aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Vectorize/LoopVectorize.cpp
blob: ca2f5a178e06b690c7bb02a998ae31a68d53b3b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
// and generates target-independent LLVM-IR.
// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
// of instructions in order to estimate the profitability of vectorization.
//
// The loop vectorizer combines consecutive loop iterations into a single
// 'wide' iteration. After this transformation the index is incremented
// by the SIMD vector width, and not by one.
//
// This pass has three parts:
// 1. The main loop pass that drives the different parts.
// 2. LoopVectorizationLegality - A unit that checks for the legality
//    of the vectorization.
// 3. InnerLoopVectorizer - A unit that performs the actual
//    widening of instructions.
// 4. LoopVectorizationCostModel - A unit that checks for the profitability
//    of vectorization. It decides on the optimal vector width, which
//    can be one, if vectorization is not profitable.
//
//===----------------------------------------------------------------------===//
//
// The reduction-variable vectorization is based on the paper:
//  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
//
// Variable uniformity checks are inspired by:
//  Karrenberg, R. and Hack, S. Whole Function Vectorization.
//
// The interleaved access vectorization is based on the paper:
//  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
//  Data for SIMD
//
// Other ideas/concepts are from:
//  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
//
//  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
//  Vectorizing Compilers.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Vectorize/LoopVectorize.h"
#include "VPlan.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/LoopVersioning.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

#define LV_NAME "loop-vectorize"
#define DEBUG_TYPE LV_NAME

STATISTIC(LoopsVectorized, "Number of loops vectorized");
STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");

static cl::opt<bool>
    EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
                       cl::desc("Enable if-conversion during vectorization."));

/// Loops with a known constant trip count below this number are vectorized only
/// if no scalar iteration overheads are incurred.
static cl::opt<unsigned> TinyTripCountVectorThreshold(
    "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
    cl::desc("Loops with a constant trip count that is smaller than this "
             "value are vectorized only if no scalar iteration overheads "
             "are incurred."));

static cl::opt<bool> MaximizeBandwidth(
    "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
    cl::desc("Maximize bandwidth when selecting vectorization factor which "
             "will be determined by the smallest type in loop."));

static cl::opt<bool> EnableInterleavedMemAccesses(
    "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
    cl::desc("Enable vectorization on interleaved memory accesses in a loop"));

/// Maximum factor for an interleaved memory access.
static cl::opt<unsigned> MaxInterleaveGroupFactor(
    "max-interleave-group-factor", cl::Hidden,
    cl::desc("Maximum factor for an interleaved access group (default = 8)"),
    cl::init(8));

/// We don't interleave loops with a known constant trip count below this
/// number.
static const unsigned TinyTripCountInterleaveThreshold = 128;

static cl::opt<unsigned> ForceTargetNumScalarRegs(
    "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
    cl::desc("A flag that overrides the target's number of scalar registers."));

static cl::opt<unsigned> ForceTargetNumVectorRegs(
    "force-target-num-vector-regs", cl::init(0), cl::Hidden,
    cl::desc("A flag that overrides the target's number of vector registers."));

/// Maximum vectorization interleave count.
static const unsigned MaxInterleaveFactor = 16;

static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
    "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
    cl::desc("A flag that overrides the target's max interleave factor for "
             "scalar loops."));

static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
    "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
    cl::desc("A flag that overrides the target's max interleave factor for "
             "vectorized loops."));

static cl::opt<unsigned> ForceTargetInstructionCost(
    "force-target-instruction-cost", cl::init(0), cl::Hidden,
    cl::desc("A flag that overrides the target's expected cost for "
             "an instruction to a single constant value. Mostly "
             "useful for getting consistent testing."));

static cl::opt<unsigned> SmallLoopCost(
    "small-loop-cost", cl::init(20), cl::Hidden,
    cl::desc(
        "The cost of a loop that is considered 'small' by the interleaver."));

static cl::opt<bool> LoopVectorizeWithBlockFrequency(
    "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
    cl::desc("Enable the use of the block frequency analysis to access PGO "
             "heuristics minimizing code growth in cold regions and being more "
             "aggressive in hot regions."));

// Runtime interleave loops for load/store throughput.
static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
    "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
    cl::desc(
        "Enable runtime interleaving until load/store ports are saturated"));

/// The number of stores in a loop that are allowed to need predication.
static cl::opt<unsigned> NumberOfStoresToPredicate(
    "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
    cl::desc("Max number of stores to be predicated behind an if."));

static cl::opt<bool> EnableIndVarRegisterHeur(
    "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
    cl::desc("Count the induction variable only once when interleaving"));

static cl::opt<bool> EnableCondStoresVectorization(
    "enable-cond-stores-vec", cl::init(true), cl::Hidden,
    cl::desc("Enable if predication of stores during vectorization."));

static cl::opt<unsigned> MaxNestedScalarReductionIC(
    "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
    cl::desc("The maximum interleave count to use when interleaving a scalar "
             "reduction in a nested loop."));

static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
    "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
    cl::desc("The maximum allowed number of runtime memory checks with a "
             "vectorize(enable) pragma."));

static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
    "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
    cl::desc("The maximum number of SCEV checks allowed."));

static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
    "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
    cl::desc("The maximum number of SCEV checks allowed with a "
             "vectorize(enable) pragma"));

/// Create an analysis remark that explains why vectorization failed
///
/// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
/// RemarkName is the identifier for the remark.  If \p I is passed it is an
/// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
/// the location of the remark.  \return the remark object that can be
/// streamed to.
static OptimizationRemarkAnalysis
createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop,
                     Instruction *I = nullptr) {
  Value *CodeRegion = TheLoop->getHeader();
  DebugLoc DL = TheLoop->getStartLoc();

  if (I) {
    CodeRegion = I->getParent();
    // If there is no debug location attached to the instruction, revert back to
    // using the loop's.
    if (I->getDebugLoc())
      DL = I->getDebugLoc();
  }

  OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
  R << "loop not vectorized: ";
  return R;
}

namespace {

class LoopVectorizationLegality;
class LoopVectorizationCostModel;
class LoopVectorizationRequirements;
class VPInterleaveRecipe;
class VPReplicateRecipe;
class VPWidenIntOrFpInductionRecipe;

} // end anonymous namespace

/// Returns true if the given loop body has a cycle, excluding the loop
/// itself.
static bool hasCyclesInLoopBody(const Loop &L) {
  if (!L.empty())
    return true;

  for (const auto &SCC :
       make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L),
                  scc_iterator<Loop, LoopBodyTraits>::end(L))) {
    if (SCC.size() > 1) {
      DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n");
      DEBUG(L.dump());
      return true;
    }
  }
  return false;
}

/// A helper function for converting Scalar types to vector types.
/// If the incoming type is void, we return void. If the VF is 1, we return
/// the scalar type.
static Type *ToVectorTy(Type *Scalar, unsigned VF) {
  if (Scalar->isVoidTy() || VF == 1)
    return Scalar;
  return VectorType::get(Scalar, VF);
}

// FIXME: The following helper functions have multiple implementations
// in the project. They can be effectively organized in a common Load/Store
// utilities unit.

/// A helper function that returns the pointer operand of a load or store
/// instruction.
static Value *getPointerOperand(Value *I) {
  if (auto *LI = dyn_cast<LoadInst>(I))
    return LI->getPointerOperand();
  if (auto *SI = dyn_cast<StoreInst>(I))
    return SI->getPointerOperand();
  return nullptr;
}

/// A helper function that returns the type of loaded or stored value.
static Type *getMemInstValueType(Value *I) {
  assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
         "Expected Load or Store instruction");
  if (auto *LI = dyn_cast<LoadInst>(I))
    return LI->getType();
  return cast<StoreInst>(I)->getValueOperand()->getType();
}

/// A helper function that returns the alignment of load or store instruction.
static unsigned getMemInstAlignment(Value *I) {
  assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
         "Expected Load or Store instruction");
  if (auto *LI = dyn_cast<LoadInst>(I))
    return LI->getAlignment();
  return cast<StoreInst>(I)->getAlignment();
}

/// A helper function that returns the address space of the pointer operand of
/// load or store instruction.
static unsigned getMemInstAddressSpace(Value *I) {
  assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
         "Expected Load or Store instruction");
  if (auto *LI = dyn_cast<LoadInst>(I))
    return LI->getPointerAddressSpace();
  return cast<StoreInst>(I)->getPointerAddressSpace();
}

/// A helper function that returns true if the given type is irregular. The
/// type is irregular if its allocated size doesn't equal the store size of an
/// element of the corresponding vector type at the given vectorization factor.
static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
  // Determine if an array of VF elements of type Ty is "bitcast compatible"
  // with a <VF x Ty> vector.
  if (VF > 1) {
    auto *VectorTy = VectorType::get(Ty, VF);
    return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
  }

  // If the vectorization factor is one, we just check if an array of type Ty
  // requires padding between elements.
  return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
}

/// A helper function that returns the reciprocal of the block probability of
/// predicated blocks. If we return X, we are assuming the predicated block
/// will execute once for for every X iterations of the loop header.
///
/// TODO: We should use actual block probability here, if available. Currently,
///       we always assume predicated blocks have a 50% chance of executing.
static unsigned getReciprocalPredBlockProb() { return 2; }

/// A helper function that adds a 'fast' flag to floating-point operations.
static Value *addFastMathFlag(Value *V) {
  if (isa<FPMathOperator>(V)) {
    FastMathFlags Flags;
    Flags.setUnsafeAlgebra();
    cast<Instruction>(V)->setFastMathFlags(Flags);
  }
  return V;
}

/// A helper function that returns an integer or floating-point constant with
/// value C.
static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
  return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
                           : ConstantFP::get(Ty, C);
}

namespace llvm {

/// InnerLoopVectorizer vectorizes loops which contain only one basic
/// block to a specified vectorization factor (VF).
/// This class performs the widening of scalars into vectors, or multiple
/// scalars. This class also implements the following features:
/// * It inserts an epilogue loop for handling loops that don't have iteration
///   counts that are known to be a multiple of the vectorization factor.
/// * It handles the code generation for reduction variables.
/// * Scalarization (implementation using scalars) of un-vectorizable
///   instructions.
/// InnerLoopVectorizer does not perform any vectorization-legality
/// checks, and relies on the caller to check for the different legality
/// aspects. The InnerLoopVectorizer relies on the
/// LoopVectorizationLegality class to provide information about the induction
/// and reduction variables that were found to a given vectorization factor.
class InnerLoopVectorizer {
public:
  InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
                      LoopInfo *LI, DominatorTree *DT,
                      const TargetLibraryInfo *TLI,
                      const TargetTransformInfo *TTI, AssumptionCache *AC,
                      OptimizationRemarkEmitter *ORE, unsigned VecWidth,
                      unsigned UnrollFactor, LoopVectorizationLegality *LVL,
                      LoopVectorizationCostModel *CM)
      : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
        AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
        Builder(PSE.getSE()->getContext()),
        VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {}
  virtual ~InnerLoopVectorizer() = default;

  /// Create a new empty loop. Unlink the old loop and connect the new one.
  /// Return the pre-header block of the new loop.
  BasicBlock *createVectorizedLoopSkeleton();

  /// Widen a single instruction within the innermost loop.
  void widenInstruction(Instruction &I);

  /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
  void fixVectorizedLoop();

  // Return true if any runtime check is added.
  bool areSafetyChecksAdded() { return AddedSafetyChecks; }

  /// A type for vectorized values in the new loop. Each value from the
  /// original loop, when vectorized, is represented by UF vector values in the
  /// new unrolled loop, where UF is the unroll factor.
  using VectorParts = SmallVector<Value *, 2>;

  /// A helper function that computes the predicate of the block BB, assuming
  /// that the header block of the loop is set to True. It returns the *entry*
  /// mask for the block BB.
  VectorParts createBlockInMask(BasicBlock *BB);

  /// Vectorize a single PHINode in a block. This method handles the induction
  /// variable canonicalization. It supports both VF = 1 for unrolled loops and
  /// arbitrary length vectors.
  void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF);

  /// A helper function to scalarize a single Instruction in the innermost loop.
  /// Generates a sequence of scalar instances for each lane between \p MinLane
  /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
  /// inclusive..
  void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance,
                            bool IfPredicateInstr);

  /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
  /// is provided, the integer induction variable will first be truncated to
  /// the corresponding type.
  void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);

  /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a
  /// vector or scalar value on-demand if one is not yet available. When
  /// vectorizing a loop, we visit the definition of an instruction before its
  /// uses. When visiting the definition, we either vectorize or scalarize the
  /// instruction, creating an entry for it in the corresponding map. (In some
  /// cases, such as induction variables, we will create both vector and scalar
  /// entries.) Then, as we encounter uses of the definition, we derive values
  /// for each scalar or vector use unless such a value is already available.
  /// For example, if we scalarize a definition and one of its uses is vector,
  /// we build the required vector on-demand with an insertelement sequence
  /// when visiting the use. Otherwise, if the use is scalar, we can use the
  /// existing scalar definition.
  ///
  /// Return a value in the new loop corresponding to \p V from the original
  /// loop at unroll index \p Part. If the value has already been vectorized,
  /// the corresponding vector entry in VectorLoopValueMap is returned. If,
  /// however, the value has a scalar entry in VectorLoopValueMap, we construct
  /// a new vector value on-demand by inserting the scalar values into a vector
  /// with an insertelement sequence. If the value has been neither vectorized
  /// nor scalarized, it must be loop invariant, so we simply broadcast the
  /// value into a vector.
  Value *getOrCreateVectorValue(Value *V, unsigned Part);

  /// Return a value in the new loop corresponding to \p V from the original
  /// loop at unroll and vector indices \p Instance. If the value has been
  /// vectorized but not scalarized, the necessary extractelement instruction
  /// will be generated.
  Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance);

