aboutsummaryrefslogtreecommitdiff
path: root/unittests/CodeGen/LowLevelTypeTest.cpp
blob: 115554642907ba4ad6dc603586279b31f59f6fc3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
//===- llvm/unittest/CodeGen/GlobalISel/LowLevelTypeTest.cpp --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Type.h"
#include "gtest/gtest.h"

using namespace llvm;

// Define a pretty printer to help debugging when things go wrong.
namespace llvm {
std::ostream &
operator<<(std::ostream &OS, const llvm::LLT Ty) {
  std::string Repr;
  raw_string_ostream SS{Repr};
  Ty.print(SS);
  OS << SS.str();
  return OS;
}
}

namespace {

TEST(LowLevelTypeTest, Scalar) {
  LLVMContext C;
  DataLayout DL("");

  for (unsigned S : {1U, 17U, 32U, 64U, 0xfffffU}) {
    const LLT Ty = LLT::scalar(S);
    const LLT HalfTy = (S % 2) == 0 ? Ty.halfScalarSize() : Ty;
    const LLT DoubleTy = Ty.doubleScalarSize();

    // Test kind.
    for (const LLT TestTy : {Ty, HalfTy, DoubleTy}) {
      ASSERT_TRUE(TestTy.isValid());
      ASSERT_TRUE(TestTy.isScalar());

      ASSERT_FALSE(TestTy.isPointer());
      ASSERT_FALSE(TestTy.isVector());
    }

    // Test sizes.
    EXPECT_EQ(S, Ty.getSizeInBits());
    EXPECT_EQ(S, Ty.getScalarSizeInBits());

    EXPECT_EQ(S*2, DoubleTy.getSizeInBits());
    EXPECT_EQ(S*2, DoubleTy.getScalarSizeInBits());

    if ((S % 2) == 0) {
      EXPECT_EQ(S/2, HalfTy.getSizeInBits());
      EXPECT_EQ(S/2, HalfTy.getScalarSizeInBits());
    }

    // Test equality operators.
    EXPECT_TRUE(Ty == Ty);
    EXPECT_FALSE(Ty != Ty);

    EXPECT_NE(Ty, DoubleTy);

    // Test Type->LLT conversion.
    Type *IRTy = IntegerType::get(C, S);
    EXPECT_EQ(Ty, getLLTForType(*IRTy, DL));
  }
}

TEST(LowLevelTypeTest, Vector) {
  LLVMContext C;
  DataLayout DL("");

  for (unsigned S : {1U, 17U, 32U, 64U, 0xfffU}) {
    for (uint16_t Elts : {2U, 3U, 4U, 32U, 0xffU}) {
      const LLT STy = LLT::scalar(S);
      const LLT VTy = LLT::vector(Elts, S);

      // Test the alternative vector().
      {
        const LLT VSTy = LLT::vector(Elts, STy);
        EXPECT_EQ(VTy, VSTy);
      }

      // Test getElementType().
      EXPECT_EQ(STy, VTy.getElementType());

      const LLT HalfSzTy = ((S % 2) == 0) ? VTy.halfScalarSize() : VTy;
      const LLT DoubleSzTy = VTy.doubleScalarSize();

      // halfElements requires an even number of elements.
      const LLT HalfEltIfEvenTy = ((Elts % 2) == 0) ?  VTy.halfElements() : VTy;
      const LLT DoubleEltTy = VTy.doubleElements();

      // Test kind.
      for (const LLT TestTy : {VTy, HalfSzTy, DoubleSzTy, DoubleEltTy}) {
        ASSERT_TRUE(TestTy.isValid());
        ASSERT_TRUE(TestTy.isVector());

        ASSERT_FALSE(TestTy.isScalar());
        ASSERT_FALSE(TestTy.isPointer());
      }

      // Test halving elements to a scalar.
      {
        ASSERT_TRUE(HalfEltIfEvenTy.isValid());
        ASSERT_FALSE(HalfEltIfEvenTy.isPointer());
        if (Elts > 2) {
          ASSERT_TRUE(HalfEltIfEvenTy.isVector());
        } else {
          ASSERT_FALSE(HalfEltIfEvenTy.isVector());
          EXPECT_EQ(STy, HalfEltIfEvenTy);
        }
      }


