPTX OpenMP cancel interface ------------ CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Interface to be used in the implementation of OpenMP cancel.
+//
+//===----------------------------------------------------------------------===//
+
+#include "omptarget-nvptx.h"
+
+EXTERN int32_t __kmpc_cancellationpoint(kmp_Indent *loc, int32_t global_tid,
+ int32_t cancelVal) {
+ PRINT(LD_IO, "call kmpc_cancellationpoint(cancel val %d)\n", cancelVal);
+ // disabled
+ return FALSE;
+}
+
+EXTERN int32_t __kmpc_cancel(kmp_Indent *loc, int32_t global_tid,
+ int32_t cancelVal) {
+ PRINT(LD_IO, "call kmpc_cancel(cancel val %d)\n", cancelVal);
+ // disabled
+ return FALSE;
+}
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/counter_group.h b/final/libomptarget/deviceRTLs/nvptx/src/counter_group.h
new file mode 100644
index 0000000..b183871
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/counter_group.h
@@ -0,0 +1,51 @@
+//===------ counter_group.h - NVPTX OpenMP loop scheduling ------- CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Interface to implement OpenMP loop scheduling
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef _OMPTARGET_NVPTX_COUNTER_GROUP_H_
+#define _OMPTARGET_NVPTX_COUNTER_GROUP_H_
+
+#include "option.h"
+
+// counter group type for synchronizations
+class omptarget_nvptx_CounterGroup {
+public:
+ // getters and setters
+ INLINE Counter &Event() { return v_event; }
+ INLINE volatile Counter &Start() { return v_start; }
+ INLINE Counter &Init() { return v_init; }
+
+ // Synchronization Interface
+
+ INLINE void Clear(); // first time start=event
+ INLINE void Reset(); // init = first
+ INLINE void Init(Counter &priv); // priv = init
+ INLINE Counter Next(); // just counts number of events
+
+ // set priv to n, to be used in later waitOrRelease
+ INLINE void Complete(Counter &priv, Counter n);
+
+ // check priv and decide if we have to wait or can free the other warps
+ INLINE void Release(Counter priv, Counter current_event_value);
+ INLINE void WaitOrRelease(Counter priv, Counter current_event_value);
+
+private:
+ Counter v_event; // counter of events (atomic)
+
+ // volatile is needed to force loads to read from global
+ // memory or L2 cache and see the write by the last master
+ volatile Counter v_start; // signal when events registered are finished
+
+ Counter v_init; // used to initialize local thread variables
+};
+
+#endif /* SRC_COUNTER_GROUP_H_ */
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/counter_groupi.h b/final/libomptarget/deviceRTLs/nvptx/src/counter_groupi.h
new file mode 100644
index 0000000..f34de3e
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/counter_groupi.h
@@ -0,0 +1,82 @@
+//===----- counter_groupi.h - NVPTX OpenMP loop scheduling ------- CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Interface implementation for OpenMP loop scheduling
+//
+//===----------------------------------------------------------------------===//
+
+#include "option.h"
+
+INLINE void omptarget_nvptx_CounterGroup::Clear() {
+ PRINT0(LD_SYNCD, "clear counters\n")
+ v_event = 0;
+ v_start = 0;
+ // v_init does not need to be reset (its value is dead)
+}
+
+INLINE void omptarget_nvptx_CounterGroup::Reset() {
+ // done by master before entering parallel
+ ASSERT(LT_FUSSY, v_event == v_start,
+ "error, entry %lld !=start %lld at reset\n", P64(v_event),
+ P64(v_start));
+ v_init = v_start;
+}
+
+INLINE void omptarget_nvptx_CounterGroup::Init(Counter &priv) {
+ PRINT(LD_SYNCD, "init priv counter 0x%llx with val %lld\n", P64(&priv),
+ P64(v_start));
+ priv = v_start;
+}
+
+// just counts number of events
+INLINE Counter omptarget_nvptx_CounterGroup::Next() {
+ Counter oldVal = atomicAdd(&v_event, (Counter)1);
+ PRINT(LD_SYNCD, "next event counter 0x%llx with val %lld->%lld\n",
+ P64(&v_event), P64(oldVal), P64(oldVal + 1));
+
+ return oldVal;
+}
+
+// set priv to n, to be used in later waitOrRelease
+INLINE void omptarget_nvptx_CounterGroup::Complete(Counter &priv, Counter n) {
+ PRINT(LD_SYNCD, "complete priv counter 0x%llx with val %llu->%llu (+%llu)\n",
+ P64(&priv), P64(priv), P64(priv + n), n);
+ priv += n;
+}
+
+INLINE void omptarget_nvptx_CounterGroup::Release(Counter priv,
+ Counter current_event_value) {
+ if (priv - 1 == current_event_value) {
+ PRINT(LD_SYNCD, "Release start counter 0x%llx with val %lld->%lld\n",
+ P64(&v_start), P64(v_start), P64(priv));
+ v_start = priv;
+ }
+}
+
+// check priv and decide if we have to wait or can free the other warps
+INLINE void
+omptarget_nvptx_CounterGroup::WaitOrRelease(Counter priv,
+ Counter current_event_value) {
+ if (priv - 1 == current_event_value) {
+ PRINT(LD_SYNCD, "Release start counter 0x%llx with val %lld->%lld\n",
+ P64(&v_start), P64(v_start), P64(priv));
+ v_start = priv;
+ } else {
+ PRINT(LD_SYNCD,
+ "Start waiting while start counter 0x%llx with val %lld < %lld\n",
+ P64(&v_start), P64(v_start), P64(priv));
+ while (priv > v_start) {
+ // IDLE LOOP
+ // start is volatile: it will be re-loaded at each while loop
+ }
+ PRINT(LD_SYNCD,
+ "Done waiting as start counter 0x%llx with val %lld >= %lld\n",
+ P64(&v_start), P64(v_start), P64(priv));
+ }
+}
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/critical.cu b/final/libomptarget/deviceRTLs/nvptx/src/critical.cu
new file mode 100644
index 0000000..fef8101
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/critical.cu
@@ -0,0 +1,32 @@
+//===------ critical.cu - NVPTX OpenMP critical ------------------ CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of critical with KMPC interface
+//
+//===----------------------------------------------------------------------===//
+
+#include <stdio.h>
+
+#include "omptarget-nvptx.h"
+
+EXTERN
+void __kmpc_critical(kmp_Indent *loc, int32_t global_tid,
+ kmp_CriticalName *lck) {
+ PRINT0(LD_IO, "call to kmpc_critical()\n");
+ omptarget_nvptx_TeamDescr &teamDescr = getMyTeamDescriptor();
+ omp_set_lock(teamDescr.CriticalLock());
+}
+
+EXTERN
+void __kmpc_end_critical(kmp_Indent *loc, int32_t global_tid,
+ kmp_CriticalName *lck) {
+ PRINT0(LD_IO, "call to kmpc_end_critical()\n");
+ omptarget_nvptx_TeamDescr &teamDescr = getMyTeamDescriptor();
+ omp_unset_lock(teamDescr.CriticalLock());
+}
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/data_sharing.cu b/final/libomptarget/deviceRTLs/nvptx/src/data_sharing.cu
new file mode 100644
index 0000000..2a1709f
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/data_sharing.cu
@@ -0,0 +1,513 @@
+//===----- data_sharing.cu - NVPTX OpenMP debug utilities -------- CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of data sharing environments/
+//
+//===----------------------------------------------------------------------===//
+#include "omptarget-nvptx.h"
+#include <stdio.h>
+
+// Number of threads in the CUDA block.
+__device__ static unsigned getNumThreads() { return blockDim.x; }
+// Thread ID in the CUDA block
+__device__ static unsigned getThreadId() { return threadIdx.x; }
+// Warp ID in the CUDA block
+__device__ static unsigned getWarpId() { return threadIdx.x / WARPSIZE; }
+// Lane ID in the CUDA warp.
+__device__ static unsigned getLaneId() { return threadIdx.x % WARPSIZE; }
+
+// The CUDA thread ID of the master thread.
+__device__ static unsigned getMasterThreadId() {
+ unsigned Mask = WARPSIZE - 1;
+ return (getNumThreads() - 1) & (~Mask);
+}
+
+// Find the active threads in the warp - return a mask whose n-th bit is set if
+// the n-th thread in the warp is active.
+__device__ static unsigned getActiveThreadsMask() {
+ return __BALLOT_SYNC(0xFFFFFFFF, true);
+}
+
+// Return true if this is the first active thread in the warp.
+__device__ static bool IsWarpMasterActiveThread() {
+ unsigned long long Mask = getActiveThreadsMask();
+ unsigned long long ShNum = WARPSIZE - (getThreadId() % WARPSIZE);
+ unsigned long long Sh = Mask << ShNum;
+ // Truncate Sh to the 32 lower bits
+ return (unsigned)Sh == 0;
+}
+// Return true if this is the master thread.
+__device__ static bool IsMasterThread() {
+ return !isSPMDMode() && getMasterThreadId() == getThreadId();
+}
+
+/// Return the provided size aligned to the size of a pointer.
+__device__ static size_t AlignVal(size_t Val) {
+ const size_t Align = (size_t)sizeof(void *);
+ if (Val & (Align - 1)) {
+ Val += Align;
+ Val &= ~(Align - 1);
+ }
+ return Val;
+}
+
+#define DSFLAG 0
+#define DSFLAG_INIT 0
+#define DSPRINT(_flag, _str, _args...) \
+ { \
+ if (_flag) { \
+ /*printf("(%d,%d) -> " _str, blockIdx.x, threadIdx.x, _args);*/ \
+ } \
+ }
+#define DSPRINT0(_flag, _str) \
+ { \
+ if (_flag) { \
+ /*printf("(%d,%d) -> " _str, blockIdx.x, threadIdx.x);*/ \
+ } \
+ }
+
+// Initialize the shared data structures. This is expected to be called for the
+// master thread and warp masters. \param RootS: A pointer to the root of the
+// data sharing stack. \param InitialDataSize: The initial size of the data in
+// the slot.
+EXTERN void
+__kmpc_initialize_data_sharing_environment(__kmpc_data_sharing_slot *rootS,
+ size_t InitialDataSize) {
+
+ DSPRINT0(DSFLAG_INIT,
+ "Entering __kmpc_initialize_data_sharing_environment\n");
+
+ unsigned WID = getWarpId();
+ DSPRINT(DSFLAG_INIT, "Warp ID: %d\n", WID);
+
+ omptarget_nvptx_TeamDescr *teamDescr =
+ &omptarget_nvptx_threadPrivateContext->TeamContext();
+ __kmpc_data_sharing_slot *RootS = teamDescr->RootS(WID, IsMasterThread());
+
+ DataSharingState.SlotPtr[WID] = RootS;
+ DataSharingState.StackPtr[WID] = (void *)&RootS->Data[0];
+
+ // We don't need to initialize the frame and active threads.
+
+ DSPRINT(DSFLAG_INIT, "Initial data size: %08x \n", InitialDataSize);
+ DSPRINT(DSFLAG_INIT, "Root slot at: %016llx \n", (long long)RootS);
+ DSPRINT(DSFLAG_INIT, "Root slot data-end at: %016llx \n",
+ (long long)RootS->DataEnd);
+ DSPRINT(DSFLAG_INIT, "Root slot next at: %016llx \n", (long long)RootS->Next);
+ DSPRINT(DSFLAG_INIT, "Shared slot ptr at: %016llx \n",
+ (long long)DataSharingState.SlotPtr[WID]);
+ DSPRINT(DSFLAG_INIT, "Shared stack ptr at: %016llx \n",
+ (long long)DataSharingState.StackPtr[WID]);
+
+ DSPRINT0(DSFLAG_INIT, "Exiting __kmpc_initialize_data_sharing_environment\n");
+}
+
+EXTERN void *__kmpc_data_sharing_environment_begin(
+ __kmpc_data_sharing_slot **SavedSharedSlot, void **SavedSharedStack,
+ void **SavedSharedFrame, int32_t *SavedActiveThreads,
+ size_t SharingDataSize, size_t SharingDefaultDataSize,
+ int16_t IsOMPRuntimeInitialized) {
+
+ DSPRINT0(DSFLAG, "Entering __kmpc_data_sharing_environment_begin\n");
+
+ // If the runtime has been elided, used __shared__ memory for master-worker
+ // data sharing.
+ if (!IsOMPRuntimeInitialized)
+ return (void *)&DataSharingState;
+
+ DSPRINT(DSFLAG, "Data Size %016llx\n", SharingDataSize);
+ DSPRINT(DSFLAG, "Default Data Size %016llx\n", SharingDefaultDataSize);
+
+ unsigned WID = getWarpId();
+ unsigned CurActiveThreads = getActiveThreadsMask();
+
+ __kmpc_data_sharing_slot *&SlotP = DataSharingState.SlotPtr[WID];
+ void *&StackP = DataSharingState.StackPtr[WID];
+ void *&FrameP = DataSharingState.FramePtr[WID];
+ int32_t &ActiveT = DataSharingState.ActiveThreads[WID];
+
+ DSPRINT0(DSFLAG, "Save current slot/stack values.\n");
+ // Save the current values.
+ *SavedSharedSlot = SlotP;
+ *SavedSharedStack = StackP;
+ *SavedSharedFrame = FrameP;
+ *SavedActiveThreads = ActiveT;
+
+ DSPRINT(DSFLAG, "Warp ID: %d\n", WID);
+ DSPRINT(DSFLAG, "Saved slot ptr at: %016llx \n", (long long)SlotP);
+ DSPRINT(DSFLAG, "Saved stack ptr at: %016llx \n", (long long)StackP);
+ DSPRINT(DSFLAG, "Saved frame ptr at: %016llx \n", (long long)FrameP);
+ DSPRINT(DSFLAG, "Active threads: %08x \n", ActiveT);
+
+ // Only the warp active master needs to grow the stack.
+ if (IsWarpMasterActiveThread()) {
+ // Save the current active threads.
+ ActiveT = CurActiveThreads;
+
+ // Make sure we use aligned sizes to avoid rematerialization of data.
+ SharingDataSize = AlignVal(SharingDataSize);
+ // FIXME: The default data size can be assumed to be aligned?
+ SharingDefaultDataSize = AlignVal(SharingDefaultDataSize);
+
+ // Check if we have room for the data in the current slot.
+ const uintptr_t CurrentStartAddress = (uintptr_t)StackP;
+ const uintptr_t CurrentEndAddress = (uintptr_t)SlotP->DataEnd;
+ const uintptr_t RequiredEndAddress =
+ CurrentStartAddress + (uintptr_t)SharingDataSize;
+
+ DSPRINT(DSFLAG, "Data Size %016llx\n", SharingDataSize);
+ DSPRINT(DSFLAG, "Default Data Size %016llx\n", SharingDefaultDataSize);
+ DSPRINT(DSFLAG, "Current Start Address %016llx\n", CurrentStartAddress);
+ DSPRINT(DSFLAG, "Current End Address %016llx\n", CurrentEndAddress);
+ DSPRINT(DSFLAG, "Required End Address %016llx\n", RequiredEndAddress);
+ DSPRINT(DSFLAG, "Active Threads %08x\n", ActiveT);
+
+ // If we require a new slot, allocate it and initialize it (or attempt to
+ // reuse one). Also, set the shared stack and slot pointers to the new
+ // place. If we do not need to grow the stack, just adapt the stack and
+ // frame pointers.
+ if (CurrentEndAddress < RequiredEndAddress) {
+ size_t NewSize = (SharingDataSize > SharingDefaultDataSize)
+ ? SharingDataSize
+ : SharingDefaultDataSize;
+ __kmpc_data_sharing_slot *NewSlot = 0;
+
+ // Attempt to reuse an existing slot.
+ if (__kmpc_data_sharing_slot *ExistingSlot = SlotP->Next) {
+ uintptr_t ExistingSlotSize = (uintptr_t)ExistingSlot->DataEnd -
+ (uintptr_t)(&ExistingSlot->Data[0]);
+ if (ExistingSlotSize >= NewSize) {
+ DSPRINT(DSFLAG, "Reusing stack slot %016llx\n",
+ (long long)ExistingSlot);
+ NewSlot = ExistingSlot;
+ } else {
+ DSPRINT(DSFLAG, "Cleaning up -failed reuse - %016llx\n",
+ (long long)SlotP->Next);
+ free(ExistingSlot);
+ }
+ }
+
+ if (!NewSlot) {
+ NewSlot = (__kmpc_data_sharing_slot *)malloc(
+ sizeof(__kmpc_data_sharing_slot) + NewSize);
+ DSPRINT(DSFLAG, "New slot allocated %016llx (data size=%016llx)\n",
+ (long long)NewSlot, NewSize);
+ }
+
+ NewSlot->Next = 0;
+ NewSlot->DataEnd = &NewSlot->Data[NewSize];
+
+ SlotP->Next = NewSlot;
+ SlotP = NewSlot;
+ StackP = &NewSlot->Data[SharingDataSize];
+ FrameP = &NewSlot->Data[0];
+ } else {
+
+ // Clean up any old slot that we may still have. The slot producers, do
+ // not eliminate them because that may be used to return data.
+ if (SlotP->Next) {
+ DSPRINT(DSFLAG, "Cleaning up - old not required - %016llx\n",
+ (long long)SlotP->Next);
+ free(SlotP->Next);
+ SlotP->Next = 0;
+ }
+
+ FrameP = StackP;
+ StackP = (void *)RequiredEndAddress;
+ }
+ }
+
+ // FIXME: Need to see the impact of doing it here.
+ __threadfence_block();
+
+ DSPRINT0(DSFLAG, "Exiting __kmpc_data_sharing_environment_begin\n");
+
+ // All the threads in this warp get the frame they should work with.
+ return FrameP;
+}
+
+EXTERN void __kmpc_data_sharing_environment_end(
+ __kmpc_data_sharing_slot **SavedSharedSlot, void **SavedSharedStack,
+ void **SavedSharedFrame, int32_t *SavedActiveThreads,
+ int32_t IsEntryPoint) {
+
+ DSPRINT0(DSFLAG, "Entering __kmpc_data_sharing_environment_end\n");
+
+ unsigned WID = getWarpId();
+
+ if (IsEntryPoint) {
+ if (IsWarpMasterActiveThread()) {
+ DSPRINT0(DSFLAG, "Doing clean up\n");
+
+ // The master thread cleans the saved slot, because this is an environment
+ // only for the master.
+ __kmpc_data_sharing_slot *S =
+ IsMasterThread() ? *SavedSharedSlot : DataSharingState.SlotPtr[WID];
+
+ if (S->Next) {
+ free(S->Next);
+ S->Next = 0;
+ }
+ }
+
+ DSPRINT0(DSFLAG, "Exiting Exiting __kmpc_data_sharing_environment_end\n");
+ return;
+ }
+
+ int32_t CurActive = getActiveThreadsMask();
+
+ // Only the warp master can restore the stack and frame information, and only
+ // if there are no other threads left behind in this environment (i.e. the
+ // warp diverged and returns in different places). This only works if we
+ // assume that threads will converge right after the call site that started
+ // the environment.
+ if (IsWarpMasterActiveThread()) {
+ int32_t &ActiveT = DataSharingState.ActiveThreads[WID];
+
+ DSPRINT0(DSFLAG, "Before restoring the stack\n");
+ // Zero the bits in the mask. If it is still different from zero, then we
+ // have other threads that will return after the current ones.
+ ActiveT &= ~CurActive;
+
+ DSPRINT(DSFLAG, "Active threads: %08x; New mask: %08x\n", CurActive,
+ ActiveT);
+
+ if (!ActiveT) {
+ // No other active threads? Great, lets restore the stack.
+
+ __kmpc_data_sharing_slot *&SlotP = DataSharingState.SlotPtr[WID];
+ void *&StackP = DataSharingState.StackPtr[WID];
+ void *&FrameP = DataSharingState.FramePtr[WID];
+
+ SlotP = *SavedSharedSlot;
+ StackP = *SavedSharedStack;
+ FrameP = *SavedSharedFrame;
+ ActiveT = *SavedActiveThreads;
+
+ DSPRINT(DSFLAG, "Restored slot ptr at: %016llx \n", (long long)SlotP);
+ DSPRINT(DSFLAG, "Restored stack ptr at: %016llx \n", (long long)StackP);
+ DSPRINT(DSFLAG, "Restored frame ptr at: %016llx \n", (long long)FrameP);
+ DSPRINT(DSFLAG, "Active threads: %08x \n", ActiveT);
+ }
+ }
+
+ // FIXME: Need to see the impact of doing it here.
+ __threadfence_block();
+
+ DSPRINT0(DSFLAG, "Exiting __kmpc_data_sharing_environment_end\n");
+ return;
+}
+
+EXTERN void *
+__kmpc_get_data_sharing_environment_frame(int32_t SourceThreadID,
+ int16_t IsOMPRuntimeInitialized) {
+ DSPRINT0(DSFLAG, "Entering __kmpc_get_data_sharing_environment_frame\n");
+
+ // If the runtime has been elided, use __shared__ memory for master-worker
+ // data sharing. We're reusing the statically allocated data structure
+ // that is used for standard data sharing.
+ if (!IsOMPRuntimeInitialized)
+ return (void *)&DataSharingState;
+
+ // Get the frame used by the requested thread.
+
+ unsigned SourceWID = SourceThreadID / WARPSIZE;
+
+ DSPRINT(DSFLAG, "Source warp: %d\n", SourceWID);
+
+ void *P = DataSharingState.FramePtr[SourceWID];
+ DSPRINT0(DSFLAG, "Exiting __kmpc_get_data_sharing_environment_frame\n");
+ return P;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Runtime functions for trunk data sharing scheme.
+////////////////////////////////////////////////////////////////////////////////
+
+INLINE void data_sharing_init_stack_common() {
+ omptarget_nvptx_TeamDescr *teamDescr =
+ &omptarget_nvptx_threadPrivateContext->TeamContext();
+
+ for (int WID = 0; WID < WARPSIZE; WID++) {
+ __kmpc_data_sharing_slot *RootS = teamDescr->GetPreallocatedSlotAddr(WID);
+ DataSharingState.SlotPtr[WID] = RootS;
+ DataSharingState.StackPtr[WID] = (void *)&RootS->Data[0];
+ }
+}
+
+// Initialize data sharing data structure. This function needs to be called
+// once at the beginning of a data sharing context (coincides with the kernel
+// initialization). This function is called only by the MASTER thread of each
+// team in non-SPMD mode.
+EXTERN void __kmpc_data_sharing_init_stack() {
+ // This function initializes the stack pointer with the pointer to the
+ // statically allocated shared memory slots. The size of a shared memory
+ // slot is pre-determined to be 256 bytes.
+ data_sharing_init_stack_common();
+ omptarget_nvptx_globalArgs.Init();
+}
+
+// Initialize data sharing data structure. This function needs to be called
+// once at the beginning of a data sharing context (coincides with the kernel
+// initialization). This function is called in SPMD mode only.
+EXTERN void __kmpc_data_sharing_init_stack_spmd() {
+ // This function initializes the stack pointer with the pointer to the
+ // statically allocated shared memory slots. The size of a shared memory
+ // slot is pre-determined to be 256 bytes.
+ if (threadIdx.x == 0)
+ data_sharing_init_stack_common();
+
+ __threadfence_block();
+}
+
+// Called at the time of the kernel initialization. This is used to initilize
+// the list of references to shared variables and to pre-allocate global storage
+// for holding the globalized variables.
+//
+// By default the globalized variables are stored in global memory. If the
+// UseSharedMemory is set to true, the runtime will attempt to use shared memory
+// as long as the size requested fits the pre-allocated size.
+EXTERN void* __kmpc_data_sharing_push_stack(size_t DataSize,
+ int16_t UseSharedMemory) {
+ // Frame pointer must be visible to all workers in the same warp.
+ unsigned WID = getWarpId();
+ void *&FrameP = DataSharingState.FramePtr[WID];
+
+ // Only warp active master threads manage the stack.
+ if (IsWarpMasterActiveThread()) {
+ // SlotP will point to either the shared memory slot or an existing
+ // global memory slot.
+ __kmpc_data_sharing_slot *&SlotP = DataSharingState.SlotPtr[WID];
+ void *&StackP = DataSharingState.StackPtr[WID];
+
+ // Compute the total memory footprint of the requested data.
+ // The master thread requires a stack only for itself. A worker
+ // thread (which at this point is a warp master) will require
+ // space for the variables of each thread in the warp,
+ // i.e. one DataSize chunk per warp lane.
+ // TODO: change WARPSIZE to the number of active threads in the warp.
+ size_t PushSize = IsMasterThread() ? DataSize : WARPSIZE * DataSize;
+
+ // Check if we have room for the data in the current slot.
+ const uintptr_t StartAddress = (uintptr_t)StackP;
+ const uintptr_t EndAddress = (uintptr_t)SlotP->DataEnd;
+ const uintptr_t RequestedEndAddress = StartAddress + (uintptr_t)PushSize;
+
+ // If we requested more data than there is room for in the rest
+ // of the slot then we need to either re-use the next slot, if one exists,
+ // or create a new slot.
+ if (EndAddress < RequestedEndAddress) {
+ __kmpc_data_sharing_slot *NewSlot = 0;
+ size_t NewSize = PushSize;
+
+ // Allocate at least the default size for each type of slot.
+ // Master is a special case and even though there is only one thread,
+ // it can share more things with the workers. For uniformity, it uses
+ // the full size of a worker warp slot.
+ size_t DefaultSlotSize = DS_Worker_Warp_Slot_Size;
+ if (DefaultSlotSize > NewSize)
+ NewSize = DefaultSlotSize;
+ NewSlot = (__kmpc_data_sharing_slot *) SafeMalloc(
+ sizeof(__kmpc_data_sharing_slot) + NewSize,
+ "Global memory slot allocation.");
+
+ NewSlot->Next = 0;
+ NewSlot->Prev = SlotP;
+ NewSlot->PrevSlotStackPtr = StackP;
+ NewSlot->DataEnd = &NewSlot->Data[0] + NewSize;
+
+ // Make previous slot point to the newly allocated slot.
+ SlotP->Next = NewSlot;
+ // The current slot becomes the new slot.
+ SlotP = NewSlot;
+ // The stack pointer always points to the next free stack frame.
+ StackP = &NewSlot->Data[0] + PushSize;
+ // The frame pointer always points to the beginning of the frame.
+ FrameP = &NewSlot->Data[0];
+ } else {
+ // Add the data chunk to the current slot. The frame pointer is set to
+ // point to the start of the new frame held in StackP.
+ FrameP = StackP;
+ // Reset stack pointer to the requested address.
+ StackP = (void *)RequestedEndAddress;
+ }
+ }
+
+ __threadfence_block();
+
+ // Compute the start address of the frame of each thread in the warp.
+ uintptr_t FrameStartAddress = (uintptr_t)FrameP;
+ FrameStartAddress += (uintptr_t) (getLaneId() * DataSize);
+ return (void *)FrameStartAddress;
+}
+
+// Pop the stack and free any memory which can be reclaimed.
+//
+// When the pop operation removes the last global memory slot,
+// reclaim all outstanding global memory slots since it is
+// likely we have reached the end of the kernel.
+EXTERN void __kmpc_data_sharing_pop_stack(void *FrameStart) {
+ if (IsWarpMasterActiveThread()) {
+ unsigned WID = getWarpId();
+
+ // Current slot
+ __kmpc_data_sharing_slot *&SlotP = DataSharingState.SlotPtr[WID];
+
+ // Pointer to next available stack.
+ void *&StackP = DataSharingState.StackPtr[WID];
+
+ // If the current slot is empty, we need to free the slot after the
+ // pop.
+ bool SlotEmpty = (StackP == &SlotP->Data[0]);
+
+ // Pop the frame.
+ StackP = FrameStart;
+
+ if (SlotEmpty && SlotP->Prev) {
+ // Before removing the slot we need to reset StackP.
+ StackP = SlotP->PrevSlotStackPtr;
+
+ // Remove the slot.
+ SlotP = SlotP->Prev;
+ SafeFree(SlotP->Next, "Free slot.");
+ SlotP->Next = 0;
+ }
+ }
+
+ __threadfence_block();
+}
+
+// Begin a data sharing context. Maintain a list of references to shared
+// variables. This list of references to shared variables will be passed
+// to one or more threads.
+// In L0 data sharing this is called by master thread.
+// In L1 data sharing this is called by active warp master thread.
+EXTERN void __kmpc_begin_sharing_variables(void ***GlobalArgs, size_t nArgs) {
+ omptarget_nvptx_globalArgs.EnsureSize(nArgs);
+ *GlobalArgs = omptarget_nvptx_globalArgs.GetArgs();
+}
+
+// End a data sharing context. There is no need to have a list of refs
+// to shared variables because the context in which those variables were
+// shared has now ended. This should clean-up the list of references only
+// without affecting the actual global storage of the variables.
+// In L0 data sharing this is called by master thread.
+// In L1 data sharing this is called by active warp master thread.
+EXTERN void __kmpc_end_sharing_variables() {
+ omptarget_nvptx_globalArgs.DeInit();
+}
+
+// This function will return a list of references to global variables. This
+// is how the workers will get a reference to the globalized variable. The
+// members of this list will be passed to the outlined parallel function
+// preserving the order.
+// Called by all workers.
+EXTERN void __kmpc_get_shared_variables(void ***GlobalArgs) {
+ *GlobalArgs = omptarget_nvptx_globalArgs.GetArgs();
+}
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/debug.h b/final/libomptarget/deviceRTLs/nvptx/src/debug.h
new file mode 100644
index 0000000..9f59d66
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/debug.h
@@ -0,0 +1,276 @@
+//===------------- debug.h - NVPTX OpenMP debug macros ----------- CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains debug macros to be used in the application.
+//
+// Usage guide
+//
+// PRINT0(flag, str) : if debug flag is on, print (no arguments)
+// PRINT(flag, str, args) : if debug flag is on, print (arguments)
+// DON(flag) : return true if debug flag is on
+//
+// ASSERT(flag, cond, str, args): if test flag is on, test the condition
+// if the condition is false, print str+args
+// and assert.