  /// Construct the vector value of a scalarized value \p V one lane at a time.
  void packScalarIntoVectorValue(Value *V, const VPIteration &Instance);

  /// Try to vectorize the interleaved access group that \p Instr belongs to.
  void vectorizeInterleaveGroup(Instruction *Instr);

protected:
  friend class LoopVectorizationPlanner;

  /// A small list of PHINodes.
  using PhiVector = SmallVector<PHINode *, 4>;

  /// A type for scalarized values in the new loop. Each value from the
  /// original loop, when scalarized, is represented by UF x VF scalar values
  /// in the new unrolled loop, where UF is the unroll factor and VF is the
  /// vectorization factor.
  using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;

  // When we if-convert we need to create edge masks. We have to cache values
  // so that we don't end up with exponential recursion/IR.
  using EdgeMaskCacheTy =
      DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts>;
  using BlockMaskCacheTy = DenseMap<BasicBlock *, VectorParts>;

  /// Set up the values of the IVs correctly when exiting the vector loop.
  void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
                    Value *CountRoundDown, Value *EndValue,
                    BasicBlock *MiddleBlock);

  /// Create a new induction variable inside L.
  PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
                                   Value *Step, Instruction *DL);

  /// Handle all cross-iteration phis in the header.
  void fixCrossIterationPHIs();

  /// Fix a first-order recurrence. This is the second phase of vectorizing
  /// this phi node.
  void fixFirstOrderRecurrence(PHINode *Phi);

  /// Fix a reduction cross-iteration phi. This is the second phase of
  /// vectorizing this phi node.
  void fixReduction(PHINode *Phi);

  /// \brief The Loop exit block may have single value PHI nodes with some
  /// incoming value. While vectorizing we only handled real values
  /// that were defined inside the loop and we should have one value for
  /// each predecessor of its parent basic block. See PR14725.
  void fixLCSSAPHIs();

  /// Iteratively sink the scalarized operands of a predicated instruction into
  /// the block that was created for it.
  void sinkScalarOperands(Instruction *PredInst);

  /// Shrinks vector element sizes to the smallest bitwidth they can be legally
  /// represented as.
  void truncateToMinimalBitwidths();

  /// A helper function that computes the predicate of the edge between SRC
  /// and DST.
  VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);

  /// Insert the new loop to the loop hierarchy and pass manager
  /// and update the analysis passes.
  void updateAnalysis();

  /// Vectorize Load and Store instructions,
  virtual void vectorizeMemoryInstruction(Instruction *Instr);

  /// Create a broadcast instruction. This method generates a broadcast
  /// instruction (shuffle) for loop invariant values and for the induction
  /// value. If this is the induction variable then we extend it to N, N+1, ...
  /// this is needed because each iteration in the loop corresponds to a SIMD
  /// element.
  virtual Value *getBroadcastInstrs(Value *V);

  /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
  /// to each vector element of Val. The sequence starts at StartIndex.
  /// \p Opcode is relevant for FP induction variable.
  virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
                               Instruction::BinaryOps Opcode =
                               Instruction::BinaryOpsEnd);

  /// Compute scalar induction steps. \p ScalarIV is the scalar induction
  /// variable on which to base the steps, \p Step is the size of the step, and
  /// \p EntryVal is the value from the original loop that maps to the steps.
  /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it
  /// can be a truncate instruction).
  void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal,
                        const InductionDescriptor &ID);

  /// Create a vector induction phi node based on an existing scalar one. \p
  /// EntryVal is the value from the original loop that maps to the vector phi
  /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
  /// truncate instruction, instead of widening the original IV, we widen a
  /// version of the IV truncated to \p EntryVal's type.
  void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
                                       Value *Step, Instruction *EntryVal);

  /// Returns true if an instruction \p I should be scalarized instead of
  /// vectorized for the chosen vectorization factor.
  bool shouldScalarizeInstruction(Instruction *I) const;

  /// Returns true if we should generate a scalar version of \p IV.
  bool needsScalarInduction(Instruction *IV) const;

  /// Generate a shuffle sequence that will reverse the vector Vec.
  virtual Value *reverseVector(Value *Vec);

  /// Returns (and creates if needed) the original loop trip count.
  Value *getOrCreateTripCount(Loop *NewLoop);

  /// Returns (and creates if needed) the trip count of the widened loop.
  Value *getOrCreateVectorTripCount(Loop *NewLoop);

  /// Returns a bitcasted value to the requested vector type.
  /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
  Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
                                const DataLayout &DL);

  /// Emit a bypass check to see if the vector trip count is zero, including if
  /// it overflows.
  void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);

  /// Emit a bypass check to see if all of the SCEV assumptions we've
  /// had to make are correct.
  void emitSCEVChecks(Loop *L, BasicBlock *Bypass);

  /// Emit bypass checks to check any memory assumptions we may have made.
  void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);

  /// Add additional metadata to \p To that was not present on \p Orig.
  ///
  /// Currently this is used to add the noalias annotations based on the
  /// inserted memchecks.  Use this for instructions that are *cloned* into the
  /// vector loop.
  void addNewMetadata(Instruction *To, const Instruction *Orig);

  /// Add metadata from one instruction to another.
  ///
  /// This includes both the original MDs from \p From and additional ones (\see
  /// addNewMetadata).  Use this for *newly created* instructions in the vector
  /// loop.
  void addMetadata(Instruction *To, Instruction *From);

  /// \brief Similar to the previous function but it adds the metadata to a
  /// vector of instructions.
  void addMetadata(ArrayRef<Value *> To, Instruction *From);

  /// \brief Set the debug location in the builder using the debug location in
  /// the instruction.
  void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);

  /// The original loop.
  Loop *OrigLoop;

  /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
  /// dynamic knowledge to simplify SCEV expressions and converts them to a
  /// more usable form.
  PredicatedScalarEvolution &PSE;

  /// Loop Info.
  LoopInfo *LI;

  /// Dominator Tree.
  DominatorTree *DT;

  /// Alias Analysis.
  AliasAnalysis *AA;

  /// Target Library Info.
  const TargetLibraryInfo *TLI;

  /// Target Transform Info.
  const TargetTransformInfo *TTI;

  /// Assumption Cache.
  AssumptionCache *AC;

  /// Interface to emit optimization remarks.
  OptimizationRemarkEmitter *ORE;

  /// \brief LoopVersioning.  It's only set up (non-null) if memchecks were
  /// used.
  ///
  /// This is currently only used to add no-alias metadata based on the
  /// memchecks.  The actually versioning is performed manually.
  std::unique_ptr<LoopVersioning> LVer;

  /// The vectorization SIMD factor to use. Each vector will have this many
  /// vector elements.
  unsigned VF;

  /// The vectorization unroll factor to use. Each scalar is vectorized to this
  /// many different vector instructions.
  unsigned UF;

  /// The builder that we use
  IRBuilder<> Builder;

  // --- Vectorization state ---

  /// The vector-loop preheader.
  BasicBlock *LoopVectorPreHeader;

  /// The scalar-loop preheader.
  BasicBlock *LoopScalarPreHeader;

  /// Middle Block between the vector and the scalar.
  BasicBlock *LoopMiddleBlock;

  /// The ExitBlock of the scalar loop.
  BasicBlock *LoopExitBlock;

  /// The vector loop body.
  BasicBlock *LoopVectorBody;

  /// The scalar loop body.
  BasicBlock *LoopScalarBody;

  /// A list of all bypass blocks. The first block is the entry of the loop.
  SmallVector<BasicBlock *, 4> LoopBypassBlocks;

  /// The new Induction variable which was added to the new block.
  PHINode *Induction = nullptr;

  /// The induction variable of the old basic block.
  PHINode *OldInduction = nullptr;

  /// Maps values from the original loop to their corresponding values in the
  /// vectorized loop. A key value can map to either vector values, scalar
  /// values or both kinds of values, depending on whether the key was
  /// vectorized and scalarized.
  VectorizerValueMap VectorLoopValueMap;

  /// Store instructions that were predicated.
  SmallVector<Instruction *, 4> PredicatedInstructions;

  EdgeMaskCacheTy EdgeMaskCache;
  BlockMaskCacheTy BlockMaskCache;

  /// Trip count of the original loop.
  Value *TripCount = nullptr;

  /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
  Value *VectorTripCount = nullptr;

  /// The legality analysis.
  LoopVectorizationLegality *Legal;

  /// The profitablity analysis.
  LoopVectorizationCostModel *Cost;

  // Record whether runtime checks are added.
  bool AddedSafetyChecks = false;

  // Holds the end values for each induction variable. We save the end values
  // so we can later fix-up the external users of the induction variables.
  DenseMap<PHINode *, Value *> IVEndValues;
};

class InnerLoopUnroller : public InnerLoopVectorizer {
public:
  InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
                    LoopInfo *LI, DominatorTree *DT,
                    const TargetLibraryInfo *TLI,
                    const TargetTransformInfo *TTI, AssumptionCache *AC,
                    OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
                    LoopVectorizationLegality *LVL,
                    LoopVectorizationCostModel *CM)
      : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1,
                            UnrollFactor, LVL, CM) {}

private:
  Value *getBroadcastInstrs(Value *V) override;
  Value *getStepVector(Value *Val, int StartIdx, Value *Step,
                       Instruction::BinaryOps Opcode =
                       Instruction::BinaryOpsEnd) override;
  Value *reverseVector(Value *Vec) override;
};

} // end namespace llvm

/// \brief Look for a meaningful debug location on the instruction or it's
/// operands.
static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
  if (!I)
    return I;

  DebugLoc Empty;
  if (I->getDebugLoc() != Empty)
    return I;

  for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
    if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
      if (OpInst->getDebugLoc() != Empty)
        return OpInst;
  }

  return I;
}

void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
  if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
    const DILocation *DIL = Inst->getDebugLoc();
    if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
        !isa<DbgInfoIntrinsic>(Inst))
      B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF));
    else
      B.SetCurrentDebugLocation(DIL);
  } else
    B.SetCurrentDebugLocation(DebugLoc());
}

#ifndef NDEBUG
/// \return string containing a file name and a line # for the given loop.
static std::string getDebugLocString(const Loop *L) {
  std::string Result;
  if (L) {
    raw_string_ostream OS(Result);
    if (const DebugLoc LoopDbgLoc = L->getStartLoc())
      LoopDbgLoc.print(OS);
    else
      // Just print the module name.
      OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
    OS.flush();
  }
  return Result;
}
#endif

void InnerLoopVectorizer::addNewMetadata(Instruction *To,
                                         const Instruction *Orig) {
  // If the loop was versioned with memchecks, add the corresponding no-alias
  // metadata.
  if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
    LVer->annotateInstWithNoAlias(To, Orig);
}

void InnerLoopVectorizer::addMetadata(Instruction *To,
                                      Instruction *From) {
  propagateMetadata(To, From);
  addNewMetadata(To, From);
}

void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
                                      Instruction *From) {
  for (Value *V : To) {
    if (Instruction *I = dyn_cast<Instruction>(V))
      addMetadata(I, From);
  }
}

namespace {

/// \brief The group of interleaved loads/stores sharing the same stride and
/// close to each other.
///
/// Each member in this group has an index starting from 0, and the largest
/// index should be less than interleaved factor, which is equal to the absolute
/// value of the access's stride.
///
/// E.g. An interleaved load group of factor 4:
///        for (unsigned i = 0; i < 1024; i+=4) {
///          a = A[i];                           // Member of index 0
///          b = A[i+1];                         // Member of index 1
///          d = A[i+3];                         // Member of index 3
///          ...
///        }
///
///      An interleaved store group of factor 4:
///        for (unsigned i = 0; i < 1024; i+=4) {
///          ...
///          A[i]   = a;                         // Member of index 0
///          A[i+1] = b;                         // Member of index 1
///          A[i+2] = c;                         // Member of index 2
///          A[i+3] = d;                         // Member of index 3
///        }
///
/// Note: the interleaved load group could have gaps (missing members), but
/// the interleaved store group doesn't allow gaps.
class InterleaveGroup {
public:
  InterleaveGroup(Instruction *Instr, int Stride, unsigned Align)
      : Align(Align), InsertPos(Instr) {
    assert(Align && "The alignment should be non-zero");

    Factor = std::abs(Stride);
    assert(Factor > 1 && "Invalid interleave factor");

    Reverse = Stride < 0;
    Members[0] = Instr;
  }

  bool isReverse() const { return Reverse; }
  unsigned getFactor() const { return Factor; }
  unsigned getAlignment() const { return Align; }
  unsigned getNumMembers() const { return Members.size(); }

  /// \brief Try to insert a new member \p Instr with index \p Index and
  /// alignment \p NewAlign. The index is related to the leader and it could be
  /// negative if it is the new leader.
  ///
  /// \returns false if the instruction doesn't belong to the group.
  bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) {
    assert(NewAlign && "The new member's alignment should be non-zero");

    int Key = Index + SmallestKey;

    // Skip if there is already a member with the same index.
    if (Members.count(Key))
      return false;

    if (Key > LargestKey) {
      // The largest index is always less than the interleave factor.
      if (Index >= static_cast<int>(Factor))
        return false;

      LargestKey = Key;
    } else if (Key < SmallestKey) {
      // The largest index is always less than the interleave factor.
      if (LargestKey - Key >= static_cast<int>(Factor))
        return false;

      SmallestKey = Key;
    }

    // It's always safe to select the minimum alignment.
    Align = std::min(Align, NewAlign);
    Members[Key] = Instr;
    return true;
  }