      // Test sizes.
      EXPECT_EQ(S * Elts, VTy.getSizeInBits());
      EXPECT_EQ(S, VTy.getScalarSizeInBits());
      EXPECT_EQ(Elts, VTy.getNumElements());

      if ((S % 2) == 0) {
        EXPECT_EQ((S / 2) * Elts, HalfSzTy.getSizeInBits());
        EXPECT_EQ(S / 2, HalfSzTy.getScalarSizeInBits());
        EXPECT_EQ(Elts, HalfSzTy.getNumElements());
      }

      EXPECT_EQ((S * 2) * Elts, DoubleSzTy.getSizeInBits());
      EXPECT_EQ(S * 2, DoubleSzTy.getScalarSizeInBits());
      EXPECT_EQ(Elts, DoubleSzTy.getNumElements());

      if ((Elts % 2) == 0) {
        EXPECT_EQ(S * (Elts / 2), HalfEltIfEvenTy.getSizeInBits());
        EXPECT_EQ(S, HalfEltIfEvenTy.getScalarSizeInBits());
        if (Elts > 2) {
          EXPECT_EQ(Elts / 2, HalfEltIfEvenTy.getNumElements());
        }
      }

      EXPECT_EQ(S * (Elts * 2), DoubleEltTy.getSizeInBits());
      EXPECT_EQ(S, DoubleEltTy.getScalarSizeInBits());
      EXPECT_EQ(Elts * 2, DoubleEltTy.getNumElements());

      // Test equality operators.
      EXPECT_TRUE(VTy == VTy);
      EXPECT_FALSE(VTy != VTy);

      // Test inequality operators on..
      // ..different kind.
      EXPECT_NE(VTy, STy);
      // ..different #elts.
      EXPECT_NE(VTy, DoubleEltTy);
      // ..different scalar size.
      EXPECT_NE(VTy, DoubleSzTy);

      // Test Type->LLT conversion.
      Type *IRSTy = IntegerType::get(C, S);
      Type *IRTy = VectorType::get(IRSTy, Elts);
      EXPECT_EQ(VTy, getLLTForType(*IRTy, DL));
    }
  }
}

TEST(LowLevelTypeTest, Pointer) {
  LLVMContext C;
  DataLayout DL("");

  for (unsigned AS : {0U, 1U, 127U, 0xffffU}) {
    const LLT Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
    const LLT VTy = LLT::vector(4, Ty);

    // Test kind.
    ASSERT_TRUE(Ty.isValid());
    ASSERT_TRUE(Ty.isPointer());

    ASSERT_FALSE(Ty.isScalar());
    ASSERT_FALSE(Ty.isVector());

    ASSERT_TRUE(VTy.isValid());
    ASSERT_TRUE(VTy.isVector());
    ASSERT_TRUE(VTy.getElementType().isPointer());

    // Test addressspace.
    EXPECT_EQ(AS, Ty.getAddressSpace());
    EXPECT_EQ(AS, VTy.getElementType().getAddressSpace());

    // Test equality operators.
    EXPECT_TRUE(Ty == Ty);
    EXPECT_FALSE(Ty != Ty);
    EXPECT_TRUE(VTy == VTy);
    EXPECT_FALSE(VTy != VTy);

    // Test Type->LLT conversion.
    Type *IRTy = PointerType::get(IntegerType::get(C, 8), AS);
    EXPECT_EQ(Ty, getLLTForType(*IRTy, DL));
    Type *IRVTy =
        VectorType::get(PointerType::get(IntegerType::get(C, 8), AS), 4);
    EXPECT_EQ(VTy, getLLTForType(*IRVTy, DL));
  }
}

TEST(LowLevelTypeTest, Invalid) {
  const LLT Ty;

  ASSERT_FALSE(Ty.isValid());
  ASSERT_FALSE(Ty.isScalar());
  ASSERT_FALSE(Ty.isPointer());
  ASSERT_FALSE(Ty.isVector());
}

}