+// CAUTION: cond may be evaluate twice
+// AON(flag) : return true if test flag is on
+//
+// WARNING(flag, str, args) : if warning flag is on, print the warning
+// WON(flag) : return true if warning flag is on
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef _OMPTARGET_NVPTX_DEBUG_H_
+#define _OMPTARGET_NVPTX_DEBUG_H_
+
+////////////////////////////////////////////////////////////////////////////////
+// set desired level of debugging
+////////////////////////////////////////////////////////////////////////////////
+
+#define LD_SET_NONE 0ULL /* none */
+#define LD_SET_ALL -1ULL /* all */
+
+// pos 1
+#define LD_SET_LOOP 0x1ULL /* basic loop */
+#define LD_SET_LOOPD 0x2ULL /* basic loop */
+#define LD_SET_PAR 0x4ULL /* basic parallel */
+#define LD_SET_PARD 0x8ULL /* basic parallel */
+
+// pos 2
+#define LD_SET_SYNC 0x10ULL /* sync info */
+#define LD_SET_SYNCD 0x20ULL /* sync info */
+#define LD_SET_WAIT 0x40ULL /* state when waiting */
+#define LD_SET_TASK 0x80ULL /* print task info (high level) */
+
+// pos 3
+#define LD_SET_IO 0x100ULL /* big region io (excl atomic) */
+#define LD_SET_IOD 0x200ULL /* big region io (excl atomic) */
+#define LD_SET_ENV 0x400ULL /* env info */
+#define LD_SET_CANCEL 0x800ULL /* print cancel info */
+
+// pos 4
+#define LD_SET_MEM 0x1000ULL /* malloc / free */
+
+////////////////////////////////////////////////////////////////////////////////
+// set the desired flags to print selected output.
+
+// these are some examples of possible definitions that can be used for
+// debugging.
+//#define OMPTARGET_NVPTX_DEBUG (LD_SET_ALL)
+//#define OMPTARGET_NVPTX_DEBUG (LD_SET_LOOP) // limit to loop printfs to save
+// on cuda buffer
+//#define OMPTARGET_NVPTX_DEBUG (LD_SET_IO)
+//#define OMPTARGET_NVPTX_DEBUG (LD_SET_IO | LD_SET_ENV)
+//#define OMPTARGET_NVPTX_DEBUG (LD_SET_PAR)
+
+#ifndef OMPTARGET_NVPTX_DEBUG
+#define OMPTARGET_NVPTX_DEBUG LD_SET_NONE
+#elif OMPTARGET_NVPTX_DEBUG
+#warning debug is used, not good for measurements
+#endif
+
+////////////////////////////////////////////////////////////////////////////////
+// set desired level of asserts
+////////////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////////////
+// available flags
+
+#define LT_SET_NONE 0x0 /* unsafe */
+#define LT_SET_SAFETY \
+ 0x1 /* check malloc type of stuff, input at creation, cheap */
+#define LT_SET_INPUT 0x2 /* check also all runtime inputs */
+#define LT_SET_FUSSY 0x4 /* fussy checks, expensive */
+
+////////////////////////////////////////////////////////////////////////////////
+// set the desired flags
+
+#ifndef OMPTARGET_NVPTX_TEST
+#if OMPTARGET_NVPTX_DEBUG
+#define OMPTARGET_NVPTX_TEST (LT_SET_FUSSY)
+#else
+#define OMPTARGET_NVPTX_TEST (LT_SET_SAFETY)
+#endif
+#endif
+
+////////////////////////////////////////////////////////////////////////////////
+// set desired level of warnings
+////////////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////////////
+// available flags
+
+#define LW_SET_ALL -1
+#define LW_SET_NONE 0x0
+#define LW_SET_ENV 0x1
+#define LW_SET_INPUT 0x2
+#define LW_SET_FUSSY 0x4
+
+////////////////////////////////////////////////////////////////////////////////
+// set the desired flags
+
+#if OMPTARGET_NVPTX_DEBUG
+#define OMPTARGET_NVPTX_WARNING (LW_SET_NONE)
+#else
+#define OMPTARGET_NVPTX_WARNING (LW_SET_FUSSY)
+#endif
+
+////////////////////////////////////////////////////////////////////////////////
+// implemtation for debug
+////////////////////////////////////////////////////////////////////////////////
+
+#if OMPTARGET_NVPTX_DEBUG || OMPTARGET_NVPTX_TEST || OMPTARGET_NVPTX_WARNING
+#include <stdio.h>
+#endif
+#if OMPTARGET_NVPTX_TEST
+#include <assert.h>
+#endif
+
+// set flags that are tested (inclusion properties)
+
+#define LD_ALL (LD_SET_ALL)
+
+#define LD_LOOP (LD_SET_LOOP | LD_SET_LOOPD)
+#define LD_LOOPD (LD_SET_LOOPD)
+#define LD_PAR (LD_SET_PAR | LD_SET_PARD)
+#define LD_PARD (LD_SET_PARD)
+
+// pos 2
+#define LD_SYNC (LD_SET_SYNC | LD_SET_SYNCD)
+#define LD_SYNCD (LD_SET_SYNCD)
+#define LD_WAIT (LD_SET_WAIT)
+#define LD_TASK (LD_SET_TASK)
+
+// pos 3
+#define LD_IO (LD_SET_IO | LD_SET_IOD)
+#define LD_IOD (LD_SET_IOD)
+#define LD_ENV (LD_SET_ENV)
+#define LD_CANCEL (LD_SET_CANCEL)
+
+// pos 3
+#define LD_MEM (LD_SET_MEM)
+
+// implement
+#if OMPTARGET_NVPTX_DEBUG
+
+#define DON(_flag) ((unsigned)(OMPTARGET_NVPTX_DEBUG) & (_flag))
+
+#define PRINT0(_flag, _str) \
+ { \
+ if (omptarget_device_environment.debug_level && DON(_flag)) { \
+ printf("<b %2d, t %4d, w %2d, l %2d>: " _str, blockIdx.x, threadIdx.x, \
+ threadIdx.x / WARPSIZE, threadIdx.x & 0x1F); \
+ } \
+ }
+
+#define PRINT(_flag, _str, _args...) \
+ { \
+ if (omptarget_device_environment.debug_level && DON(_flag)) { \
+ printf("<b %2d, t %4d, w %2d, l %2d>: " _str, blockIdx.x, threadIdx.x, \
+ threadIdx.x / WARPSIZE, threadIdx.x & 0x1F, _args); \
+ } \
+ }
+#else
+
+#define DON(_flag) (FALSE)
+#define PRINT0(flag, str)
+#define PRINT(flag, str, _args...)
+
+#endif
+
+// for printing without worring about precision, pointers...
+#define P64(_x) ((unsigned long long)(_x))
+
+////////////////////////////////////////////////////////////////////////////////
+// early defs for test
+////////////////////////////////////////////////////////////////////////////////
+
+#define LT_SAFETY (LT_SET_SAFETY | LT_SET_INPUT | LT_SET_FUSSY)
+#define LT_INPUT (LT_SET_INPUT | LT_SET_FUSSY)
+#define LT_FUSSY (LT_SET_FUSSY)
+
+#if OMPTARGET_NVPTX_TEST == LT_SET_SAFETY
+
+#define TON(_flag) ((OMPTARGET_NVPTX_TEST) & (_flag))
+#define ASSERT0(_flag, _cond, _str) \
+ { \
+ if (TON(_flag)) { \
+ assert(_cond); \
+ } \
+ }
+#define ASSERT(_flag, _cond, _str, _args...) \
+ { \
+ if (TON(_flag)) { \
+ assert(_cond); \
+ } \
+ }
+
+#elif OMPTARGET_NVPTX_TEST >= LT_SET_INPUT
+
+#define TON(_flag) ((OMPTARGET_NVPTX_TEST) & (_flag))
+#define ASSERT0(_flag, _cond, _str) \
+ { \
+ if (TON(_flag) && !(_cond)) { \
+ printf("<b %3d, t %4d, w %2d, l %2d> ASSERT: " _str "\n", blockIdx.x, \
+ threadIdx.x, threadIdx.x / WARPSIZE, threadIdx.x & 0x1F); \
+ assert(_cond); \
+ } \
+ }
+#define ASSERT(_flag, _cond, _str, _args...) \
+ { \
+ if (TON(_flag) && !(_cond)) { \
+ printf("<b %3d, t %4d, w %2d, l %d2> ASSERT: " _str "\n", blockIdx.x, \
+ threadIdx.x, threadIdx.x / WARPSIZE, threadIdx.x & 0x1F, _args); \
+ assert(_cond); \
+ } \
+ }
+
+#else
+
+#define TON(_flag) (FALSE)
+#define ASSERT0(_flag, _cond, _str)
+#define ASSERT(_flag, _cond, _str, _args...)
+
+#endif
+
+////////////////////////////////////////////////////////////////////////////////
+// early defs for warning
+
+#define LW_ALL (LW_SET_ALL)
+#define LW_ENV (LW_SET_FUSSY | LW_SET_INPUT | LW_SET_ENV)
+#define LW_INPUT (LW_SET_FUSSY | LW_SET_INPUT)
+#define LW_FUSSY (LW_SET_FUSSY)
+
+#if OMPTARGET_NVPTX_WARNING
+
+#define WON(_flag) ((OMPTARGET_NVPTX_WARNING) & (_flag))
+#define WARNING0(_flag, _str) \
+ { \
+ if (WON(_flag)) { \
+ printf("<b %2d, t %4d, w %2d, l %2d> WARNING: " _str, blockIdx.x, \
+ threadIdx.x, threadIdx.x / WARPSIZE, threadIdx.x & 0x1F); \
+ } \
+ }
+#define WARNING(_flag, _str, _args...) \
+ { \
+ if (WON(_flag)) { \
+ printf("<b %2d, t %4d, w %2d, l %2d> WARNING: " _str, blockIdx.x, \
+ threadIdx.x, threadIdx.x / WARPSIZE, threadIdx.x & 0x1F, _args); \
+ } \
+ }
+
+#else
+
+#define WON(_flag) (FALSE)
+#define WARNING0(_flag, _str)
+#define WARNING(_flag, _str, _args...)
+
+#endif
+
+#endif
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/interface.h b/final/libomptarget/deviceRTLs/nvptx/src/interface.h
new file mode 100644
index 0000000..680df48
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/interface.h
@@ -0,0 +1,523 @@
+//===------- interface.h - NVPTX OpenMP interface definitions ---- CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains debug macros to be used in the application.
+//
+// This file contains all the definitions that are relevant to
+// the interface. The first section contains the interface as
+// declared by OpenMP. A second section includes library private calls
+// (mostly debug, temporary?) The third section includes the compiler
+// specific interfaces.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef _INTERFACES_H_
+#define _INTERFACES_H_
+
+////////////////////////////////////////////////////////////////////////////////
+// OpenMP interface
+////////////////////////////////////////////////////////////////////////////////
+
+typedef uint32_t omp_lock_t; /* arbitrary type of the right length */
+typedef uint64_t omp_nest_lock_t; /* arbitrary type of the right length */
+
+typedef enum omp_sched_t {
+ omp_sched_static = 1, /* chunkSize >0 */
+ omp_sched_dynamic = 2, /* chunkSize >0 */
+ omp_sched_guided = 3, /* chunkSize >0 */
+ omp_sched_auto = 4, /* no chunkSize */
+} omp_sched_t;
+
+typedef enum omp_proc_bind_t {
+ omp_proc_bind_false = 0,
+ omp_proc_bind_true = 1,
+ omp_proc_bind_master = 2,
+ omp_proc_bind_close = 3,
+ omp_proc_bind_spread = 4
+} omp_proc_bind_t;
+
+EXTERN double omp_get_wtick(void);
+EXTERN double omp_get_wtime(void);
+
+EXTERN void omp_set_num_threads(int num);
+EXTERN int omp_get_num_threads(void);
+EXTERN int omp_get_max_threads(void);
+EXTERN int omp_get_thread_limit(void);
+EXTERN int omp_get_thread_num(void);
+EXTERN int omp_get_num_procs(void);
+EXTERN int omp_in_parallel(void);
+EXTERN int omp_in_final(void);
+EXTERN void omp_set_dynamic(int flag);
+EXTERN int omp_get_dynamic(void);
+EXTERN void omp_set_nested(int flag);
+EXTERN int omp_get_nested(void);
+EXTERN void omp_set_max_active_levels(int level);
+EXTERN int omp_get_max_active_levels(void);
+EXTERN int omp_get_level(void);
+EXTERN int omp_get_active_level(void);
+EXTERN int omp_get_ancestor_thread_num(int level);
+EXTERN int omp_get_team_size(int level);
+
+EXTERN void omp_init_lock(omp_lock_t *lock);
+EXTERN void omp_init_nest_lock(omp_nest_lock_t *lock);
+EXTERN void omp_destroy_lock(omp_lock_t *lock);
+EXTERN void omp_destroy_nest_lock(omp_nest_lock_t *lock);
+EXTERN void omp_set_lock(omp_lock_t *lock);
+EXTERN void omp_set_nest_lock(omp_nest_lock_t *lock);
+EXTERN void omp_unset_lock(omp_lock_t *lock);
+EXTERN void omp_unset_nest_lock(omp_nest_lock_t *lock);
+EXTERN int omp_test_lock(omp_lock_t *lock);
+EXTERN int omp_test_nest_lock(omp_nest_lock_t *lock);
+
+EXTERN void omp_get_schedule(omp_sched_t *kind, int *modifier);
+EXTERN void omp_set_schedule(omp_sched_t kind, int modifier);
+EXTERN omp_proc_bind_t omp_get_proc_bind(void);
+EXTERN int omp_get_cancellation(void);
+EXTERN void omp_set_default_device(int deviceId);
+EXTERN int omp_get_default_device(void);
+EXTERN int omp_get_num_devices(void);
+EXTERN int omp_get_num_teams(void);
+EXTERN int omp_get_team_num(void);
+EXTERN int omp_is_initial_device(void);
+EXTERN int omp_get_initial_device(void);
+EXTERN int omp_get_max_task_priority(void);
+
+////////////////////////////////////////////////////////////////////////////////
+// OMPTARGET_NVPTX private (debug / temportary?) interface
+////////////////////////////////////////////////////////////////////////////////
+
+// for debug
+EXTERN void __kmpc_print_str(char *title);
+EXTERN void __kmpc_print_title_int(char *title, int data);
+EXTERN void __kmpc_print_index(char *title, int i);
+EXTERN void __kmpc_print_int(int data);
+EXTERN void __kmpc_print_double(double data);
+EXTERN void __kmpc_print_address_int64(int64_t data);
+
+////////////////////////////////////////////////////////////////////////////////
+// file below is swiped from kmpc host interface
+////////////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////////////
+// kmp specifc types
+////////////////////////////////////////////////////////////////////////////////
+
+typedef enum kmp_sched_t {
+ kmp_sched_static_chunk = 33,
+ kmp_sched_static_nochunk = 34,
+ kmp_sched_dynamic = 35,
+ kmp_sched_guided = 36,
+ kmp_sched_runtime = 37,
+ kmp_sched_auto = 38,
+
+ kmp_sched_static_ordered = 65,
+ kmp_sched_static_nochunk_ordered = 66,
+ kmp_sched_dynamic_ordered = 67,
+ kmp_sched_guided_ordered = 68,
+ kmp_sched_runtime_ordered = 69,
+ kmp_sched_auto_ordered = 70,
+
+ kmp_sched_distr_static_chunk = 91,
+ kmp_sched_distr_static_nochunk = 92,
+ kmp_sched_distr_static_chunk_sched_static_chunkone = 93,
+
+ kmp_sched_default = kmp_sched_static_nochunk,
+ kmp_sched_unordered_first = kmp_sched_static_chunk,
+ kmp_sched_unordered_last = kmp_sched_auto,
+ kmp_sched_ordered_first = kmp_sched_static_ordered,
+ kmp_sched_ordered_last = kmp_sched_auto_ordered,
+ kmp_sched_distribute_first = kmp_sched_distr_static_chunk,
+ kmp_sched_distribute_last =
+ kmp_sched_distr_static_chunk_sched_static_chunkone,
+
+ /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers.
+ * Since we need to distinguish the three possible cases (no modifier,
+ * monotonic modifier, nonmonotonic modifier), we need separate bits for
+ * each modifier. The absence of monotonic does not imply nonmonotonic,
+ * especially since 4.5 says that the behaviour of the "no modifier" case
+ * is implementation defined in 4.5, but will become "nonmonotonic" in 5.0.
+ *
+ * Since we're passing a full 32 bit value, we can use a couple of high
+ * bits for these flags; out of paranoia we avoid the sign bit.
+ *
+ * These modifiers can be or-ed into non-static schedules by the compiler
+ * to pass the additional information. They will be stripped early in the
+ * processing in __kmp_dispatch_init when setting up schedules, so
+ * most of the code won't ever see schedules with these bits set.
+ */
+ kmp_sched_modifier_monotonic = (1 << 29),
+ /**< Set if the monotonic schedule modifier was present */
+ kmp_sched_modifier_nonmonotonic = (1 << 30),
+/**< Set if the nonmonotonic schedule modifier was present */
+
+#define SCHEDULE_WITHOUT_MODIFIERS(s) \
+ (enum kmp_sched_t)( \
+ (s) & ~(kmp_sched_modifier_nonmonotonic | kmp_sched_modifier_monotonic))
+#define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sched_modifier_monotonic) != 0)
+#define SCHEDULE_HAS_NONMONOTONIC(s) \
+ (((s)&kmp_sched_modifier_nonmonotonic) != 0)
+#define SCHEDULE_HAS_NO_MODIFIERS(s) \
+ (((s) & (kmp_sched_modifier_nonmonotonic | kmp_sched_modifier_monotonic)) == \
+ 0)
+
+} kmp_sched_t;
+
+// parallel defs
+typedef void kmp_Indent;
+typedef void (*kmp_ParFctPtr)(int32_t *global_tid, int32_t *bound_tid, ...);
+typedef void (*kmp_ReductFctPtr)(void *lhsData, void *rhsData);
+typedef void (*kmp_InterWarpCopyFctPtr)(void *src, int32_t warp_num);
+typedef void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id,
+ int16_t lane_offset,
+ int16_t shortCircuit);
+typedef void (*kmp_CopyToScratchpadFctPtr)(void *reduceData, void *scratchpad,
+ int32_t index, int32_t width);
+typedef void (*kmp_LoadReduceFctPtr)(void *reduceData, void *scratchpad,
+ int32_t index, int32_t width,
+ int32_t reduce);
+
+// task defs
+typedef struct kmp_TaskDescr kmp_TaskDescr;
+typedef int32_t (*kmp_TaskFctPtr)(int32_t global_tid, kmp_TaskDescr *taskDescr);
+typedef struct kmp_TaskDescr {
+ void *sharedPointerTable; // ptr to a table of shared var ptrs
+ kmp_TaskFctPtr sub; // task subroutine
+ int32_t partId; // unused
+ kmp_TaskFctPtr destructors; // destructor of c++ first private
+} kmp_TaskDescr;
+// task dep defs
+#define KMP_TASKDEP_IN 0x1u
+#define KMP_TASKDEP_OUT 0x2u
+typedef struct kmp_TaskDep_Public {
+ void *addr;
+ size_t len;
+ uint8_t flags; // bit 0: in, bit 1: out
+} kmp_TaskDep_Public;
+
+// flags that interpret the interface part of tasking flags
+#define KMP_TASK_IS_TIED 0x1
+#define KMP_TASK_FINAL 0x2
+#define KMP_TASK_MERGED_IF0 0x4 /* unused */
+#define KMP_TASK_DESTRUCTOR_THUNK 0x8
+
+// flags for task setup return
+#define KMP_CURRENT_TASK_NOT_SUSPENDED 0
+#define KMP_CURRENT_TASK_SUSPENDED 1
+
+// sync defs
+typedef int32_t kmp_CriticalName[8];
+
+////////////////////////////////////////////////////////////////////////////////
+// flags for kstate (all bits initially off)
+////////////////////////////////////////////////////////////////////////////////
+
+// first 2 bits used by kmp_Reduction (defined in kmp_reduction.cpp)
+#define KMP_REDUCTION_MASK 0x3
+#define KMP_SKIP_NEXT_CALL 0x4
+#define KMP_SKIP_NEXT_CANCEL_BARRIER 0x8
+
+////////////////////////////////////////////////////////////////////////////////
+// data
+////////////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////////////
+// external interface
+////////////////////////////////////////////////////////////////////////////////
+
+// query
+EXTERN int32_t __kmpc_global_num_threads(kmp_Indent *loc); // missing
+EXTERN int32_t __kmpc_bound_thread_num(kmp_Indent *loc); // missing
+EXTERN int32_t __kmpc_bound_num_threads(kmp_Indent *loc); // missing
+EXTERN int32_t __kmpc_in_parallel(kmp_Indent *loc); // missing
+
+// parallel
+EXTERN int32_t __kmpc_global_thread_num(kmp_Indent *loc);
+EXTERN void __kmpc_push_num_threads(kmp_Indent *loc, int32_t global_tid,
+ int32_t num_threads);
+// simd
+EXTERN void __kmpc_push_simd_limit(kmp_Indent *loc, int32_t global_tid,
+ int32_t simd_limit);
+// aee ... not supported
+// EXTERN void __kmpc_fork_call(kmp_Indent *loc, int32_t argc, kmp_ParFctPtr
+// microtask, ...);
+EXTERN void __kmpc_serialized_parallel(kmp_Indent *loc, uint32_t global_tid);
+EXTERN void __kmpc_end_serialized_parallel(kmp_Indent *loc,
+ uint32_t global_tid);
+EXTERN uint16_t __kmpc_parallel_level(kmp_Indent *loc, uint32_t global_tid);
+
+// proc bind
+EXTERN void __kmpc_push_proc_bind(kmp_Indent *loc, uint32_t global_tid,
+ int proc_bind);
+EXTERN int omp_get_num_places(void);
+EXTERN int omp_get_place_num_procs(int place_num);
+EXTERN void omp_get_place_proc_ids(int place_num, int *ids);
+EXTERN int omp_get_place_num(void);
+EXTERN int omp_get_partition_num_places(void);
+EXTERN void omp_get_partition_place_nums(int *place_nums);
+
+// for static (no chunk or chunk)
+EXTERN void __kmpc_for_static_init_4(kmp_Indent *loc, int32_t global_tid,
+ int32_t sched, int32_t *plastiter,
+ int32_t *plower, int32_t *pupper,
+ int32_t *pstride, int32_t incr,
+ int32_t chunk);
+EXTERN void __kmpc_for_static_init_4u(kmp_Indent *loc, int32_t global_tid,
+ int32_t sched, int32_t *plastiter,
+ uint32_t *plower, uint32_t *pupper,
+ int32_t *pstride, int32_t incr,
+ int32_t chunk);
+EXTERN void __kmpc_for_static_init_8(kmp_Indent *loc, int32_t global_tid,
+ int32_t sched, int32_t *plastiter,
+ int64_t *plower, int64_t *pupper,
+ int64_t *pstride, int64_t incr,
+ int64_t chunk);
+EXTERN void __kmpc_for_static_init_8u(kmp_Indent *loc, int32_t global_tid,
+ int32_t sched, int32_t *plastiter1,
+ uint64_t *plower, uint64_t *pupper,
+ int64_t *pstride, int64_t incr,
+ int64_t chunk);
+EXTERN
+void __kmpc_for_static_init_4_simple_spmd(kmp_Indent *loc, int32_t global_tid,
+ int32_t sched, int32_t *plastiter,
+ int32_t *plower, int32_t *pupper,
+ int32_t *pstride, int32_t incr,
+ int32_t chunk);
+EXTERN
+void __kmpc_for_static_init_4u_simple_spmd(kmp_Indent *loc, int32_t global_tid,
+ int32_t sched, int32_t *plastiter,
+ uint32_t *plower, uint32_t *pupper,
+ int32_t *pstride, int32_t incr,
+ int32_t chunk);
+EXTERN
+void __kmpc_for_static_init_8_simple_spmd(kmp_Indent *loc, int32_t global_tid,
+ int32_t sched, int32_t *plastiter,
+ int64_t *plower, int64_t *pupper,
+ int64_t *pstride, int64_t incr,
+ int64_t chunk);
+EXTERN
+void __kmpc_for_static_init_8u_simple_spmd(kmp_Indent *loc, int32_t global_tid,
+ int32_t sched, int32_t *plastiter1,
+ uint64_t *plower, uint64_t *pupper,
+ int64_t *pstride, int64_t incr,
+ int64_t chunk);
+EXTERN
+void __kmpc_for_static_init_4_simple_generic(kmp_Indent *loc,
+ int32_t global_tid, int32_t sched,
+ int32_t *plastiter,
+ int32_t *plower, int32_t *pupper,
+ int32_t *pstride, int32_t incr,
+ int32_t chunk);
+EXTERN
+void __kmpc_for_static_init_4u_simple_generic(
+ kmp_Indent *loc, int32_t global_tid, int32_t sched, int32_t *plastiter,
+ uint32_t *plower, uint32_t *pupper, int32_t *pstride, int32_t incr,
+ int32_t chunk);
+EXTERN
+void __kmpc_for_static_init_8_simple_generic(kmp_Indent *loc,
+ int32_t global_tid, int32_t sched,
+ int32_t *plastiter,
+ int64_t *plower, int64_t *pupper,
+ int64_t *pstride, int64_t incr,
+ int64_t chunk);
+EXTERN
+void __kmpc_for_static_init_8u_simple_generic(
+ kmp_Indent *loc, int32_t global_tid, int32_t sched, int32_t *plastiter1,
+ uint64_t *plower, uint64_t *pupper, int64_t *pstride, int64_t incr,
+ int64_t chunk);
+
+EXTERN void __kmpc_for_static_fini(kmp_Indent *loc, int32_t global_tid);
+
+// for dynamic
+EXTERN void __kmpc_dispatch_init_4(kmp_Indent *loc, int32_t global_tid,
+ int32_t sched, int32_t lower, int32_t upper,
+ int32_t incr, int32_t chunk);
+EXTERN void __kmpc_dispatch_init_4u(kmp_Indent *loc, int32_t global_tid,
+ int32_t sched, uint32_t lower,
+ uint32_t upper, int32_t incr,
+ int32_t chunk);
+EXTERN void __kmpc_dispatch_init_8(kmp_Indent *loc, int32_t global_tid,
+ int32_t sched, int64_t lower, int64_t upper,
+ int64_t incr, int64_t chunk);
+EXTERN void __kmpc_dispatch_init_8u(kmp_Indent *loc, int32_t global_tid,
+ int32_t sched, uint64_t lower,
+ uint64_t upper, int64_t incr,
+ int64_t chunk);
+
+EXTERN int __kmpc_dispatch_next_4(kmp_Indent *loc, int32_t global_tid,
+ int32_t *plastiter, int32_t *plower,
+ int32_t *pupper, int32_t *pstride);
+EXTERN int __kmpc_dispatch_next_4u(kmp_Indent *loc, int32_t global_tid,
+ int32_t *plastiter, uint32_t *plower,
+ uint32_t *pupper, int32_t *pstride);
+EXTERN int __kmpc_dispatch_next_8(kmp_Indent *loc, int32_t global_tid,
+ int32_t *plastiter, int64_t *plower,
+ int64_t *pupper, int64_t *pstride);
+EXTERN int __kmpc_dispatch_next_8u(kmp_Indent *loc, int32_t global_tid,
+ int32_t *plastiter, uint64_t *plower,
+ uint64_t *pupper, int64_t *pstride);
+
+EXTERN void __kmpc_dispatch_fini_4(kmp_Indent *loc, int32_t global_tid);
+EXTERN void __kmpc_dispatch_fini_4u(kmp_Indent *loc, int32_t global_tid);
+EXTERN void __kmpc_dispatch_fini_8(kmp_Indent *loc, int32_t global_tid);
+EXTERN void __kmpc_dispatch_fini_8u(kmp_Indent *loc, int32_t global_tid);
+
+// Support for reducing conditional lastprivate variables
+EXTERN void __kmpc_reduce_conditional_lastprivate(kmp_Indent *loc,
+ int32_t global_tid,
+ int32_t varNum, void *array);
+
+// reduction
+EXTERN void __kmpc_nvptx_end_reduce(int32_t global_tid);
+EXTERN void __kmpc_nvptx_end_reduce_nowait(int32_t global_tid);
+EXTERN int32_t __kmpc_nvptx_parallel_reduce_nowait(
+ int32_t global_tid, int32_t num_vars, size_t reduce_size, void *reduce_data,
+ kmp_ShuffleReductFctPtr shflFct, kmp_InterWarpCopyFctPtr cpyFct);
+EXTERN int32_t __kmpc_nvptx_parallel_reduce_nowait_simple_spmd(
+ int32_t global_tid, int32_t num_vars, size_t reduce_size, void *reduce_data,
+ kmp_ShuffleReductFctPtr shflFct, kmp_InterWarpCopyFctPtr cpyFct);
+EXTERN int32_t __kmpc_nvptx_parallel_reduce_nowait_simple_generic(
+ int32_t global_tid, int32_t num_vars, size_t reduce_size, void *reduce_data,
+ kmp_ShuffleReductFctPtr shflFct, kmp_InterWarpCopyFctPtr cpyFct);
+EXTERN int32_t __kmpc_nvptx_simd_reduce_nowait(
+ int32_t global_tid, int32_t num_vars, size_t reduce_size, void *reduce_data,
+ kmp_ShuffleReductFctPtr shflFct, kmp_InterWarpCopyFctPtr cpyFct);
+EXTERN int32_t __kmpc_nvptx_teams_reduce_nowait(
+ int32_t global_tid, int32_t num_vars, size_t reduce_size, void *reduce_data,
+ kmp_ShuffleReductFctPtr shflFct, kmp_InterWarpCopyFctPtr cpyFct,
+ kmp_CopyToScratchpadFctPtr sratchFct, kmp_LoadReduceFctPtr ldFct);
+EXTERN int32_t __kmpc_nvptx_teams_reduce_nowait_simple_spmd(
+ int32_t global_tid, int32_t num_vars, size_t reduce_size, void *reduce_data,
+ kmp_ShuffleReductFctPtr shflFct, kmp_InterWarpCopyFctPtr cpyFct,
+ kmp_CopyToScratchpadFctPtr sratchFct, kmp_LoadReduceFctPtr ldFct);
+EXTERN int32_t __kmpc_nvptx_teams_reduce_nowait_simple_generic(
+ int32_t global_tid, int32_t num_vars, size_t reduce_size, void *reduce_data,
+ kmp_ShuffleReductFctPtr shflFct, kmp_InterWarpCopyFctPtr cpyFct,
+ kmp_CopyToScratchpadFctPtr sratchFct, kmp_LoadReduceFctPtr ldFct);
+EXTERN int32_t __kmpc_shuffle_int32(int32_t val, int16_t delta, int16_t size);
+EXTERN int64_t __kmpc_shuffle_int64(int64_t val, int16_t delta, int16_t size);
+
+// sync barrier
+EXTERN void __kmpc_barrier(kmp_Indent *loc_ref, int32_t tid);
+EXTERN void __kmpc_barrier_simple_spmd(kmp_Indent *loc_ref, int32_t tid);
+EXTERN void __kmpc_barrier_simple_generic(kmp_Indent *loc_ref, int32_t tid);
+EXTERN int32_t __kmpc_cancel_barrier(kmp_Indent *loc, int32_t global_tid);
+
+// single
+EXTERN int32_t __kmpc_single(kmp_Indent *loc, int32_t global_tid);
+EXTERN void __kmpc_end_single(kmp_Indent *loc, int32_t global_tid);
+
+// sync
+EXTERN int32_t __kmpc_master(kmp_Indent *loc, int32_t global_tid);
+EXTERN void __kmpc_end_master(kmp_Indent *loc, int32_t global_tid);
+EXTERN void __kmpc_ordered(kmp_Indent *loc, int32_t global_tid);
+EXTERN void __kmpc_end_ordered(kmp_Indent *loc, int32_t global_tid);
+EXTERN void __kmpc_critical(kmp_Indent *loc, int32_t global_tid,
+ kmp_CriticalName *crit);
+EXTERN void __kmpc_end_critical(kmp_Indent *loc, int32_t global_tid,
+ kmp_CriticalName *crit);
+EXTERN void __kmpc_flush(kmp_Indent *loc);
+
+// vote
+EXTERN int32_t __kmpc_warp_active_thread_mask();
+
+// tasks
+EXTERN kmp_TaskDescr *__kmpc_omp_task_alloc(kmp_Indent *loc,
+ uint32_t global_tid, int32_t flag,
+ size_t sizeOfTaskInclPrivate,
+ size_t sizeOfSharedTable,
+ kmp_TaskFctPtr sub);
+EXTERN int32_t __kmpc_omp_task(kmp_Indent *loc, uint32_t global_tid,
+ kmp_TaskDescr *newLegacyTaskDescr);
+EXTERN int32_t __kmpc_omp_task_with_deps(kmp_Indent *loc, uint32_t global_tid,
+ kmp_TaskDescr *newLegacyTaskDescr,
+ int32_t depNum, void *depList,
+ int32_t noAliasDepNum,
+ void *noAliasDepList);
+EXTERN void __kmpc_omp_task_begin_if0(kmp_Indent *loc, uint32_t global_tid,
+ kmp_TaskDescr *newLegacyTaskDescr);
+EXTERN void __kmpc_omp_task_complete_if0(kmp_Indent *loc, uint32_t global_tid,
+ kmp_TaskDescr *newLegacyTaskDescr);
+EXTERN void __kmpc_omp_wait_deps(kmp_Indent *loc, uint32_t global_tid,
+ int32_t depNum, void *depList,
+ int32_t noAliasDepNum, void *noAliasDepList);
+EXTERN void __kmpc_taskgroup(kmp_Indent *loc, uint32_t global_tid);
+EXTERN void __kmpc_end_taskgroup(kmp_Indent *loc, uint32_t global_tid);
+EXTERN int32_t __kmpc_omp_taskyield(kmp_Indent *loc, uint32_t global_tid,
+ int end_part);
+EXTERN int32_t __kmpc_omp_taskwait(kmp_Indent *loc, uint32_t global_tid);
+EXTERN void __kmpc_taskloop(kmp_Indent *loc, uint32_t global_tid,
+ kmp_TaskDescr *newKmpTaskDescr, int if_val,
+ uint64_t *lb, uint64_t *ub, int64_t st, int nogroup,
+ int32_t sched, uint64_t grainsize, void *task_dup);
+
+// cancel
+EXTERN int32_t __kmpc_cancellationpoint(kmp_Indent *loc, int32_t global_tid,
+ int32_t cancelVal);
+EXTERN int32_t __kmpc_cancel(kmp_Indent *loc, int32_t global_tid,
+ int32_t cancelVal);
+
+// non standard
+EXTERN void __kmpc_kernel_init_params(void *ReductionScratchpadPtr);
+EXTERN void __kmpc_kernel_init(int ThreadLimit, int16_t RequiresOMPRuntime);
+EXTERN void __kmpc_kernel_deinit(int16_t IsOMPRuntimeInitialized);
+EXTERN void __kmpc_spmd_kernel_init(int ThreadLimit, int16_t RequiresOMPRuntime,
+ int16_t RequiresDataSharing);
+EXTERN void __kmpc_spmd_kernel_deinit();
+EXTERN void __kmpc_kernel_prepare_parallel(void *WorkFn,
+ int16_t IsOMPRuntimeInitialized);
+EXTERN bool __kmpc_kernel_parallel(void **WorkFn,
+ int16_t IsOMPRuntimeInitialized);
+EXTERN void __kmpc_kernel_end_parallel();
+EXTERN bool __kmpc_kernel_convergent_parallel(void *buffer, uint32_t Mask,
+ bool *IsFinal,
+ int32_t *LaneSource);
+EXTERN void __kmpc_kernel_end_convergent_parallel(void *buffer);
+EXTERN bool __kmpc_kernel_convergent_simd(void *buffer, uint32_t Mask,
+ bool *IsFinal, int32_t *LaneSource,
+ int32_t *LaneId, int32_t *NumLanes);
+EXTERN void __kmpc_kernel_end_convergent_simd(void *buffer);
+
+
+EXTERN void __kmpc_data_sharing_init_stack();
+EXTERN void __kmpc_data_sharing_init_stack_spmd();
+EXTERN void *__kmpc_data_sharing_push_stack(size_t size, int16_t UseSharedMemory);
+EXTERN void __kmpc_data_sharing_pop_stack(void *a);
+EXTERN void __kmpc_begin_sharing_variables(void ***GlobalArgs, size_t nArgs);
+EXTERN void __kmpc_end_sharing_variables();
+EXTERN void __kmpc_get_shared_variables(void ***GlobalArgs);
+
+// The slot used for data sharing by the master and worker threads. We use a
+// complete (default size version and an incomplete one so that we allow sizes
+// greater than the default).