  /// \brief Get the member with the given index \p Index
  ///
  /// \returns nullptr if contains no such member.
  Instruction *getMember(unsigned Index) const {
    int Key = SmallestKey + Index;
    if (!Members.count(Key))
      return nullptr;

    return Members.find(Key)->second;
  }

  /// \brief Get the index for the given member. Unlike the key in the member
  /// map, the index starts from 0.
  unsigned getIndex(Instruction *Instr) const {
    for (auto I : Members)
      if (I.second == Instr)
        return I.first - SmallestKey;

    llvm_unreachable("InterleaveGroup contains no such member");
  }

  Instruction *getInsertPos() const { return InsertPos; }
  void setInsertPos(Instruction *Inst) { InsertPos = Inst; }

private:
  unsigned Factor; // Interleave Factor.
  bool Reverse;
  unsigned Align;
  DenseMap<int, Instruction *> Members;
  int SmallestKey = 0;
  int LargestKey = 0;

  // To avoid breaking dependences, vectorized instructions of an interleave
  // group should be inserted at either the first load or the last store in
  // program order.
  //
  // E.g. %even = load i32             // Insert Position
  //      %add = add i32 %even         // Use of %even
  //      %odd = load i32
  //
  //      store i32 %even
  //      %odd = add i32               // Def of %odd
  //      store i32 %odd               // Insert Position
  Instruction *InsertPos;
};

/// \brief Drive the analysis of interleaved memory accesses in the loop.
///
/// Use this class to analyze interleaved accesses only when we can vectorize
/// a loop. Otherwise it's meaningless to do analysis as the vectorization
/// on interleaved accesses is unsafe.
///
/// The analysis collects interleave groups and records the relationships
/// between the member and the group in a map.
class InterleavedAccessInfo {
public:
  InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L,
                        DominatorTree *DT, LoopInfo *LI)
      : PSE(PSE), TheLoop(L), DT(DT), LI(LI) {}

  ~InterleavedAccessInfo() {
    SmallSet<InterleaveGroup *, 4> DelSet;
    // Avoid releasing a pointer twice.
    for (auto &I : InterleaveGroupMap)
      DelSet.insert(I.second);
    for (auto *Ptr : DelSet)
      delete Ptr;
  }

  /// \brief Analyze the interleaved accesses and collect them in interleave
  /// groups. Substitute symbolic strides using \p Strides.
  void analyzeInterleaving(const ValueToValueMap &Strides);

  /// \brief Check if \p Instr belongs to any interleave group.
  bool isInterleaved(Instruction *Instr) const {
    return InterleaveGroupMap.count(Instr);
  }

  /// \brief Get the interleave group that \p Instr belongs to.
  ///
  /// \returns nullptr if doesn't have such group.
  InterleaveGroup *getInterleaveGroup(Instruction *Instr) const {
    if (InterleaveGroupMap.count(Instr))
      return InterleaveGroupMap.find(Instr)->second;
    return nullptr;
  }

  /// \brief Returns true if an interleaved group that may access memory
  /// out-of-bounds requires a scalar epilogue iteration for correctness.
  bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; }

  /// \brief Initialize the LoopAccessInfo used for dependence checking.
  void setLAI(const LoopAccessInfo *Info) { LAI = Info; }

private:
  /// A wrapper around ScalarEvolution, used to add runtime SCEV checks.
  /// Simplifies SCEV expressions in the context of existing SCEV assumptions.
  /// The interleaved access analysis can also add new predicates (for example
  /// by versioning strides of pointers).
  PredicatedScalarEvolution &PSE;

  Loop *TheLoop;
  DominatorTree *DT;
  LoopInfo *LI;
  const LoopAccessInfo *LAI = nullptr;

  /// True if the loop may contain non-reversed interleaved groups with
  /// out-of-bounds accesses. We ensure we don't speculatively access memory
  /// out-of-bounds by executing at least one scalar epilogue iteration.
  bool RequiresScalarEpilogue = false;

  /// Holds the relationships between the members and the interleave group.
  DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap;

  /// Holds dependences among the memory accesses in the loop. It maps a source
  /// access to a set of dependent sink accesses.
  DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences;

  /// \brief The descriptor for a strided memory access.
  struct StrideDescriptor {
    StrideDescriptor() = default;
    StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size,
                     unsigned Align)
        : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {}

    // The access's stride. It is negative for a reverse access.
    int64_t Stride = 0;

    // The scalar expression of this access.
    const SCEV *Scev = nullptr;

    // The size of the memory object.
    uint64_t Size = 0;

    // The alignment of this access.
    unsigned Align = 0;
  };

  /// \brief A type for holding instructions and their stride descriptors.
  using StrideEntry = std::pair<Instruction *, StrideDescriptor>;

  /// \brief Create a new interleave group with the given instruction \p Instr,
  /// stride \p Stride and alignment \p Align.
  ///
  /// \returns the newly created interleave group.
  InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride,
                                         unsigned Align) {
    assert(!InterleaveGroupMap.count(Instr) &&
           "Already in an interleaved access group");
    InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align);
    return InterleaveGroupMap[Instr];
  }

  /// \brief Release the group and remove all the relationships.
  void releaseGroup(InterleaveGroup *Group) {
    for (unsigned i = 0; i < Group->getFactor(); i++)
      if (Instruction *Member = Group->getMember(i))
        InterleaveGroupMap.erase(Member);

    delete Group;
  }

  /// \brief Collect all the accesses with a constant stride in program order.
  void collectConstStrideAccesses(
      MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
      const ValueToValueMap &Strides);

  /// \brief Returns true if \p Stride is allowed in an interleaved group.
  static bool isStrided(int Stride) {
    unsigned Factor = std::abs(Stride);
    return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
  }

  /// \brief Returns true if \p BB is a predicated block.
  bool isPredicated(BasicBlock *BB) const {
    return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
  }

  /// \brief Returns true if LoopAccessInfo can be used for dependence queries.
  bool areDependencesValid() const {
    return LAI && LAI->getDepChecker().getDependences();
  }

  /// \brief Returns true if memory accesses \p A and \p B can be reordered, if
  /// necessary, when constructing interleaved groups.
  ///
  /// \p A must precede \p B in program order. We return false if reordering is
  /// not necessary or is prevented because \p A and \p B may be dependent.
  bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A,
                                                 StrideEntry *B) const {
    // Code motion for interleaved accesses can potentially hoist strided loads
    // and sink strided stores. The code below checks the legality of the
    // following two conditions:
    //
    // 1. Potentially moving a strided load (B) before any store (A) that
    //    precedes B, or
    //
    // 2. Potentially moving a strided store (A) after any load or store (B)
    //    that A precedes.
    //
    // It's legal to reorder A and B if we know there isn't a dependence from A
    // to B. Note that this determination is conservative since some
    // dependences could potentially be reordered safely.

    // A is potentially the source of a dependence.
    auto *Src = A->first;
    auto SrcDes = A->second;

    // B is potentially the sink of a dependence.
    auto *Sink = B->first;
    auto SinkDes = B->second;

    // Code motion for interleaved accesses can't violate WAR dependences.
    // Thus, reordering is legal if the source isn't a write.
    if (!Src->mayWriteToMemory())
      return true;

    // At least one of the accesses must be strided.
    if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride))
      return true;

    // If dependence information is not available from LoopAccessInfo,
    // conservatively assume the instructions can't be reordered.
    if (!areDependencesValid())
      return false;

    // If we know there is a dependence from source to sink, assume the
    // instructions can't be reordered. Otherwise, reordering is legal.
    return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink);
  }

  /// \brief Collect the dependences from LoopAccessInfo.
  ///
  /// We process the dependences once during the interleaved access analysis to
  /// enable constant-time dependence queries.
  void collectDependences() {
    if (!areDependencesValid())
      return;
    auto *Deps = LAI->getDepChecker().getDependences();
    for (auto Dep : *Deps)
      Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI));
  }
};

/// Utility class for getting and setting loop vectorizer hints in the form
/// of loop metadata.
/// This class keeps a number of loop annotations locally (as member variables)
/// and can, upon request, write them back as metadata on the loop. It will
/// initially scan the loop for existing metadata, and will update the local
/// values based on information in the loop.
/// We cannot write all values to metadata, as the mere presence of some info,
/// for example 'force', means a decision has been made. So, we need to be
/// careful NOT to add them if the user hasn't specifically asked so.
class LoopVectorizeHints {
  enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED };

  /// Hint - associates name and validation with the hint value.
  struct Hint {
    const char *Name;
    unsigned Value; // This may have to change for non-numeric values.
    HintKind Kind;

    Hint(const char *Name, unsigned Value, HintKind Kind)
        : Name(Name), Value(Value), Kind(Kind) {}

    bool validate(unsigned Val) {
      switch (Kind) {
      case HK_WIDTH:
        return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
      case HK_UNROLL:
        return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
      case HK_FORCE:
        return (Val <= 1);
      case HK_ISVECTORIZED:
        return (Val==0 || Val==1);
      }
      return false;
    }
  };

  /// Vectorization width.
  Hint Width;

  /// Vectorization interleave factor.
  Hint Interleave;

  /// Vectorization forced
  Hint Force;

  /// Already Vectorized
  Hint IsVectorized;

  /// Return the loop metadata prefix.
  static StringRef Prefix() { return "llvm.loop."; }

  /// True if there is any unsafe math in the loop.
  bool PotentiallyUnsafe = false;

public:
  enum ForceKind {
    FK_Undefined = -1, ///< Not selected.
    FK_Disabled = 0,   ///< Forcing disabled.
    FK_Enabled = 1,    ///< Forcing enabled.
  };

  LoopVectorizeHints(const Loop *L, bool DisableInterleaving,
                     OptimizationRemarkEmitter &ORE)
      : Width("vectorize.width", VectorizerParams::VectorizationFactor,
              HK_WIDTH),
        Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
        Force("vectorize.enable", FK_Undefined, HK_FORCE),
        IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) {
    // Populate values with existing loop metadata.
    getHintsFromMetadata();

    // force-vector-interleave overrides DisableInterleaving.
    if (VectorizerParams::isInterleaveForced())
      Interleave.Value = VectorizerParams::VectorizationInterleave;

    if (IsVectorized.Value != 1)
      // If the vectorization width and interleaving count are both 1 then
      // consider the loop to have been already vectorized because there's
      // nothing more that we can do.
      IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
    DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
          << "LV: Interleaving disabled by the pass manager\n");
  }

  /// Mark the loop L as already vectorized by setting the width to 1.
  void setAlreadyVectorized() {
    IsVectorized.Value = 1;
    Hint Hints[] = {IsVectorized};
    writeHintsToMetadata(Hints);
  }

  bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const {
    if (getForce() == LoopVectorizeHints::FK_Disabled) {
      DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
      emitRemarkWithHints();
      return false;
    }

    if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
      DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
      emitRemarkWithHints();
      return false;
    }

    if (getIsVectorized() == 1) {
      DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
      // FIXME: Add interleave.disable metadata. This will allow
      // vectorize.disable to be used without disabling the pass and errors
      // to differentiate between disabled vectorization and a width of 1.
      ORE.emit([&]() {
        return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
                                          "AllDisabled", L->getStartLoc(),
                                          L->getHeader())
               << "loop not vectorized: vectorization and interleaving are "
                  "explicitly disabled, or the loop has already been "
                  "vectorized";
      });
      return false;
    }

    return true;
  }

  /// Dumps all the hint information.
  void emitRemarkWithHints() const {
    using namespace ore;

    ORE.emit([&]() {
      if (Force.Value == LoopVectorizeHints::FK_Disabled)
        return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
                                        TheLoop->getStartLoc(),
                                        TheLoop->getHeader())
               << "loop not vectorized: vectorization is explicitly disabled";
      else {
        OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
                                   TheLoop->getStartLoc(),
                                   TheLoop->getHeader());
        R << "loop not vectorized";
        if (Force.Value == LoopVectorizeHints::FK_Enabled) {
          R << " (Force=" << NV("Force", true);
          if (Width.Value != 0)
            R << ", Vector Width=" << NV("VectorWidth", Width.Value);
          if (Interleave.Value != 0)
            R << ", Interleave Count="
              << NV("InterleaveCount", Interleave.Value);
          R << ")";
        }
        return R;
      }
    });
  }

  unsigned getWidth() const { return Width.Value; }
  unsigned getInterleave() const { return Interleave.Value; }
  unsigned getIsVectorized() const { return IsVectorized.Value; }
  enum ForceKind getForce() const { return (ForceKind)Force.Value; }

  /// \brief If hints are provided that force vectorization, use the AlwaysPrint
  /// pass name to force the frontend to print the diagnostic.
  const char *vectorizeAnalysisPassName() const {
    if (getWidth() == 1)
      return LV_NAME;
    if (getForce() == LoopVectorizeHints::FK_Disabled)
      return LV_NAME;
    if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
      return LV_NAME;
    return OptimizationRemarkAnalysis::AlwaysPrint;
  }

  bool allowReordering() const {
    // When enabling loop hints are provided we allow the vectorizer to change
    // the order of operations that is given by the scalar loop. This is not
    // enabled by default because can be unsafe or inefficient. For example,
    // reordering floating-point operations will change the way round-off
    // error accumulates in the loop.
    return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1;
  }

  bool isPotentiallyUnsafe() const {
    // Avoid FP vectorization if the target is unsure about proper support.
    // This may be related to the SIMD unit in the target not handling
    // IEEE 754 FP ops properly, or bad single-to-double promotions.
    // Otherwise, a sequence of vectorized loops, even without reduction,
    // could lead to different end results on the destination vectors.
    return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe;
  }

  void setPotentiallyUnsafe() { PotentiallyUnsafe = true; }

private:
  /// Find hints specified in the loop metadata and update local values.
  void getHintsFromMetadata() {
    MDNode *LoopID = TheLoop->getLoopID();
    if (!LoopID)
      return;

    // First operand should refer to the loop id itself.
    assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
    assert(LoopID->getOperand(0) == LoopID && "invalid loop id");

    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
      const MDString *S = nullptr;
      SmallVector<Metadata *, 4> Args;

