aboutsummaryrefslogtreecommitdiff
path: root/tools/llvm-objcopy/Object.h
blob: f12e6da7d21cdc6d8e07c3e633c10b48ad5726f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
//===- Object.h -------------------------------------------------*- C++ -*-===//
//
//                      The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_TOOLS_OBJCOPY_OBJECT_H
#define LLVM_TOOLS_OBJCOPY_OBJECT_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Object/ELFObjectFile.h"
#include <cstddef>
#include <cstdint>
#include <functional>
#include <memory>
#include <set>
#include <vector>

namespace llvm {

class FileOutputBuffer;
class SectionBase;
class Segment;

class SectionTableRef {
private:
  ArrayRef<std::unique_ptr<SectionBase>> Sections;

public:
  SectionTableRef(ArrayRef<std::unique_ptr<SectionBase>> Secs)
      : Sections(Secs) {}
  SectionTableRef(const SectionTableRef &) = default;

  SectionBase *getSection(uint16_t Index, Twine ErrMsg);

  template <class T>
  T *getSectionOfType(uint16_t Index, Twine IndexErrMsg, Twine TypeErrMsg);
};

class SectionBase {
public:
  StringRef Name;
  Segment *ParentSegment = nullptr;
  uint64_t HeaderOffset;
  uint64_t OriginalOffset;
  uint32_t Index;

  uint64_t Addr = 0;
  uint64_t Align = 1;
  uint32_t EntrySize = 0;
  uint64_t Flags = 0;
  uint64_t Info = 0;
  uint64_t Link = ELF::SHN_UNDEF;
  uint64_t NameIndex = 0;
  uint64_t Offset = 0;
  uint64_t Size = 0;
  uint64_t Type = ELF::SHT_NULL;

  virtual ~SectionBase() = default;

  virtual void initialize(SectionTableRef SecTable);
  virtual void finalize();
  virtual void removeSectionReferences(const SectionBase *Sec);
  template <class ELFT> void writeHeader(FileOutputBuffer &Out) const;
  virtual void writeSection(FileOutputBuffer &Out) const = 0;
};

class Segment {
private:
  struct SectionCompare {
    bool operator()(const SectionBase *Lhs, const SectionBase *Rhs) const {
      // Some sections might have the same address if one of them is empty. To
      // fix this we can use the lexicographic ordering on ->Addr and the
      // address of the actully stored section.
      if (Lhs->OriginalOffset == Rhs->OriginalOffset)
        return Lhs < Rhs;
      return Lhs->OriginalOffset < Rhs->OriginalOffset;
    }
  };

  std::set<const SectionBase *, SectionCompare> Sections;
  ArrayRef<uint8_t> Contents;

public:
  uint64_t Align;
  uint64_t FileSize;
  uint32_t Flags;
  uint32_t Index;
  uint64_t MemSize;
  uint64_t Offset;
  uint64_t PAddr;
  uint64_t Type;
  uint64_t VAddr;

  uint64_t OriginalOffset;
  Segment *ParentSegment = nullptr;

  Segment(ArrayRef<uint8_t> Data) : Contents(Data) {}

  const SectionBase *firstSection() const {
    if (!Sections.empty())
      return *Sections.begin();
    return nullptr;
  }

  void removeSection(const SectionBase *Sec) { Sections.erase(Sec); }
  void addSection(const SectionBase *Sec) { Sections.insert(Sec); }
  template <class ELFT> void writeHeader(FileOutputBuffer &Out) const;
  void writeSegment(FileOutputBuffer &Out) const;
};

class Section : public SectionBase {
private:
  ArrayRef<uint8_t> Contents;

public:
  Section(ArrayRef<uint8_t> Data) : Contents(Data) {}

  void writeSection(FileOutputBuffer &Out) const override;
};

// There are two types of string tables that can exist, dynamic and not dynamic.
// In the dynamic case the string table is allocated. Changing a dynamic string
// table would mean altering virtual addresses and thus the memory image. So
// dynamic string tables should not have an interface to modify them or
// reconstruct them. This type lets us reconstruct a string table. To avoid
// this class being used for dynamic string tables (which has happened) the
// classof method checks that the particular instance is not allocated. This
// then agrees with the makeSection method used to construct most sections.
class StringTableSection : public SectionBase {
private:
  StringTableBuilder StrTabBuilder;

public:
  StringTableSection() : StrTabBuilder(StringTableBuilder::ELF) {
    Type = ELF::SHT_STRTAB;
  }

  void addString(StringRef Name);
  uint32_t findIndex(StringRef Name) const;
  void finalize() override;
  void writeSection(FileOutputBuffer &Out) const override;

  static bool classof(const SectionBase *S) {
    if (S->Flags & ELF::SHF_ALLOC)
      return false;
    return S->Type == ELF::SHT_STRTAB;
  }
};