+struct __kmpc_data_sharing_slot {
+ __kmpc_data_sharing_slot *Next;
+ __kmpc_data_sharing_slot *Prev;
+ void *PrevSlotStackPtr;
+ void *DataEnd;
+ char Data[];
+};
+EXTERN void
+__kmpc_initialize_data_sharing_environment(__kmpc_data_sharing_slot *RootS,
+ size_t InitialDataSize);
+EXTERN void *__kmpc_data_sharing_environment_begin(
+ __kmpc_data_sharing_slot **SavedSharedSlot, void **SavedSharedStack,
+ void **SavedSharedFrame, int32_t *SavedActiveThreads,
+ size_t SharingDataSize, size_t SharingDefaultDataSize,
+ int16_t IsOMPRuntimeInitialized);
+EXTERN void __kmpc_data_sharing_environment_end(
+ __kmpc_data_sharing_slot **SavedSharedSlot, void **SavedSharedStack,
+ void **SavedSharedFrame, int32_t *SavedActiveThreads, int32_t IsEntryPoint);
+
+EXTERN void *
+__kmpc_get_data_sharing_environment_frame(int32_t SourceThreadID,
+ int16_t IsOMPRuntimeInitialized);
+
+// SPMD execution mode interrogation function.
+EXTERN int8_t __kmpc_is_spmd_exec_mode();
+#endif
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/libcall.cu b/final/libomptarget/deviceRTLs/nvptx/src/libcall.cu
new file mode 100644
index 0000000..15040db
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/libcall.cu
@@ -0,0 +1,462 @@
+//===------------ libcall.cu - NVPTX OpenMP user calls ----------- CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the OpenMP runtime functions that can be
+// invoked by the user in an OpenMP region
+//
+//===----------------------------------------------------------------------===//
+
+#include "omptarget-nvptx.h"
+
+// Timer precision is 1ns
+#define TIMER_PRECISION ((double)1E-9)
+
+EXTERN double omp_get_wtick(void) {
+ PRINT(LD_IO, "omp_get_wtick() returns %g\n", TIMER_PRECISION);
+ return TIMER_PRECISION;
+}
+
+EXTERN double omp_get_wtime(void) {
+ unsigned long long nsecs;
+ asm("mov.u64 %0, %%globaltimer;" : "=l"(nsecs));
+ double rc = (double)nsecs * TIMER_PRECISION;
+ PRINT(LD_IO, "call omp_get_wtime() returns %g\n", rc);
+ return rc;
+}
+
+EXTERN void omp_set_num_threads(int num) {
+ PRINT(LD_IO, "call omp_set_num_threads(num %d)\n", num);
+ if (num <= 0) {
+ WARNING0(LW_INPUT, "expected positive num; ignore\n");
+ } else {
+ omptarget_nvptx_TaskDescr *currTaskDescr = getMyTopTaskDescriptor();
+ currTaskDescr->NThreads() = num;
+ }
+}
+
+EXTERN int omp_get_num_threads(void) {
+ int tid = GetLogicalThreadIdInBlock();
+ int rc = GetNumberOfOmpThreads(tid, isSPMDMode(), isRuntimeUninitialized());
+ PRINT(LD_IO, "call omp_get_num_threads() return %d\n", rc);
+ return rc;
+}
+
+EXTERN int omp_get_max_threads(void) {
+ omptarget_nvptx_TaskDescr *currTaskDescr = getMyTopTaskDescriptor();
+ int rc = 1; // default is 1 thread avail
+ if (!currTaskDescr->InParallelRegion()) {
+ // not currently in a parallel region... all are available
+ rc = GetNumberOfProcsInTeam();
+ ASSERT0(LT_FUSSY, rc >= 0, "bad number of threads");
+ }
+ PRINT(LD_IO, "call omp_get_max_threads() return %d\n", rc);
+ return rc;
+}
+
+EXTERN int omp_get_thread_limit(void) {
+ // per contention group.. meaning threads in current team
+ omptarget_nvptx_TaskDescr *currTaskDescr = getMyTopTaskDescriptor();
+ int rc = currTaskDescr->ThreadLimit();
+ PRINT(LD_IO, "call omp_get_thread_limit() return %d\n", rc);
+ return rc;
+}
+
+EXTERN int omp_get_thread_num() {
+ int tid = GetLogicalThreadIdInBlock();
+ int rc = GetOmpThreadId(tid, isSPMDMode(), isRuntimeUninitialized());
+ PRINT(LD_IO, "call omp_get_thread_num() returns %d\n", rc);
+ return rc;
+}
+
+EXTERN int omp_get_num_procs(void) {
+ int rc = GetNumberOfProcsInDevice();
+ PRINT(LD_IO, "call omp_get_num_procs() returns %d\n", rc);
+ return rc;
+}
+
+EXTERN int omp_in_parallel(void) {
+ int rc = 0;
+ omptarget_nvptx_TaskDescr *currTaskDescr = getMyTopTaskDescriptor();
+ if (currTaskDescr->InParallelRegion()) {
+ rc = 1;
+ }
+ PRINT(LD_IO, "call omp_in_parallel() returns %d\n", rc);
+ return rc;
+}
+
+EXTERN int omp_in_final(void) {
+ // treat all tasks as final... Specs may expect runtime to keep
+ // track more precisely if a task was actively set by users... This
+ // is not explicitely specified; will treat as if runtime can
+ // actively decide to put a non-final task into a final one.
+ int rc = 1;
+ PRINT(LD_IO, "call omp_in_final() returns %d\n", rc);
+ return rc;
+}
+
+EXTERN void omp_set_dynamic(int flag) {
+ PRINT(LD_IO, "call omp_set_dynamic(%d)\n", flag);
+
+ omptarget_nvptx_TaskDescr *currTaskDescr = getMyTopTaskDescriptor();
+ if (flag) {
+ currTaskDescr->SetDynamic();
+ } else {
+ currTaskDescr->ClearDynamic();
+ }
+}
+
+EXTERN int omp_get_dynamic(void) {
+ int rc = 0;
+ omptarget_nvptx_TaskDescr *currTaskDescr = getMyTopTaskDescriptor();
+ if (currTaskDescr->IsDynamic()) {
+ rc = 1;
+ }
+ PRINT(LD_IO, "call omp_get_dynamic() returns %d\n", rc);
+ return rc;
+}
+
+EXTERN void omp_set_nested(int flag) {
+ PRINT(LD_IO, "call omp_set_nested(%d) is ignored (no nested support)\n",
+ flag);
+}
+
+EXTERN int omp_get_nested(void) {
+ int rc = 0;
+ PRINT(LD_IO, "call omp_get_nested() returns %d\n", rc);
+ return rc;
+}
+
+EXTERN void omp_set_max_active_levels(int level) {
+ PRINT(LD_IO,
+ "call omp_set_max_active_levels(%d) is ignored (no nested support)\n",
+ level);
+}
+
+EXTERN int omp_get_max_active_levels(void) {
+ int rc = 1;
+ PRINT(LD_IO, "call omp_get_max_active_levels() returns %d\n", rc);
+ return rc;
+}
+
+EXTERN int omp_get_level(void) {
+ int level = 0;
+ omptarget_nvptx_TaskDescr *currTaskDescr = getMyTopTaskDescriptor();
+ ASSERT0(LT_FUSSY, currTaskDescr,
+ "do not expect fct to be called in a non-active thread");
+ do {
+ if (currTaskDescr->IsParallelConstruct()) {
+ level++;
+ }
+ currTaskDescr = currTaskDescr->GetPrevTaskDescr();
+ } while (currTaskDescr);
+ PRINT(LD_IO, "call omp_get_level() returns %d\n", level);
+ return level;
+}
+
+EXTERN int omp_get_active_level(void) {
+ int level = 0; // no active level parallelism
+ omptarget_nvptx_TaskDescr *currTaskDescr = getMyTopTaskDescriptor();
+ ASSERT0(LT_FUSSY, currTaskDescr,
+ "do not expect fct to be called in a non-active thread");
+ do {
+ if (currTaskDescr->ThreadsInTeam() > 1) {
+ // has a parallel with more than one thread in team
+ level = 1;
+ break;
+ }
+ currTaskDescr = currTaskDescr->GetPrevTaskDescr();
+ } while (currTaskDescr);
+ PRINT(LD_IO, "call omp_get_active_level() returns %d\n", level)
+ return level;
+}
+
+EXTERN int omp_get_ancestor_thread_num(int level) {
+ int rc = 0; // default at level 0
+ if (level >= 0) {
+ int totLevel = omp_get_level();
+ if (level <= totLevel) {
+ omptarget_nvptx_TaskDescr *currTaskDescr = getMyTopTaskDescriptor();
+ int steps = totLevel - level;
+ PRINT(LD_IO, "backtrack %d steps\n", steps);
+ ASSERT0(LT_FUSSY, currTaskDescr,
+ "do not expect fct to be called in a non-active thread");
+ do {
+ if (DON(LD_IOD)) {
+ // print current state
+ omp_sched_t sched = currTaskDescr->GetRuntimeSched();
+ PRINT(LD_ALL,
+ "task descr %s %d: %s, in par %d, dyn %d, rt sched %d,"
+ " chunk %" PRIu64 "; tid %d, tnum %d, nthreads %d\n",
+ "ancestor", steps,
+ (currTaskDescr->IsParallelConstruct() ? "par" : "task"),
+ currTaskDescr->InParallelRegion(), currTaskDescr->IsDynamic(),
+ sched, currTaskDescr->RuntimeChunkSize(),
+ currTaskDescr->ThreadId(), currTaskDescr->ThreadsInTeam(),
+ currTaskDescr->NThreads());
+ }
+
+ if (currTaskDescr->IsParallelConstruct()) {
+ // found the level
+ if (!steps) {
+ rc = currTaskDescr->ThreadId();
+ break;
+ }
+ steps--;
+ }
+ currTaskDescr = currTaskDescr->GetPrevTaskDescr();
+ } while (currTaskDescr);
+ ASSERT0(LT_FUSSY, !steps, "expected to find all steps");
+ }
+ }
+ PRINT(LD_IO, "call omp_get_ancestor_thread_num(level %d) returns %d\n", level,
+ rc)
+ return rc;
+}
+
+EXTERN int omp_get_team_size(int level) {
+ int rc = 1; // default at level 0
+ if (level >= 0) {
+ int totLevel = omp_get_level();
+ if (level <= totLevel) {
+ omptarget_nvptx_TaskDescr *currTaskDescr = getMyTopTaskDescriptor();
+ int steps = totLevel - level;
+ ASSERT0(LT_FUSSY, currTaskDescr,
+ "do not expect fct to be called in a non-active thread");
+ do {
+ if (currTaskDescr->IsParallelConstruct()) {
+ if (!steps) {
+ // found the level
+ rc = currTaskDescr->ThreadsInTeam();
+ break;
+ }
+ steps--;
+ }
+ currTaskDescr = currTaskDescr->GetPrevTaskDescr();
+ } while (currTaskDescr);
+ ASSERT0(LT_FUSSY, !steps, "expected to find all steps");
+ }
+ }
+ PRINT(LD_IO, "call omp_get_team_size(level %d) returns %d\n", level, rc)
+ return rc;
+}
+
+EXTERN void omp_get_schedule(omp_sched_t *kind, int *modifier) {
+ omptarget_nvptx_TaskDescr *currTaskDescr = getMyTopTaskDescriptor();
+ *kind = currTaskDescr->GetRuntimeSched();
+ *modifier = currTaskDescr->RuntimeChunkSize();
+ PRINT(LD_IO, "call omp_get_schedule returns sched %d and modif %d\n",
+ (int)*kind, *modifier);
+}
+
+EXTERN void omp_set_schedule(omp_sched_t kind, int modifier) {
+ PRINT(LD_IO, "call omp_set_schedule(sched %d, modif %d)\n", (int)kind,
+ modifier);
+ if (kind >= omp_sched_static && kind < omp_sched_auto) {
+ omptarget_nvptx_TaskDescr *currTaskDescr = getMyTopTaskDescriptor();
+ currTaskDescr->SetRuntimeSched(kind);
+ currTaskDescr->RuntimeChunkSize() = modifier;
+ PRINT(LD_IOD, "omp_set_schedule did set sched %d & modif %" PRIu64 "\n",
+ (int)currTaskDescr->GetRuntimeSched(),
+ currTaskDescr->RuntimeChunkSize());
+ }
+}
+
+EXTERN omp_proc_bind_t omp_get_proc_bind(void) {
+ PRINT0(LD_IO, "call omp_get_proc_bin() is true, regardless on state\n");
+ return omp_proc_bind_true;
+}
+
+EXTERN int omp_get_num_places(void) {
+ PRINT0(LD_IO, "call omp_get_num_places() returns 0\n");
+ return 0;
+}
+
+EXTERN int omp_get_place_num_procs(int place_num) {
+ PRINT0(LD_IO, "call omp_get_place_num_procs() returns 0\n");
+ return 0;
+}
+
+EXTERN void omp_get_place_proc_ids(int place_num, int *ids) {
+ PRINT0(LD_IO, "call to omp_get_place_proc_ids()\n");
+}
+
+EXTERN int omp_get_place_num(void) {
+ PRINT0(LD_IO, "call to omp_get_place_num() returns 0\n");
+ return 0;
+}
+
+EXTERN int omp_get_partition_num_places(void) {
+ PRINT0(LD_IO, "call to omp_get_partition_num_places() returns 0\n");
+ return 0;
+}
+
+EXTERN void omp_get_partition_place_nums(int *place_nums) {
+ PRINT0(LD_IO, "call to omp_get_partition_place_nums()\n");
+}
+
+EXTERN int omp_get_cancellation(void) {
+ int rc = FALSE; // currently false only
+ PRINT(LD_IO, "call omp_get_cancellation() returns %d\n", rc);
+ return rc;
+}
+
+EXTERN void omp_set_default_device(int deviceId) {
+ PRINT0(LD_IO, "call omp_get_default_device() is undef on device\n");
+}
+
+EXTERN int omp_get_default_device(void) {
+ PRINT0(LD_IO,
+ "call omp_get_default_device() is undef on device, returns 0\n");
+ return 0;
+}
+
+EXTERN int omp_get_num_devices(void) {
+ PRINT0(LD_IO, "call omp_get_num_devices() is undef on device, returns 0\n");
+ return 0;
+}
+
+EXTERN int omp_get_num_teams(void) {
+ int rc = GetNumberOfOmpTeams();
+ PRINT(LD_IO, "call omp_get_num_teams() returns %d\n", rc);
+ return rc;
+}
+
+EXTERN int omp_get_team_num() {
+ int rc = GetOmpTeamId();
+ PRINT(LD_IO, "call omp_get_team_num() returns %d\n", rc);
+ return rc;
+}
+
+EXTERN int omp_is_initial_device(void) {
+ PRINT0(LD_IO, "call omp_is_initial_device() returns 0\n");
+ return 0; // 0 by def on device
+}
+
+// Unspecified on the device.
+EXTERN int omp_get_initial_device(void) {
+ PRINT0(LD_IO, "call omp_get_initial_device() returns 0\n");
+ return 0;
+}
+
+// Unused for now.
+EXTERN int omp_get_max_task_priority(void) {
+ PRINT0(LD_IO, "call omp_get_max_task_priority() returns 0\n");
+ return 0;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// locks
+////////////////////////////////////////////////////////////////////////////////
+
+#define __OMP_SPIN 1000
+#define UNSET 0
+#define SET 1
+
+EXTERN void omp_init_lock(omp_lock_t *lock) {
+ *lock = UNSET;
+ PRINT0(LD_IO, "call omp_init_lock()\n");
+}
+
+EXTERN void omp_destroy_lock(omp_lock_t *lock) {
+ PRINT0(LD_IO, "call omp_destroy_lock()\n");
+}
+
+EXTERN void omp_set_lock(omp_lock_t *lock) {
+ // int atomicCAS(int* address, int compare, int val);
+ // (old == compare ? val : old)
+ int compare = UNSET;
+ int val = SET;
+
+ // TODO: not sure spinning is a good idea here..
+ while (atomicCAS(lock, compare, val) != UNSET) {
+
+ clock_t start = clock();
+ clock_t now;
+ for (;;) {
+ now = clock();
+ clock_t cycles = now > start ? now - start : now + (0xffffffff - start);
+ if (cycles >= __OMP_SPIN * blockIdx.x) {
+ break;
+ }
+ }
+ } // wait for 0 to be the read value
+
+ PRINT0(LD_IO, "call omp_set_lock()\n");
+}
+
+EXTERN void omp_unset_lock(omp_lock_t *lock) {
+ int compare = SET;
+ int val = UNSET;
+ int old = atomicCAS(lock, compare, val);
+
+ PRINT0(LD_IO, "call omp_unset_lock()\n");
+}
+
+EXTERN int omp_test_lock(omp_lock_t *lock) {
+ // int atomicCAS(int* address, int compare, int val);
+ // (old == compare ? val : old)
+ int compare = UNSET;
+ int val = SET;
+
+ int ret = atomicCAS(lock, compare, val);
+
+ PRINT(LD_IO, "call omp_test_lock() return %d\n", ret);
+
+ return ret;
+}
+
+// for xlf Fotran
+// Fotran, the return is LOGICAL type
+
+#define FLOGICAL long
+EXTERN FLOGICAL __xlf_omp_is_initial_device_i8() {
+ int ret = omp_is_initial_device();
+ if (ret == 0)
+ return (FLOGICAL)0;
+ else
+ return (FLOGICAL)1;
+}
+
+EXTERN int __xlf_omp_is_initial_device_i4() {
+ int ret = omp_is_initial_device();
+ if (ret == 0)
+ return 0;
+ else
+ return 1;
+}
+
+EXTERN long __xlf_omp_get_team_num_i4() {
+ int ret = omp_get_team_num();
+ return (long)ret;
+}
+
+EXTERN long __xlf_omp_get_num_teams_i4() {
+ int ret = omp_get_num_teams();
+ return (long)ret;
+}
+
+EXTERN void xlf_debug_print_int(int *p) {
+ printf("xlf DEBUG %d): %p %d\n", omp_get_team_num(), p, p == 0 ? 0 : *p);
+}
+
+EXTERN void xlf_debug_print_long(long *p) {
+ printf("xlf DEBUG %d): %p %ld\n", omp_get_team_num(), p, p == 0 ? 0 : *p);
+}
+
+EXTERN void xlf_debug_print_float(float *p) {
+ printf("xlf DEBUG %d): %p %f\n", omp_get_team_num(), p, p == 0 ? 0 : *p);
+}
+
+EXTERN void xlf_debug_print_double(double *p) {
+ printf("xlf DEBUG %d): %p %f\n", omp_get_team_num(), p, p == 0 ? 0 : *p);
+}
+
+EXTERN void xlf_debug_print_addr(void *p) {
+ printf("xlf DEBUG %d): %p \n", omp_get_team_num(), p);
+}
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/loop.cu b/final/libomptarget/deviceRTLs/nvptx/src/loop.cu
new file mode 100644
index 0000000..f3e475d
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/loop.cu
@@ -0,0 +1,769 @@
+//===------------ loop.cu - NVPTX OpenMP loop constructs --------- CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of the KMPC interface
+// for the loop construct plus other worksharing constructs that use the same
+// interface as loops.
+//
+//===----------------------------------------------------------------------===//
+
+#include "omptarget-nvptx.h"
+
+////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////
+// template class that encapsulate all the helper functions
+//
+// T is loop iteration type (32 | 64) (unsigned | signed)
+// ST is the signed version of T
+////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////
+
+template <typename T, typename ST> class omptarget_nvptx_LoopSupport {
+public:
+ ////////////////////////////////////////////////////////////////////////////////
+ // Loop with static scheduling with chunk
+
+ // Generic implementation of OMP loop scheduling with static policy
+ /*! \brief Calculate initial bounds for static loop and stride
+ * @param[in] loc location in code of the call (not used here)
+ * @param[in] global_tid global thread id
+ * @param[in] schetype type of scheduling (see omptarget-nvptx.h)
+ * @param[in] plastiter pointer to last iteration
+ * @param[in,out] pointer to loop lower bound. it will contain value of
+ * lower bound of first chunk
+ * @param[in,out] pointer to loop upper bound. It will contain value of
+ * upper bound of first chunk
+ * @param[in,out] pointer to loop stride. It will contain value of stride
+ * between two successive chunks executed by the same thread
+ * @param[in] loop increment bump
+ * @param[in] chunk size
+ */
+
+ // helper function for static chunk
+ INLINE static void ForStaticChunk(int &last, T &lb, T &ub, ST &stride,
+ ST chunk, T entityId, T numberOfEntities) {
+ // each thread executes multiple chunks all of the same size, except
+ // the last one
+
+ // distance between two successive chunks
+ stride = numberOfEntities * chunk;
+ lb = lb + entityId * chunk;
+ T inputUb = ub;
+ ub = lb + chunk - 1; // Clang uses i <= ub
+ // Say ub' is the begining of the last chunk. Then who ever has a
+ // lower bound plus a multiple of the increment equal to ub' is
+ // the last one.
+ T beginingLastChunk = inputUb - (inputUb % chunk);
+ last = ((beginingLastChunk - lb) % stride) == 0;
+ }
+
+ ////////////////////////////////////////////////////////////////////////////////
+ // Loop with static scheduling without chunk
+
+ // helper function for static no chunk
+ INLINE static void ForStaticNoChunk(int &last, T &lb, T &ub, ST &stride,
+ ST &chunk, T entityId,
+ T numberOfEntities) {
+ // No chunk size specified. Each thread or warp gets at most one
+ // chunk; chunks are all almost of equal size
+ T loopSize = ub - lb + 1;
+
+ chunk = loopSize / numberOfEntities;
+ T leftOver = loopSize - chunk * numberOfEntities;
+
+ if (entityId < leftOver) {
+ chunk++;
+ lb = lb + entityId * chunk;
+ } else {
+ lb = lb + entityId * chunk + leftOver;
+ }
+
+ T inputUb = ub;
+ ub = lb + chunk - 1; // Clang uses i <= ub
+ last = lb <= inputUb && inputUb <= ub;
+ stride = loopSize; // make sure we only do 1 chunk per warp
+ }
+
+ ////////////////////////////////////////////////////////////////////////////////
+ // Support for Static Init
+
+ INLINE static void for_static_init(int32_t schedtype, int32_t *plastiter,
+ T *plower, T *pupper, ST *pstride,
+ ST chunk, bool IsSPMDExecutionMode,
+ bool IsRuntimeUninitialized) {
+ // When IsRuntimeUninitialized is true, we assume that the caller is
+ // in an L0 parallel region and that all worker threads participate.