      // The expected hint is either a MDString or a MDNode with the first
      // operand a MDString.
      if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
        if (!MD || MD->getNumOperands() == 0)
          continue;
        S = dyn_cast<MDString>(MD->getOperand(0));
        for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
          Args.push_back(MD->getOperand(i));
      } else {
        S = dyn_cast<MDString>(LoopID->getOperand(i));
        assert(Args.size() == 0 && "too many arguments for MDString");
      }

      if (!S)
        continue;

      // Check if the hint starts with the loop metadata prefix.
      StringRef Name = S->getString();
      if (Args.size() == 1)
        setHint(Name, Args[0]);
    }
  }

  /// Checks string hint with one operand and set value if valid.
  void setHint(StringRef Name, Metadata *Arg) {
    if (!Name.startswith(Prefix()))
      return;
    Name = Name.substr(Prefix().size(), StringRef::npos);

    const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
    if (!C)
      return;
    unsigned Val = C->getZExtValue();

    Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized};
    for (auto H : Hints) {
      if (Name == H->Name) {
        if (H->validate(Val))
          H->Value = Val;
        else
          DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
        break;
      }
    }
  }

  /// Create a new hint from name / value pair.
  MDNode *createHintMetadata(StringRef Name, unsigned V) const {
    LLVMContext &Context = TheLoop->getHeader()->getContext();
    Metadata *MDs[] = {MDString::get(Context, Name),
                       ConstantAsMetadata::get(
                           ConstantInt::get(Type::getInt32Ty(Context), V))};
    return MDNode::get(Context, MDs);
  }

  /// Matches metadata with hint name.
  bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
    MDString *Name = dyn_cast<MDString>(Node->getOperand(0));
    if (!Name)
      return false;

    for (auto H : HintTypes)
      if (Name->getString().endswith(H.Name))
        return true;
    return false;
  }

  /// Sets current hints into loop metadata, keeping other values intact.
  void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
    if (HintTypes.empty())
      return;

    // Reserve the first element to LoopID (see below).
    SmallVector<Metadata *, 4> MDs(1);
    // If the loop already has metadata, then ignore the existing operands.
    MDNode *LoopID = TheLoop->getLoopID();
    if (LoopID) {
      for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
        MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
        // If node in update list, ignore old value.
        if (!matchesHintMetadataName(Node, HintTypes))
          MDs.push_back(Node);
      }
    }

    // Now, add the missing hints.
    for (auto H : HintTypes)
      MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));

    // Replace current metadata node with new one.
    LLVMContext &Context = TheLoop->getHeader()->getContext();
    MDNode *NewLoopID = MDNode::get(Context, MDs);
    // Set operand 0 to refer to the loop id itself.
    NewLoopID->replaceOperandWith(0, NewLoopID);

    TheLoop->setLoopID(NewLoopID);
  }

  /// The loop these hints belong to.
  const Loop *TheLoop;

  /// Interface to emit optimization remarks.
  OptimizationRemarkEmitter &ORE;
};

} // end anonymous namespace

static void emitMissedWarning(Function *F, Loop *L,
                              const LoopVectorizeHints &LH,
                              OptimizationRemarkEmitter *ORE) {
  LH.emitRemarkWithHints();

  if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
    if (LH.getWidth() != 1)
      ORE->emit(DiagnosticInfoOptimizationFailure(
                    DEBUG_TYPE, "FailedRequestedVectorization",
                    L->getStartLoc(), L->getHeader())
                << "loop not vectorized: "
                << "failed explicitly specified loop vectorization");
    else if (LH.getInterleave() != 1)
      ORE->emit(DiagnosticInfoOptimizationFailure(
                    DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(),
                    L->getHeader())
                << "loop not interleaved: "
                << "failed explicitly specified loop interleaving");
  }
}

namespace {

/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
/// to what vectorization factor.
/// This class does not look at the profitability of vectorization, only the
/// legality. This class has two main kinds of checks:
/// * Memory checks - The code in canVectorizeMemory checks if vectorization
///   will change the order of memory accesses in a way that will change the
///   correctness of the program.
/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
/// checks for a number of different conditions, such as the availability of a
/// single induction variable, that all types are supported and vectorize-able,
/// etc. This code reflects the capabilities of InnerLoopVectorizer.
/// This class is also used by InnerLoopVectorizer for identifying
/// induction variable and the different reduction variables.
class LoopVectorizationLegality {
public:
  LoopVectorizationLegality(
      Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT,
      TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F,
      const TargetTransformInfo *TTI,
      std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI,
      OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R,
      LoopVectorizeHints *H)
      : TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), GetLAA(GetLAA),
        ORE(ORE), InterleaveInfo(PSE, L, DT, LI), Requirements(R), Hints(H) {}

  /// ReductionList contains the reduction descriptors for all
  /// of the reductions that were found in the loop.
  using ReductionList = DenseMap<PHINode *, RecurrenceDescriptor>;

  /// InductionList saves induction variables and maps them to the
  /// induction descriptor.
  using InductionList = MapVector<PHINode *, InductionDescriptor>;

  /// RecurrenceSet contains the phi nodes that are recurrences other than
  /// inductions and reductions.
  using RecurrenceSet = SmallPtrSet<const PHINode *, 8>;

  /// Returns true if it is legal to vectorize this loop.
  /// This does not mean that it is profitable to vectorize this
  /// loop, only that it is legal to do so.
  bool canVectorize();

  /// Returns the primary induction variable.
  PHINode *getPrimaryInduction() { return PrimaryInduction; }

  /// Returns the reduction variables found in the loop.
  ReductionList *getReductionVars() { return &Reductions; }

  /// Returns the induction variables found in the loop.
  InductionList *getInductionVars() { return &Inductions; }

  /// Return the first-order recurrences found in the loop.
  RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; }

  /// Return the set of instructions to sink to handle first-order recurrences.
  DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; }

  /// Returns the widest induction type.
  Type *getWidestInductionType() { return WidestIndTy; }

  /// Returns True if V is an induction variable in this loop.
  bool isInductionVariable(const Value *V);

  /// Returns True if PN is a reduction variable in this loop.
  bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); }

  /// Returns True if Phi is a first-order recurrence in this loop.
  bool isFirstOrderRecurrence(const PHINode *Phi);

  /// Return true if the block BB needs to be predicated in order for the loop
  /// to be vectorized.
  bool blockNeedsPredication(BasicBlock *BB);

  /// Check if this pointer is consecutive when vectorizing. This happens
  /// when the last index of the GEP is the induction variable, or that the
  /// pointer itself is an induction variable.
  /// This check allows us to vectorize A[idx] into a wide load/store.
  /// Returns:
  /// 0 - Stride is unknown or non-consecutive.
  /// 1 - Address is consecutive.
  /// -1 - Address is consecutive, and decreasing.
  int isConsecutivePtr(Value *Ptr);

  /// Returns true if the value V is uniform within the loop.
  bool isUniform(Value *V);

  /// Returns the information that we collected about runtime memory check.
  const RuntimePointerChecking *getRuntimePointerChecking() const {
    return LAI->getRuntimePointerChecking();
  }

  const LoopAccessInfo *getLAI() const { return LAI; }

  /// \brief Check if \p Instr belongs to any interleaved access group.
  bool isAccessInterleaved(Instruction *Instr) {
    return InterleaveInfo.isInterleaved(Instr);
  }

  /// \brief Get the interleaved access group that \p Instr belongs to.
  const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) {
    return InterleaveInfo.getInterleaveGroup(Instr);
  }

  /// \brief Returns true if an interleaved group requires a scalar iteration
  /// to handle accesses with gaps.
  bool requiresScalarEpilogue() const {
    return InterleaveInfo.requiresScalarEpilogue();
  }

  unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }

  uint64_t getMaxSafeRegisterWidth() const {
	  return LAI->getDepChecker().getMaxSafeRegisterWidth();
  }

  bool hasStride(Value *V) { return LAI->hasStride(V); }

  /// Returns true if the target machine supports masked store operation
  /// for the given \p DataType and kind of access to \p Ptr.
  bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
    return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType);
  }

  /// Returns true if the target machine supports masked load operation
  /// for the given \p DataType and kind of access to \p Ptr.
  bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
    return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType);
  }

  /// Returns true if the target machine supports masked scatter operation
  /// for the given \p DataType.
  bool isLegalMaskedScatter(Type *DataType) {
    return TTI->isLegalMaskedScatter(DataType);
  }

  /// Returns true if the target machine supports masked gather operation
  /// for the given \p DataType.
  bool isLegalMaskedGather(Type *DataType) {
    return TTI->isLegalMaskedGather(DataType);
  }

  /// Returns true if the target machine can represent \p V as a masked gather
  /// or scatter operation.
  bool isLegalGatherOrScatter(Value *V) {
    auto *LI = dyn_cast<LoadInst>(V);
    auto *SI = dyn_cast<StoreInst>(V);
    if (!LI && !SI)
      return false;
    auto *Ptr = getPointerOperand(V);
    auto *Ty = cast<PointerType>(Ptr->getType())->getElementType();
    return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty));
  }

  /// Returns true if vector representation of the instruction \p I
  /// requires mask.
  bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); }

  unsigned getNumStores() const { return LAI->getNumStores(); }
  unsigned getNumLoads() const { return LAI->getNumLoads(); }
  unsigned getNumPredStores() const { return NumPredStores; }

  /// Returns true if \p I is an instruction that will be scalarized with
  /// predication. Such instructions include conditional stores and
  /// instructions that may divide by zero.
  bool isScalarWithPredication(Instruction *I);

  /// Returns true if \p I is a memory instruction with consecutive memory
  /// access that can be widened.
  bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1);

  // Returns true if the NoNaN attribute is set on the function.
  bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; }

private:
  /// Check if a single basic block loop is vectorizable.
  /// At this point we know that this is a loop with a constant trip count
  /// and we only need to check individual instructions.
  bool canVectorizeInstrs();

  /// When we vectorize loops we may change the order in which
  /// we read and write from memory. This method checks if it is
  /// legal to vectorize the code, considering only memory constrains.
  /// Returns true if the loop is vectorizable
  bool canVectorizeMemory();

  /// Return true if we can vectorize this loop using the IF-conversion
  /// transformation.
  bool canVectorizeWithIfConvert();

  /// Return true if all of the instructions in the block can be speculatively
  /// executed. \p SafePtrs is a list of addresses that are known to be legal
  /// and we know that we can read from them without segfault.
  bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);

  /// Updates the vectorization state by adding \p Phi to the inductions list.
  /// This can set \p Phi as the main induction of the loop if \p Phi is a
  /// better choice for the main induction than the existing one.
  void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID,
                       SmallPtrSetImpl<Value *> &AllowedExit);

  /// Create an analysis remark that explains why vectorization failed
  ///
  /// \p RemarkName is the identifier for the remark.  If \p I is passed it is
  /// an instruction that prevents vectorization.  Otherwise the loop is used
  /// for the location of the remark.  \return the remark object that can be
  /// streamed to.
  OptimizationRemarkAnalysis
  createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const {
    return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(),
                                  RemarkName, TheLoop, I);
  }

  /// \brief If an access has a symbolic strides, this maps the pointer value to
  /// the stride symbol.
  const ValueToValueMap *getSymbolicStrides() {
    // FIXME: Currently, the set of symbolic strides is sometimes queried before
    // it's collected.  This happens from canVectorizeWithIfConvert, when the
    // pointer is checked to reference consecutive elements suitable for a
    // masked access.
    return LAI ? &LAI->getSymbolicStrides() : nullptr;
  }

  unsigned NumPredStores = 0;

  /// The loop that we evaluate.
  Loop *TheLoop;

  /// A wrapper around ScalarEvolution used to add runtime SCEV checks.
  /// Applies dynamic knowledge to simplify SCEV expressions in the context
  /// of existing SCEV assumptions. The analysis will also add a minimal set
  /// of new predicates if this is required to enable vectorization and
  /// unrolling.
  PredicatedScalarEvolution &PSE;

  /// Target Library Info.
  TargetLibraryInfo *TLI;

  /// Target Transform Info
  const TargetTransformInfo *TTI;

  /// Dominator Tree.
  DominatorTree *DT;

  // LoopAccess analysis.
  std::function<const LoopAccessInfo &(Loop &)> *GetLAA;

  // And the loop-accesses info corresponding to this loop.  This pointer is
  // null until canVectorizeMemory sets it up.
  const LoopAccessInfo *LAI = nullptr;

  /// Interface to emit optimization remarks.
  OptimizationRemarkEmitter *ORE;

  /// The interleave access information contains groups of interleaved accesses
  /// with the same stride and close to each other.
  InterleavedAccessInfo InterleaveInfo;

  //  ---  vectorization state --- //

  /// Holds the primary induction variable. This is the counter of the
  /// loop.
  PHINode *PrimaryInduction = nullptr;

  /// Holds the reduction variables.
  ReductionList Reductions;

  /// Holds all of the induction variables that we found in the loop.
  /// Notice that inductions don't need to start at zero and that induction
  /// variables can be pointers.
  InductionList Inductions;

  /// Holds the phi nodes that are first-order recurrences.
  RecurrenceSet FirstOrderRecurrences;

  /// Holds instructions that need to sink past other instructions to handle
  /// first-order recurrences.
  DenseMap<Instruction *, Instruction *> SinkAfter;

  /// Holds the widest induction type encountered.
  Type *WidestIndTy = nullptr;

  /// Allowed outside users. This holds the induction and reduction
  /// vars which can be accessed from outside the loop.
  SmallPtrSet<Value *, 4> AllowedExit;

  /// Can we assume the absence of NaNs.
  bool HasFunNoNaNAttr = false;

  /// Vectorization requirements that will go through late-evaluation.
  LoopVectorizationRequirements *Requirements;

  /// Used to emit an analysis of any legality issues.
  LoopVectorizeHints *Hints;