// Symbols have a st_shndx field that normally stores an index but occasionally
// stores a different special value. This enum keeps track of what the st_shndx
// field means. Most of the values are just copies of the special SHN_* values.
// SYMBOL_SIMPLE_INDEX means that the st_shndx is just an index of a section.
enum SymbolShndxType {
  SYMBOL_SIMPLE_INDEX = 0,
  SYMBOL_ABS = ELF::SHN_ABS,
  SYMBOL_COMMON = ELF::SHN_COMMON,
  SYMBOL_HEXAGON_SCOMMON = ELF::SHN_HEXAGON_SCOMMON,
  SYMBOL_HEXAGON_SCOMMON_2 = ELF::SHN_HEXAGON_SCOMMON_2,
  SYMBOL_HEXAGON_SCOMMON_4 = ELF::SHN_HEXAGON_SCOMMON_4,
  SYMBOL_HEXAGON_SCOMMON_8 = ELF::SHN_HEXAGON_SCOMMON_8,
};

struct Symbol {
  uint8_t Binding;
  SectionBase *DefinedIn = nullptr;
  SymbolShndxType ShndxType;
  uint32_t Index;
  StringRef Name;
  uint32_t NameIndex;
  uint64_t Size;
  uint8_t Type;
  uint64_t Value;

  uint16_t getShndx() const;
};

class SymbolTableSection : public SectionBase {
protected:
  std::vector<std::unique_ptr<Symbol>> Symbols;
  StringTableSection *SymbolNames = nullptr;

  using SymPtr = std::unique_ptr<Symbol>;

public:
  void setStrTab(StringTableSection *StrTab) { SymbolNames = StrTab; }
  void addSymbol(StringRef Name, uint8_t Bind, uint8_t Type,
                 SectionBase *DefinedIn, uint64_t Value, uint16_t Shndx,
                 uint64_t Sz);
  void addSymbolNames();
  const Symbol *getSymbolByIndex(uint32_t Index) const;
  void removeSectionReferences(const SectionBase *Sec) override;
  void initialize(SectionTableRef SecTable) override;
  void finalize() override;

  static bool classof(const SectionBase *S) {
    return S->Type == ELF::SHT_SYMTAB;
  }
};

// Only writeSection depends on the ELF type so we implement it in a subclass.
template <class ELFT> class SymbolTableSectionImpl : public SymbolTableSection {
  void writeSection(FileOutputBuffer &Out) const override;
};

struct Relocation {
  const Symbol *RelocSymbol = nullptr;
  uint64_t Offset;
  uint64_t Addend;
  uint32_t Type;
};

// All relocation sections denote relocations to apply to another section.
// However, some relocation sections use a dynamic symbol table and others use
// a regular symbol table. Because the types of the two symbol tables differ in
// our system (because they should behave differently) we can't uniformly
// represent all relocations with the same base class if we expose an interface
// that mentions the symbol table type. So we split the two base types into two
// different classes, one which handles the section the relocation is applied to
// and another which handles the symbol table type. The symbol table type is
// taken as a type parameter to the class (see RelocSectionWithSymtabBase).
class RelocationSectionBase : public SectionBase {
protected:
  SectionBase *SecToApplyRel = nullptr;

public:
  const SectionBase *getSection() const { return SecToApplyRel; }
  void setSection(SectionBase *Sec) { SecToApplyRel = Sec; }

  static bool classof(const SectionBase *S) {
    return S->Type == ELF::SHT_REL || S->Type == ELF::SHT_RELA;
  }
};

// Takes the symbol table type to use as a parameter so that we can deduplicate
// that code between the two symbol table types.
template <class SymTabType>
class RelocSectionWithSymtabBase : public RelocationSectionBase {
private:
  SymTabType *Symbols = nullptr;

protected:
  RelocSectionWithSymtabBase() = default;

public:
  void setSymTab(SymTabType *StrTab) { Symbols = StrTab; }
  void removeSectionReferences(const SectionBase *Sec) override;
  void initialize(SectionTableRef SecTable) override;
  void finalize() override;
};

template <class ELFT>
class RelocationSection
    : public RelocSectionWithSymtabBase<SymbolTableSection> {
private:
  using Elf_Rel = typename ELFT::Rel;
  using Elf_Rela = typename ELFT::Rela;

  std::vector<Relocation> Relocations;

  template <class T> void writeRel(T *Buf) const;

public:
  void addRelocation(Relocation Rel) { Relocations.push_back(Rel); }
  void writeSection(FileOutputBuffer &Out) const override;

  static bool classof(const SectionBase *S) {
    if (S->Flags & ELF::SHF_ALLOC)
      return false;
    return S->Type == ELF::SHT_REL || S->Type == ELF::SHT_RELA;
  }
};