+
+ int tid = GetLogicalThreadIdInBlock();
+
+ // Assume we are in teams region or that we use a single block
+ // per target region
+ ST numberOfActiveOMPThreads = GetNumberOfOmpThreads(
+ tid, IsSPMDExecutionMode, IsRuntimeUninitialized);
+
+ // All warps that are in excess of the maximum requested, do
+ // not execute the loop
+ PRINT(LD_LOOP,
+ "OMP Thread %d: schedule type %d, chunk size = %lld, mytid "
+ "%d, num tids %d\n",
+ GetOmpThreadId(tid, IsSPMDExecutionMode, IsRuntimeUninitialized),
+ schedtype, P64(chunk),
+ GetOmpThreadId(tid, IsSPMDExecutionMode, IsRuntimeUninitialized),
+ GetNumberOfOmpThreads(tid, IsSPMDExecutionMode,
+ IsRuntimeUninitialized));
+ ASSERT0(
+ LT_FUSSY,
+ (GetOmpThreadId(tid, IsSPMDExecutionMode, IsRuntimeUninitialized)) <
+ (GetNumberOfOmpThreads(tid, IsSPMDExecutionMode,
+ IsRuntimeUninitialized)),
+ "current thread is not needed here; error");
+
+ // copy
+ int lastiter = 0;
+ T lb = *plower;
+ T ub = *pupper;
+ ST stride = *pstride;
+ T entityId, numberOfEntities;
+ // init
+ switch (schedtype) {
+ case kmp_sched_static_chunk: {
+ if (chunk > 0) {
+ entityId =
+ GetOmpThreadId(tid, IsSPMDExecutionMode, IsRuntimeUninitialized);
+ numberOfEntities = GetNumberOfOmpThreads(tid, IsSPMDExecutionMode,
+ IsRuntimeUninitialized);
+ ForStaticChunk(lastiter, lb, ub, stride, chunk, entityId,
+ numberOfEntities);
+ break;
+ }
+ } // note: if chunk <=0, use nochunk
+ case kmp_sched_static_nochunk: {
+ entityId =
+ GetOmpThreadId(tid, IsSPMDExecutionMode, IsRuntimeUninitialized);
+ numberOfEntities = GetNumberOfOmpThreads(tid, IsSPMDExecutionMode,
+ IsRuntimeUninitialized);
+ ForStaticNoChunk(lastiter, lb, ub, stride, chunk, entityId,
+ numberOfEntities);
+ break;
+ }
+ case kmp_sched_distr_static_chunk: {
+ if (chunk > 0) {
+ entityId = GetOmpTeamId();
+ numberOfEntities = GetNumberOfOmpTeams();
+ ForStaticChunk(lastiter, lb, ub, stride, chunk, entityId,
+ numberOfEntities);
+ break;
+ } // note: if chunk <=0, use nochunk
+ }
+ case kmp_sched_distr_static_nochunk: {
+ entityId = GetOmpTeamId();
+ numberOfEntities = GetNumberOfOmpTeams();
+
+ ForStaticNoChunk(lastiter, lb, ub, stride, chunk, entityId,
+ numberOfEntities);
+ break;
+ }
+ case kmp_sched_distr_static_chunk_sched_static_chunkone: {
+ entityId =
+ GetNumberOfOmpThreads(tid, IsSPMDExecutionMode,
+ IsRuntimeUninitialized) *
+ GetOmpTeamId() +
+ GetOmpThreadId(tid, IsSPMDExecutionMode, IsRuntimeUninitialized);
+ numberOfEntities = GetNumberOfOmpTeams() *
+ GetNumberOfOmpThreads(tid, IsSPMDExecutionMode,
+ IsRuntimeUninitialized);
+ ForStaticChunk(lastiter, lb, ub, stride, chunk, entityId,
+ numberOfEntities);
+ break;
+ }
+ default: {
+ ASSERT(LT_FUSSY, FALSE, "unknown schedtype %d", schedtype);
+ PRINT(LD_LOOP, "unknown schedtype %d, revert back to static chunk\n",
+ schedtype);
+ entityId =
+ GetOmpThreadId(tid, IsSPMDExecutionMode, IsRuntimeUninitialized);
+ numberOfEntities = GetNumberOfOmpThreads(tid, IsSPMDExecutionMode,
+ IsRuntimeUninitialized);
+ ForStaticChunk(lastiter, lb, ub, stride, chunk, entityId,
+ numberOfEntities);
+ }
+ }
+ // copy back
+ *plastiter = lastiter;
+ *plower = lb;
+ *pupper = ub;
+ *pstride = stride;
+ PRINT(LD_LOOP,
+ "Got sched: Active %d, total %d: lb %lld, ub %lld, stride %lld\n",
+ GetNumberOfOmpThreads(tid, IsSPMDExecutionMode,
+ IsRuntimeUninitialized),
+ GetNumberOfWorkersInTeam(), P64(*plower), P64(*pupper),
+ P64(*pstride));
+ }
+
+ ////////////////////////////////////////////////////////////////////////////////
+ // Support for dispatch Init
+
+ INLINE static int OrderedSchedule(kmp_sched_t schedule) {
+ return schedule >= kmp_sched_ordered_first &&
+ schedule <= kmp_sched_ordered_last;
+ }
+
+ INLINE static void dispatch_init(kmp_Indent *loc, int32_t threadId,
+ kmp_sched_t schedule, T lb, T ub, ST st,
+ ST chunk) {
+ int tid = GetLogicalThreadIdInBlock();
+ omptarget_nvptx_TaskDescr *currTaskDescr = getMyTopTaskDescriptor(tid);
+ T tnum = currTaskDescr->ThreadsInTeam();
+ T tripCount = ub - lb + 1; // +1 because ub is inclusive
+ ASSERT0(
+ LT_FUSSY,
+ GetOmpThreadId(tid, isSPMDMode(), isRuntimeUninitialized()) <
+ GetNumberOfOmpThreads(tid, isSPMDMode(), isRuntimeUninitialized()),
+ "current thread is not needed here; error");
+
+ /* Currently just ignore the monotonic and non-monotonic modifiers
+ * (the compiler isn't producing them * yet anyway).
+ * When it is we'll want to look at them somewhere here and use that
+ * information to add to our schedule choice. We shouldn't need to pass
+ * them on, they merely affect which schedule we can legally choose for
+ * various dynamic cases. (In paritcular, whether or not a stealing scheme
+ * is legal).
+ */
+ schedule = SCHEDULE_WITHOUT_MODIFIERS(schedule);
+
+ // Process schedule.
+ if (tnum == 1 || tripCount <= 1 || OrderedSchedule(schedule)) {
+ if (OrderedSchedule(schedule))
+ __kmpc_barrier(loc, threadId);
+ PRINT(LD_LOOP,
+ "go sequential as tnum=%ld, trip count %lld, ordered sched=%d\n",
+ (long)tnum, P64(tripCount), schedule);
+ schedule = kmp_sched_static_chunk;
+ chunk = tripCount; // one thread gets the whole loop
+ } else if (schedule == kmp_sched_runtime) {
+ // process runtime
+ omp_sched_t rtSched = currTaskDescr->GetRuntimeSched();
+ chunk = currTaskDescr->RuntimeChunkSize();
+ switch (rtSched) {
+ case omp_sched_static: {
+ if (chunk > 0)
+ schedule = kmp_sched_static_chunk;
+ else
+ schedule = kmp_sched_static_nochunk;
+ break;
+ }
+ case omp_sched_auto: {
+ schedule = kmp_sched_static_chunk;
+ chunk = 1;
+ break;
+ }
+ case omp_sched_dynamic:
+ case omp_sched_guided: {
+ schedule = kmp_sched_dynamic;
+ break;
+ }
+ }
+ PRINT(LD_LOOP, "Runtime sched is %d with chunk %lld\n", schedule,
+ P64(chunk));
+ } else if (schedule == kmp_sched_auto) {
+ schedule = kmp_sched_static_chunk;
+ chunk = 1;
+ PRINT(LD_LOOP, "Auto sched is %d with chunk %lld\n", schedule,
+ P64(chunk));
+ } else {
+ PRINT(LD_LOOP, "Dyn sched is %d with chunk %lld\n", schedule, P64(chunk));
+ ASSERT(LT_FUSSY,
+ schedule == kmp_sched_dynamic || schedule == kmp_sched_guided,
+ "unknown schedule %d & chunk %lld\n", schedule, P64(chunk));
+ }
+
+ // init schedules
+ if (schedule == kmp_sched_static_chunk) {
+ ASSERT0(LT_FUSSY, chunk > 0, "bad chunk value");
+ // save sched state
+ omptarget_nvptx_threadPrivateContext->ScheduleType(tid) = schedule;
+ // save ub
+ omptarget_nvptx_threadPrivateContext->LoopUpperBound(tid) = ub;
+ // compute static chunk
+ ST stride;
+ int lastiter = 0;
+ ForStaticChunk(
+ lastiter, lb, ub, stride, chunk,
+ GetOmpThreadId(tid, isSPMDMode(), isRuntimeUninitialized()), tnum);
+ // save computed params
+ omptarget_nvptx_threadPrivateContext->Chunk(tid) = chunk;
+ omptarget_nvptx_threadPrivateContext->NextLowerBound(tid) = lb;
+ omptarget_nvptx_threadPrivateContext->Stride(tid) = stride;
+ PRINT(LD_LOOP,
+ "dispatch init (static chunk) : num threads = %d, ub = %" PRId64
+ ", next lower bound = %llu, stride = %llu\n",
+ GetNumberOfOmpThreads(tid, isSPMDMode(), isRuntimeUninitialized()),
+ omptarget_nvptx_threadPrivateContext->LoopUpperBound(tid),
+ omptarget_nvptx_threadPrivateContext->NextLowerBound(tid),
+ omptarget_nvptx_threadPrivateContext->Stride(tid));
+
+ } else if (schedule == kmp_sched_static_nochunk) {
+ ASSERT0(LT_FUSSY, chunk == 0, "bad chunk value");
+ // save sched state
+ omptarget_nvptx_threadPrivateContext->ScheduleType(tid) = schedule;
+ // save ub
+ omptarget_nvptx_threadPrivateContext->LoopUpperBound(tid) = ub;
+ // compute static chunk
+ ST stride;
+ int lastiter = 0;
+ ForStaticNoChunk(
+ lastiter, lb, ub, stride, chunk,
+ GetOmpThreadId(tid, isSPMDMode(), isRuntimeUninitialized()), tnum);
+ // save computed params
+ omptarget_nvptx_threadPrivateContext->Chunk(tid) = chunk;
+ omptarget_nvptx_threadPrivateContext->NextLowerBound(tid) = lb;
+ omptarget_nvptx_threadPrivateContext->Stride(tid) = stride;
+ PRINT(LD_LOOP,
+ "dispatch init (static nochunk) : num threads = %d, ub = %" PRId64
+ ", next lower bound = %llu, stride = %llu\n",
+ GetNumberOfOmpThreads(tid, isSPMDMode(), isRuntimeUninitialized()),
+ omptarget_nvptx_threadPrivateContext->LoopUpperBound(tid),
+ omptarget_nvptx_threadPrivateContext->NextLowerBound(tid),
+ omptarget_nvptx_threadPrivateContext->Stride(tid));
+
+ } else if (schedule == kmp_sched_dynamic || schedule == kmp_sched_guided) {
+ __kmpc_barrier(loc, threadId);
+ // save sched state
+ int teamId = GetOmpTeamId();
+ omptarget_nvptx_threadPrivateContext->ScheduleType(tid) = schedule;
+ if (GetThreadIdInBlock() == 0) {
+ if (chunk < 1)
+ chunk = 1;
+ omptarget_nvptx_threadPrivateContext->Chunk(teamId) = chunk;
+ omptarget_nvptx_threadPrivateContext->LoopUpperBound(teamId) = ub;
+ omptarget_nvptx_threadPrivateContext->NextLowerBound(teamId) = lb;
+ }
+ __kmpc_barrier(loc, threadId);
+ PRINT(LD_LOOP,
+ "dispatch init (dyn) : num threads = %d, lb = %llu, ub = %" PRId64
+ ", chunk %" PRIu64 "\n",
+ GetNumberOfOmpThreads(tid, isSPMDMode(), isRuntimeUninitialized()),
+ omptarget_nvptx_threadPrivateContext->NextLowerBound(teamId),
+ omptarget_nvptx_threadPrivateContext->LoopUpperBound(teamId),
+ omptarget_nvptx_threadPrivateContext->Chunk(teamId));
+ }
+ }
+
+ ////////////////////////////////////////////////////////////////////////////////
+ // Support for dispatch next
+
+ INLINE static int DynamicNextChunk(T &lb, T &ub, T chunkSize,
+ int64_t &loopLowerBound,
+ T loopUpperBound) {
+ // calculate lower bound for all lanes in the warp
+ lb = atomicAdd((unsigned long long *)&loopLowerBound,
+ (unsigned long long)chunkSize);
+ ub = lb + chunkSize - 1; // Clang uses i <= ub
+
+ // 3 result cases:
+ // a. lb and ub < loopUpperBound --> NOT_FINISHED
+ // b. lb < loopUpperBound and ub >= loopUpperBound: last chunk -->
+ // NOT_FINISHED
+ // c. lb and ub >= loopUpperBound: empty chunk --> FINISHED
+ // a.
+ if (lb <= loopUpperBound && ub < loopUpperBound) {
+ PRINT(LD_LOOPD, "lb %lld, ub %lld, loop ub %lld; not finished\n", P64(lb),
+ P64(ub), P64(loopUpperBound));
+ return NOT_FINISHED;
+ }
+ // b.
+ if (lb <= loopUpperBound) {
+ PRINT(LD_LOOPD, "lb %lld, ub %lld, loop ub %lld; clip to loop ub\n",
+ P64(lb), P64(ub), P64(loopUpperBound));
+ ub = loopUpperBound;
+ return LAST_CHUNK;
+ }
+ // c. if we are here, we are in case 'c'
+ lb = loopUpperBound + 2;
+ ub = loopUpperBound + 1;
+ PRINT(LD_LOOPD, "lb %lld, ub %lld, loop ub %lld; finished\n", P64(lb),
+ P64(ub), P64(loopUpperBound));
+ return FINISHED;
+ }
+
+ // On Pascal, with inlining of the runtime into the user application,
+ // this code deadlocks. This is probably because different threads
+ // in a warp cannot make independent progress.
+ NOINLINE static int dispatch_next(int32_t *plast, T *plower, T *pupper,
+ ST *pstride) {
+ // ID of a thread in its own warp
+
+ // automatically selects thread or warp ID based on selected implementation
+ int tid = GetLogicalThreadIdInBlock();
+ ASSERT0(
+ LT_FUSSY,
+ GetOmpThreadId(tid, isSPMDMode(), isRuntimeUninitialized()) <
+ GetNumberOfOmpThreads(tid, isSPMDMode(), isRuntimeUninitialized()),
+ "current thread is not needed here; error");
+ // retrieve schedule
+ kmp_sched_t schedule =
+ omptarget_nvptx_threadPrivateContext->ScheduleType(tid);
+
+ // xxx reduce to one
+ if (schedule == kmp_sched_static_chunk ||
+ schedule == kmp_sched_static_nochunk) {
+ T myLb = omptarget_nvptx_threadPrivateContext->NextLowerBound(tid);
+ T ub = omptarget_nvptx_threadPrivateContext->LoopUpperBound(tid);
+ // finished?
+ if (myLb > ub) {
+ PRINT(LD_LOOP, "static loop finished with myLb %lld, ub %lld\n",
+ P64(myLb), P64(ub));
+ return DISPATCH_FINISHED;
+ }
+ // not finished, save current bounds
+ ST chunk = omptarget_nvptx_threadPrivateContext->Chunk(tid);
+ *plower = myLb;
+ T myUb = myLb + chunk - 1; // Clang uses i <= ub
+ if (myUb > ub)
+ myUb = ub;
+ *pupper = myUb;
+ *plast = (int32_t)(myUb == ub);
+
+ // increment next lower bound by the stride
+ ST stride = omptarget_nvptx_threadPrivateContext->Stride(tid);
+ omptarget_nvptx_threadPrivateContext->NextLowerBound(tid) = myLb + stride;
+ PRINT(LD_LOOP, "static loop continues with myLb %lld, myUb %lld\n",
+ P64(*plower), P64(*pupper));
+ return DISPATCH_NOTFINISHED;
+ }
+ ASSERT0(LT_FUSSY,
+ schedule == kmp_sched_dynamic || schedule == kmp_sched_guided,
+ "bad sched");
+ T myLb, myUb;
+ int teamId = GetOmpTeamId();
+ int finished = DynamicNextChunk(
+ myLb, myUb, omptarget_nvptx_threadPrivateContext->Chunk(teamId),
+ omptarget_nvptx_threadPrivateContext->NextLowerBound(teamId),
+ omptarget_nvptx_threadPrivateContext->LoopUpperBound(teamId));
+
+ if (finished == FINISHED)
+ return DISPATCH_FINISHED;
+
+ // not finished (either not finished or last chunk)
+ *plast = (int32_t)(finished == LAST_CHUNK);
+ *plower = myLb;
+ *pupper = myUb;
+ *pstride = 1;
+
+ PRINT(LD_LOOP,
+ "Got sched: active %d, total %d: lb %lld, ub %lld, stride = %lld\n",
+ GetNumberOfOmpThreads(tid, isSPMDMode(), isRuntimeUninitialized()),
+ GetNumberOfWorkersInTeam(), P64(*plower), P64(*pupper),
+ P64(*pstride));
+ return DISPATCH_NOTFINISHED;
+ }
+
+ INLINE static void dispatch_fini() {
+ // nothing
+ }
+
+ ////////////////////////////////////////////////////////////////////////////////
+ // end of template class that encapsulate all the helper functions
+ ////////////////////////////////////////////////////////////////////////////////
+};
+
+////////////////////////////////////////////////////////////////////////////////
+// KMP interface implementation (dyn loops)
+////////////////////////////////////////////////////////////////////////////////
+
+// init
+EXTERN void __kmpc_dispatch_init_4(kmp_Indent *loc, int32_t tid,
+ int32_t schedule, int32_t lb, int32_t ub,
+ int32_t st, int32_t chunk) {
+ PRINT0(LD_IO, "call kmpc_dispatch_init_4\n");
+ omptarget_nvptx_LoopSupport<int32_t, int32_t>::dispatch_init(
+ loc, tid, (kmp_sched_t)schedule, lb, ub, st, chunk);
+}
+
+EXTERN void __kmpc_dispatch_init_4u(kmp_Indent *loc, int32_t tid,
+ int32_t schedule, uint32_t lb, uint32_t ub,
+ int32_t st, int32_t chunk) {
+ PRINT0(LD_IO, "call kmpc_dispatch_init_4u\n");
+ omptarget_nvptx_LoopSupport<uint32_t, int32_t>::dispatch_init(
+ loc, tid, (kmp_sched_t)schedule, lb, ub, st, chunk);
+}
+
+EXTERN void __kmpc_dispatch_init_8(kmp_Indent *loc, int32_t tid,
+ int32_t schedule, int64_t lb, int64_t ub,
+ int64_t st, int64_t chunk) {
+ PRINT0(LD_IO, "call kmpc_dispatch_init_8\n");
+ omptarget_nvptx_LoopSupport<int64_t, int64_t>::dispatch_init(
+ loc, tid, (kmp_sched_t)schedule, lb, ub, st, chunk);
+}
+
+EXTERN void __kmpc_dispatch_init_8u(kmp_Indent *loc, int32_t tid,
+ int32_t schedule, uint64_t lb, uint64_t ub,
+ int64_t st, int64_t chunk) {
+ PRINT0(LD_IO, "call kmpc_dispatch_init_8u\n");
+ omptarget_nvptx_LoopSupport<uint64_t, int64_t>::dispatch_init(
+ loc, tid, (kmp_sched_t)schedule, lb, ub, st, chunk);
+}
+
+// next
+EXTERN int __kmpc_dispatch_next_4(kmp_Indent *loc, int32_t tid, int32_t *p_last,
+ int32_t *p_lb, int32_t *p_ub, int32_t *p_st) {
+ PRINT0(LD_IO, "call kmpc_dispatch_next_4\n");
+ return omptarget_nvptx_LoopSupport<int32_t, int32_t>::dispatch_next(
+ p_last, p_lb, p_ub, p_st);
+}
+
+EXTERN int __kmpc_dispatch_next_4u(kmp_Indent *loc, int32_t tid,
+ int32_t *p_last, uint32_t *p_lb,
+ uint32_t *p_ub, int32_t *p_st) {
+ PRINT0(LD_IO, "call kmpc_dispatch_next_4u\n");
+ return omptarget_nvptx_LoopSupport<uint32_t, int32_t>::dispatch_next(
+ p_last, p_lb, p_ub, p_st);
+}
+
+EXTERN int __kmpc_dispatch_next_8(kmp_Indent *loc, int32_t tid, int32_t *p_last,
+ int64_t *p_lb, int64_t *p_ub, int64_t *p_st) {
+ PRINT0(LD_IO, "call kmpc_dispatch_next_8\n");
+ return omptarget_nvptx_LoopSupport<int64_t, int64_t>::dispatch_next(
+ p_last, p_lb, p_ub, p_st);
+}
+
+EXTERN int __kmpc_dispatch_next_8u(kmp_Indent *loc, int32_t tid,
+ int32_t *p_last, uint64_t *p_lb,
+ uint64_t *p_ub, int64_t *p_st) {
+ PRINT0(LD_IO, "call kmpc_dispatch_next_8u\n");
+ return omptarget_nvptx_LoopSupport<uint64_t, int64_t>::dispatch_next(
+ p_last, p_lb, p_ub, p_st);
+}
+
+// fini
+EXTERN void __kmpc_dispatch_fini_4(kmp_Indent *loc, int32_t tid) {
+ PRINT0(LD_IO, "call kmpc_dispatch_fini_4\n");
+ omptarget_nvptx_LoopSupport<int32_t, int32_t>::dispatch_fini();
+}
+
+EXTERN void __kmpc_dispatch_fini_4u(kmp_Indent *loc, int32_t tid) {
+ PRINT0(LD_IO, "call kmpc_dispatch_fini_4u\n");
+ omptarget_nvptx_LoopSupport<uint32_t, int32_t>::dispatch_fini();
+}
+
+EXTERN void __kmpc_dispatch_fini_8(kmp_Indent *loc, int32_t tid) {
+ PRINT0(LD_IO, "call kmpc_dispatch_fini_8\n");
+ omptarget_nvptx_LoopSupport<int64_t, int64_t>::dispatch_fini();
+}
+
+EXTERN void __kmpc_dispatch_fini_8u(kmp_Indent *loc, int32_t tid) {
+ PRINT0(LD_IO, "call kmpc_dispatch_fini_8u\n");
+ omptarget_nvptx_LoopSupport<uint64_t, int64_t>::dispatch_fini();
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// KMP interface implementation (static loops)
+////////////////////////////////////////////////////////////////////////////////
+
+EXTERN void __kmpc_for_static_init_4(kmp_Indent *loc, int32_t global_tid,
+ int32_t schedtype, int32_t *plastiter,
+ int32_t *plower, int32_t *pupper,
+ int32_t *pstride, int32_t incr,
+ int32_t chunk) {
+ PRINT0(LD_IO, "call kmpc_for_static_init_4\n");
+ omptarget_nvptx_LoopSupport<int32_t, int32_t>::for_static_init(
+ schedtype, plastiter, plower, pupper, pstride, chunk, isSPMDMode(),
+ isRuntimeUninitialized());
+}
+
+EXTERN void __kmpc_for_static_init_4u(kmp_Indent *loc, int32_t global_tid,
+ int32_t schedtype, int32_t *plastiter,
+ uint32_t *plower, uint32_t *pupper,
+ int32_t *pstride, int32_t incr,
+ int32_t chunk) {
+ PRINT0(LD_IO, "call kmpc_for_static_init_4u\n");
+ omptarget_nvptx_LoopSupport<uint32_t, int32_t>::for_static_init(
+ schedtype, plastiter, plower, pupper, pstride, chunk, isSPMDMode(),
+ isRuntimeUninitialized());
+}
+
+EXTERN void __kmpc_for_static_init_8(kmp_Indent *loc, int32_t global_tid,
+ int32_t schedtype, int32_t *plastiter,
+ int64_t *plower, int64_t *pupper,
+ int64_t *pstride, int64_t incr,
+ int64_t chunk) {
+ PRINT0(LD_IO, "call kmpc_for_static_init_8\n");
+ omptarget_nvptx_LoopSupport<int64_t, int64_t>::for_static_init(
+ schedtype, plastiter, plower, pupper, pstride, chunk, isSPMDMode(),
+ isRuntimeUninitialized());
+}
+
+EXTERN void __kmpc_for_static_init_8u(kmp_Indent *loc, int32_t global_tid,
+ int32_t schedtype, int32_t *plastiter,
+ uint64_t *plower, uint64_t *pupper,
+ int64_t *pstride, int64_t incr,
+ int64_t chunk) {
+ PRINT0(LD_IO, "call kmpc_for_static_init_8u\n");
+ omptarget_nvptx_LoopSupport<uint64_t, int64_t>::for_static_init(
+ schedtype, plastiter, plower, pupper, pstride, chunk, isSPMDMode(),
+ isRuntimeUninitialized());
+}
+
+EXTERN
+void __kmpc_for_static_init_4_simple_spmd(kmp_Indent *loc, int32_t global_tid,
+ int32_t schedtype, int32_t *plastiter,
+ int32_t *plower, int32_t *pupper,
+ int32_t *pstride, int32_t incr,
+ int32_t chunk) {
+ PRINT0(LD_IO, "call kmpc_for_static_init_4_simple_spmd\n");
+ omptarget_nvptx_LoopSupport<int32_t, int32_t>::for_static_init(
+ schedtype, plastiter, plower, pupper, pstride, chunk,
+ /*IsSPMDExecutionMode=*/true,
+ /*IsRuntimeUninitialized=*/true);
+}
+
+EXTERN
+void __kmpc_for_static_init_4u_simple_spmd(kmp_Indent *loc, int32_t global_tid,
+ int32_t schedtype,
+ int32_t *plastiter, uint32_t *plower,
+ uint32_t *pupper, int32_t *pstride,
+ int32_t incr, int32_t chunk) {
+ PRINT0(LD_IO, "call kmpc_for_static_init_4u_simple_spmd\n");
+ omptarget_nvptx_LoopSupport<uint32_t, int32_t>::for_static_init(
+ schedtype, plastiter, plower, pupper, pstride, chunk,
+ /*IsSPMDExecutionMode=*/true,
+ /*IsRuntimeUninitialized=*/true);
+}
+
+EXTERN
+void __kmpc_for_static_init_8_simple_spmd(kmp_Indent *loc, int32_t global_tid,
+ int32_t schedtype, int32_t *plastiter,
+ int64_t *plower, int64_t *pupper,
+ int64_t *pstride, int64_t incr,
+ int64_t chunk) {
+ PRINT0(LD_IO, "call kmpc_for_static_init_8_simple_spmd\n");
+ omptarget_nvptx_LoopSupport<int64_t, int64_t>::for_static_init(
+ schedtype, plastiter, plower, pupper, pstride, chunk,
+ /*IsSPMDExecutionMode=*/true,
+ /*IsRuntimeUninitialized=*/true);
+}
+
+EXTERN
+void __kmpc_for_static_init_8u_simple_spmd(kmp_Indent *loc, int32_t global_tid,
+ int32_t schedtype,
+ int32_t *plastiter, uint64_t *plower,
+ uint64_t *pupper, int64_t *pstride,
+ int64_t incr, int64_t chunk) {
+ PRINT0(LD_IO, "call kmpc_for_static_init_8u_simple_spmd\n");
+ omptarget_nvptx_LoopSupport<uint64_t, int64_t>::for_static_init(
+ schedtype, plastiter, plower, pupper, pstride, chunk,
+ /*IsSPMDExecutionMode=*/true,
+ /*IsRuntimeUninitialized=*/true);
+}
+
+EXTERN
+void __kmpc_for_static_init_4_simple_generic(
+ kmp_Indent *loc, int32_t global_tid, int32_t schedtype, int32_t *plastiter,
+ int32_t *plower, int32_t *pupper, int32_t *pstride, int32_t incr,
+ int32_t chunk) {
+ PRINT0(LD_IO, "call kmpc_for_static_init_4_simple_generic\n");
+ omptarget_nvptx_LoopSupport<int32_t, int32_t>::for_static_init(
+ schedtype, plastiter, plower, pupper, pstride, chunk,
+ /*IsSPMDExecutionMode=*/false,
+ /*IsRuntimeUninitialized=*/true);
+}
+
+EXTERN
+void __kmpc_for_static_init_4u_simple_generic(
+ kmp_Indent *loc, int32_t global_tid, int32_t schedtype, int32_t *plastiter,
+ uint32_t *plower, uint32_t *pupper, int32_t *pstride, int32_t incr,
+ int32_t chunk) {
+ PRINT0(LD_IO, "call kmpc_for_static_init_4u_simple_generic\n");
+ omptarget_nvptx_LoopSupport<uint32_t, int32_t>::for_static_init(
+ schedtype, plastiter, plower, pupper, pstride, chunk,
+ /*IsSPMDExecutionMode=*/false,
+ /*IsRuntimeUninitialized=*/true);
+}
+
+EXTERN
+void __kmpc_for_static_init_8_simple_generic(
+ kmp_Indent *loc, int32_t global_tid, int32_t schedtype, int32_t *plastiter,
+ int64_t *plower, int64_t *pupper, int64_t *pstride, int64_t incr,
+ int64_t chunk) {
+ PRINT0(LD_IO, "call kmpc_for_static_init_8_simple_generic\n");
+ omptarget_nvptx_LoopSupport<int64_t, int64_t>::for_static_init(
+ schedtype, plastiter, plower, pupper, pstride, chunk,
+ /*IsSPMDExecutionMode=*/false,
+ /*IsRuntimeUninitialized=*/true);
+}
+
+EXTERN
+void __kmpc_for_static_init_8u_simple_generic(
+ kmp_Indent *loc, int32_t global_tid, int32_t schedtype, int32_t *plastiter,
+ uint64_t *plower, uint64_t *pupper, int64_t *pstride, int64_t incr,
+ int64_t chunk) {
+ PRINT0(LD_IO, "call kmpc_for_static_init_8u_simple_generic\n");
+ omptarget_nvptx_LoopSupport<uint64_t, int64_t>::for_static_init(
+ schedtype, plastiter, plower, pupper, pstride, chunk,
+ /*IsSPMDExecutionMode=*/false,
+ /*IsRuntimeUninitialized=*/true);
+}
+
+EXTERN void __kmpc_for_static_fini(kmp_Indent *loc, int32_t global_tid) {
+ PRINT0(LD_IO, "call kmpc_for_static_fini\n");
+}
+
+namespace {
+INLINE void syncWorkersInGenericMode(uint32_t NumThreads) {
+ int NumWarps = ((NumThreads + WARPSIZE - 1) / WARPSIZE);
+#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
+ // On Volta and newer architectures we require that all lanes in
+ // a warp (at least, all present for the kernel launch) participate in the
+ // barrier. This is enforced when launching the parallel region. An
+ // exception is when there are < WARPSIZE workers. In this case only 1 worker
+ // is started, so we don't need a barrier.