  /// While vectorizing these instructions we have to generate a
  /// call to the appropriate masked intrinsic
  SmallPtrSet<const Instruction *, 8> MaskedOp;
};

/// LoopVectorizationCostModel - estimates the expected speedups due to
/// vectorization.
/// In many cases vectorization is not profitable. This can happen because of
/// a number of reasons. In this class we mainly attempt to predict the
/// expected speedup/slowdowns due to the supported instruction set. We use the
/// TargetTransformInfo to query the different backends for the cost of
/// different operations.
class LoopVectorizationCostModel {
public:
  LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE,
                             LoopInfo *LI, LoopVectorizationLegality *Legal,
                             const TargetTransformInfo &TTI,
                             const TargetLibraryInfo *TLI, DemandedBits *DB,
                             AssumptionCache *AC,
                             OptimizationRemarkEmitter *ORE, const Function *F,
                             const LoopVectorizeHints *Hints)
      : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
        AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {}

  /// \return An upper bound for the vectorization factor, or None if
  /// vectorization should be avoided up front.
  Optional<unsigned> computeMaxVF(bool OptForSize);

  /// Information about vectorization costs
  struct VectorizationFactor {
    // Vector width with best cost
    unsigned Width;

    // Cost of the loop with that width
    unsigned Cost;
  };

  /// \return The most profitable vectorization factor and the cost of that VF.
  /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
  /// then this vectorization factor will be selected if vectorization is
  /// possible.
  VectorizationFactor selectVectorizationFactor(unsigned MaxVF);

  /// Setup cost-based decisions for user vectorization factor.
  void selectUserVectorizationFactor(unsigned UserVF) {
    collectUniformsAndScalars(UserVF);
    collectInstsToScalarize(UserVF);
  }

  /// \return The size (in bits) of the smallest and widest types in the code
  /// that needs to be vectorized. We ignore values that remain scalar such as
  /// 64 bit loop indices.
  std::pair<unsigned, unsigned> getSmallestAndWidestTypes();

  /// \return The desired interleave count.
  /// If interleave count has been specified by metadata it will be returned.
  /// Otherwise, the interleave count is computed and returned. VF and LoopCost
  /// are the selected vectorization factor and the cost of the selected VF.
  unsigned selectInterleaveCount(bool OptForSize, unsigned VF,
                                 unsigned LoopCost);

  /// Memory access instruction may be vectorized in more than one way.
  /// Form of instruction after vectorization depends on cost.
  /// This function takes cost-based decisions for Load/Store instructions
  /// and collects them in a map. This decisions map is used for building
  /// the lists of loop-uniform and loop-scalar instructions.
  /// The calculated cost is saved with widening decision in order to
  /// avoid redundant calculations.
  void setCostBasedWideningDecision(unsigned VF);

  /// \brief A struct that represents some properties of the register usage
  /// of a loop.
  struct RegisterUsage {
    /// Holds the number of loop invariant values that are used in the loop.
    unsigned LoopInvariantRegs;

    /// Holds the maximum number of concurrent live intervals in the loop.
    unsigned MaxLocalUsers;

    /// Holds the number of instructions in the loop.
    unsigned NumInstructions;
  };

  /// \return Returns information about the register usages of the loop for the
  /// given vectorization factors.
  SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);

  /// Collect values we want to ignore in the cost model.
  void collectValuesToIgnore();

  /// \returns The smallest bitwidth each instruction can be represented with.
  /// The vector equivalents of these instructions should be truncated to this
  /// type.
  const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
    return MinBWs;
  }

  /// \returns True if it is more profitable to scalarize instruction \p I for
  /// vectorization factor \p VF.
  bool isProfitableToScalarize(Instruction *I, unsigned VF) const {
    assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1.");
    auto Scalars = InstsToScalarize.find(VF);
    assert(Scalars != InstsToScalarize.end() &&
           "VF not yet analyzed for scalarization profitability");
    return Scalars->second.count(I);
  }

  /// Returns true if \p I is known to be uniform after vectorization.
  bool isUniformAfterVectorization(Instruction *I, unsigned VF) const {
    if (VF == 1)
      return true;
    assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity");
    auto UniformsPerVF = Uniforms.find(VF);
    return UniformsPerVF->second.count(I);
  }

  /// Returns true if \p I is known to be scalar after vectorization.
  bool isScalarAfterVectorization(Instruction *I, unsigned VF) const {
    if (VF == 1)
      return true;
    assert(Scalars.count(VF) && "Scalar values are not calculated for VF");
    auto ScalarsPerVF = Scalars.find(VF);
    return ScalarsPerVF->second.count(I);
  }

  /// \returns True if instruction \p I can be truncated to a smaller bitwidth
  /// for vectorization factor \p VF.
  bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const {
    return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) &&
           !isScalarAfterVectorization(I, VF);
  }

  /// Decision that was taken during cost calculation for memory instruction.
  enum InstWidening {
    CM_Unknown,
    CM_Widen,
    CM_Interleave,
    CM_GatherScatter,
    CM_Scalarize
  };

  /// Save vectorization decision \p W and \p Cost taken by the cost model for
  /// instruction \p I and vector width \p VF.
  void setWideningDecision(Instruction *I, unsigned VF, InstWidening W,
                           unsigned Cost) {
    assert(VF >= 2 && "Expected VF >=2");
    WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
  }

  /// Save vectorization decision \p W and \p Cost taken by the cost model for
  /// interleaving group \p Grp and vector width \p VF.
  void setWideningDecision(const InterleaveGroup *Grp, unsigned VF,
                           InstWidening W, unsigned Cost) {
    assert(VF >= 2 && "Expected VF >=2");
    /// Broadcast this decicion to all instructions inside the group.
    /// But the cost will be assigned to one instruction only.
    for (unsigned i = 0; i < Grp->getFactor(); ++i) {
      if (auto *I = Grp->getMember(i)) {
        if (Grp->getInsertPos() == I)
          WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
        else
          WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
      }
    }
  }

  /// Return the cost model decision for the given instruction \p I and vector
  /// width \p VF. Return CM_Unknown if this instruction did not pass
  /// through the cost modeling.
  InstWidening getWideningDecision(Instruction *I, unsigned VF) {
    assert(VF >= 2 && "Expected VF >=2");
    std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
    auto Itr = WideningDecisions.find(InstOnVF);
    if (Itr == WideningDecisions.end())
      return CM_Unknown;
    return Itr->second.first;
  }

  /// Return the vectorization cost for the given instruction \p I and vector
  /// width \p VF.
  unsigned getWideningCost(Instruction *I, unsigned VF) {
    assert(VF >= 2 && "Expected VF >=2");
    std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
    assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated");
    return WideningDecisions[InstOnVF].second;
  }

  /// Return True if instruction \p I is an optimizable truncate whose operand
  /// is an induction variable. Such a truncate will be removed by adding a new
  /// induction variable with the destination type.
  bool isOptimizableIVTruncate(Instruction *I, unsigned VF) {
    // If the instruction is not a truncate, return false.
    auto *Trunc = dyn_cast<TruncInst>(I);
    if (!Trunc)
      return false;

    // Get the source and destination types of the truncate.
    Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
    Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);

    // If the truncate is free for the given types, return false. Replacing a
    // free truncate with an induction variable would add an induction variable
    // update instruction to each iteration of the loop. We exclude from this
    // check the primary induction variable since it will need an update
    // instruction regardless.
    Value *Op = Trunc->getOperand(0);
    if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
      return false;

    // If the truncated value is not an induction variable, return false.
    return Legal->isInductionVariable(Op);
  }

  /// Collects the instructions to scalarize for each predicated instruction in
  /// the loop.
  void collectInstsToScalarize(unsigned VF);

  /// Collect Uniform and Scalar values for the given \p VF.
  /// The sets depend on CM decision for Load/Store instructions
  /// that may be vectorized as interleave, gather-scatter or scalarized.
  void collectUniformsAndScalars(unsigned VF) {
    // Do the analysis once.
    if (VF == 1 || Uniforms.count(VF))
      return;
    setCostBasedWideningDecision(VF);
    collectLoopUniforms(VF);
    collectLoopScalars(VF);
  }

private:
  /// \return An upper bound for the vectorization factor, larger than zero.
  /// One is returned if vectorization should best be avoided due to cost.
  unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount);

  /// The vectorization cost is a combination of the cost itself and a boolean
  /// indicating whether any of the contributing operations will actually
  /// operate on
  /// vector values after type legalization in the backend. If this latter value
  /// is
  /// false, then all operations will be scalarized (i.e. no vectorization has
  /// actually taken place).
  using VectorizationCostTy = std::pair<unsigned, bool>;

  /// Returns the expected execution cost. The unit of the cost does
  /// not matter because we use the 'cost' units to compare different
  /// vector widths. The cost that is returned is *not* normalized by
  /// the factor width.
  VectorizationCostTy expectedCost(unsigned VF);

  /// Returns the execution time cost of an instruction for a given vector
  /// width. Vector width of one means scalar.
  VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);

  /// The cost-computation logic from getInstructionCost which provides
  /// the vector type as an output parameter.
  unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);

  /// Calculate vectorization cost of memory instruction \p I.
  unsigned getMemoryInstructionCost(Instruction *I, unsigned VF);

  /// The cost computation for scalarized memory instruction.
  unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF);

  /// The cost computation for interleaving group of memory instructions.
  unsigned getInterleaveGroupCost(Instruction *I, unsigned VF);

  /// The cost computation for Gather/Scatter instruction.
  unsigned getGatherScatterCost(Instruction *I, unsigned VF);

  /// The cost computation for widening instruction \p I with consecutive
  /// memory access.
  unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF);

  /// The cost calculation for Load instruction \p I with uniform pointer -
  /// scalar load + broadcast.
  unsigned getUniformMemOpCost(Instruction *I, unsigned VF);

  /// Returns whether the instruction is a load or store and will be a emitted
  /// as a vector operation.
  bool isConsecutiveLoadOrStore(Instruction *I);

  /// Create an analysis remark that explains why vectorization failed
  ///
  /// \p RemarkName is the identifier for the remark.  \return the remark object
  /// that can be streamed to.
  OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) {
    return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(),
                                  RemarkName, TheLoop);
  }

  /// Map of scalar integer values to the smallest bitwidth they can be legally
  /// represented as. The vector equivalents of these values should be truncated
  /// to this type.
  MapVector<Instruction *, uint64_t> MinBWs;

  /// A type representing the costs for instructions if they were to be
  /// scalarized rather than vectorized. The entries are Instruction-Cost
  /// pairs.
  using ScalarCostsTy = DenseMap<Instruction *, unsigned>;

  /// A set containing all BasicBlocks that are known to present after
  /// vectorization as a predicated block.
  SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;

  /// A map holding scalar costs for different vectorization factors. The
  /// presence of a cost for an instruction in the mapping indicates that the
  /// instruction will be scalarized when vectorizing with the associated
  /// vectorization factor. The entries are VF-ScalarCostTy pairs.
  DenseMap<unsigned, ScalarCostsTy> InstsToScalarize;

  /// Holds the instructions known to be uniform after vectorization.
  /// The data is collected per VF.
  DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms;

  /// Holds the instructions known to be scalar after vectorization.
  /// The data is collected per VF.
  DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars;

  /// Holds the instructions (address computations) that are forced to be
  /// scalarized.
  DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars;

  /// Returns the expected difference in cost from scalarizing the expression
  /// feeding a predicated instruction \p PredInst. The instructions to
  /// scalarize and their scalar costs are collected in \p ScalarCosts. A
  /// non-negative return value implies the expression will be scalarized.
  /// Currently, only single-use chains are considered for scalarization.
  int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
                              unsigned VF);

  /// Collect the instructions that are uniform after vectorization. An
  /// instruction is uniform if we represent it with a single scalar value in
  /// the vectorized loop corresponding to each vector iteration. Examples of
  /// uniform instructions include pointer operands of consecutive or
  /// interleaved memory accesses. Note that although uniformity implies an
  /// instruction will be scalar, the reverse is not true. In general, a
  /// scalarized instruction will be represented by VF scalar values in the
  /// vectorized loop, each corresponding to an iteration of the original
  /// scalar loop.
  void collectLoopUniforms(unsigned VF);

  /// Collect the instructions that are scalar after vectorization. An
  /// instruction is scalar if it is known to be uniform or will be scalarized
  /// during vectorization. Non-uniform scalarized instructions will be
  /// represented by VF values in the vectorized loop, each corresponding to an
  /// iteration of the original scalar loop.
  void collectLoopScalars(unsigned VF);

  /// Keeps cost model vectorization decision and cost for instructions.
  /// Right now it is used for memory instructions only.
  using DecisionList = DenseMap<std::pair<Instruction *, unsigned>,
                                std::pair<InstWidening, unsigned>>;

  DecisionList WideningDecisions;

public:
  /// The loop that we evaluate.
  Loop *TheLoop;

  /// Predicated scalar evolution analysis.
  PredicatedScalarEvolution &PSE;

  /// Loop Info analysis.
  LoopInfo *LI;

  /// Vectorization legality.
  LoopVectorizationLegality *Legal;

  /// Vector target information.
  const TargetTransformInfo &TTI;

  /// Target Library Info.
  const TargetLibraryInfo *TLI;

  /// Demanded bits analysis.
  DemandedBits *DB;

  /// Assumption cache.
  AssumptionCache *AC;

  /// Interface to emit optimization remarks.
  OptimizationRemarkEmitter *ORE;

  const Function *TheFunction;

  /// Loop Vectorize Hint.
  const LoopVectorizeHints *Hints;

  /// Values to ignore in the cost model.
  SmallPtrSet<const Value *, 16> ValuesToIgnore;

  /// Values to ignore in the cost model when VF > 1.
  SmallPtrSet<const Value *, 16> VecValuesToIgnore;
};