class SectionWithStrTab : public Section {
private:
  const SectionBase *StrTab = nullptr;

public:
  SectionWithStrTab(ArrayRef<uint8_t> Data) : Section(Data) {}

  void setStrTab(const SectionBase *StringTable) { StrTab = StringTable; }
  void removeSectionReferences(const SectionBase *Sec) override;
  void initialize(SectionTableRef SecTable) override;
  void finalize() override;
  static bool classof(const SectionBase *S);
};

class DynamicSymbolTableSection : public SectionWithStrTab {
public:
  DynamicSymbolTableSection(ArrayRef<uint8_t> Data) : SectionWithStrTab(Data) {}

  static bool classof(const SectionBase *S) {
    return S->Type == ELF::SHT_DYNSYM;
  }
};

class DynamicSection : public SectionWithStrTab {
public:
  DynamicSection(ArrayRef<uint8_t> Data) : SectionWithStrTab(Data) {}

  static bool classof(const SectionBase *S) {
    return S->Type == ELF::SHT_DYNAMIC;
  }
};

class DynamicRelocationSection
    : public RelocSectionWithSymtabBase<DynamicSymbolTableSection> {
private:
  ArrayRef<uint8_t> Contents;

public:
  DynamicRelocationSection(ArrayRef<uint8_t> Data) : Contents(Data) {}

  void writeSection(FileOutputBuffer &Out) const override;

  static bool classof(const SectionBase *S) {
    if (!(S->Flags & ELF::SHF_ALLOC))
      return false;
    return S->Type == ELF::SHT_REL || S->Type == ELF::SHT_RELA;
  }
};

template <class ELFT> class Object {
private:
  using SecPtr = std::unique_ptr<SectionBase>;
  using SegPtr = std::unique_ptr<Segment>;

  using Elf_Shdr = typename ELFT::Shdr;
  using Elf_Ehdr = typename ELFT::Ehdr;
  using Elf_Phdr = typename ELFT::Phdr;

  void initSymbolTable(const object::ELFFile<ELFT> &ElfFile,
                       SymbolTableSection *SymTab, SectionTableRef SecTable);
  SecPtr makeSection(const object::ELFFile<ELFT> &ElfFile,
                     const Elf_Shdr &Shdr);
  void readProgramHeaders(const object::ELFFile<ELFT> &ElfFile);
  SectionTableRef readSectionHeaders(const object::ELFFile<ELFT> &ElfFile);

protected:
  StringTableSection *SectionNames = nullptr;
  SymbolTableSection *SymbolTable = nullptr;
  std::vector<SecPtr> Sections;
  std::vector<SegPtr> Segments;

  void writeHeader(FileOutputBuffer &Out) const;
  void writeProgramHeaders(FileOutputBuffer &Out) const;
  void writeSectionData(FileOutputBuffer &Out) const;
  void writeSectionHeaders(FileOutputBuffer &Out) const;

public:
  uint8_t Ident[16];
  uint64_t Entry;
  uint64_t SHOffset;
  uint32_t Type;
  uint32_t Machine;
  uint32_t Version;
  uint32_t Flags;
  bool WriteSectionHeaders = true;

  Object(const object::ELFObjectFile<ELFT> &Obj);
  virtual ~Object() = default;

  const SectionBase *getSectionHeaderStrTab() const { return SectionNames; }
  void removeSections(std::function<bool(const SectionBase &)> ToRemove);
  virtual size_t totalSize() const = 0;
  virtual void finalize() = 0;
  virtual void write(FileOutputBuffer &Out) const = 0;
};

template <class ELFT> class ELFObject : public Object<ELFT> {
private:
  using SecPtr = std::unique_ptr<SectionBase>;
  using SegPtr = std::unique_ptr<Segment>;

  using Elf_Shdr = typename ELFT::Shdr;
  using Elf_Ehdr = typename ELFT::Ehdr;
  using Elf_Phdr = typename ELFT::Phdr;

  void sortSections();
  void assignOffsets();

public:
  ELFObject(const object::ELFObjectFile<ELFT> &Obj) : Object<ELFT>(Obj) {}

  void finalize() override;
  size_t totalSize() const override;
  void write(FileOutputBuffer &Out) const override;
};

template <class ELFT> class BinaryObject : public Object<ELFT> {
private:
  using SecPtr = std::unique_ptr<SectionBase>;
  using SegPtr = std::unique_ptr<Segment>;

  uint64_t TotalSize;

public:
  BinaryObject(const object::ELFObjectFile<ELFT> &Obj) : Object<ELFT>(Obj) {}

  void finalize() override;
  size_t totalSize() const override;
  void write(FileOutputBuffer &Out) const override;
};

} // end namespace llvm

#endif // LLVM_TOOLS_OBJCOPY_OBJECT_H