+ if (NumThreads > 1) {
+#endif
+ named_sync(L1_BARRIER, WARPSIZE * NumWarps);
+#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
+ }
+#endif
+}
+}; // namespace
+
+EXTERN void __kmpc_reduce_conditional_lastprivate(kmp_Indent *loc, int32_t gtid,
+ int32_t varNum, void *array) {
+ PRINT0(LD_IO, "call to __kmpc_reduce_conditional_lastprivate(...)\n");
+
+ omptarget_nvptx_TeamDescr &teamDescr = getMyTeamDescriptor();
+ int tid = GetOmpThreadId(GetLogicalThreadIdInBlock(), isSPMDMode(),
+ isRuntimeUninitialized());
+ uint32_t NumThreads = GetNumberOfOmpThreads(
+ GetLogicalThreadIdInBlock(), isSPMDMode(), isRuntimeUninitialized());
+ uint64_t *Buffer = teamDescr.getLastprivateIterBuffer();
+ for (unsigned i = 0; i < varNum; i++) {
+ // Reset buffer.
+ if (tid == 0)
+ *Buffer = 0; // Reset to minimum loop iteration value.
+
+ // Barrier.
+ syncWorkersInGenericMode(NumThreads);
+
+ // Atomic max of iterations.
+ uint64_t *varArray = (uint64_t *)array;
+ uint64_t elem = varArray[i];
+ (void)atomicMax((unsigned long long int *)Buffer,
+ (unsigned long long int)elem);
+
+ // Barrier.
+ syncWorkersInGenericMode(NumThreads);
+
+ // Read max value and update thread private array.
+ varArray[i] = *Buffer;
+
+ // Barrier.
+ syncWorkersInGenericMode(NumThreads);
+ }
+}
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/omp_data.cu b/final/libomptarget/deviceRTLs/nvptx/src/omp_data.cu
new file mode 100644
index 0000000..149af8d
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/omp_data.cu
@@ -0,0 +1,59 @@
+//===------------ omp_data.cu - NVPTX OpenMP GPU objects --------- CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the data objects used on the GPU device.
+//
+//===----------------------------------------------------------------------===//
+
+#include "omptarget-nvptx.h"
+
+////////////////////////////////////////////////////////////////////////////////
+// global device envrionment
+////////////////////////////////////////////////////////////////////////////////
+
+__device__ omptarget_device_environmentTy omptarget_device_environment;
+
+////////////////////////////////////////////////////////////////////////////////
+// global data holding OpenMP state information
+////////////////////////////////////////////////////////////////////////////////
+
+__device__
+ omptarget_nvptx_Queue<omptarget_nvptx_ThreadPrivateContext, OMP_STATE_COUNT>
+ omptarget_nvptx_device_State[MAX_SM];
+
+// Pointer to this team's OpenMP state object
+__device__ __shared__
+ omptarget_nvptx_ThreadPrivateContext *omptarget_nvptx_threadPrivateContext;
+
+////////////////////////////////////////////////////////////////////////////////
+// The team master sets the outlined parallel function in this variable to
+// communicate with the workers. Since it is in shared memory, there is one
+// copy of these variables for each kernel, instance, and team.
+////////////////////////////////////////////////////////////////////////////////
+volatile __device__ __shared__ omptarget_nvptx_WorkFn omptarget_nvptx_workFn;
+
+////////////////////////////////////////////////////////////////////////////////
+// OpenMP kernel execution parameters
+////////////////////////////////////////////////////////////////////////////////
+__device__ __shared__ uint32_t execution_param;
+
+////////////////////////////////////////////////////////////////////////////////
+// Data sharing state
+////////////////////////////////////////////////////////////////////////////////
+__device__ __shared__ DataSharingStateTy DataSharingState;
+
+////////////////////////////////////////////////////////////////////////////////
+// Scratchpad for teams reduction.
+////////////////////////////////////////////////////////////////////////////////
+__device__ __shared__ void *ReductionScratchpadPtr;
+
+////////////////////////////////////////////////////////////////////////////////
+// Data sharing related variables.
+////////////////////////////////////////////////////////////////////////////////
+__device__ __shared__ omptarget_nvptx_SharedArgs omptarget_nvptx_globalArgs;
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/omptarget-nvptx.cu b/final/libomptarget/deviceRTLs/nvptx/src/omptarget-nvptx.cu
new file mode 100644
index 0000000..677654d
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/omptarget-nvptx.cu
@@ -0,0 +1,194 @@
+//===--- omptarget-nvptx.cu - NVPTX OpenMP GPU initialization ---- CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the initialization code for the GPU
+//
+//===----------------------------------------------------------------------===//
+
+#include "omptarget-nvptx.h"
+
+////////////////////////////////////////////////////////////////////////////////
+// global data tables
+////////////////////////////////////////////////////////////////////////////////
+
+extern __device__
+ omptarget_nvptx_Queue<omptarget_nvptx_ThreadPrivateContext, OMP_STATE_COUNT>
+ omptarget_nvptx_device_State[MAX_SM];
+
+extern __device__ __shared__
+ omptarget_nvptx_ThreadPrivateContext *omptarget_nvptx_threadPrivateContext;
+
+//
+// The team master sets the outlined function and its arguments in these
+// variables to communicate with the workers. Since they are in shared memory,
+// there is one copy of these variables for each kernel, instance, and team.
+//
+extern volatile __device__ __shared__ omptarget_nvptx_WorkFn
+ omptarget_nvptx_workFn;
+extern __device__ __shared__ uint32_t execution_param;
+
+////////////////////////////////////////////////////////////////////////////////
+// init entry points
+////////////////////////////////////////////////////////////////////////////////
+
+INLINE unsigned smid() {
+ unsigned id;
+ asm("mov.u32 %0, %%smid;" : "=r"(id));
+ return id;
+}
+
+EXTERN void __kmpc_kernel_init_params(void *Ptr) {
+ PRINT(LD_IO, "call to __kmpc_kernel_init_params with version %f\n",
+ OMPTARGET_NVPTX_VERSION);
+
+ SetTeamsReductionScratchpadPtr(Ptr);
+}
+
+EXTERN void __kmpc_kernel_init(int ThreadLimit, int16_t RequiresOMPRuntime) {
+ PRINT(LD_IO, "call to __kmpc_kernel_init with version %f\n",
+ OMPTARGET_NVPTX_VERSION);
+
+ if (!RequiresOMPRuntime) {
+ // If OMP runtime is not required don't initialize OMP state.
+ setExecutionParameters(Generic, RuntimeUninitialized);
+ return;
+ }
+ setExecutionParameters(Generic, RuntimeInitialized);
+
+ int threadIdInBlock = GetThreadIdInBlock();
+ ASSERT0(LT_FUSSY, threadIdInBlock == GetMasterThreadID(),
+ "__kmpc_kernel_init() must be called by team master warp only!");
+ PRINT0(LD_IO, "call to __kmpc_kernel_init for master\n");
+
+ // Get a state object from the queue.
+ int slot = smid() % MAX_SM;
+ omptarget_nvptx_threadPrivateContext =
+ omptarget_nvptx_device_State[slot].Dequeue();
+#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
+ omptarget_nvptx_threadPrivateContext->SetSourceQueue(slot);
+#endif
+
+ // init thread private
+ int threadId = GetLogicalThreadIdInBlock();
+ omptarget_nvptx_threadPrivateContext->InitThreadPrivateContext(threadId);
+
+ // init team context
+ omptarget_nvptx_TeamDescr &currTeamDescr = getMyTeamDescriptor();
+ currTeamDescr.InitTeamDescr();
+ // this thread will start execution... has to update its task ICV
+ // to point to the level zero task ICV. That ICV was init in
+ // InitTeamDescr()
+ omptarget_nvptx_threadPrivateContext->SetTopLevelTaskDescr(
+ threadId, currTeamDescr.LevelZeroTaskDescr());
+
+ // set number of threads and thread limit in team to started value
+ omptarget_nvptx_TaskDescr *currTaskDescr =
+ omptarget_nvptx_threadPrivateContext->GetTopLevelTaskDescr(threadId);
+ currTaskDescr->NThreads() = GetNumberOfWorkersInTeam();
+ currTaskDescr->ThreadLimit() = ThreadLimit;
+}
+
+EXTERN void __kmpc_kernel_deinit(int16_t IsOMPRuntimeInitialized) {
+ if (IsOMPRuntimeInitialized) {
+ // Enqueue omp state object for use by another team.
+#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
+ int slot = omptarget_nvptx_threadPrivateContext->GetSourceQueue();
+#else
+ int slot = smid() % MAX_SM;
+#endif
+ omptarget_nvptx_device_State[slot].Enqueue(
+ omptarget_nvptx_threadPrivateContext);
+ }
+ // Done with work. Kill the workers.
+ omptarget_nvptx_workFn = 0;
+}
+
+EXTERN void __kmpc_spmd_kernel_init(int ThreadLimit, int16_t RequiresOMPRuntime,
+ int16_t RequiresDataSharing) {
+ PRINT0(LD_IO, "call to __kmpc_spmd_kernel_init\n");
+
+ if (!RequiresOMPRuntime) {
+ // If OMP runtime is not required don't initialize OMP state.
+ setExecutionParameters(Spmd, RuntimeUninitialized);
+ return;
+ }
+ setExecutionParameters(Spmd, RuntimeInitialized);
+
+ //
+ // Team Context Initialization.
+ //
+ // In SPMD mode there is no master thread so use any cuda thread for team
+ // context initialization.
+ int threadId = GetThreadIdInBlock();
+ if (threadId == 0) {
+ // Get a state object from the queue.
+ int slot = smid() % MAX_SM;
+ omptarget_nvptx_threadPrivateContext =
+ omptarget_nvptx_device_State[slot].Dequeue();
+
+ omptarget_nvptx_TeamDescr &currTeamDescr = getMyTeamDescriptor();
+ omptarget_nvptx_WorkDescr &workDescr = getMyWorkDescriptor();
+ // init team context
+ currTeamDescr.InitTeamDescr();
+ // init counters (copy start to init)
+ workDescr.CounterGroup().Reset();
+ }
+ __syncthreads();
+
+ omptarget_nvptx_TeamDescr &currTeamDescr = getMyTeamDescriptor();
+ omptarget_nvptx_WorkDescr &workDescr = getMyWorkDescriptor();
+
+ //
+ // Initialize task descr for each thread.
+ //
+ omptarget_nvptx_TaskDescr *newTaskDescr =
+ omptarget_nvptx_threadPrivateContext->Level1TaskDescr(threadId);
+ ASSERT0(LT_FUSSY, newTaskDescr, "expected a task descr");
+ newTaskDescr->InitLevelOneTaskDescr(ThreadLimit,
+ currTeamDescr.LevelZeroTaskDescr());
+ newTaskDescr->ThreadLimit() = ThreadLimit;
+ // install new top descriptor
+ omptarget_nvptx_threadPrivateContext->SetTopLevelTaskDescr(threadId,
+ newTaskDescr);
+
+ // init thread private from init value
+ workDescr.CounterGroup().Init(
+ omptarget_nvptx_threadPrivateContext->Priv(threadId));
+ PRINT(LD_PAR,
+ "thread will execute parallel region with id %d in a team of "
+ "%d threads\n",
+ newTaskDescr->ThreadId(), newTaskDescr->ThreadsInTeam());
+
+ if (RequiresDataSharing && threadId % WARPSIZE == 0) {
+ // Warp master innitializes data sharing environment.
+ unsigned WID = threadId / WARPSIZE;
+ __kmpc_data_sharing_slot *RootS = currTeamDescr.RootS(
+ WID, WID == WARPSIZE - 1);
+ DataSharingState.SlotPtr[WID] = RootS;
+ DataSharingState.StackPtr[WID] = (void *)&RootS->Data[0];
+ }
+}
+
+EXTERN void __kmpc_spmd_kernel_deinit() {
+ // We're not going to pop the task descr stack of each thread since
+ // there are no more parallel regions in SPMD mode.
+ __syncthreads();
+ int threadId = GetThreadIdInBlock();
+ if (threadId == 0) {
+ // Enqueue omp state object for use by another team.
+ int slot = smid() % MAX_SM;
+ omptarget_nvptx_device_State[slot].Enqueue(
+ omptarget_nvptx_threadPrivateContext);
+ }
+}
+
+// Return true if the current target region is executed in SPMD mode.
+EXTERN int8_t __kmpc_is_spmd_exec_mode() {
+ return isSPMDMode();
+}
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/omptarget-nvptx.h b/final/libomptarget/deviceRTLs/nvptx/src/omptarget-nvptx.h
new file mode 100644
index 0000000..84c61f9
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/omptarget-nvptx.h
@@ -0,0 +1,441 @@
+//===---- omptarget-nvptx.h - NVPTX OpenMP GPU initialization ---- CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of all library macros, types,
+// and functions.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef __OMPTARGET_NVPTX_H
+#define __OMPTARGET_NVPTX_H
+
+// std includes
+#include <stdint.h>
+#include <stdlib.h>
+
+#include <inttypes.h>
+
+// cuda includes
+#include <cuda.h>
+#include <math.h>
+
+// local includes
+#include "counter_group.h"
+#include "debug.h" // debug
+#include "interface.h" // interfaces with omp, compiler, and user
+#include "option.h" // choices we have
+#include "state-queue.h"
+#include "support.h"
+
+#define OMPTARGET_NVPTX_VERSION 1.1
+
+// used by the library for the interface with the app
+#define DISPATCH_FINISHED 0
+#define DISPATCH_NOTFINISHED 1
+
+// used by dynamic scheduling
+#define FINISHED 0
+#define NOT_FINISHED 1
+#define LAST_CHUNK 2
+
+#define BARRIER_COUNTER 0
+#define ORDERED_COUNTER 1
+
+// Macros for Cuda intrinsics
+// In Cuda 9.0, the *_sync() version takes an extra argument 'mask'.
+// Also, __ballot(1) in Cuda 8.0 is replaced with __activemask().
+#if defined(CUDART_VERSION) && CUDART_VERSION >= 9000
+#define __SHFL_SYNC(mask, var, srcLane) __shfl_sync((mask), (var), (srcLane))
+#define __SHFL_DOWN_SYNC(mask, var, delta, width) \
+ __shfl_down_sync((mask), (var), (delta), (width))
+#define __BALLOT_SYNC(mask, predicate) __ballot_sync((mask), (predicate))
+#define __ACTIVEMASK() __activemask()
+#else
+#define __SHFL_SYNC(mask, var, srcLane) __shfl((var), (srcLane))
+#define __SHFL_DOWN_SYNC(mask, var, delta, width) \
+ __shfl_down((var), (delta), (width))
+#define __BALLOT_SYNC(mask, predicate) __ballot((predicate))
+#define __ACTIVEMASK() __ballot(1)
+#endif
+
+// arguments needed for L0 parallelism only.
+class omptarget_nvptx_SharedArgs {
+public:
+ // All these methods must be called by the master thread only.
+ INLINE void Init() {
+ args = buffer;
+ nArgs = MAX_SHARED_ARGS;
+ }
+ INLINE void DeInit() {
+ // Free any memory allocated for outlined parallel function with a large
+ // number of arguments.
+ if (nArgs > MAX_SHARED_ARGS) {
+ SafeFree(args, (char *)"new extended args");
+ Init();
+ }
+ }
+ INLINE void EnsureSize(size_t size) {
+ if (size > nArgs) {
+ if (nArgs > MAX_SHARED_ARGS) {
+ SafeFree(args, (char *)"new extended args");
+ }
+ args = (void **) SafeMalloc(size * sizeof(void *),
+ (char *)"new extended args");
+ nArgs = size;
+ }
+ }
+ // Called by all threads.
+ INLINE void **GetArgs() { return args; };
+private:
+ // buffer of pre-allocated arguments.
+ void *buffer[MAX_SHARED_ARGS];
+ // pointer to arguments buffer.
+ // starts off as a pointer to 'buffer' but can be dynamically allocated.
+ void **args;
+ // starts off as MAX_SHARED_ARGS but can increase in size.
+ uint32_t nArgs;
+};
+
+extern __device__ __shared__ omptarget_nvptx_SharedArgs omptarget_nvptx_globalArgs;
+
+// Data sharing related quantities, need to match what is used in the compiler.
+enum DATA_SHARING_SIZES {
+ // The maximum number of workers in a kernel.
+ DS_Max_Worker_Threads = 992,
+ // The size reserved for data in a shared memory slot.
+ DS_Slot_Size = 256,
+ // The slot size that should be reserved for a working warp.
+ DS_Worker_Warp_Slot_Size = WARPSIZE * DS_Slot_Size,
+ // The maximum number of warps in use
+ DS_Max_Warp_Number = 32,
+};
+
+// Data structure to keep in shared memory that traces the current slot, stack,
+// and frame pointer as well as the active threads that didn't exit the current
+// environment.
+struct DataSharingStateTy {
+ __kmpc_data_sharing_slot *SlotPtr[DS_Max_Warp_Number];
+ void *StackPtr[DS_Max_Warp_Number];
+ void *FramePtr[DS_Max_Warp_Number];
+ int32_t ActiveThreads[DS_Max_Warp_Number];
+};
+// Additional worker slot type which is initialized with the default worker slot
+// size of 4*32 bytes.
+struct __kmpc_data_sharing_worker_slot_static {
+ __kmpc_data_sharing_slot *Next;
+ __kmpc_data_sharing_slot *Prev;
+ void *PrevSlotStackPtr;
+ void *DataEnd;
+ char Data[DS_Worker_Warp_Slot_Size];
+};
+// Additional master slot type which is initialized with the default master slot
+// size of 4 bytes.
+struct __kmpc_data_sharing_master_slot_static {
+ __kmpc_data_sharing_slot *Next;
+ __kmpc_data_sharing_slot *Prev;
+ void *PrevSlotStackPtr;
+ void *DataEnd;
+ char Data[DS_Slot_Size];
+};
+extern __device__ __shared__ DataSharingStateTy DataSharingState;
+
+////////////////////////////////////////////////////////////////////////////////
+// task ICV and (implicit & explicit) task state
+
+class omptarget_nvptx_TaskDescr {
+public:
+ // methods for flags
+ INLINE omp_sched_t GetRuntimeSched();
+ INLINE void SetRuntimeSched(omp_sched_t sched);
+ INLINE int IsDynamic() { return items.flags & TaskDescr_IsDynamic; }
+ INLINE void SetDynamic() {
+ items.flags = items.flags | TaskDescr_IsDynamic;
+ }
+ INLINE void ClearDynamic() {
+ items.flags = items.flags & (~TaskDescr_IsDynamic);
+ }
+ INLINE int InParallelRegion() { return items.flags & TaskDescr_InPar; }
+ INLINE int InL2OrHigherParallelRegion() {
+ return items.flags & TaskDescr_InParL2P;
+ }
+ INLINE int IsParallelConstruct() {
+ return items.flags & TaskDescr_IsParConstr;
+ }
+ INLINE int IsTaskConstruct() { return !IsParallelConstruct(); }
+ // methods for other fields
+ INLINE uint16_t &NThreads() { return items.nthreads; }
+ INLINE uint16_t &ThreadLimit() { return items.threadlimit; }
+ INLINE uint16_t &ThreadId() { return items.threadId; }
+ INLINE uint16_t &ThreadsInTeam() { return items.threadsInTeam; }
+ INLINE uint64_t &RuntimeChunkSize() { return items.runtimeChunkSize; }
+ INLINE omptarget_nvptx_TaskDescr *GetPrevTaskDescr() { return prev; }
+ INLINE void SetPrevTaskDescr(omptarget_nvptx_TaskDescr *taskDescr) {
+ prev = taskDescr;
+ }
+ // init & copy
+ INLINE void InitLevelZeroTaskDescr();
+ INLINE void InitLevelOneTaskDescr(uint16_t tnum,
+ omptarget_nvptx_TaskDescr *parentTaskDescr);
+ INLINE void Copy(omptarget_nvptx_TaskDescr *sourceTaskDescr);
+ INLINE void CopyData(omptarget_nvptx_TaskDescr *sourceTaskDescr);
+ INLINE void CopyParent(omptarget_nvptx_TaskDescr *parentTaskDescr);
+ INLINE void CopyForExplicitTask(omptarget_nvptx_TaskDescr *parentTaskDescr);
+ INLINE void CopyToWorkDescr(omptarget_nvptx_TaskDescr *masterTaskDescr,
+ uint16_t tnum);
+ INLINE void CopyFromWorkDescr(omptarget_nvptx_TaskDescr *workTaskDescr);
+ INLINE void CopyConvergentParent(omptarget_nvptx_TaskDescr *parentTaskDescr,
+ uint16_t tid, uint16_t tnum);
+ INLINE void SaveLoopData();
+ INLINE void RestoreLoopData() const;
+
+private:
+ // bits for flags: (7 used, 1 free)
+ // 3 bits (SchedMask) for runtime schedule
+ // 1 bit (IsDynamic) for dynamic schedule (false = static)
+ // 1 bit (InPar) if this thread has encountered one or more parallel region
+ // 1 bit (IsParConstr) if ICV for a parallel region (false = explicit task)
+ // 1 bit (InParL2+) if this thread has encountered L2 or higher parallel
+ // region
+ static const uint8_t TaskDescr_SchedMask = (0x1 | 0x2 | 0x4);
+ static const uint8_t TaskDescr_IsDynamic = 0x8;
+ static const uint8_t TaskDescr_InPar = 0x10;
+ static const uint8_t TaskDescr_IsParConstr = 0x20;
+ static const uint8_t TaskDescr_InParL2P = 0x40;
+
+ struct SavedLoopDescr_items {
+ int64_t loopUpperBound;
+ int64_t nextLowerBound;
+ int64_t chunk;
+ int64_t stride;
+ kmp_sched_t schedule;
+ } loopData;
+
+ struct TaskDescr_items {
+ uint8_t flags; // 6 bit used (see flag above)
+ uint8_t unused;
+ uint16_t nthreads; // thread num for subsequent parallel regions
+ uint16_t threadlimit; // thread limit ICV
+ uint16_t threadId; // thread id
+ uint16_t threadsInTeam; // threads in current team
+ uint64_t runtimeChunkSize; // runtime chunk size
+ } items;
+ omptarget_nvptx_TaskDescr *prev;
+};
+
+// build on kmp
+typedef struct omptarget_nvptx_ExplicitTaskDescr {
+ omptarget_nvptx_TaskDescr
+ taskDescr; // omptarget_nvptx task description (must be first)
+ kmp_TaskDescr kmpTaskDescr; // kmp task description (must be last)
+} omptarget_nvptx_ExplicitTaskDescr;
+
+////////////////////////////////////////////////////////////////////////////////
+// Descriptor of a parallel region (worksharing in general)
+
+class omptarget_nvptx_WorkDescr {
+
+public:
+ // access to data
+ INLINE omptarget_nvptx_CounterGroup &CounterGroup() { return cg; }
+ INLINE omptarget_nvptx_TaskDescr *WorkTaskDescr() { return &masterTaskICV; }
+ // init
+ INLINE void InitWorkDescr();
+
+private:
+ omptarget_nvptx_CounterGroup cg; // for barrier (no other needed)
+ omptarget_nvptx_TaskDescr masterTaskICV;
+ bool hasCancel;
+};
+
+////////////////////////////////////////////////////////////////////////////////
+
+class omptarget_nvptx_TeamDescr {
+public:
+ // access to data
+ INLINE omptarget_nvptx_TaskDescr *LevelZeroTaskDescr() {
+ return &levelZeroTaskDescr;
+ }
+ INLINE omptarget_nvptx_WorkDescr &WorkDescr() {
+ return workDescrForActiveParallel;
+ }
+ INLINE omp_lock_t *CriticalLock() { return &criticalLock; }
+ INLINE uint64_t *getLastprivateIterBuffer() { return &lastprivateIterBuffer; }
+
+ // init
+ INLINE void InitTeamDescr();
+
+ INLINE __kmpc_data_sharing_slot *RootS(int wid, bool IsMasterThread) {
+ // If this is invoked by the master thread of the master warp then intialize
+ // it with a smaller slot.
+ if (IsMasterThread) {
+ // Do not initalize this slot again if it has already been initalized.
+ if (master_rootS[0].DataEnd == &master_rootS[0].Data[0] + DS_Slot_Size)
+ return 0;
+ // Initialize the pointer to the end of the slot given the size of the
+ // data section. DataEnd is non-inclusive.
+ master_rootS[0].DataEnd = &master_rootS[0].Data[0] + DS_Slot_Size;
+ // We currently do not have a next slot.
+ master_rootS[0].Next = 0;
+ master_rootS[0].Prev = 0;
+ master_rootS[0].PrevSlotStackPtr = 0;
+ return (__kmpc_data_sharing_slot *)&master_rootS[0];
+ }
+ // Do not initalize this slot again if it has already been initalized.
+ if (worker_rootS[wid].DataEnd ==
+ &worker_rootS[wid].Data[0] + DS_Worker_Warp_Slot_Size)
+ return 0;
+ // Initialize the pointer to the end of the slot given the size of the data
+ // section. DataEnd is non-inclusive.
+ worker_rootS[wid].DataEnd =
+ &worker_rootS[wid].Data[0] + DS_Worker_Warp_Slot_Size;
+ // We currently do not have a next slot.
+ worker_rootS[wid].Next = 0;
+ worker_rootS[wid].Prev = 0;
+ worker_rootS[wid].PrevSlotStackPtr = 0;
+ return (__kmpc_data_sharing_slot *)&worker_rootS[wid];
+ }
+
+ INLINE __kmpc_data_sharing_slot *GetPreallocatedSlotAddr(int wid) {
+ worker_rootS[wid].DataEnd =
+ &worker_rootS[wid].Data[0] + DS_Worker_Warp_Slot_Size;
+ // We currently do not have a next slot.
+ worker_rootS[wid].Next = 0;
+ worker_rootS[wid].Prev = 0;
+ worker_rootS[wid].PrevSlotStackPtr = 0;
+ return (__kmpc_data_sharing_slot *)&worker_rootS[wid];
+ }
+
+private:
+ omptarget_nvptx_TaskDescr
+ levelZeroTaskDescr; // icv for team master initial thread
+ omptarget_nvptx_WorkDescr
+ workDescrForActiveParallel; // one, ONLY for the active par
+ omp_lock_t criticalLock;
+ uint64_t lastprivateIterBuffer;
+
+ __align__(16)
+ __kmpc_data_sharing_worker_slot_static worker_rootS[WARPSIZE];
+ __align__(16) __kmpc_data_sharing_master_slot_static master_rootS[1];
+};
+
+////////////////////////////////////////////////////////////////////////////////
+// thread private data (struct of arrays for better coalescing)
+// tid refers here to the global thread id
+// do not support multiple concurrent kernel a this time
+class omptarget_nvptx_ThreadPrivateContext {
+public:
+ // task
+ INLINE omptarget_nvptx_TaskDescr *Level1TaskDescr(int tid) {
+ return &levelOneTaskDescr[tid];
+ }
+ INLINE void SetTopLevelTaskDescr(int tid,
+ omptarget_nvptx_TaskDescr *taskICV) {
+ topTaskDescr[tid] = taskICV;
+ }
+ INLINE omptarget_nvptx_TaskDescr *GetTopLevelTaskDescr(int tid);
+ // parallel
+ INLINE uint16_t &NumThreadsForNextParallel(int tid) {
+ return nextRegion.tnum[tid];
+ }
+ // simd
+ INLINE uint16_t &SimdLimitForNextSimd(int tid) {
+ return nextRegion.slim[tid];
+ }
+ // sync
+ INLINE Counter &Priv(int tid) { return priv[tid]; }
+ INLINE void IncrementPriv(int tid, Counter val) { priv[tid] += val; }
+ // schedule (for dispatch)
+ INLINE kmp_sched_t &ScheduleType(int tid) { return schedule[tid]; }
+ INLINE int64_t &Chunk(int tid) { return chunk[tid]; }
+ INLINE int64_t &LoopUpperBound(int tid) { return loopUpperBound[tid]; }
+ INLINE int64_t &NextLowerBound(int tid) { return nextLowerBound[tid]; }
+ INLINE int64_t &Stride(int tid) { return stride[tid]; }
+
+ INLINE omptarget_nvptx_TeamDescr &TeamContext() { return teamContext; }
+
+ INLINE void InitThreadPrivateContext(int tid);
+ INLINE void SetSourceQueue(uint64_t Src) { SourceQueue = Src; }
+ INLINE uint64_t GetSourceQueue() { return SourceQueue; }
+
+private:
+ // team context for this team
+ omptarget_nvptx_TeamDescr teamContext;
+ // task ICV for implict threads in the only parallel region
+ omptarget_nvptx_TaskDescr levelOneTaskDescr[MAX_THREADS_PER_TEAM];
+ // pointer where to find the current task ICV (top of the stack)
+ omptarget_nvptx_TaskDescr *topTaskDescr[MAX_THREADS_PER_TEAM];
+ union {
+ // Only one of the two is live at the same time.