} // end anonymous namespace

namespace llvm {

/// InnerLoopVectorizer vectorizes loops which contain only one basic
/// LoopVectorizationPlanner - drives the vectorization process after having
/// passed Legality checks.
/// The planner builds and optimizes the Vectorization Plans which record the
/// decisions how to vectorize the given loop. In particular, represent the
/// control-flow of the vectorized version, the replication of instructions that
/// are to be scalarized, and interleave access groups.
class LoopVectorizationPlanner {
  /// The loop that we evaluate.
  Loop *OrigLoop;

  /// Loop Info analysis.
  LoopInfo *LI;

  /// Target Library Info.
  const TargetLibraryInfo *TLI;

  /// Target Transform Info.
  const TargetTransformInfo *TTI;

  /// The legality analysis.
  LoopVectorizationLegality *Legal;

  /// The profitablity analysis.
  LoopVectorizationCostModel &CM;

  SmallVector<std::unique_ptr<VPlan>, 4> VPlans;

  unsigned BestVF = 0;
  unsigned BestUF = 0;

public:
  LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI,
                           const TargetTransformInfo *TTI,
                           LoopVectorizationLegality *Legal,
                           LoopVectorizationCostModel &CM)
      : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM) {}

  /// Plan how to best vectorize, return the best VF and its cost.
  LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize,
                                                       unsigned UserVF);

  /// Finalize the best decision and dispose of all other VPlans.
  void setBestPlan(unsigned VF, unsigned UF);

  /// Generate the IR code for the body of the vectorized loop according to the
  /// best selected VPlan.
  void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT);

  void printPlans(raw_ostream &O) {
    for (const auto &Plan : VPlans)
      O << *Plan;
  }

protected:
  /// Collect the instructions from the original loop that would be trivially
  /// dead in the vectorized loop if generated.
  void collectTriviallyDeadInstructions(
      SmallPtrSetImpl<Instruction *> &DeadInstructions);

  /// A range of powers-of-2 vectorization factors with fixed start and
  /// adjustable end. The range includes start and excludes end, e.g.,:
  /// [1, 9) = {1, 2, 4, 8}
  struct VFRange {
    // A power of 2.
    const unsigned Start;

    // Need not be a power of 2. If End <= Start range is empty.
    unsigned End;
  };

  /// Test a \p Predicate on a \p Range of VF's. Return the value of applying
  /// \p Predicate on Range.Start, possibly decreasing Range.End such that the
  /// returned value holds for the entire \p Range.
  bool getDecisionAndClampRange(const std::function<bool(unsigned)> &Predicate,
                                VFRange &Range);

  /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
  /// according to the information gathered by Legal when it checked if it is
  /// legal to vectorize the loop.
  void buildVPlans(unsigned MinVF, unsigned MaxVF);

private:
  /// Check if \I belongs to an Interleave Group within the given VF \p Range,
  /// \return true in the first returned value if so and false otherwise.
  /// Build a new VPInterleaveGroup Recipe if \I is the primary member of an IG
  /// for \p Range.Start, and provide it as the second returned value.
  /// Note that if \I is an adjunct member of an IG for \p Range.Start, the
  /// \return value is <true, nullptr>, as it is handled by another recipe.
  /// \p Range.End may be decreased to ensure same decision from \p Range.Start
  /// to \p Range.End.
  VPInterleaveRecipe *tryToInterleaveMemory(Instruction *I, VFRange &Range);

  /// Check if an induction recipe should be constructed for \I within the given
  /// VF \p Range. If so build and return it. If not, return null. \p Range.End
  /// may be decreased to ensure same decision from \p Range.Start to
  /// \p Range.End.
  VPWidenIntOrFpInductionRecipe *tryToOptimizeInduction(Instruction *I,
                                                        VFRange &Range);

  /// Check if \p I can be widened within the given VF \p Range. If \p I can be
  /// widened for \p Range.Start, check if the last recipe of \p VPBB can be
  /// extended to include \p I or else build a new VPWidenRecipe for it and
  /// append it to \p VPBB. Return true if \p I can be widened for Range.Start,
  /// false otherwise. Range.End may be decreased to ensure same decision from
  /// \p Range.Start to \p Range.End.
  bool tryToWiden(Instruction *I, VPBasicBlock *VPBB, VFRange &Range);

  /// Build a VPReplicationRecipe for \p I and enclose it within a Region if it
  /// is predicated. \return \p VPBB augmented with this new recipe if \p I is
  /// not predicated, otherwise \return a new VPBasicBlock that succeeds the new
  /// Region. Update the packing decision of predicated instructions if they
  /// feed \p I. Range.End may be decreased to ensure same recipe behavior from
  /// \p Range.Start to \p Range.End.
  VPBasicBlock *handleReplication(
      Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
      DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe);

  /// Create a replicating region for instruction \p I that requires
  /// predication. \p PredRecipe is a VPReplicateRecipe holding \p I.
  VPRegionBlock *createReplicateRegion(Instruction *I,
                                       VPRecipeBase *PredRecipe);

  /// Build a VPlan according to the information gathered by Legal. \return a
  /// VPlan for vectorization factors \p Range.Start and up to \p Range.End
  /// exclusive, possibly decreasing \p Range.End.
  std::unique_ptr<VPlan> buildVPlan(VFRange &Range);
};

} // end namespace llvm

namespace {

/// \brief This holds vectorization requirements that must be verified late in
/// the process. The requirements are set by legalize and costmodel. Once
/// vectorization has been determined to be possible and profitable the
/// requirements can be verified by looking for metadata or compiler options.
/// For example, some loops require FP commutativity which is only allowed if
/// vectorization is explicitly specified or if the fast-math compiler option
/// has been provided.
/// Late evaluation of these requirements allows helpful diagnostics to be
/// composed that tells the user what need to be done to vectorize the loop. For
/// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
/// evaluation should be used only when diagnostics can generated that can be
/// followed by a non-expert user.
class LoopVectorizationRequirements {
public:
  LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) : ORE(ORE) {}

  void addUnsafeAlgebraInst(Instruction *I) {
    // First unsafe algebra instruction.
    if (!UnsafeAlgebraInst)
      UnsafeAlgebraInst = I;
  }

  void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; }

  bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) {
    const char *PassName = Hints.vectorizeAnalysisPassName();
    bool Failed = false;
    if (UnsafeAlgebraInst && !Hints.allowReordering()) {
      ORE.emit([&]() {
        return OptimizationRemarkAnalysisFPCommute(
                   PassName, "CantReorderFPOps",
                   UnsafeAlgebraInst->getDebugLoc(),
                   UnsafeAlgebraInst->getParent())
               << "loop not vectorized: cannot prove it is safe to reorder "
                  "floating-point operations";
      });
      Failed = true;
    }

    // Test if runtime memcheck thresholds are exceeded.
    bool PragmaThresholdReached =
        NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
    bool ThresholdReached =
        NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
    if ((ThresholdReached && !Hints.allowReordering()) ||
        PragmaThresholdReached) {
      ORE.emit([&]() {
        return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
                                                  L->getStartLoc(),
                                                  L->getHeader())
               << "loop not vectorized: cannot prove it is safe to reorder "
                  "memory operations";
      });
      DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
      Failed = true;
    }

    return Failed;
  }

private:
  unsigned NumRuntimePointerChecks = 0;
  Instruction *UnsafeAlgebraInst = nullptr;

  /// Interface to emit optimization remarks.
  OptimizationRemarkEmitter &ORE;
};

} // end anonymous namespace

static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
  if (L.empty()) {
    if (!hasCyclesInLoopBody(L))
      V.push_back(&L);
    return;
  }
  for (Loop *InnerL : L)
    addAcyclicInnerLoop(*InnerL, V);
}

namespace {

/// The LoopVectorize Pass.
struct LoopVectorize : public FunctionPass {
  /// Pass identification, replacement for typeid
  static char ID;

  LoopVectorizePass Impl;

  explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
      : FunctionPass(ID) {
    Impl.DisableUnrolling = NoUnrolling;
    Impl.AlwaysVectorize = AlwaysVectorize;
    initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
    auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
    auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
    auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
    auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
    auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();

    std::function<const LoopAccessInfo &(Loop &)> GetLAA =
        [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };

    return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
                        GetLAA, *ORE);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<BlockFrequencyInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<LoopAccessLegacyAnalysis>();
    AU.addRequired<DemandedBitsWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<BasicAAWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
  }
};

} // end anonymous namespace

//===----------------------------------------------------------------------===//
// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
// LoopVectorizationCostModel and LoopVectorizationPlanner.
//===----------------------------------------------------------------------===//

Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
  // We need to place the broadcast of invariant variables outside the loop.
  Instruction *Instr = dyn_cast<Instruction>(V);
  bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
  bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;

  // Place the code for broadcasting invariant variables in the new preheader.
  IRBuilder<>::InsertPointGuard Guard(Builder);
  if (Invariant)
    Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());

  // Broadcast the scalar into all locations in the vector.
  Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");

  return Shuf;
}

void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
    const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
  Value *Start = II.getStartValue();

  // Construct the initial value of the vector IV in the vector loop preheader
  auto CurrIP = Builder.saveIP();
  Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
  if (isa<TruncInst>(EntryVal)) {
    assert(Start->getType()->isIntegerTy() &&
           "Truncation requires an integer type");
    auto *TruncType = cast<IntegerType>(EntryVal->getType());
    Step = Builder.CreateTrunc(Step, TruncType);
    Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
  }
  Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
  Value *SteppedStart =
      getStepVector(SplatStart, 0, Step, II.getInductionOpcode());

  // We create vector phi nodes for both integer and floating-point induction
  // variables. Here, we determine the kind of arithmetic we will perform.
  Instruction::BinaryOps AddOp;
  Instruction::BinaryOps MulOp;
  if (Step->getType()->isIntegerTy()) {
    AddOp = Instruction::Add;
    MulOp = Instruction::Mul;
  } else {
    AddOp = II.getInductionOpcode();
    MulOp = Instruction::FMul;
  }

  // Multiply the vectorization factor by the step using integer or
  // floating-point arithmetic as appropriate.
  Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF);
  Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));

  // Create a vector splat to use in the induction update.
  //
  // FIXME: If the step is non-constant, we create the vector splat with
  //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
  //        handle a constant vector splat.
  Value *SplatVF = isa<Constant>(Mul)
                       ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
                       : Builder.CreateVectorSplat(VF, Mul);
  Builder.restoreIP(CurrIP);

  // We may need to add the step a number of times, depending on the unroll
  // factor. The last of those goes into the PHI.
  PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
                                    &*LoopVectorBody->getFirstInsertionPt());
  Instruction *LastInduction = VecInd;
  for (unsigned Part = 0; Part < UF; ++Part) {
    VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction);
    if (isa<TruncInst>(EntryVal))
      addMetadata(LastInduction, EntryVal);
    LastInduction = cast<Instruction>(addFastMathFlag(
        Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
  }

  // Move the last step to the end of the latch block. This ensures consistent
  // placement of all induction updates.
  auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
  auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
  auto *ICmp = cast<Instruction>(Br->getCondition());
  LastInduction->moveBefore(ICmp);
  LastInduction->setName("vec.ind.next");

  VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
  VecInd->addIncoming(LastInduction, LoopVectorLatch);
}

bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
  return Cost->isScalarAfterVectorization(I, VF) ||
         Cost->isProfitableToScalarize(I, VF);
}

bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
  if (shouldScalarizeInstruction(IV))
    return true;
  auto isScalarInst = [&](User *U) -> bool {
    auto *I = cast<Instruction>(U);
    return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
  };
  return llvm::any_of(IV->users(), isScalarInst);
}

void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
  assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
         "Primary induction variable must have an integer type");

  auto II = Legal->getInductionVars()->find(IV);
  assert(II != Legal->getInductionVars()->end() && "IV is not an induction");

  auto ID = II->second;
  assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");

  // The scalar value to broadcast. This will be derived from the canonical
  // induction variable.
  Value *ScalarIV = nullptr;

  // The value from the original loop to which we are mapping the new induction
  // variable.
  Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;

  // True if we have vectorized the induction variable.
  auto VectorizedIV = false;

  // Determine if we want a scalar version of the induction variable. This is
  // true if the induction variable itself is not widened, or if it has at
  // least one user in the loop that is not widened.
  auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal);

  // Generate code for the induction step. Note that induction steps are
  // required to be loop-invariant
  assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) &&
         "Induction step should be loop invariant");
  auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
  Value *Step = nullptr;
  if (PSE.getSE()->isSCEVable(IV->getType())) {
    SCEVExpander Exp(*PSE.getSE(), DL, "induction");
    Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(),
                             LoopVectorPreHeader->getTerminator());
  } else {
    Step = cast<SCEVUnknown>(ID.getStep())->getValue();
  }

  // Try to create a new independent vector induction variable. If we can't
  // create the phi node, we will splat the scalar induction variable in each
  // loop iteration.
  if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) {
    createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
    VectorizedIV = true;
  }

  // If we haven't yet vectorized the induction variable, or if we will create
  // a scalar one, we need to define the scalar induction variable and step
  // values. If we were given a truncation type, truncate the canonical
  // induction variable and step. Otherwise, derive these values from the
  // induction descriptor.
  if (!VectorizedIV || NeedsScalarIV) {
    ScalarIV = Induction;
    if (IV != OldInduction) {
      ScalarIV = IV->getType()->isIntegerTy()
                     ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
                     : Builder.CreateCast(Instruction::SIToFP, Induction,
                                          IV->getType());
      ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL);
      ScalarIV->setName("offset.idx");
    }
    if (Trunc) {
      auto *TruncType = cast<IntegerType>(Trunc->getType());
      assert(Step->getType()->isIntegerTy() &&
             "Truncation requires an integer step");
      ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
      Step = Builder.CreateTrunc(Step, TruncType);
    }
  }