+ // parallel
+ uint16_t tnum[MAX_THREADS_PER_TEAM];
+ // simd limit
+ uint16_t slim[MAX_THREADS_PER_TEAM];
+ } nextRegion;
+ // sync
+ Counter priv[MAX_THREADS_PER_TEAM];
+ // schedule (for dispatch)
+ kmp_sched_t schedule[MAX_THREADS_PER_TEAM]; // remember schedule type for #for
+ int64_t chunk[MAX_THREADS_PER_TEAM];
+ int64_t loopUpperBound[MAX_THREADS_PER_TEAM];
+ // state for dispatch with dyn/guided OR static (never use both at a time)
+ int64_t nextLowerBound[MAX_THREADS_PER_TEAM];
+ int64_t stride[MAX_THREADS_PER_TEAM];
+ // Queue to which this object must be returned.
+ uint64_t SourceQueue;
+};
+
+/// Device envrionment data
+struct omptarget_device_environmentTy {
+ int32_t debug_level;
+};
+
+////////////////////////////////////////////////////////////////////////////////
+// global device envrionment
+////////////////////////////////////////////////////////////////////////////////
+
+extern __device__ omptarget_device_environmentTy omptarget_device_environment;
+
+////////////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////////////
+// global data tables
+////////////////////////////////////////////////////////////////////////////////
+
+extern __device__ __shared__
+ omptarget_nvptx_ThreadPrivateContext *omptarget_nvptx_threadPrivateContext;
+extern __device__ __shared__ uint32_t execution_param;
+extern __device__ __shared__ void *ReductionScratchpadPtr;
+
+////////////////////////////////////////////////////////////////////////////////
+// work function (outlined parallel/simd functions) and arguments.
+// needed for L1 parallelism only.
+////////////////////////////////////////////////////////////////////////////////
+
+typedef void *omptarget_nvptx_WorkFn;
+extern volatile __device__ __shared__ omptarget_nvptx_WorkFn
+ omptarget_nvptx_workFn;
+
+////////////////////////////////////////////////////////////////////////////////
+// get private data structures
+////////////////////////////////////////////////////////////////////////////////
+
+INLINE omptarget_nvptx_TeamDescr &getMyTeamDescriptor();
+INLINE omptarget_nvptx_WorkDescr &getMyWorkDescriptor();
+INLINE omptarget_nvptx_TaskDescr *getMyTopTaskDescriptor();
+INLINE omptarget_nvptx_TaskDescr *getMyTopTaskDescriptor(int globalThreadId);
+
+////////////////////////////////////////////////////////////////////////////////
+// inlined implementation
+////////////////////////////////////////////////////////////////////////////////
+
+#include "counter_groupi.h"
+#include "omptarget-nvptxi.h"
+#include "supporti.h"
+
+#endif
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/omptarget-nvptxi.h b/final/libomptarget/deviceRTLs/nvptx/src/omptarget-nvptxi.h
new file mode 100644
index 0000000..086f4c5
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/omptarget-nvptxi.h
@@ -0,0 +1,218 @@
+//===---- omptarget-nvptxi.h - NVPTX OpenMP GPU initialization --- CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declarations of all library macros, types,
+// and functions.
+//
+//===----------------------------------------------------------------------===//
+
+////////////////////////////////////////////////////////////////////////////////
+// Task Descriptor
+////////////////////////////////////////////////////////////////////////////////
+
+INLINE omp_sched_t omptarget_nvptx_TaskDescr::GetRuntimeSched() {
+ // sched starts from 1..4; encode it as 0..3; so add 1 here
+ uint8_t rc = (items.flags & TaskDescr_SchedMask) + 1;
+ return (omp_sched_t)rc;
+}
+
+INLINE void omptarget_nvptx_TaskDescr::SetRuntimeSched(omp_sched_t sched) {
+ // sched starts from 1..4; encode it as 0..3; so sub 1 here
+ uint8_t val = ((uint8_t)sched) - 1;
+ // clear current sched
+ items.flags &= ~TaskDescr_SchedMask;
+ // set new sched
+ items.flags |= val;
+}
+
+INLINE void omptarget_nvptx_TaskDescr::InitLevelZeroTaskDescr() {
+ // slow method
+ // flag:
+ // default sched is static,
+ // dyn is off (unused now anyway, but may need to sample from host ?)
+ // not in parallel
+
+ items.flags = 0;
+ items.nthreads = GetNumberOfProcsInTeam();
+ ; // threads: whatever was alloc by kernel
+ items.threadId = 0; // is master
+ items.threadsInTeam = 1; // sequential
+ items.runtimeChunkSize = 1; // prefered chunking statik with chunk 1
+}
+
+// This is called when all threads are started together in SPMD mode.
+// OMP directives include target parallel, target distribute parallel for, etc.
+INLINE void omptarget_nvptx_TaskDescr::InitLevelOneTaskDescr(
+ uint16_t tnum, omptarget_nvptx_TaskDescr *parentTaskDescr) {
+ // slow method
+ // flag:
+ // default sched is static,
+ // dyn is off (unused now anyway, but may need to sample from host ?)
+ // in L1 parallel
+
+ items.flags =
+ TaskDescr_InPar | TaskDescr_IsParConstr; // set flag to parallel
+ items.nthreads = 0; // # threads for subsequent parallel region
+ items.threadId =
+ GetThreadIdInBlock(); // get ids from cuda (only called for 1st level)
+ items.threadsInTeam = tnum;
+ items.runtimeChunkSize = 1; // prefered chunking statik with chunk 1
+ prev = parentTaskDescr;
+}
+
+INLINE void omptarget_nvptx_TaskDescr::CopyData(
+ omptarget_nvptx_TaskDescr *sourceTaskDescr) {
+ items = sourceTaskDescr->items;
+}
+
+INLINE void
+omptarget_nvptx_TaskDescr::Copy(omptarget_nvptx_TaskDescr *sourceTaskDescr) {
+ CopyData(sourceTaskDescr);
+ prev = sourceTaskDescr->prev;
+}
+
+INLINE void omptarget_nvptx_TaskDescr::CopyParent(
+ omptarget_nvptx_TaskDescr *parentTaskDescr) {
+ CopyData(parentTaskDescr);
+ prev = parentTaskDescr;
+}
+
+INLINE void omptarget_nvptx_TaskDescr::CopyForExplicitTask(
+ omptarget_nvptx_TaskDescr *parentTaskDescr) {
+ CopyParent(parentTaskDescr);
+ items.flags = items.flags & ~TaskDescr_IsParConstr;
+ ASSERT0(LT_FUSSY, IsTaskConstruct(), "expected task");
+}
+
+INLINE void omptarget_nvptx_TaskDescr::CopyToWorkDescr(
+ omptarget_nvptx_TaskDescr *masterTaskDescr, uint16_t tnum) {
+ CopyParent(masterTaskDescr);
+ // overrwrite specific items;
+ items.flags |=
+ TaskDescr_InPar | TaskDescr_IsParConstr; // set flag to parallel
+ items.threadsInTeam = tnum; // set number of threads
+}
+
+INLINE void omptarget_nvptx_TaskDescr::CopyFromWorkDescr(
+ omptarget_nvptx_TaskDescr *workTaskDescr) {
+ Copy(workTaskDescr);
+ //
+ // overrwrite specific items;
+ //
+ // The threadID should be GetThreadIdInBlock() % GetMasterThreadID().
+ // This is so that the serial master (first lane in the master warp)
+ // gets a threadId of 0.
+ // However, we know that this function is always called in a parallel
+ // region where only workers are active. The serial master thread
+ // never enters this region. When a parallel region is executed serially,
+ // the threadId is set to 0 elsewhere and the kmpc_serialized_* functions
+ // are called, which never activate this region.
+ items.threadId =
+ GetThreadIdInBlock(); // get ids from cuda (only called for 1st level)
+}
+
+INLINE void omptarget_nvptx_TaskDescr::CopyConvergentParent(
+ omptarget_nvptx_TaskDescr *parentTaskDescr, uint16_t tid, uint16_t tnum) {
+ CopyParent(parentTaskDescr);
+ items.flags |= TaskDescr_InParL2P; // In L2+ parallelism
+ items.threadsInTeam = tnum; // set number of threads
+ items.threadId = tid;
+}
+
+INLINE void omptarget_nvptx_TaskDescr::SaveLoopData() {
+ loopData.loopUpperBound =
+ omptarget_nvptx_threadPrivateContext->LoopUpperBound(items.threadId);
+ loopData.nextLowerBound =
+ omptarget_nvptx_threadPrivateContext->NextLowerBound(items.threadId);
+ loopData.schedule =
+ omptarget_nvptx_threadPrivateContext->ScheduleType(items.threadId);
+ loopData.chunk = omptarget_nvptx_threadPrivateContext->Chunk(items.threadId);
+ loopData.stride =
+ omptarget_nvptx_threadPrivateContext->Stride(items.threadId);
+}
+
+INLINE void omptarget_nvptx_TaskDescr::RestoreLoopData() const {
+ omptarget_nvptx_threadPrivateContext->Chunk(items.threadId) = loopData.chunk;
+ omptarget_nvptx_threadPrivateContext->LoopUpperBound(items.threadId) =
+ loopData.loopUpperBound;
+ omptarget_nvptx_threadPrivateContext->NextLowerBound(items.threadId) =
+ loopData.nextLowerBound;
+ omptarget_nvptx_threadPrivateContext->Stride(items.threadId) =
+ loopData.stride;
+ omptarget_nvptx_threadPrivateContext->ScheduleType(items.threadId) =
+ loopData.schedule;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Thread Private Context
+////////////////////////////////////////////////////////////////////////////////
+
+INLINE omptarget_nvptx_TaskDescr *
+omptarget_nvptx_ThreadPrivateContext::GetTopLevelTaskDescr(int tid) {
+ ASSERT0(
+ LT_FUSSY, tid < MAX_THREADS_PER_TEAM,
+ "Getting top level, tid is larger than allocated data structure size");
+ return topTaskDescr[tid];
+}
+
+INLINE void
+omptarget_nvptx_ThreadPrivateContext::InitThreadPrivateContext(int tid) {
+ // levelOneTaskDescr is init when starting the parallel region
+ // top task descr is NULL (team master version will be fixed separately)
+ topTaskDescr[tid] = NULL;
+ // no num threads value has been pushed
+ nextRegion.tnum[tid] = 0;
+ // priv counter init to zero
+ priv[tid] = 0;
+ // the following don't need to be init here; they are init when using dyn
+ // sched
+ // current_Event, events_Number, chunk, num_Iterations, schedule
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Work Descriptor
+////////////////////////////////////////////////////////////////////////////////
+
+INLINE void omptarget_nvptx_WorkDescr::InitWorkDescr() {
+ cg.Clear(); // start and stop to zero too
+ // threadsInParallelTeam does not need to be init (done in start parallel)
+ hasCancel = FALSE;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Team Descriptor
+////////////////////////////////////////////////////////////////////////////////
+
+INLINE void omptarget_nvptx_TeamDescr::InitTeamDescr() {
+ levelZeroTaskDescr.InitLevelZeroTaskDescr();
+ workDescrForActiveParallel.InitWorkDescr();
+ // omp_init_lock(criticalLock);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Get private data structure for thread
+////////////////////////////////////////////////////////////////////////////////
+
+// Utility routines for CUDA threads
+INLINE omptarget_nvptx_TeamDescr &getMyTeamDescriptor() {
+ return omptarget_nvptx_threadPrivateContext->TeamContext();
+}
+
+INLINE omptarget_nvptx_WorkDescr &getMyWorkDescriptor() {
+ omptarget_nvptx_TeamDescr &currTeamDescr = getMyTeamDescriptor();
+ return currTeamDescr.WorkDescr();
+}
+
+INLINE omptarget_nvptx_TaskDescr *getMyTopTaskDescriptor(int threadId) {
+ return omptarget_nvptx_threadPrivateContext->GetTopLevelTaskDescr(threadId);
+}
+
+INLINE omptarget_nvptx_TaskDescr *getMyTopTaskDescriptor() {
+ return getMyTopTaskDescriptor(GetLogicalThreadIdInBlock());
+}
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/option.h b/final/libomptarget/deviceRTLs/nvptx/src/option.h
new file mode 100644
index 0000000..43172ad
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/option.h
@@ -0,0 +1,70 @@
+//===------------ option.h - NVPTX OpenMP GPU options ------------ CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// GPU default options
+//
+//===----------------------------------------------------------------------===//
+#ifndef _OPTION_H_
+#define _OPTION_H_
+
+////////////////////////////////////////////////////////////////////////////////
+// Kernel options
+////////////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////////////
+// The following def must match the absolute limit hardwired in the host RTL
+// max number of threads per team
+#define MAX_THREADS_PER_TEAM 1024
+
+#define WARPSIZE 32
+
+// The named barrier for active parallel threads of a team in an L1 parallel
+// region to synchronize with each other.
+#define L1_BARRIER (1)
+
+// Maximum number of preallocated arguments to an outlined parallel/simd function.
+// Anything more requires dynamic memory allocation.
+#define MAX_SHARED_ARGS 20
+
+// Maximum number of omp state objects per SM allocated statically in global
+// memory.
+#if __CUDA_ARCH__ >= 600
+#define OMP_STATE_COUNT 32
+#define MAX_SM 56
+#else
+#define OMP_STATE_COUNT 16
+#define MAX_SM 16
+#endif
+
+////////////////////////////////////////////////////////////////////////////////
+// algo options
+////////////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////////////
+// data options
+////////////////////////////////////////////////////////////////////////////////
+
+// decide if counters are 32 or 64 bit
+#define Counter unsigned long long
+
+////////////////////////////////////////////////////////////////////////////////
+// misc options (by def everythig here is device)
+////////////////////////////////////////////////////////////////////////////////
+
+#define EXTERN extern "C" __device__
+#define INLINE __inline__ __device__
+#define NOINLINE __noinline__ __device__
+#ifndef TRUE
+#define TRUE 1
+#endif
+#ifndef FALSE
+#define FALSE 0
+#endif
+
+#endif
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/parallel.cu b/final/libomptarget/deviceRTLs/nvptx/src/parallel.cu
new file mode 100644
index 0000000..33509b6
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/parallel.cu
@@ -0,0 +1,479 @@
+//===---- parallel.cu - NVPTX OpenMP parallel implementation ----- CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Parallel implemention in the GPU. Here is the pattern:
+//
+// while (not finished) {
+//
+// if (master) {
+// sequential code, decide which par loop to do, or if finished
+// __kmpc_kernel_prepare_parallel() // exec by master only
+// }
+// syncthreads // A
+// __kmpc_kernel_parallel() // exec by all
+// if (this thread is included in the parallel) {
+// switch () for all parallel loops
+// __kmpc_kernel_end_parallel() // exec only by threads in parallel
+// }
+//
+//
+// The reason we don't exec end_parallel for the threads not included
+// in the parallel loop is that for each barrier in the parallel
+// region, these non-included threads will cycle through the
+// syncthread A. Thus they must preserve their current threadId that
+// is larger than thread in team.
+//
+// To make a long story short...
+//
+//===----------------------------------------------------------------------===//
+
+#include "omptarget-nvptx.h"
+
+typedef struct ConvergentSimdJob {
+ omptarget_nvptx_TaskDescr taskDescr;
+ omptarget_nvptx_TaskDescr *convHeadTaskDescr;
+ uint16_t slimForNextSimd;
+} ConvergentSimdJob;
+
+////////////////////////////////////////////////////////////////////////////////
+// support for convergent simd (team of threads in a warp only)
+////////////////////////////////////////////////////////////////////////////////
+EXTERN bool __kmpc_kernel_convergent_simd(void *buffer, uint32_t Mask,
+ bool *IsFinal, int32_t *LaneSource,
+ int32_t *LaneId, int32_t *NumLanes) {
+ PRINT0(LD_IO, "call to __kmpc_kernel_convergent_simd\n");
+ uint32_t ConvergentMask = Mask;
+ int32_t ConvergentSize = __popc(ConvergentMask);
+ uint32_t WorkRemaining = ConvergentMask >> (*LaneSource + 1);
+ *LaneSource += __ffs(WorkRemaining);
+ *IsFinal = __popc(WorkRemaining) == 1;
+ uint32_t lanemask_lt;
+ asm("mov.u32 %0, %%lanemask_lt;" : "=r"(lanemask_lt));
+ *LaneId = __popc(ConvergentMask & lanemask_lt);
+
+ int threadId = GetLogicalThreadIdInBlock();
+ int sourceThreadId = (threadId & ~(WARPSIZE - 1)) + *LaneSource;
+
+ ConvergentSimdJob *job = (ConvergentSimdJob *)buffer;
+ int32_t SimdLimit =
+ omptarget_nvptx_threadPrivateContext->SimdLimitForNextSimd(threadId);
+ job->slimForNextSimd = SimdLimit;
+
+ int32_t SimdLimitSource = __SHFL_SYNC(Mask, SimdLimit, *LaneSource);
+ // reset simdlimit to avoid propagating to successive #simd
+ if (SimdLimitSource > 0 && threadId == sourceThreadId)
+ omptarget_nvptx_threadPrivateContext->SimdLimitForNextSimd(threadId) = 0;
+
+ // We cannot have more than the # of convergent threads.
+ if (SimdLimitSource > 0)
+ *NumLanes = min(ConvergentSize, SimdLimitSource);
+ else
+ *NumLanes = ConvergentSize;
+ ASSERT(LT_FUSSY, *NumLanes > 0, "bad thread request of %d threads",
+ *NumLanes);
+
+ // Set to true for lanes participating in the simd region.
+ bool isActive = false;
+ // Initialize state for active threads.
+ if (*LaneId < *NumLanes) {
+ omptarget_nvptx_TaskDescr *currTaskDescr =
+ omptarget_nvptx_threadPrivateContext->GetTopLevelTaskDescr(threadId);
+ omptarget_nvptx_TaskDescr *sourceTaskDescr =
+ omptarget_nvptx_threadPrivateContext->GetTopLevelTaskDescr(
+ sourceThreadId);
+ job->convHeadTaskDescr = currTaskDescr;
+ // install top descriptor from the thread for which the lanes are working.
+ omptarget_nvptx_threadPrivateContext->SetTopLevelTaskDescr(threadId,
+ sourceTaskDescr);
+ isActive = true;
+ }
+
+ // requires a memory fence between threads of a warp
+ return isActive;
+}
+
+EXTERN void __kmpc_kernel_end_convergent_simd(void *buffer) {
+ PRINT0(LD_IO | LD_PAR, "call to __kmpc_kernel_end_convergent_parallel\n");
+ // pop stack
+ int threadId = GetLogicalThreadIdInBlock();
+ ConvergentSimdJob *job = (ConvergentSimdJob *)buffer;
+ omptarget_nvptx_threadPrivateContext->SimdLimitForNextSimd(threadId) =
+ job->slimForNextSimd;
+ omptarget_nvptx_threadPrivateContext->SetTopLevelTaskDescr(
+ threadId, job->convHeadTaskDescr);
+}
+
+typedef struct ConvergentParallelJob {
+ omptarget_nvptx_TaskDescr taskDescr;
+ omptarget_nvptx_TaskDescr *convHeadTaskDescr;
+ uint16_t tnumForNextPar;
+} ConvergentParallelJob;
+
+////////////////////////////////////////////////////////////////////////////////
+// support for convergent parallelism (team of threads in a warp only)
+////////////////////////////////////////////////////////////////////////////////
+EXTERN bool __kmpc_kernel_convergent_parallel(void *buffer, uint32_t Mask,
+ bool *IsFinal,
+ int32_t *LaneSource) {
+ PRINT0(LD_IO, "call to __kmpc_kernel_convergent_parallel\n");
+ uint32_t ConvergentMask = Mask;
+ int32_t ConvergentSize = __popc(ConvergentMask);
+ uint32_t WorkRemaining = ConvergentMask >> (*LaneSource + 1);
+ *LaneSource += __ffs(WorkRemaining);
+ *IsFinal = __popc(WorkRemaining) == 1;
+ uint32_t lanemask_lt;
+ asm("mov.u32 %0, %%lanemask_lt;" : "=r"(lanemask_lt));
+ uint32_t OmpId = __popc(ConvergentMask & lanemask_lt);
+
+ int threadId = GetLogicalThreadIdInBlock();
+ int sourceThreadId = (threadId & ~(WARPSIZE - 1)) + *LaneSource;
+
+ ConvergentParallelJob *job = (ConvergentParallelJob *)buffer;
+ int32_t NumThreadsClause =
+ omptarget_nvptx_threadPrivateContext->NumThreadsForNextParallel(threadId);
+ job->tnumForNextPar = NumThreadsClause;
+
+ int32_t NumThreadsSource = __SHFL_SYNC(Mask, NumThreadsClause, *LaneSource);
+ // reset numthreads to avoid propagating to successive #parallel
+ if (NumThreadsSource > 0 && threadId == sourceThreadId)
+ omptarget_nvptx_threadPrivateContext->NumThreadsForNextParallel(threadId) =
+ 0;
+
+ // We cannot have more than the # of convergent threads.
+ uint16_t NumThreads;
+ if (NumThreadsSource > 0)
+ NumThreads = min(ConvergentSize, NumThreadsSource);
+ else
+ NumThreads = ConvergentSize;
+ ASSERT(LT_FUSSY, NumThreads > 0, "bad thread request of %d threads",
+ NumThreads);
+
+ // Set to true for workers participating in the parallel region.
+ bool isActive = false;
+ // Initialize state for active threads.
+ if (OmpId < NumThreads) {
+ // init L2 task descriptor and storage for the L1 parallel task descriptor.
+ omptarget_nvptx_TaskDescr *newTaskDescr = &job->taskDescr;
+ ASSERT0(LT_FUSSY, newTaskDescr, "expected a task descr");
+ omptarget_nvptx_TaskDescr *currTaskDescr =
+ omptarget_nvptx_threadPrivateContext->GetTopLevelTaskDescr(threadId);
+ omptarget_nvptx_TaskDescr *sourceTaskDescr =
+ omptarget_nvptx_threadPrivateContext->GetTopLevelTaskDescr(
+ sourceThreadId);
+ job->convHeadTaskDescr = currTaskDescr;
+ newTaskDescr->CopyConvergentParent(sourceTaskDescr, OmpId, NumThreads);
+ // install new top descriptor
+ omptarget_nvptx_threadPrivateContext->SetTopLevelTaskDescr(threadId,
+ newTaskDescr);
+ isActive = true;
+ }
+
+ // requires a memory fence between threads of a warp
+ return isActive;
+}
+
+EXTERN void __kmpc_kernel_end_convergent_parallel(void *buffer) {
+ PRINT0(LD_IO | LD_PAR, "call to __kmpc_kernel_end_convergent_parallel\n");
+ // pop stack
+ int threadId = GetLogicalThreadIdInBlock();
+ ConvergentParallelJob *job = (ConvergentParallelJob *)buffer;
+ omptarget_nvptx_threadPrivateContext->SetTopLevelTaskDescr(
+ threadId, job->convHeadTaskDescr);
+ omptarget_nvptx_threadPrivateContext->NumThreadsForNextParallel(threadId) =
+ job->tnumForNextPar;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// support for parallel that goes parallel (1 static level only)
+////////////////////////////////////////////////////////////////////////////////
+
+// return number of cuda threads that participate to parallel
+// calculation has to consider simd implementation in nvptx
+// i.e. (num omp threads * num lanes)
+//
+// cudathreads =
+// if(num_threads != 0) {
+// if(thread_limit > 0) {
+// min (num_threads*numLanes ; thread_limit*numLanes);
+// } else {
+// min (num_threads*numLanes; blockDim.x)
+// }
+// } else {
+// if (thread_limit != 0) {
+// min (thread_limit*numLanes; blockDim.x)
+// } else { // no thread_limit, no num_threads, use all cuda threads
+// blockDim.x;
+// }
+// }
+//
+// This routine is always called by the team master..
+EXTERN void __kmpc_kernel_prepare_parallel(void *WorkFn,
+ int16_t IsOMPRuntimeInitialized) {
+ PRINT0(LD_IO, "call to __kmpc_kernel_prepare_parallel\n");
+ omptarget_nvptx_workFn = WorkFn;
+
+ if (!IsOMPRuntimeInitialized)
+ return;
+
+ // This routine is only called by the team master. The team master is
+ // the first thread of the last warp. It always has the logical thread
+ // id of 0 (since it is a shadow for the first worker thread).
+ int threadId = 0;
+ omptarget_nvptx_TaskDescr *currTaskDescr =
+ omptarget_nvptx_threadPrivateContext->GetTopLevelTaskDescr(threadId);
+ ASSERT0(LT_FUSSY, currTaskDescr, "expected a top task descr");
+ ASSERT0(LT_FUSSY, !currTaskDescr->InParallelRegion(),
+ "cannot be called in a parallel region.");
+ if (currTaskDescr->InParallelRegion()) {
+ PRINT0(LD_PAR, "already in parallel: go seq\n");
+ return;
+ }
+
+ uint16_t CudaThreadsForParallel = 0;
+ uint16_t NumThreadsClause =
+ omptarget_nvptx_threadPrivateContext->NumThreadsForNextParallel(threadId);
+
+ // we cannot have more than block size
+ uint16_t CudaThreadsAvail = GetNumberOfWorkersInTeam();
+
+ // currTaskDescr->ThreadLimit(): If non-zero, this is the limit as
+ // specified by the thread_limit clause on the target directive.
+ // GetNumberOfWorkersInTeam(): This is the number of workers available
+ // in this kernel instance.
+ //
+ // E.g: If thread_limit is 33, the kernel is launched with 33+32=65
+ // threads. The last warp is the master warp so in this case
+ // GetNumberOfWorkersInTeam() returns 64.
+
+ // this is different from ThreadAvail of OpenMP because we may be
+ // using some of the CUDA threads as SIMD lanes
+ int NumLanes = 1;
+ if (NumThreadsClause != 0) {
+ // reset request to avoid propagating to successive #parallel
+ omptarget_nvptx_threadPrivateContext->NumThreadsForNextParallel(threadId) =
+ 0;
+
+ // assume that thread_limit*numlanes is already <= CudaThreadsAvail
+ // because that is already checked on the host side (CUDA offloading rtl)
+ if (currTaskDescr->ThreadLimit() != 0)
+ CudaThreadsForParallel =
+ NumThreadsClause * NumLanes < currTaskDescr->ThreadLimit() * NumLanes
+ ? NumThreadsClause * NumLanes
+ : currTaskDescr->ThreadLimit() * NumLanes;
+ else {
+ CudaThreadsForParallel = (NumThreadsClause * NumLanes > CudaThreadsAvail)
+ ? CudaThreadsAvail
+ : NumThreadsClause * NumLanes;
+ }
+ } else {
+ if (currTaskDescr->ThreadLimit() != 0) {
+ CudaThreadsForParallel =
+ (currTaskDescr->ThreadLimit() * NumLanes > CudaThreadsAvail)
+ ? CudaThreadsAvail
+ : currTaskDescr->ThreadLimit() * NumLanes;
+ } else
+ CudaThreadsForParallel = CudaThreadsAvail;
+ }
+
+#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
+ // On Volta and newer architectures we require that all lanes in
+ // a warp participate in the parallel region. Round down to a
+ // multiple of WARPSIZE since it is legal to do so in OpenMP.
+ // CudaThreadsAvail is the number of workers available in this
+ // kernel instance and is greater than or equal to
+ // currTaskDescr->ThreadLimit().
+ if (CudaThreadsForParallel < CudaThreadsAvail) {
+ CudaThreadsForParallel =
+ (CudaThreadsForParallel < WARPSIZE)
+ ? 1
+ : CudaThreadsForParallel & ~((uint16_t)WARPSIZE - 1);
+ }
+#endif
+
+ ASSERT(LT_FUSSY, CudaThreadsForParallel > 0,
+ "bad thread request of %d threads", CudaThreadsForParallel);
+ ASSERT0(LT_FUSSY, GetThreadIdInBlock() == GetMasterThreadID(),
+ "only team master can create parallel");
+
+ // set number of threads on work descriptor
+ // this is different from the number of cuda threads required for the parallel
+ // region
+ omptarget_nvptx_WorkDescr &workDescr = getMyWorkDescriptor();
+ workDescr.WorkTaskDescr()->CopyToWorkDescr(currTaskDescr,
+ CudaThreadsForParallel / NumLanes);
+ // init counters (copy start to init)
+ workDescr.CounterGroup().Reset();
+}
+
+// All workers call this function. Deactivate those not needed.
+// Fn - the outlined work function to execute.
+// returns True if this thread is active, else False.
+//
+// Only the worker threads call this routine.
+EXTERN bool __kmpc_kernel_parallel(void **WorkFn,
+ int16_t IsOMPRuntimeInitialized) {
+ PRINT0(LD_IO | LD_PAR, "call to __kmpc_kernel_parallel\n");
+
+ // Work function and arguments for L1 parallel region.
+ *WorkFn = omptarget_nvptx_workFn;
+
+ if (!IsOMPRuntimeInitialized)
+ return true;
+
+ // If this is the termination signal from the master, quit early.
+ if (!*WorkFn)
+ return false;
+
+ // Only the worker threads call this routine and the master warp
+ // never arrives here. Therefore, use the nvptx thread id.
+ int threadId = GetThreadIdInBlock();
+ omptarget_nvptx_WorkDescr &workDescr = getMyWorkDescriptor();
+ // Set to true for workers participating in the parallel region.
+ bool isActive = false;
+ // Initialize state for active threads.
+ if (threadId < workDescr.WorkTaskDescr()->ThreadsInTeam()) {
+ // init work descriptor from workdesccr
+ omptarget_nvptx_TaskDescr *newTaskDescr =
+ omptarget_nvptx_threadPrivateContext->Level1TaskDescr(threadId);
+ ASSERT0(LT_FUSSY, newTaskDescr, "expected a task descr");
+ newTaskDescr->CopyFromWorkDescr(workDescr.WorkTaskDescr());
+ // install new top descriptor
+ omptarget_nvptx_threadPrivateContext->SetTopLevelTaskDescr(threadId,
+ newTaskDescr);
+ // init private from int value
+ workDescr.CounterGroup().Init(
+ omptarget_nvptx_threadPrivateContext->Priv(threadId));
+ PRINT(LD_PAR,
+ "thread will execute parallel region with id %d in a team of "
+ "%d threads\n",
+ newTaskDescr->ThreadId(), newTaskDescr->NThreads());
+
+ isActive = true;
+ }
+
+ return isActive;
+}
+
+EXTERN void __kmpc_kernel_end_parallel() {
+ // pop stack
+ PRINT0(LD_IO | LD_PAR, "call to __kmpc_kernel_end_parallel\n");
+ // Only the worker threads call this routine and the master warp
+ // never arrives here. Therefore, use the nvptx thread id.
+ int threadId = GetThreadIdInBlock();
+ omptarget_nvptx_TaskDescr *currTaskDescr = getMyTopTaskDescriptor(threadId);
+ omptarget_nvptx_threadPrivateContext->SetTopLevelTaskDescr(
+ threadId, currTaskDescr->GetPrevTaskDescr());
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// support for parallel that goes sequential
+////////////////////////////////////////////////////////////////////////////////
+
+EXTERN void __kmpc_serialized_parallel(kmp_Indent *loc, uint32_t global_tid) {
+ PRINT0(LD_IO, "call to __kmpc_serialized_parallel\n");
+
+ // assume this is only called for nested parallel
+ int threadId = GetLogicalThreadIdInBlock();
+
+ // unlike actual parallel, threads in the same team do not share
+ // the workTaskDescr in this case and num threads is fixed to 1
+
+ // get current task
+ omptarget_nvptx_TaskDescr *currTaskDescr = getMyTopTaskDescriptor(threadId);
+ currTaskDescr->SaveLoopData();
+
+ // allocate new task descriptor and copy value from current one, set prev to
+ // it
+ omptarget_nvptx_TaskDescr *newTaskDescr =
+ (omptarget_nvptx_TaskDescr *)SafeMalloc(sizeof(omptarget_nvptx_TaskDescr),
+ (char *)"new seq parallel task");
+ newTaskDescr->CopyParent(currTaskDescr);
+
+ // tweak values for serialized parallel case:
+ // - each thread becomes ID 0 in its serialized parallel, and
+ // - there is only one thread per team
+ newTaskDescr->ThreadId() = 0;
+ newTaskDescr->ThreadsInTeam() = 1;
+
+ // set new task descriptor as top
+ omptarget_nvptx_threadPrivateContext->SetTopLevelTaskDescr(threadId,
+ newTaskDescr);
+}
+
+EXTERN void __kmpc_end_serialized_parallel(kmp_Indent *loc,
+ uint32_t global_tid) {
+ PRINT0(LD_IO, "call to __kmpc_end_serialized_parallel\n");
+
+ // pop stack
+ int threadId = GetLogicalThreadIdInBlock();
+ omptarget_nvptx_TaskDescr *currTaskDescr = getMyTopTaskDescriptor(threadId);
+ // set new top
+ omptarget_nvptx_threadPrivateContext->SetTopLevelTaskDescr(
+ threadId, currTaskDescr->GetPrevTaskDescr());
+ // free
+ SafeFree(currTaskDescr, (char *)"new seq parallel task");
+ currTaskDescr = getMyTopTaskDescriptor(threadId);
+ currTaskDescr->RestoreLoopData();
+}
+
+EXTERN uint16_t __kmpc_parallel_level(kmp_Indent *loc, uint32_t global_tid) {
+ PRINT0(LD_IO, "call to __kmpc_parallel_level\n");
+
+ int threadId = GetLogicalThreadIdInBlock();
+ omptarget_nvptx_TaskDescr *currTaskDescr =
+ omptarget_nvptx_threadPrivateContext->GetTopLevelTaskDescr(threadId);
+ if (currTaskDescr->InL2OrHigherParallelRegion())
+ return 2;
+ else if (currTaskDescr->InParallelRegion())
+ return 1;
+ else
+ return 0;
+}
+
+// This kmpc call returns the thread id across all teams. It's value is
+// cached by the compiler and used when calling the runtime. On nvptx
+// it's cheap to recalculate this value so we never use the result
+// of this call.
+EXTERN int32_t __kmpc_global_thread_num(kmp_Indent *loc) {
+ return GetLogicalThreadIdInBlock();
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// push params
+////////////////////////////////////////////////////////////////////////////////
+
+EXTERN void __kmpc_push_num_threads(kmp_Indent *loc, int32_t tid,
+ int32_t num_threads) {
+ PRINT(LD_IO, "call kmpc_push_num_threads %d\n", num_threads);
+ tid = GetLogicalThreadIdInBlock();
+ omptarget_nvptx_threadPrivateContext->NumThreadsForNextParallel(tid) =
+ num_threads;
+}
+
+EXTERN void __kmpc_push_simd_limit(kmp_Indent *loc, int32_t tid,
+ int32_t simd_limit) {
+ PRINT(LD_IO, "call kmpc_push_simd_limit %d\n", simd_limit);
+ tid = GetLogicalThreadIdInBlock();
+ omptarget_nvptx_threadPrivateContext->SimdLimitForNextSimd(tid) = simd_limit;
+}
+
+// Do nothing. The host guarantees we started the requested number of
+// teams and we only need inspection of gridDim.
+
+EXTERN void __kmpc_push_num_teams(kmp_Indent *loc, int32_t tid,
+ int32_t num_teams, int32_t thread_limit) {
+ PRINT(LD_IO, "call kmpc_push_num_teams %d\n", num_teams);
+ ASSERT0(LT_FUSSY, FALSE,
+ "should never have anything with new teams on device");
+}
+
+EXTERN void __kmpc_push_proc_bind(kmp_Indent *loc, uint32_t tid,
+ int proc_bind) {
+ PRINT(LD_IO, "call kmpc_push_proc_bind %d\n", proc_bind);
+}
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/reduction.cu b/final/libomptarget/deviceRTLs/nvptx/src/reduction.cu
new file mode 100644
index 0000000..b813a11
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/reduction.cu
@@ -0,0 +1,429 @@
+//===---- reduction.cu - NVPTX OpenMP reduction implementation ---- CUDA
+//-*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of reduction with KMPC interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include <complex.h>
+#include <stdio.h>
+
+#include "omptarget-nvptx.h"
+
+// may eventually remove this
+EXTERN
+int32_t __gpu_block_reduce() {
+ int tid = GetLogicalThreadIdInBlock();
+ int nt = GetNumberOfOmpThreads(tid, isSPMDMode(), isRuntimeUninitialized());
+ if (nt != blockDim.x)
+ return 0;
+ unsigned tnum = __ACTIVEMASK();
+ if (tnum != (~0x0)) // assume swapSize is 32
+ return 0;
+ return 1;
+}
+
+EXTERN
+int32_t __kmpc_reduce_gpu(kmp_Indent *loc, int32_t global_tid, int32_t num_vars,
+ size_t reduce_size, void *reduce_data,
+ void *reduce_array_size, kmp_ReductFctPtr *reductFct,
+ kmp_CriticalName *lck) {
+ int threadId = GetLogicalThreadIdInBlock();
+ omptarget_nvptx_TaskDescr *currTaskDescr = getMyTopTaskDescriptor(threadId);
+ int numthread;
+ if (currTaskDescr->IsParallelConstruct()) {
+ numthread =
+ GetNumberOfOmpThreads(threadId, isSPMDMode(), isRuntimeUninitialized());
+ } else {
+ numthread = GetNumberOfOmpTeams();
+ }
+
+ if (numthread == 1)
+ return 1;
+ if (!__gpu_block_reduce())
+ return 2;
+ if (threadIdx.x == 0)
+ return 1;
+ return 0;
+}
+
+EXTERN
+int32_t __kmpc_reduce_combined(kmp_Indent *loc) {
+ return threadIdx.x == 0 ? 2 : 0;
+}
+
+EXTERN
+int32_t __kmpc_reduce_simd(kmp_Indent *loc) {
+ return (threadIdx.x % 32 == 0) ? 1 : 0;
+}
+
+EXTERN
+void __kmpc_nvptx_end_reduce(int32_t global_tid) {}
+
+EXTERN
+void __kmpc_nvptx_end_reduce_nowait(int32_t global_tid) {}
+
+EXTERN int32_t __kmpc_shuffle_int32(int32_t val, int16_t delta, int16_t size) {
+ return __SHFL_DOWN_SYNC(0xFFFFFFFF, val, delta, size);
+}
+
+EXTERN int64_t __kmpc_shuffle_int64(int64_t val, int16_t delta, int16_t size) {
+ int lo, hi;
+ asm volatile("mov.b64 {%0,%1}, %2;" : "=r"(lo), "=r"(hi) : "l"(val));
+ hi = __SHFL_DOWN_SYNC(0xFFFFFFFF, hi, delta, size);
+ lo = __SHFL_DOWN_SYNC(0xFFFFFFFF, lo, delta, size);
+ asm volatile("mov.b64 %0, {%1,%2};" : "=l"(val) : "r"(lo), "r"(hi));
+ return val;
+}
+
+static INLINE void gpu_regular_warp_reduce(void *reduce_data,
+ kmp_ShuffleReductFctPtr shflFct) {
+ for (uint32_t mask = WARPSIZE / 2; mask > 0; mask /= 2) {
+ shflFct(reduce_data, /*LaneId - not used= */ 0,
+ /*Offset = */ mask, /*AlgoVersion=*/0);
+ }
+}
+
+static INLINE void gpu_irregular_warp_reduce(void *reduce_data,
+ kmp_ShuffleReductFctPtr shflFct,
+ uint32_t size, uint32_t tid) {
+ uint32_t curr_size;
+ uint32_t mask;
+ curr_size = size;
+ mask = curr_size / 2;
+ while (mask > 0) {
+ shflFct(reduce_data, /*LaneId = */ tid, /*Offset=*/mask, /*AlgoVersion=*/1);
+ curr_size = (curr_size + 1) / 2;
+ mask = curr_size / 2;
+ }
+}
+
+static INLINE uint32_t
+gpu_irregular_simd_reduce(void *reduce_data, kmp_ShuffleReductFctPtr shflFct) {
+ uint32_t lanemask_lt;
+ uint32_t lanemask_gt;
+ uint32_t size, remote_id, physical_lane_id;
+ physical_lane_id = GetThreadIdInBlock() % WARPSIZE;
+ asm("mov.u32 %0, %%lanemask_lt;" : "=r"(lanemask_lt));
+ uint32_t Liveness = __BALLOT_SYNC(0xFFFFFFFF, true);
+ uint32_t logical_lane_id = __popc(Liveness & lanemask_lt) * 2;
+ asm("mov.u32 %0, %%lanemask_gt;" : "=r"(lanemask_gt));
+ do {
+ Liveness = __BALLOT_SYNC(0xFFFFFFFF, true);
+ remote_id = __ffs(Liveness & lanemask_gt);
+ size = __popc(Liveness);
+ logical_lane_id /= 2;
+ shflFct(reduce_data, /*LaneId =*/logical_lane_id,
+ /*Offset=*/remote_id - 1 - physical_lane_id, /*AlgoVersion=*/2);
+ } while (logical_lane_id % 2 == 0 && size > 1);
+ return (logical_lane_id == 0);
+}
+
+EXTERN
+int32_t __kmpc_nvptx_simd_reduce_nowait(int32_t global_tid, int32_t num_vars,
+ size_t reduce_size, void *reduce_data,
+ kmp_ShuffleReductFctPtr shflFct,
+ kmp_InterWarpCopyFctPtr cpyFct) {
+ uint32_t Liveness = __BALLOT_SYNC(0xFFFFFFFF, true);
+ if (Liveness == 0xffffffff) {
+ gpu_regular_warp_reduce(reduce_data, shflFct);
+ return GetThreadIdInBlock() % WARPSIZE ==
+ 0; // Result on lane 0 of the simd warp.
+ } else {
+ return gpu_irregular_simd_reduce(
+ reduce_data, shflFct); // Result on the first active lane.
+ }
+}
+
+INLINE
+int32_t nvptx_parallel_reduce_nowait(int32_t global_tid, int32_t num_vars,
+ size_t reduce_size, void *reduce_data,
+ kmp_ShuffleReductFctPtr shflFct,
+ kmp_InterWarpCopyFctPtr cpyFct,
+ bool isSPMDExecutionMode,
+ bool isRuntimeUninitialized = false) {
+ uint32_t BlockThreadId = GetLogicalThreadIdInBlock();
+ uint32_t NumThreads = GetNumberOfOmpThreads(
+ BlockThreadId, isSPMDExecutionMode, isRuntimeUninitialized);
+ if (NumThreads == 1)
+ return 1;
+ /*
+ * This reduce function handles reduction within a team. It handles
+ * parallel regions in both L1 and L2 parallelism levels. It also
+ * supports Generic, SPMD, and NoOMP modes.
+ *
+ * 1. Reduce within a warp.
+ * 2. Warp master copies value to warp 0 via shared memory.
+ * 3. Warp 0 reduces to a single value.
+ * 4. The reduced value is available in the thread that returns 1.
+ */
+
+#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
+ uint32_t WarpsNeeded = (NumThreads + WARPSIZE - 1) / WARPSIZE;
+ uint32_t WarpId = BlockThreadId / WARPSIZE;
+
+ // Volta execution model:
+ // For the Generic execution mode a parallel region either has 1 thread and
+ // beyond that, always a multiple of 32. For the SPMD execution mode we may
+ // have any number of threads.
+ if ((NumThreads % WARPSIZE == 0) || (WarpId < WarpsNeeded - 1))
+ gpu_regular_warp_reduce(reduce_data, shflFct);
+ else if (NumThreads > 1) // Only SPMD execution mode comes thru this case.
+ gpu_irregular_warp_reduce(reduce_data, shflFct,
+ /*LaneCount=*/NumThreads % WARPSIZE,
+ /*LaneId=*/GetThreadIdInBlock() % WARPSIZE);
+
+ // When we have more than [warpsize] number of threads
+ // a block reduction is performed here.
+ //
+ // Only L1 parallel region can enter this if condition.
+ if (NumThreads > WARPSIZE) {
+ // Gather all the reduced values from each warp
+ // to the first warp.
+ cpyFct(reduce_data, WarpsNeeded);
+
+ if (WarpId == 0)
+ gpu_irregular_warp_reduce(reduce_data, shflFct, WarpsNeeded,
+ BlockThreadId);
+
+ return BlockThreadId == 0;
+ }
+ return BlockThreadId == 0;
+#else
+ uint32_t Liveness = __BALLOT_SYNC(0xFFFFFFFF, true);
+ if (Liveness == 0xffffffff) // Full warp
+ gpu_regular_warp_reduce(reduce_data, shflFct);
+ else if (!(Liveness & (Liveness + 1))) // Partial warp but contiguous lanes
+ gpu_irregular_warp_reduce(reduce_data, shflFct,
+ /*LaneCount=*/__popc(Liveness),
+ /*LaneId=*/GetThreadIdInBlock() % WARPSIZE);
+ else if (!isRuntimeUninitialized) // Dispersed lanes. Only threads in L2
+ // parallel region may enter here; return
+ // early.
+ return gpu_irregular_simd_reduce(reduce_data, shflFct);
+
+ // When we have more than [warpsize] number of threads
+ // a block reduction is performed here.
+ //
+ // Only L1 parallel region can enter this if condition.
+ if (NumThreads > WARPSIZE) {
+ uint32_t WarpsNeeded = (NumThreads + WARPSIZE - 1) / WARPSIZE;
+ // Gather all the reduced values from each warp
+ // to the first warp.
+ cpyFct(reduce_data, WarpsNeeded);
+
+ uint32_t WarpId = BlockThreadId / WARPSIZE;
+ if (WarpId == 0)
+ gpu_irregular_warp_reduce(reduce_data, shflFct, WarpsNeeded,
+ BlockThreadId);
+
+ return BlockThreadId == 0;
+ } else if (isRuntimeUninitialized /* Never an L2 parallel region without the OMP runtime */) {
+ return BlockThreadId == 0;
+ }
+
+ // Get the OMP thread Id. This is different from BlockThreadId in the case of
+ // an L2 parallel region.
+ return GetOmpThreadId(BlockThreadId, isSPMDExecutionMode,
+ isRuntimeUninitialized) == 0;
+#endif // __CUDA_ARCH__ >= 700
+}
+
+EXTERN
+int32_t __kmpc_nvptx_parallel_reduce_nowait(
+ int32_t global_tid, int32_t num_vars, size_t reduce_size, void *reduce_data,
+ kmp_ShuffleReductFctPtr shflFct, kmp_InterWarpCopyFctPtr cpyFct) {
+ return nvptx_parallel_reduce_nowait(global_tid, num_vars, reduce_size,
+ reduce_data, shflFct, cpyFct,
+ /*isSPMDExecutionMode=*/isSPMDMode());
+}
+
+EXTERN
+int32_t __kmpc_nvptx_parallel_reduce_nowait_simple_spmd(
+ int32_t global_tid, int32_t num_vars, size_t reduce_size, void *reduce_data,
+ kmp_ShuffleReductFctPtr shflFct, kmp_InterWarpCopyFctPtr cpyFct) {
+ return nvptx_parallel_reduce_nowait(global_tid, num_vars, reduce_size,
+ reduce_data, shflFct, cpyFct,
+ /*isSPMDExecutionMode=*/true,
+ /*isRuntimeUninitialized=*/true);
+}
+
+EXTERN
+int32_t __kmpc_nvptx_parallel_reduce_nowait_simple_generic(
+ int32_t global_tid, int32_t num_vars, size_t reduce_size, void *reduce_data,
+ kmp_ShuffleReductFctPtr shflFct, kmp_InterWarpCopyFctPtr cpyFct) {
+ return nvptx_parallel_reduce_nowait(global_tid, num_vars, reduce_size,
+ reduce_data, shflFct, cpyFct,
+ /*isSPMDExecutionMode=*/false,
+ /*isRuntimeUninitialized=*/true);
+}
+
+INLINE
+int32_t nvptx_teams_reduce_nowait(
+ int32_t global_tid, int32_t num_vars, size_t reduce_size, void *reduce_data,
+ kmp_ShuffleReductFctPtr shflFct, kmp_InterWarpCopyFctPtr cpyFct,
+ kmp_CopyToScratchpadFctPtr scratchFct, kmp_LoadReduceFctPtr ldFct,
+ bool isSPMDExecutionMode, bool isRuntimeUninitialized = false) {
+ uint32_t ThreadId = GetLogicalThreadIdInBlock();
+ // In non-generic mode all workers participate in the teams reduction.
+ // In generic mode only the team master participates in the teams
+ // reduction because the workers are waiting for parallel work.
+ uint32_t NumThreads =
+ isSPMDExecutionMode
+ ? GetNumberOfOmpThreads(ThreadId, /*isSPMDExecutionMode=*/true,
+ isRuntimeUninitialized)
+ : /*Master thread only*/ 1;
+ uint32_t TeamId = GetBlockIdInKernel();
+ uint32_t NumTeams = GetNumberOfBlocksInKernel();
+ __shared__ volatile bool IsLastTeam;
+
+ // Team masters of all teams write to the scratchpad.
+ if (ThreadId == 0) {
+ unsigned int *timestamp = GetTeamsReductionTimestamp();
+ char *scratchpad = GetTeamsReductionScratchpad();
+
+ scratchFct(reduce_data, scratchpad, TeamId, NumTeams);
+ __threadfence();
+
+ // atomicInc increments 'timestamp' and has a range [0, NumTeams-1].
+ // It resets 'timestamp' back to 0 once the last team increments
+ // this counter.
+ unsigned val = atomicInc(timestamp, NumTeams - 1);
+ IsLastTeam = val == NumTeams - 1;
+ }
+
+ // We have to wait on L1 barrier because in GENERIC mode the workers
+ // are waiting on barrier 0 for work.
+ //
+ // If we guard this barrier as follows it leads to deadlock, probably
+ // because of a compiler bug: if (!IsGenericMode()) __syncthreads();
+ uint16_t SyncWarps = (NumThreads + WARPSIZE - 1) / WARPSIZE;
+ named_sync(L1_BARRIER, SyncWarps * WARPSIZE);
+
+ // If this team is not the last, quit.
+ if (/* Volatile read by all threads */ !IsLastTeam)
+ return 0;
+
+ //
+ // Last team processing.
+ //
+
+ // Threads in excess of #teams do not participate in reduction of the
+ // scratchpad values.
+#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700
+ uint32_t ActiveThreads = NumThreads;
+ if (NumTeams < NumThreads) {
+ ActiveThreads =
+ (NumTeams < WARPSIZE) ? 1 : NumTeams & ~((uint16_t)WARPSIZE - 1);
+ }
+ if (ThreadId >= ActiveThreads)
+ return 0;
+
+ // Load from scratchpad and reduce.
+ char *scratchpad = GetTeamsReductionScratchpad();
+ ldFct(reduce_data, scratchpad, ThreadId, NumTeams, /*Load only*/ 0);
+ for (uint32_t i = ActiveThreads + ThreadId; i < NumTeams; i += ActiveThreads)
+ ldFct(reduce_data, scratchpad, i, NumTeams, /*Load and reduce*/ 1);
+
+ uint32_t WarpsNeeded = (ActiveThreads + WARPSIZE - 1) / WARPSIZE;
+ uint32_t WarpId = ThreadId / WARPSIZE;
+
+ // Reduce across warps to the warp master.
+ if ((ActiveThreads % WARPSIZE == 0) ||
+ (WarpId < WarpsNeeded - 1)) // Full warp
+ gpu_regular_warp_reduce(reduce_data, shflFct);
+ else if (ActiveThreads > 1) // Partial warp but contiguous lanes
+ // Only SPMD execution mode comes thru this case.
+ gpu_irregular_warp_reduce(reduce_data, shflFct,
+ /*LaneCount=*/ActiveThreads % WARPSIZE,
+ /*LaneId=*/ThreadId % WARPSIZE);
+
+ // When we have more than [warpsize] number of threads
+ // a block reduction is performed here.
+ if (ActiveThreads > WARPSIZE) {
+ // Gather all the reduced values from each warp
+ // to the first warp.
+ cpyFct(reduce_data, WarpsNeeded);
+
+ if (WarpId == 0)
+ gpu_irregular_warp_reduce(reduce_data, shflFct, WarpsNeeded, ThreadId);
+ }
+#else
+ if (ThreadId >= NumTeams)
+ return 0;
+
+ // Load from scratchpad and reduce.
+ char *scratchpad = GetTeamsReductionScratchpad();
+ ldFct(reduce_data, scratchpad, ThreadId, NumTeams, /*Load only*/ 0);
+ for (uint32_t i = NumThreads + ThreadId; i < NumTeams; i += NumThreads)
+ ldFct(reduce_data, scratchpad, i, NumTeams, /*Load and reduce*/ 1);
+
+ // Reduce across warps to the warp master.
+ uint32_t Liveness = __BALLOT_SYNC(0xFFFFFFFF, true);
+ if (Liveness == 0xffffffff) // Full warp
+ gpu_regular_warp_reduce(reduce_data, shflFct);
+ else // Partial warp but contiguous lanes
+ gpu_irregular_warp_reduce(reduce_data, shflFct,
+ /*LaneCount=*/__popc(Liveness),
+ /*LaneId=*/ThreadId % WARPSIZE);
+
+ // When we have more than [warpsize] number of threads
+ // a block reduction is performed here.
+ uint32_t ActiveThreads = NumTeams < NumThreads ? NumTeams : NumThreads;
+ if (ActiveThreads > WARPSIZE) {
+ uint32_t WarpsNeeded = (ActiveThreads + WARPSIZE - 1) / WARPSIZE;
+ // Gather all the reduced values from each warp
+ // to the first warp.
+ cpyFct(reduce_data, WarpsNeeded);
+
+ uint32_t WarpId = ThreadId / WARPSIZE;
+ if (WarpId == 0)
+ gpu_irregular_warp_reduce(reduce_data, shflFct, WarpsNeeded, ThreadId);
+ }
+#endif // __CUDA_ARCH__ >= 700
+
+ return ThreadId == 0;
+}
+
+EXTERN
+int32_t __kmpc_nvptx_teams_reduce_nowait(int32_t global_tid, int32_t num_vars,
+ size_t reduce_size, void *reduce_data,
+ kmp_ShuffleReductFctPtr shflFct,
+ kmp_InterWarpCopyFctPtr cpyFct,
+ kmp_CopyToScratchpadFctPtr scratchFct,
+ kmp_LoadReduceFctPtr ldFct) {
+ return nvptx_teams_reduce_nowait(global_tid, num_vars, reduce_size,
+ reduce_data, shflFct, cpyFct, scratchFct,
+ ldFct, /*isSPMDExecutionMode=*/isSPMDMode());
+}
+
+EXTERN
+int32_t __kmpc_nvptx_teams_reduce_nowait_simple_spmd(
+ int32_t global_tid, int32_t num_vars, size_t reduce_size, void *reduce_data,
+ kmp_ShuffleReductFctPtr shflFct, kmp_InterWarpCopyFctPtr cpyFct,
+ kmp_CopyToScratchpadFctPtr scratchFct, kmp_LoadReduceFctPtr ldFct) {
+ return nvptx_teams_reduce_nowait(global_tid, num_vars, reduce_size,
+ reduce_data, shflFct, cpyFct, scratchFct,
+ ldFct,
+ /*isSPMDExecutionMode=*/true,
+ /*isRuntimeUninitialized=*/true);
+}
+
+EXTERN
+int32_t __kmpc_nvptx_teams_reduce_nowait_simple_generic(
+ int32_t global_tid, int32_t num_vars, size_t reduce_size, void *reduce_data,
+ kmp_ShuffleReductFctPtr shflFct, kmp_InterWarpCopyFctPtr cpyFct,
+ kmp_CopyToScratchpadFctPtr scratchFct, kmp_LoadReduceFctPtr ldFct) {
+ return nvptx_teams_reduce_nowait(global_tid, num_vars, reduce_size,
+ reduce_data, shflFct, cpyFct, scratchFct,
+ ldFct,
+ /*isSPMDExecutionMode=*/false,
+ /*isRuntimeUninitialized=*/true);
+}
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/state-queue.h b/final/libomptarget/deviceRTLs/nvptx/src/state-queue.h
new file mode 100644
index 0000000..accb1f7
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/state-queue.h
@@ -0,0 +1,52 @@
+//===--------- statequeue.h - NVPTX OpenMP GPU State Queue ------- CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a queue to hand out OpenMP state objects to teams of
+// one or more kernels.
+//
+// Reference:
+// Thomas R.W. Scogland and Wu-chun Feng. 2015.
+// Design and Evaluation of Scalable Concurrent Queues for Many-Core
+// Architectures. International Conference on Performance Engineering.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef __STATE_QUEUE_H
+#define __STATE_QUEUE_H
+
+#include <stdint.h>
+
+#include "option.h" // choices we have
+
+template <typename ElementType, uint32_t SIZE> class omptarget_nvptx_Queue {
+private:
+ ElementType elements[SIZE];
+ volatile ElementType *elementQueue[SIZE];
+ volatile uint32_t head;
+ volatile uint32_t ids[SIZE];
+ volatile uint32_t tail;
+
+ static const uint32_t MAX_ID = (1u << 31) / SIZE / 2;
+ INLINE uint32_t ENQUEUE_TICKET();
+ INLINE uint32_t DEQUEUE_TICKET();
+ INLINE uint32_t ID(uint32_t ticket);
+ INLINE bool IsServing(uint32_t slot, uint32_t id);
+ INLINE void PushElement(uint32_t slot, ElementType *element);
+ INLINE ElementType *PopElement(uint32_t slot);
+ INLINE void DoneServing(uint32_t slot, uint32_t id);
+
+public:
+ INLINE omptarget_nvptx_Queue(){};
+ INLINE void Enqueue(ElementType *element);
+ INLINE ElementType *Dequeue();
+};
+
+#include "state-queuei.h"
+
+#endif
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/state-queuei.h b/final/libomptarget/deviceRTLs/nvptx/src/state-queuei.h
new file mode 100644
index 0000000..c9ffd54
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/state-queuei.h
@@ -0,0 +1,89 @@
+//===------- state-queue.cu - NVPTX OpenMP GPU State Queue ------- CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of a queue to hand out OpenMP state
+// objects to teams of one or more kernels.
+//
+// Reference:
+// Thomas R.W. Scogland and Wu-chun Feng. 2015.
+// Design and Evaluation of Scalable Concurrent Queues for Many-Core
+// Architectures. International Conference on Performance Engineering.
+//
+//===----------------------------------------------------------------------===//
+
+#include "state-queue.h"
+
+template <typename ElementType, uint32_t SIZE>
+INLINE uint32_t omptarget_nvptx_Queue<ElementType, SIZE>::ENQUEUE_TICKET() {
+ return atomicAdd((unsigned int *)&tail, 1);
+}
+
+template <typename ElementType, uint32_t SIZE>
+INLINE uint32_t omptarget_nvptx_Queue<ElementType, SIZE>::DEQUEUE_TICKET() {
+ return atomicAdd((unsigned int *)&head, 1);
+}
+
+template <typename ElementType, uint32_t SIZE>
+INLINE uint32_t omptarget_nvptx_Queue<ElementType, SIZE>::ID(uint32_t ticket) {
+ return (ticket / SIZE) * 2;
+}
+
+template <typename ElementType, uint32_t SIZE>
+INLINE bool omptarget_nvptx_Queue<ElementType, SIZE>::IsServing(uint32_t slot,
+ uint32_t id) {
+ return atomicAdd((unsigned int *)&ids[slot], 0) == id;
+}
+
+template <typename ElementType, uint32_t SIZE>
+INLINE void
+omptarget_nvptx_Queue<ElementType, SIZE>::PushElement(uint32_t slot,
+ ElementType *element) {
+ atomicExch((unsigned long long *)&elementQueue[slot],
+ (unsigned long long)element);
+}
+
+template <typename ElementType, uint32_t SIZE>
+INLINE ElementType *
+omptarget_nvptx_Queue<ElementType, SIZE>::PopElement(uint32_t slot) {
+ return (ElementType *)atomicAdd((unsigned long long *)&elementQueue[slot],
+ (unsigned long long)0);
+}
+
+template <typename ElementType, uint32_t SIZE>
+INLINE void omptarget_nvptx_Queue<ElementType, SIZE>::DoneServing(uint32_t slot,
+ uint32_t id) {
+ atomicExch((unsigned int *)&ids[slot], (id + 1) % MAX_ID);
+}
+
+template <typename ElementType, uint32_t SIZE>
+INLINE void
+omptarget_nvptx_Queue<ElementType, SIZE>::Enqueue(ElementType *element) {
+ uint32_t ticket = ENQUEUE_TICKET();
+ uint32_t slot = ticket % SIZE;
+ uint32_t id = ID(ticket) + 1;
+ while (!IsServing(slot, id))
+ ;
+ PushElement(slot, element);
+ DoneServing(slot, id);
+}
+
+template <typename ElementType, uint32_t SIZE>
+INLINE ElementType *omptarget_nvptx_Queue<ElementType, SIZE>::Dequeue() {
+ uint32_t ticket = DEQUEUE_TICKET();
+ uint32_t slot = ticket % SIZE;
+ uint32_t id = ID(ticket);
+ while (!IsServing(slot, id))
+ ;
+ ElementType *element = PopElement(slot);
+ // This is to populate the queue because of the lack of GPU constructors.