  // If we haven't yet vectorized the induction variable, splat the scalar
  // induction variable, and build the necessary step vectors.
  if (!VectorizedIV) {
    Value *Broadcasted = getBroadcastInstrs(ScalarIV);
    for (unsigned Part = 0; Part < UF; ++Part) {
      Value *EntryPart =
          getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode());
      VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart);
      if (Trunc)
        addMetadata(EntryPart, Trunc);
    }
  }

  // If an induction variable is only used for counting loop iterations or
  // calculating addresses, it doesn't need to be widened. Create scalar steps
  // that can be used by instructions we will later scalarize. Note that the
  // addition of the scalar steps will not increase the number of instructions
  // in the loop in the common case prior to InstCombine. We will be trading
  // one vector extract for each scalar step.
  if (NeedsScalarIV)
    buildScalarSteps(ScalarIV, Step, EntryVal, ID);
}

Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
                                          Instruction::BinaryOps BinOp) {
  // Create and check the types.
  assert(Val->getType()->isVectorTy() && "Must be a vector");
  int VLen = Val->getType()->getVectorNumElements();

  Type *STy = Val->getType()->getScalarType();
  assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
         "Induction Step must be an integer or FP");
  assert(Step->getType() == STy && "Step has wrong type");

  SmallVector<Constant *, 8> Indices;

  if (STy->isIntegerTy()) {
    // Create a vector of consecutive numbers from zero to VF.
    for (int i = 0; i < VLen; ++i)
      Indices.push_back(ConstantInt::get(STy, StartIdx + i));

    // Add the consecutive indices to the vector value.
    Constant *Cv = ConstantVector::get(Indices);
    assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
    Step = Builder.CreateVectorSplat(VLen, Step);
    assert(Step->getType() == Val->getType() && "Invalid step vec");
    // FIXME: The newly created binary instructions should contain nsw/nuw flags,
    // which can be found from the original scalar operations.
    Step = Builder.CreateMul(Cv, Step);
    return Builder.CreateAdd(Val, Step, "induction");
  }

  // Floating point induction.
  assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
         "Binary Opcode should be specified for FP induction");
  // Create a vector of consecutive numbers from zero to VF.
  for (int i = 0; i < VLen; ++i)
    Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));

  // Add the consecutive indices to the vector value.
  Constant *Cv = ConstantVector::get(Indices);

  Step = Builder.CreateVectorSplat(VLen, Step);

  // Floating point operations had to be 'fast' to enable the induction.
  FastMathFlags Flags;
  Flags.setUnsafeAlgebra();

  Value *MulOp = Builder.CreateFMul(Cv, Step);
  if (isa<Instruction>(MulOp))
    // Have to check, MulOp may be a constant
    cast<Instruction>(MulOp)->setFastMathFlags(Flags);

  Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
  if (isa<Instruction>(BOp))
    cast<Instruction>(BOp)->setFastMathFlags(Flags);
  return BOp;
}

void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
                                           Value *EntryVal,
                                           const InductionDescriptor &ID) {
  // We shouldn't have to build scalar steps if we aren't vectorizing.
  assert(VF > 1 && "VF should be greater than one");

  // Get the value type and ensure it and the step have the same integer type.
  Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
  assert(ScalarIVTy == Step->getType() &&
         "Val and Step should have the same type");

  // We build scalar steps for both integer and floating-point induction
  // variables. Here, we determine the kind of arithmetic we will perform.
  Instruction::BinaryOps AddOp;
  Instruction::BinaryOps MulOp;
  if (ScalarIVTy->isIntegerTy()) {
    AddOp = Instruction::Add;
    MulOp = Instruction::Mul;
  } else {
    AddOp = ID.getInductionOpcode();
    MulOp = Instruction::FMul;
  }

  // Determine the number of scalars we need to generate for each unroll
  // iteration. If EntryVal is uniform, we only need to generate the first
  // lane. Otherwise, we generate all VF values.
  unsigned Lanes =
      Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1
                                                                         : VF;
  // Compute the scalar steps and save the results in VectorLoopValueMap.
  for (unsigned Part = 0; Part < UF; ++Part) {
    for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
      auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane);
      auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
      auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
      VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add);
    }
  }
}

int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
  const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() :
    ValueToValueMap();

  int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
  if (Stride == 1 || Stride == -1)
    return Stride;
  return 0;
}

bool LoopVectorizationLegality::isUniform(Value *V) {
  return LAI->isUniform(V);
}

Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
  assert(V != Induction && "The new induction variable should not be used.");
  assert(!V->getType()->isVectorTy() && "Can't widen a vector");
  assert(!V->getType()->isVoidTy() && "Type does not produce a value");

  // If we have a stride that is replaced by one, do it here.
  if (Legal->hasStride(V))
    V = ConstantInt::get(V->getType(), 1);

  // If we have a vector mapped to this value, return it.
  if (VectorLoopValueMap.hasVectorValue(V, Part))
    return VectorLoopValueMap.getVectorValue(V, Part);

  // If the value has not been vectorized, check if it has been scalarized
  // instead. If it has been scalarized, and we actually need the value in
  // vector form, we will construct the vector values on demand.
  if (VectorLoopValueMap.hasAnyScalarValue(V)) {
    Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0});

    // If we've scalarized a value, that value should be an instruction.
    auto *I = cast<Instruction>(V);

    // If we aren't vectorizing, we can just copy the scalar map values over to
    // the vector map.
    if (VF == 1) {
      VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
      return ScalarValue;
    }

    // Get the last scalar instruction we generated for V and Part. If the value
    // is known to be uniform after vectorization, this corresponds to lane zero
    // of the Part unroll iteration. Otherwise, the last instruction is the one
    // we created for the last vector lane of the Part unroll iteration.
    unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1;
    auto *LastInst = cast<Instruction>(
        VectorLoopValueMap.getScalarValue(V, {Part, LastLane}));

    // Set the insert point after the last scalarized instruction. This ensures
    // the insertelement sequence will directly follow the scalar definitions.
    auto OldIP = Builder.saveIP();
    auto NewIP = std::next(BasicBlock::iterator(LastInst));
    Builder.SetInsertPoint(&*NewIP);

    // However, if we are vectorizing, we need to construct the vector values.
    // If the value is known to be uniform after vectorization, we can just
    // broadcast the scalar value corresponding to lane zero for each unroll
    // iteration. Otherwise, we construct the vector values using insertelement
    // instructions. Since the resulting vectors are stored in
    // VectorLoopValueMap, we will only generate the insertelements once.
    Value *VectorValue = nullptr;
    if (Cost->isUniformAfterVectorization(I, VF)) {
      VectorValue = getBroadcastInstrs(ScalarValue);
      VectorLoopValueMap.setVectorValue(V, Part, VectorValue);
    } else {
      // Initialize packing with insertelements to start from undef.
      Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF));
      VectorLoopValueMap.setVectorValue(V, Part, Undef);
      for (unsigned Lane = 0; Lane < VF; ++Lane)
        packScalarIntoVectorValue(V, {Part, Lane});
      VectorValue = VectorLoopValueMap.getVectorValue(V, Part);
    }
    Builder.restoreIP(OldIP);
    return VectorValue;
  }

  // If this scalar is unknown, assume that it is a constant or that it is
  // loop invariant. Broadcast V and save the value for future uses.
  Value *B = getBroadcastInstrs(V);
  VectorLoopValueMap.setVectorValue(V, Part, B);
  return B;
}

Value *
InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
                                            const VPIteration &Instance) {
  // If the value is not an instruction contained in the loop, it should
  // already be scalar.
  if (OrigLoop->isLoopInvariant(V))
    return V;

  assert(Instance.Lane > 0
             ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)
             : true && "Uniform values only have lane zero");

  // If the value from the original loop has not been vectorized, it is
  // represented by UF x VF scalar values in the new loop. Return the requested
  // scalar value.
  if (VectorLoopValueMap.hasScalarValue(V, Instance))
    return VectorLoopValueMap.getScalarValue(V, Instance);

  // If the value has not been scalarized, get its entry in VectorLoopValueMap
  // for the given unroll part. If this entry is not a vector type (i.e., the
  // vectorization factor is one), there is no need to generate an
  // extractelement instruction.
  auto *U = getOrCreateVectorValue(V, Instance.Part);
  if (!U->getType()->isVectorTy()) {
    assert(VF == 1 && "Value not scalarized has non-vector type");
    return U;
  }

  // Otherwise, the value from the original loop has been vectorized and is
  // represented by UF vector values. Extract and return the requested scalar
  // value from the appropriate vector lane.
  return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane));
}

void InnerLoopVectorizer::packScalarIntoVectorValue(
    Value *V, const VPIteration &Instance) {
  assert(V != Induction && "The new induction variable should not be used.");
  assert(!V->getType()->isVectorTy() && "Can't pack a vector");
  assert(!V->getType()->isVoidTy() && "Type does not produce a value");

  Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance);
  Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part);
  VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
                                            Builder.getInt32(Instance.Lane));
  VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue);
}

Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
  assert(Vec->getType()->isVectorTy() && "Invalid type");
  SmallVector<Constant *, 8> ShuffleMask;
  for (unsigned i = 0; i < VF; ++i)
    ShuffleMask.push_back(Builder.getInt32(VF - i - 1));

  return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
                                     ConstantVector::get(ShuffleMask),
                                     "reverse");
}

// Try to vectorize the interleave group that \p Instr belongs to.
//
// E.g. Translate following interleaved load group (factor = 3):
//   for (i = 0; i < N; i+=3) {
//     R = Pic[i];             // Member of index 0
//     G = Pic[i+1];           // Member of index 1
//     B = Pic[i+2];           // Member of index 2
//     ... // do something to R, G, B
//   }
// To:
//   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
//   %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9>   ; R elements
//   %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10>  ; G elements
//   %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11>  ; B elements
//
// Or translate following interleaved store group (factor = 3):
//   for (i = 0; i < N; i+=3) {
//     ... do something to R, G, B
//     Pic[i]   = R;           // Member of index 0
//     Pic[i+1] = G;           // Member of index 1
//     Pic[i+2] = B;           // Member of index 2
//   }
// To:
//   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
//   %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
//   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
//        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
//   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) {
  const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr);
  assert(Group && "Fail to get an interleaved access group.");

  // Skip if current instruction is not the insert position.
  if (Instr != Group->getInsertPos())
    return;

  const DataLayout &DL = Instr->getModule()->getDataLayout();
  Value *Ptr = getPointerOperand(Instr);

  // Prepare for the vector type of the interleaved load/store.
  Type *ScalarTy = getMemInstValueType(Instr);
  unsigned InterleaveFactor = Group->getFactor();
  Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
  Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr));

  // Prepare for the new pointers.
  setDebugLocFromInst(Builder, Ptr);
  SmallVector<Value *, 2> NewPtrs;
  unsigned Index = Group->getIndex(Instr);

  // If the group is reverse, adjust the index to refer to the last vector lane
  // instead of the first. We adjust the index from the first vector lane,
  // rather than directly getting the pointer for lane VF - 1, because the
  // pointer operand of the interleaved access is supposed to be uniform. For
  // uniform instructions, we're only required to generate a value for the
  // first vector lane in each unroll iteration.
  if (Group->isReverse())
    Index += (VF - 1) * Group->getFactor();

  for (unsigned Part = 0; Part < UF; Part++) {
    Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0});

    // Notice current instruction could be any index. Need to adjust the address
    // to the member of index 0.
    //
    // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
    //       b = A[i];       // Member of index 0
    // Current pointer is pointed to A[i+1], adjust it to A[i].
    //
    // E.g.  A[i+1] = a;     // Member of index 1
    //       A[i]   = b;     // Member of index 0
    //       A[i+2] = c;     // Member of index 2 (Current instruction)
    // Current pointer is pointed to A[i+2], adjust it to A[i].
    NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index));

    // Cast to the vector pointer type.
    NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
  }

  setDebugLocFromInst(Builder, Instr);
  Value *UndefVec = UndefValue::get(VecTy);

  // Vectorize the interleaved load group.
  if (isa<LoadInst>(Instr)) {
    // For each unroll part, create a wide load for the group.
    SmallVector<Value *, 2> NewLoads;
    for (unsigned Part = 0; Part < UF; Part++) {
      auto *NewLoad = Builder.CreateAlignedLoad(
          NewPtrs[Part], Group->getAlignment(), "wide.vec");
      addMetadata(NewLoad, Instr);
      NewLoads.push_back(NewLoad);
    }

    // For each member in the group, shuffle out the appropriate data from the
    // wide loads.
    for (unsigned I = 0; I < InterleaveFactor; ++I) {
      Instruction *Member = Group->getMember(I);

      // Skip the gaps in the group.
      if (!Member)
        continue;

      Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF);
      for (unsigned Part = 0; Part < UF; Part++) {
        Value *StridedVec = Builder.CreateShuffleVector(
            NewLoads[Part], UndefVec, StrideMask, "strided.vec");

        // If this member has different type, cast the result type.
        if (Member->getType() != ScalarTy) {
          VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
          StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
        }

        if (Group->isReverse())
          StridedVec = reverseVector(StridedVec);

        VectorLoopValueMap.setVectorValue(Member, Part, StridedVec);
      }
    }
    return;
  }

  // The sub vector type for current instruction.
  VectorType *SubVT = VectorType::get(ScalarTy, VF);

  // Vectorize the interleaved store group.
  for (unsigned Part = 0; Part < UF; Part++) {
    // Collect the stored vector from each member.
    SmallVector<Value *, 4> StoredVecs;
    for (unsigned i = 0; i < InterleaveFactor; i++) {
      // Interleaved store group doesn't allow a gap, so each index has a member
      Instruction *Member = Group->getMember(i);
      assert(Member && "Fail to get a member from an interleaved store group");

      Value *StoredVec = getOrCreateVectorValue(
          cast<StoreInst>(Member)->getValueOperand(), Part);
      if (Group->isReverse())
        StoredVec = reverseVector(StoredVec);