+ if (element == 0)
+ element = &elements[slot];
+ DoneServing(slot, id);
+ return element;
+}
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/support.h b/final/libomptarget/deviceRTLs/nvptx/src/support.h
new file mode 100644
index 0000000..44298f4
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/support.h
@@ -0,0 +1,92 @@
+//===--------- support.h - NVPTX OpenMP support functions -------- CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Wrapper to some functions natively supported by the GPU.
+//
+//===----------------------------------------------------------------------===//
+
+////////////////////////////////////////////////////////////////////////////////
+// Execution Parameters
+////////////////////////////////////////////////////////////////////////////////
+enum ExecutionMode {
+ Generic = 0x00u,
+ Spmd = 0x01u,
+ ModeMask = 0x01u,
+};
+
+enum RuntimeMode {
+ RuntimeInitialized = 0x00u,
+ RuntimeUninitialized = 0x02u,
+ RuntimeMask = 0x02u,
+};
+
+INLINE void setExecutionParameters(ExecutionMode EMode, RuntimeMode RMode);
+INLINE bool isGenericMode();
+INLINE bool isSPMDMode();
+INLINE bool isRuntimeUninitialized();
+INLINE bool isRuntimeInitialized();
+
+////////////////////////////////////////////////////////////////////////////////
+// get info from machine
+////////////////////////////////////////////////////////////////////////////////
+
+// get low level ids of resources
+INLINE int GetThreadIdInBlock();
+INLINE int GetBlockIdInKernel();
+INLINE int GetNumberOfBlocksInKernel();
+INLINE int GetNumberOfThreadsInBlock();
+
+// get global ids to locate tread/team info (constant regardless of OMP)
+INLINE int GetLogicalThreadIdInBlock();
+INLINE int GetMasterThreadID();
+INLINE int GetNumberOfWorkersInTeam();
+
+// get OpenMP thread and team ids
+INLINE int GetOmpThreadId(int threadId, bool isSPMDExecutionMode,
+ bool isRuntimeUninitialized); // omp_thread_num
+INLINE int GetOmpTeamId(); // omp_team_num
+
+// get OpenMP number of threads and team
+INLINE int
+GetNumberOfOmpThreads(int threadId, bool isSPMDExecutionMode,
+ bool isRuntimeUninitialized); // omp_num_threads
+INLINE int GetNumberOfOmpTeams(); // omp_num_teams
+
+// get OpenMP number of procs
+INLINE int GetNumberOfProcsInTeam();
+INLINE int GetNumberOfProcsInDevice();
+
+// masters
+INLINE int IsTeamMaster(int ompThreadId);
+
+////////////////////////////////////////////////////////////////////////////////
+// Memory
+////////////////////////////////////////////////////////////////////////////////
+
+// safe alloc and free
+INLINE void *SafeMalloc(size_t size, const char *msg); // check if success
+INLINE void *SafeFree(void *ptr, const char *msg);
+// pad to a alignment (power of 2 only)
+INLINE unsigned long PadBytes(unsigned long size, unsigned long alignment);
+#define ADD_BYTES(_addr, _bytes) \
+ ((void *)((char *)((void *)(_addr)) + (_bytes)))
+#define SUB_BYTES(_addr, _bytes) \
+ ((void *)((char *)((void *)(_addr)) - (_bytes)))
+
+////////////////////////////////////////////////////////////////////////////////
+// Named Barrier Routines
+////////////////////////////////////////////////////////////////////////////////
+INLINE void named_sync(const int barrier, const int num_threads);
+
+////////////////////////////////////////////////////////////////////////////////
+// Teams Reduction Scratchpad Helpers
+////////////////////////////////////////////////////////////////////////////////
+INLINE unsigned int *GetTeamsReductionTimestamp();
+INLINE char *GetTeamsReductionScratchpad();
+INLINE void SetTeamsReductionScratchpadPtr(void *ScratchpadPtr);
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/supporti.h b/final/libomptarget/deviceRTLs/nvptx/src/supporti.h
new file mode 100644
index 0000000..4de2039
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/supporti.h
@@ -0,0 +1,215 @@
+//===--------- supporti.h - NVPTX OpenMP support functions ------- CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Wrapper implementation to some functions natively supported by the GPU.
+//
+//===----------------------------------------------------------------------===//
+
+////////////////////////////////////////////////////////////////////////////////
+// Execution Parameters
+////////////////////////////////////////////////////////////////////////////////
+
+INLINE void setExecutionParameters(ExecutionMode EMode, RuntimeMode RMode) {
+ execution_param = EMode;
+ execution_param |= RMode;
+}
+
+INLINE bool isGenericMode() { return (execution_param & ModeMask) == Generic; }
+
+INLINE bool isSPMDMode() { return (execution_param & ModeMask) == Spmd; }
+
+INLINE bool isRuntimeUninitialized() {
+ return (execution_param & RuntimeMask) == RuntimeUninitialized;
+}
+
+INLINE bool isRuntimeInitialized() {
+ return (execution_param & RuntimeMask) == RuntimeInitialized;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// support: get info from machine
+////////////////////////////////////////////////////////////////////////////////
+
+////////////////////////////////////////////////////////////////////////////////
+//
+// Calls to the NVPTX layer (assuming 1D layout)
+//
+////////////////////////////////////////////////////////////////////////////////
+
+INLINE int GetThreadIdInBlock() { return threadIdx.x; }
+
+INLINE int GetBlockIdInKernel() { return blockIdx.x; }
+
+INLINE int GetNumberOfBlocksInKernel() { return gridDim.x; }
+
+INLINE int GetNumberOfThreadsInBlock() { return blockDim.x; }
+
+////////////////////////////////////////////////////////////////////////////////
+//
+// Calls to the Generic Scheme Implementation Layer (assuming 1D layout)
+//
+////////////////////////////////////////////////////////////////////////////////
+
+// The master thread id is the first thread (lane) of the last warp.
+// Thread id is 0 indexed.
+// E.g: If NumThreads is 33, master id is 32.
+// If NumThreads is 64, master id is 32.
+// If NumThreads is 97, master id is 96.
+// If NumThreads is 1024, master id is 992.
+//
+// Called in Generic Execution Mode only.
+INLINE int GetMasterThreadID() { return (blockDim.x - 1) & ~(WARPSIZE - 1); }
+
+// The last warp is reserved for the master; other warps are workers.
+// Called in Generic Execution Mode only.
+INLINE int GetNumberOfWorkersInTeam() { return GetMasterThreadID(); }
+
+////////////////////////////////////////////////////////////////////////////////
+// get thread id in team
+
+// This function may be called in a parallel region by the workers
+// or a serial region by the master. If the master (whose CUDA thread
+// id is GetMasterThreadID()) calls this routine, we return 0 because
+// it is a shadow for the first worker.
+INLINE int GetLogicalThreadIdInBlock() {
+ // return GetThreadIdInBlock() % GetMasterThreadID();
+
+ // Implemented using control flow (predication) instead of with a modulo
+ // operation.
+ int tid = GetThreadIdInBlock();
+ if (isGenericMode() && tid >= GetMasterThreadID())
+ return 0;
+ else
+ return tid;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+//
+// OpenMP Thread Support Layer
+//
+////////////////////////////////////////////////////////////////////////////////
+
+INLINE int GetOmpThreadId(int threadId, bool isSPMDExecutionMode,
+ bool isRuntimeUninitialized) {
+ // omp_thread_num
+ int rc;
+
+ if (isRuntimeUninitialized) {
+ rc = GetThreadIdInBlock();
+ if (!isSPMDExecutionMode && rc >= GetMasterThreadID())
+ rc = 0;
+ } else {
+ omptarget_nvptx_TaskDescr *currTaskDescr =
+ omptarget_nvptx_threadPrivateContext->GetTopLevelTaskDescr(threadId);
+ rc = currTaskDescr->ThreadId();
+ }
+ return rc;
+}
+
+INLINE int GetNumberOfOmpThreads(int threadId, bool isSPMDExecutionMode,
+ bool isRuntimeUninitialized) {
+ // omp_num_threads
+ int rc;
+
+ if (isRuntimeUninitialized) {
+ rc = isSPMDExecutionMode ? GetNumberOfThreadsInBlock()
+ : GetNumberOfThreadsInBlock() - WARPSIZE;
+ } else {
+ omptarget_nvptx_TaskDescr *currTaskDescr =
+ omptarget_nvptx_threadPrivateContext->GetTopLevelTaskDescr(threadId);
+ ASSERT0(LT_FUSSY, currTaskDescr, "expected a top task descr");
+ rc = currTaskDescr->ThreadsInTeam();
+ }
+
+ return rc;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Team id linked to OpenMP
+
+INLINE int GetOmpTeamId() {
+ // omp_team_num
+ return GetBlockIdInKernel(); // assume 1 block per team
+}
+
+INLINE int GetNumberOfOmpTeams() {
+ // omp_num_teams
+ return GetNumberOfBlocksInKernel(); // assume 1 block per team
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Masters
+
+INLINE int IsTeamMaster(int ompThreadId) { return (ompThreadId == 0); }
+
+////////////////////////////////////////////////////////////////////////////////
+// get OpenMP number of procs
+
+// Get the number of processors in the device.
+INLINE int GetNumberOfProcsInDevice() {
+ if (isGenericMode())
+ return GetNumberOfWorkersInTeam();
+ return GetNumberOfThreadsInBlock();
+}
+
+INLINE int GetNumberOfProcsInTeam() { return GetNumberOfProcsInDevice(); }
+
+////////////////////////////////////////////////////////////////////////////////
+// Memory
+////////////////////////////////////////////////////////////////////////////////
+
+INLINE unsigned long PadBytes(unsigned long size,
+ unsigned long alignment) // must be a power of 2
+{
+ // compute the necessary padding to satisfy alignment constraint
+ ASSERT(LT_FUSSY, (alignment & (alignment - 1)) == 0,
+ "alignment %ld is not a power of 2\n", alignment);
+ return (~(unsigned long)size + 1) & (alignment - 1);
+}
+
+INLINE void *SafeMalloc(size_t size, const char *msg) // check if success
+{
+ void *ptr = malloc(size);
+ PRINT(LD_MEM, "malloc data of size %zu for %s: 0x%llx\n", size, msg, P64(ptr));
+ ASSERT(LT_SAFETY, ptr, "failed to allocate %zu bytes for %s\n", size, msg);
+ return ptr;
+}
+
+INLINE void *SafeFree(void *ptr, const char *msg) {
+ PRINT(LD_MEM, "free data ptr 0x%llx for %s\n", P64(ptr), msg);
+ free(ptr);
+ return NULL;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Named Barrier Routines
+////////////////////////////////////////////////////////////////////////////////
+
+INLINE void named_sync(const int barrier, const int num_threads) {
+ asm volatile("bar.sync %0, %1;"
+ :
+ : "r"(barrier), "r"(num_threads)
+ : "memory");
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Teams Reduction Scratchpad Helpers
+////////////////////////////////////////////////////////////////////////////////
+
+INLINE unsigned int *GetTeamsReductionTimestamp() {
+ return static_cast<unsigned int *>(ReductionScratchpadPtr);
+}
+
+INLINE char *GetTeamsReductionScratchpad() {
+ return static_cast<char *>(ReductionScratchpadPtr) + 256;
+}
+
+INLINE void SetTeamsReductionScratchpadPtr(void *ScratchpadPtr) {
+ ReductionScratchpadPtr = ScratchpadPtr;
+}
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/sync.cu b/final/libomptarget/deviceRTLs/nvptx/src/sync.cu
new file mode 100644
index 0000000..7e55df8
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/sync.cu
@@ -0,0 +1,153 @@
+//===------------ sync.h - NVPTX OpenMP synchronizations --------- CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Include all synchronization.
+//
+//===----------------------------------------------------------------------===//
+
+#include "omptarget-nvptx.h"
+
+////////////////////////////////////////////////////////////////////////////////
+// KMP Ordered calls
+////////////////////////////////////////////////////////////////////////////////
+
+EXTERN void __kmpc_ordered(kmp_Indent *loc, int32_t tid) {
+ PRINT0(LD_IO, "call kmpc_ordered\n");
+}
+
+EXTERN void __kmpc_end_ordered(kmp_Indent *loc, int32_t tid) {
+ PRINT0(LD_IO, "call kmpc_end_ordered\n");
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// KMP Barriers
+////////////////////////////////////////////////////////////////////////////////
+
+// a team is a block: we can use CUDA native synchronization mechanism
+// FIXME: what if not all threads (warps) participate to the barrier?
+// We may need to implement it differently
+
+EXTERN int32_t __kmpc_cancel_barrier(kmp_Indent *loc_ref, int32_t tid) {
+ PRINT0(LD_IO, "call kmpc_cancel_barrier\n");
+ __kmpc_barrier(loc_ref, tid);
+ PRINT0(LD_SYNC, "completed kmpc_cancel_barrier\n");
+ return 0;
+}
+
+EXTERN void __kmpc_barrier(kmp_Indent *loc_ref, int32_t tid) {
+ if (isRuntimeUninitialized()) {
+ if (isSPMDMode())
+ __kmpc_barrier_simple_spmd(loc_ref, tid);
+ else
+ __kmpc_barrier_simple_generic(loc_ref, tid);
+ } else {
+ tid = GetLogicalThreadIdInBlock();
+ omptarget_nvptx_TaskDescr *currTaskDescr =
+ omptarget_nvptx_threadPrivateContext->GetTopLevelTaskDescr(tid);
+ int numberOfActiveOMPThreads = GetNumberOfOmpThreads(
+ tid, isSPMDMode(), /*isRuntimeUninitialized=*/false);
+ if (numberOfActiveOMPThreads > 1) {
+ if (isSPMDMode()) {
+ __kmpc_barrier_simple_spmd(loc_ref, tid);
+ } else {
+ // The #threads parameter must be rounded up to the WARPSIZE.
+ int threads =
+ WARPSIZE * ((numberOfActiveOMPThreads + WARPSIZE - 1) / WARPSIZE);
+
+ PRINT(LD_SYNC,
+ "call kmpc_barrier with %d omp threads, sync parameter %d\n",
+ numberOfActiveOMPThreads, threads);
+ // Barrier #1 is for synchronization among active threads.
+ named_sync(L1_BARRIER, threads);
+ }
+ } // numberOfActiveOMPThreads > 1
+ PRINT0(LD_SYNC, "completed kmpc_barrier\n");
+ }
+}
+
+// Emit a simple barrier call in SPMD mode. Assumes the caller is in an L0
+// parallel region and that all worker threads participate.
+EXTERN void __kmpc_barrier_simple_spmd(kmp_Indent *loc_ref, int32_t tid) {
+ PRINT0(LD_SYNC, "call kmpc_barrier_simple_spmd\n");
+ __syncthreads();
+ PRINT0(LD_SYNC, "completed kmpc_barrier_simple_spmd\n");
+}
+
+// Emit a simple barrier call in Generic mode. Assumes the caller is in an L0
+// parallel region and that all worker threads participate.
+EXTERN void __kmpc_barrier_simple_generic(kmp_Indent *loc_ref, int32_t tid) {
+ int numberOfActiveOMPThreads = GetNumberOfThreadsInBlock() - WARPSIZE;
+ // The #threads parameter must be rounded up to the WARPSIZE.
+ int threads =
+ WARPSIZE * ((numberOfActiveOMPThreads + WARPSIZE - 1) / WARPSIZE);
+
+ PRINT(LD_SYNC,
+ "call kmpc_barrier_simple_generic with %d omp threads, sync parameter "
+ "%d\n",
+ numberOfActiveOMPThreads, threads);
+ // Barrier #1 is for synchronization among active threads.
+ named_sync(L1_BARRIER, threads);
+ PRINT0(LD_SYNC, "completed kmpc_barrier_simple_generic\n");
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// KMP MASTER
+////////////////////////////////////////////////////////////////////////////////
+
+INLINE int32_t IsMaster() {
+ // only the team master updates the state
+ int tid = GetLogicalThreadIdInBlock();
+ int ompThreadId = GetOmpThreadId(tid, isSPMDMode(), isRuntimeUninitialized());
+ return IsTeamMaster(ompThreadId);
+}
+
+EXTERN int32_t __kmpc_master(kmp_Indent *loc, int32_t global_tid) {
+ PRINT0(LD_IO, "call kmpc_master\n");
+ return IsMaster();
+}
+
+EXTERN void __kmpc_end_master(kmp_Indent *loc, int32_t global_tid) {
+ PRINT0(LD_IO, "call kmpc_end_master\n");
+ ASSERT0(LT_FUSSY, IsMaster(), "expected only master here");
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// KMP SINGLE
+////////////////////////////////////////////////////////////////////////////////
+
+EXTERN int32_t __kmpc_single(kmp_Indent *loc, int32_t global_tid) {
+ PRINT0(LD_IO, "call kmpc_single\n");
+ // decide to implement single with master; master get the single
+ return IsMaster();
+}
+
+EXTERN void __kmpc_end_single(kmp_Indent *loc, int32_t global_tid) {
+ PRINT0(LD_IO, "call kmpc_end_single\n");
+ // decide to implement single with master: master get the single
+ ASSERT0(LT_FUSSY, IsMaster(), "expected only master here");
+ // sync barrier is explicitely called... so that is not a problem
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Flush
+////////////////////////////////////////////////////////////////////////////////
+
+EXTERN void __kmpc_flush(kmp_Indent *loc) {
+ PRINT0(LD_IO, "call kmpc_flush\n");
+ __threadfence_block();
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Vote
+////////////////////////////////////////////////////////////////////////////////
+
+EXTERN int32_t __kmpc_warp_active_thread_mask() {
+ PRINT0(LD_IO, "call __kmpc_warp_active_thread_mask\n");
+ return __ACTIVEMASK();
+}
diff --git a/final/libomptarget/deviceRTLs/nvptx/src/task.cu b/final/libomptarget/deviceRTLs/nvptx/src/task.cu
new file mode 100644
index 0000000..8d47967
--- /dev/null
+++ b/final/libomptarget/deviceRTLs/nvptx/src/task.cu
@@ -0,0 +1,208 @@
+//===------------- task.h - NVPTX OpenMP tasks support ----------- CUDA -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Task implementation support.
+//
+// explicit task structure uses
+// omptarget_nvptx task
+// kmp_task
+//
+// where kmp_task is
+// - klegacy_TaskDescr <- task pointer
+// shared -> X
+// routine
+// part_id
+// descr
+// - private (of size given by task_alloc call). Accessed by
+// task+sizeof(klegacy_TaskDescr)
+// * private data *
+// - shared: X. Accessed by shared ptr in klegacy_TaskDescr
+// * pointer table to shared variables *
+// - end
+//
+//===----------------------------------------------------------------------===//
+
+#include "omptarget-nvptx.h"
+
+EXTERN kmp_TaskDescr *__kmpc_omp_task_alloc(
+ kmp_Indent *loc, // unused
+ uint32_t global_tid, // unused
+ int32_t flag, // unused (because in our impl, all are immediately exec
+ size_t sizeOfTaskInclPrivate, size_t sizeOfSharedTable,
+ kmp_TaskFctPtr taskSub) {
+ PRINT(LD_IO,
+ "call __kmpc_omp_task_alloc(size priv&struct %lld, shared %lld, "
+ "fct 0x%llx)\n",
+ P64(sizeOfTaskInclPrivate), P64(sizeOfSharedTable), P64(taskSub));
+ // want task+priv to be a multiple of 8 bytes
+ size_t padForTaskInclPriv = PadBytes(sizeOfTaskInclPrivate, sizeof(void *));
+ sizeOfTaskInclPrivate += padForTaskInclPriv;
+ size_t kmpSize = sizeOfTaskInclPrivate + sizeOfSharedTable;
+ ASSERT(LT_FUSSY, sizeof(omptarget_nvptx_TaskDescr) % sizeof(void *) == 0,
+ "need task descr of size %d to be a multiple of %d\n",
+ sizeof(omptarget_nvptx_TaskDescr), sizeof(void *));
+ size_t totSize = sizeof(omptarget_nvptx_TaskDescr) + kmpSize;
+ omptarget_nvptx_ExplicitTaskDescr *newExplicitTaskDescr =
+ (omptarget_nvptx_ExplicitTaskDescr *)SafeMalloc(
+ totSize, "explicit task descriptor");
+ kmp_TaskDescr *newKmpTaskDescr = &newExplicitTaskDescr->kmpTaskDescr;
+ ASSERT0(LT_FUSSY,
+ (uint64_t)newKmpTaskDescr ==
+ (uint64_t)ADD_BYTES(newExplicitTaskDescr,
+ sizeof(omptarget_nvptx_TaskDescr)),
+ "bad size assumptions");
+ // init kmp_TaskDescr
+ newKmpTaskDescr->sharedPointerTable =
+ (void *)((char *)newKmpTaskDescr + sizeOfTaskInclPrivate);
+ newKmpTaskDescr->sub = taskSub;
+ newKmpTaskDescr->destructors = NULL;
+ PRINT(LD_TASK, "return with task descr kmp: 0x%llx, omptarget-nvptx 0x%llx\n",
+ P64(newKmpTaskDescr), P64(newExplicitTaskDescr));
+
+ return newKmpTaskDescr;
+}
+
+EXTERN int32_t __kmpc_omp_task(kmp_Indent *loc, uint32_t global_tid,
+ kmp_TaskDescr *newKmpTaskDescr) {
+ return __kmpc_omp_task_with_deps(loc, global_tid, newKmpTaskDescr, 0, 0, 0,
+ 0);
+}
+
+EXTERN int32_t __kmpc_omp_task_with_deps(kmp_Indent *loc, uint32_t global_tid,
+ kmp_TaskDescr *newKmpTaskDescr,
+ int32_t depNum, void *depList,
+ int32_t noAliasDepNum,
+ void *noAliasDepList) {
+ PRINT(LD_IO, "call to __kmpc_omp_task_with_deps(task 0x%llx)\n",
+ P64(newKmpTaskDescr));
+ // 1. get explict task descr from kmp task descr
+ omptarget_nvptx_ExplicitTaskDescr *newExplicitTaskDescr =
+ (omptarget_nvptx_ExplicitTaskDescr *)SUB_BYTES(
+ newKmpTaskDescr, sizeof(omptarget_nvptx_TaskDescr));
+ ASSERT0(LT_FUSSY, &newExplicitTaskDescr->kmpTaskDescr == newKmpTaskDescr,
+ "bad assumptions");
+ omptarget_nvptx_TaskDescr *newTaskDescr = &newExplicitTaskDescr->taskDescr;
+ ASSERT0(LT_FUSSY, (uint64_t)newTaskDescr == (uint64_t)newExplicitTaskDescr,
+ "bad assumptions");
+
+ // 2. push new context: update new task descriptor
+ int tid = GetLogicalThreadIdInBlock();
+ omptarget_nvptx_TaskDescr *parentTaskDescr = getMyTopTaskDescriptor(tid);
+ newTaskDescr->CopyForExplicitTask(parentTaskDescr);
+ // set new task descriptor as top
+ omptarget_nvptx_threadPrivateContext->SetTopLevelTaskDescr(tid, newTaskDescr);
+
+ // 3. call sub
+ PRINT(LD_TASK, "call task sub 0x%llx(task descr 0x%llx)\n",
+ P64(newKmpTaskDescr->sub), P64(newKmpTaskDescr));
+ newKmpTaskDescr->sub(0, newKmpTaskDescr);
+ PRINT(LD_TASK, "return from call task sub 0x%llx()\n",
+ P64(newKmpTaskDescr->sub));
+
+ // 4. pop context
+ omptarget_nvptx_threadPrivateContext->SetTopLevelTaskDescr(tid,
+ parentTaskDescr);
+ // 5. free
+ SafeFree(newExplicitTaskDescr, "explicit task descriptor");
+ return 0;
+}
+
+EXTERN void __kmpc_omp_task_begin_if0(kmp_Indent *loc, uint32_t global_tid,
+ kmp_TaskDescr *newKmpTaskDescr) {
+ PRINT(LD_IO, "call to __kmpc_omp_task_begin_if0(task 0x%llx)\n",
+ P64(newKmpTaskDescr));
+ // 1. get explict task descr from kmp task descr
+ omptarget_nvptx_ExplicitTaskDescr *newExplicitTaskDescr =
+ (omptarget_nvptx_ExplicitTaskDescr *)SUB_BYTES(
+ newKmpTaskDescr, sizeof(omptarget_nvptx_TaskDescr));
+ ASSERT0(LT_FUSSY, &newExplicitTaskDescr->kmpTaskDescr == newKmpTaskDescr,
+ "bad assumptions");
+ omptarget_nvptx_TaskDescr *newTaskDescr = &newExplicitTaskDescr->taskDescr;
+ ASSERT0(LT_FUSSY, (uint64_t)newTaskDescr == (uint64_t)newExplicitTaskDescr,
+ "bad assumptions");
+
+ // 2. push new context: update new task descriptor
+ int tid = GetLogicalThreadIdInBlock();
+ omptarget_nvptx_TaskDescr *parentTaskDescr = getMyTopTaskDescriptor(tid);
+ newTaskDescr->CopyForExplicitTask(parentTaskDescr);
+ // set new task descriptor as top
+ omptarget_nvptx_threadPrivateContext->SetTopLevelTaskDescr(tid, newTaskDescr);
+ // 3... noting to call... is inline
+ // 4 & 5 ... done in complete
+}
+
+EXTERN void __kmpc_omp_task_complete_if0(kmp_Indent *loc, uint32_t global_tid,
+ kmp_TaskDescr *newKmpTaskDescr) {
+ PRINT(LD_IO, "call to __kmpc_omp_task_complete_if0(task 0x%llx)\n",
+ P64(newKmpTaskDescr));
+ // 1. get explict task descr from kmp task descr
+ omptarget_nvptx_ExplicitTaskDescr *newExplicitTaskDescr =
+ (omptarget_nvptx_ExplicitTaskDescr *)SUB_BYTES(
+ newKmpTaskDescr, sizeof(omptarget_nvptx_TaskDescr));
+ ASSERT0(LT_FUSSY, &newExplicitTaskDescr->kmpTaskDescr == newKmpTaskDescr,
+ "bad assumptions");
+ omptarget_nvptx_TaskDescr *newTaskDescr = &newExplicitTaskDescr->taskDescr;
+ ASSERT0(LT_FUSSY, (uint64_t)newTaskDescr == (uint64_t)newExplicitTaskDescr,
+ "bad assumptions");
+ // 2. get parent
+ omptarget_nvptx_TaskDescr *parentTaskDescr = newTaskDescr->GetPrevTaskDescr();
+ // 3... noting to call... is inline
+ // 4. pop context
+ int tid = GetLogicalThreadIdInBlock();
+ omptarget_nvptx_threadPrivateContext->SetTopLevelTaskDescr(tid,
+ parentTaskDescr);
+ // 5. free
+ SafeFree(newExplicitTaskDescr, "explicit task descriptor");
+}
+
+EXTERN void __kmpc_omp_wait_deps(kmp_Indent *loc, uint32_t global_tid,
+ int32_t depNum, void *depList,
+ int32_t noAliasDepNum, void *noAliasDepList) {
+ PRINT0(LD_IO, "call to __kmpc_omp_wait_deps(..)\n");
+ // nothing to do as all our tasks are executed as final
+}
+
+EXTERN void __kmpc_taskgroup(kmp_Indent *loc, uint32_t global_tid) {
+ PRINT0(LD_IO, "call to __kmpc_taskgroup(..)\n");
+ // nothing to do as all our tasks are executed as final
+}
+
+EXTERN void __kmpc_end_taskgroup(kmp_Indent *loc, uint32_t global_tid) {
+ PRINT0(LD_IO, "call to __kmpc_end_taskgroup(..)\n");
+ // nothing to do as all our tasks are executed as final
+}
+
+EXTERN int32_t __kmpc_omp_taskyield(kmp_Indent *loc, uint32_t global_tid,
+ int end_part) {
+ PRINT0(LD_IO, "call to __kmpc_taskyield()\n");
+ // do nothing: tasks are executed immediately, no yielding allowed
+ return 0;
+}
+
+EXTERN int32_t __kmpc_omp_taskwait(kmp_Indent *loc, uint32_t global_tid) {
+ PRINT0(LD_IO, "call to __kmpc_taskwait()\n");
+ // nothing to do as all our tasks are executed as final
+ return 0;
+}
+
+EXTERN void __kmpc_taskloop(kmp_Indent *loc, uint32_t global_tid,
+ kmp_TaskDescr *newKmpTaskDescr, int if_val,
+ uint64_t *lb, uint64_t *ub, int64_t st, int nogroup,
+ int32_t sched, uint64_t grainsize, void *task_dup) {
+
+ // skip task entirely if empty iteration space
+ if (*lb > *ub)
+ return;
+
+ // the compiler has already stored lb and ub in the kmp_TaskDescr structure
+ // as we are using a single task to execute the entire loop, we can leave
+ // the initial task_t untouched
+
+ __kmpc_omp_task_with_deps(loc, global_tid, newKmpTaskDescr, 0, 0, 0, 0);
+}