      // If this member has different type, cast it to a unified type.

      if (StoredVec->getType() != SubVT)
        StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);

      StoredVecs.push_back(StoredVec);
    }

    // Concatenate all vectors into a wide vector.
    Value *WideVec = concatenateVectors(Builder, StoredVecs);

    // Interleave the elements in the wide vector.
    Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor);
    Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
                                              "interleaved.vec");

    Instruction *NewStoreInstr =
        Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment());
    addMetadata(NewStoreInstr, Instr);
  }
}

void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
  // Attempt to issue a wide load.
  LoadInst *LI = dyn_cast<LoadInst>(Instr);
  StoreInst *SI = dyn_cast<StoreInst>(Instr);

  assert((LI || SI) && "Invalid Load/Store instruction");

  LoopVectorizationCostModel::InstWidening Decision =
      Cost->getWideningDecision(Instr, VF);
  assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
         "CM decision should be taken at this point");
  if (Decision == LoopVectorizationCostModel::CM_Interleave)
    return vectorizeInterleaveGroup(Instr);

  Type *ScalarDataTy = getMemInstValueType(Instr);
  Type *DataTy = VectorType::get(ScalarDataTy, VF);
  Value *Ptr = getPointerOperand(Instr);
  unsigned Alignment = getMemInstAlignment(Instr);
  // An alignment of 0 means target abi alignment. We need to use the scalar's
  // target abi alignment in such a case.
  const DataLayout &DL = Instr->getModule()->getDataLayout();
  if (!Alignment)
    Alignment = DL.getABITypeAlignment(ScalarDataTy);
  unsigned AddressSpace = getMemInstAddressSpace(Instr);

  // Determine if the pointer operand of the access is either consecutive or
  // reverse consecutive.
  int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
  bool Reverse = ConsecutiveStride < 0;
  bool CreateGatherScatter =
      (Decision == LoopVectorizationCostModel::CM_GatherScatter);

  // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
  // gather/scatter. Otherwise Decision should have been to Scalarize.
  assert((ConsecutiveStride || CreateGatherScatter) &&
         "The instruction should be scalarized");

  // Handle consecutive loads/stores.
  if (ConsecutiveStride)
    Ptr = getOrCreateScalarValue(Ptr, {0, 0});

  VectorParts Mask = createBlockInMask(Instr->getParent());
  // Handle Stores:
  if (SI) {
    assert(!Legal->isUniform(SI->getPointerOperand()) &&
           "We do not allow storing to uniform addresses");
    setDebugLocFromInst(Builder, SI);

    for (unsigned Part = 0; Part < UF; ++Part) {
      Instruction *NewSI = nullptr;
      Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part);
      if (CreateGatherScatter) {
        Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr;
        Value *VectorGep = getOrCreateVectorValue(Ptr, Part);
        NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
                                            MaskPart);
      } else {
        // Calculate the pointer for the specific unroll-part.
        Value *PartPtr =
            Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));

        if (Reverse) {
          // If we store to reverse consecutive memory locations, then we need
          // to reverse the order of elements in the stored value.
          StoredVal = reverseVector(StoredVal);
          // We don't want to update the value in the map as it might be used in
          // another expression. So don't call resetVectorValue(StoredVal).

          // If the address is consecutive but reversed, then the
          // wide store needs to start at the last vector element.
          PartPtr =
              Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
          PartPtr =
              Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
          if (Mask[Part]) // The reverse of a null all-one mask is a null mask.
            Mask[Part] = reverseVector(Mask[Part]);
        }

        Value *VecPtr =
            Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));

        if (Legal->isMaskRequired(SI) && Mask[Part])
          NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
                                            Mask[Part]);
        else
          NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
      }
      addMetadata(NewSI, SI);
    }
    return;
  }

  // Handle loads.
  assert(LI && "Must have a load instruction");
  setDebugLocFromInst(Builder, LI);
  for (unsigned Part = 0; Part < UF; ++Part) {
    Value *NewLI;
    if (CreateGatherScatter) {
      Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr;
      Value *VectorGep = getOrCreateVectorValue(Ptr, Part);
      NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
                                         nullptr, "wide.masked.gather");
      addMetadata(NewLI, LI);
    } else {
      // Calculate the pointer for the specific unroll-part.
      Value *PartPtr =
          Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));

      if (Reverse) {
        // If the address is consecutive but reversed, then the
        // wide load needs to start at the last vector element.
        PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
        PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
        if (Mask[Part]) // The reverse of a null all-one mask is a null mask.
          Mask[Part] = reverseVector(Mask[Part]);
      }

      Value *VecPtr =
          Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
      if (Legal->isMaskRequired(LI) && Mask[Part])
        NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
                                         UndefValue::get(DataTy),
                                         "wide.masked.load");
      else
        NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");

      // Add metadata to the load, but setVectorValue to the reverse shuffle.
      addMetadata(NewLI, LI);
      if (Reverse)
        NewLI = reverseVector(NewLI);
    }
    VectorLoopValueMap.setVectorValue(Instr, Part, NewLI);
  }
}

void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
                                               const VPIteration &Instance,
                                               bool IfPredicateInstr) {
  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");

  setDebugLocFromInst(Builder, Instr);

  // Does this instruction return a value ?
  bool IsVoidRetTy = Instr->getType()->isVoidTy();

  Instruction *Cloned = Instr->clone();
  if (!IsVoidRetTy)
    Cloned->setName(Instr->getName() + ".cloned");

  // Replace the operands of the cloned instructions with their scalar
  // equivalents in the new loop.
  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
    auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance);
    Cloned->setOperand(op, NewOp);
  }
  addNewMetadata(Cloned, Instr);

  // Place the cloned scalar in the new loop.
  Builder.Insert(Cloned);

  // Add the cloned scalar to the scalar map entry.
  VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned);

  // If we just cloned a new assumption, add it the assumption cache.
  if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
    if (II->getIntrinsicID() == Intrinsic::assume)
      AC->registerAssumption(II);

  // End if-block.
  if (IfPredicateInstr)
    PredicatedInstructions.push_back(Cloned);
}

PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
                                                      Value *End, Value *Step,
                                                      Instruction *DL) {
  BasicBlock *Header = L->getHeader();
  BasicBlock *Latch = L->getLoopLatch();
  // As we're just creating this loop, it's possible no latch exists
  // yet. If so, use the header as this will be a single block loop.
  if (!Latch)
    Latch = Header;

  IRBuilder<> Builder(&*Header->getFirstInsertionPt());
  Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
  setDebugLocFromInst(Builder, OldInst);
  auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");

  Builder.SetInsertPoint(Latch->getTerminator());
  setDebugLocFromInst(Builder, OldInst);

  // Create i+1 and fill the PHINode.
  Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
  Induction->addIncoming(Start, L->getLoopPreheader());
  Induction->addIncoming(Next, Latch);
  // Create the compare.
  Value *ICmp = Builder.CreateICmpEQ(Next, End);
  Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);

  // Now we have two terminators. Remove the old one from the block.
  Latch->getTerminator()->eraseFromParent();

  return Induction;
}

Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
  if (TripCount)
    return TripCount;

  IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
  // Find the loop boundaries.
  ScalarEvolution *SE = PSE.getSE();
  const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
  assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
         "Invalid loop count");

  Type *IdxTy = Legal->getWidestInductionType();

  // The exit count might have the type of i64 while the phi is i32. This can
  // happen if we have an induction variable that is sign extended before the
  // compare. The only way that we get a backedge taken count is that the
  // induction variable was signed and as such will not overflow. In such a case
  // truncation is legal.
  if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() >
      IdxTy->getPrimitiveSizeInBits())
    BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
  BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);

  // Get the total trip count from the count by adding 1.
  const SCEV *ExitCount = SE->getAddExpr(
      BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));

  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();

  // Expand the trip count and place the new instructions in the preheader.
  // Notice that the pre-header does not change, only the loop body.
  SCEVExpander Exp(*SE, DL, "induction");

  // Count holds the overall loop count (N).
  TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
                                L->getLoopPreheader()->getTerminator());

  if (TripCount->getType()->isPointerTy())
    TripCount =
        CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
                                    L->getLoopPreheader()->getTerminator());

  return TripCount;
}

Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
  if (VectorTripCount)
    return VectorTripCount;

  Value *TC = getOrCreateTripCount(L);
  IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());

  // Now we need to generate the expression for the part of the loop that the
  // vectorized body will execute. This is equal to N - (N % Step) if scalar
  // iterations are not required for correctness, or N - Step, otherwise. Step
  // is equal to the vectorization factor (number of SIMD elements) times the
  // unroll factor (number of SIMD instructions).
  Constant *Step = ConstantInt::get(TC->getType(), VF * UF);
  Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");

  // If there is a non-reversed interleaved group that may speculatively access
  // memory out-of-bounds, we need to ensure that there will be at least one
  // iteration of the scalar epilogue loop. Thus, if the step evenly divides
  // the trip count, we set the remainder to be equal to the step. If the step
  // does not evenly divide the trip count, no adjustment is necessary since
  // there will already be scalar iterations. Note that the minimum iterations
  // check ensures that N >= Step.
  if (VF > 1 && Legal->requiresScalarEpilogue()) {
    auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
    R = Builder.CreateSelect(IsZero, Step, R);
  }

  VectorTripCount = Builder.CreateSub(TC, R, "n.vec");

  return VectorTripCount;
}

Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
                                                   const DataLayout &DL) {
  // Verify that V is a vector type with same number of elements as DstVTy.
  unsigned VF = DstVTy->getNumElements();
  VectorType *SrcVecTy = cast<VectorType>(V->getType());
  assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
  Type *SrcElemTy = SrcVecTy->getElementType();
  Type *DstElemTy = DstVTy->getElementType();
  assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
         "Vector elements must have same size");

  // Do a direct cast if element types are castable.
  if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
    return Builder.CreateBitOrPointerCast(V, DstVTy);
  }
  // V cannot be directly casted to desired vector type.
  // May happen when V is a floating point vector but DstVTy is a vector of
  // pointers or vice-versa. Handle this using a two-step bitcast using an
  // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
  assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
         "Only one type should be a pointer type");
  assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
         "Only one type should be a floating point type");
  Type *IntTy =
      IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
  VectorType *VecIntTy = VectorType::get(IntTy, VF);
  Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
  return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
}

void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
                                                         BasicBlock *Bypass) {
  Value *Count = getOrCreateTripCount(L);
  BasicBlock *BB = L->getLoopPreheader();
  IRBuilder<> Builder(BB->getTerminator());

  // Generate code to check if the loop's trip count is less than VF * UF, or
  // equal to it in case a scalar epilogue is required; this implies that the
  // vector trip count is zero. This check also covers the case where adding one
  // to the backedge-taken count overflowed leading to an incorrect trip count
  // of zero. In this case we will also jump to the scalar loop.
  auto P = Legal->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
                                           : ICmpInst::ICMP_ULT;
  Value *CheckMinIters = Builder.CreateICmp(
      P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check");

  BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
  // Update dominator tree immediately if the generated block is a
  // LoopBypassBlock because SCEV expansions to generate loop bypass
  // checks may query it before the current function is finished.
  DT->addNewBlock(NewBB, BB);
  if (L->getParentLoop())
    L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
  ReplaceInstWithInst(BB->getTerminator(),
                      BranchInst::Create(Bypass, NewBB, CheckMinIters));
  LoopBypassBlocks.push_back(BB);
}

void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
  BasicBlock *BB = L->getLoopPreheader();

  // Generate the code to check that the SCEV assumptions that we made.
  // We want the new basic block to start at the first instruction in a
  // sequence of instructions that form a check.
  SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
                   "scev.check");
  Value *SCEVCheck =
      Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator());

  if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
    if (C->isZero())
      return;

  // Create a new block containing the stride check.
  BB->setName("vector.scevcheck");
  auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
  // Update dominator tree immediately if the generated block is a
  // LoopBypassBlock because SCEV expansions to generate loop bypass
  // checks may query it before the current function is finished.
  DT->addNewBlock(NewBB, BB);
  if (L->getParentLoop())
    L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
  ReplaceInstWithInst(BB->getTerminator(),
                      BranchInst::Create(Bypass, NewBB, SCEVCheck));
  LoopBypassBlocks.push_back(BB);
  AddedSafetyChecks = true;
}

void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
  BasicBlock *BB = L->getLoopPreheader();

  // Generate the code that checks in runtime if arrays overlap. We put the
  // checks into a separate block to make the more common case of few elements
  // faster.
  Instruction *FirstCheckInst;
  Instruction *MemRuntimeCheck;
  std::tie(FirstCheckInst, MemRuntimeCheck) =
      Legal->getLAI()->addRuntimeChecks(BB->getTerminator());
  if (!MemRuntimeCheck)
    return;

  // Create a new block containing the memory check.
  BB->setName("vector.memcheck");
  auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
  // Update dominator tree immediately if the generated block is a
  // LoopBypassBlock because SCEV expansions to generate loop bypass
  // checks may query it before the current function is finished.
  DT->addNewBlock(NewBB, BB);
  if (L->getParentLoop())
    L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
  ReplaceInstWithInst(BB->getTerminator(),
                      BranchInst::Create(Bypass, NewBB, MemRuntimeCheck));
  LoopBypassBlocks.push_back(BB);
  AddedSafetyChecks = true;

  // We currently don't use LoopVersioning for the actual loop cloning but we
  // still use it to add the noalias metadata.
  LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
                                           PSE.getSE());
  LVer->prepareNoAliasMetadata();
}

BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
  /*
   In this function we generate a new loop. The new loop will contain
   the vectorized instructions while the old loop will continue to run the
   scalar remainder.

       [ ] <-- loop iteration number check.
    /   |
   /    v
  |    [ ] <-- vector loop bypass (may consist of multiple blocks).
  |  /  |
  | /   v
  ||   [ ]     <-- vector pre header.
  |/    |
  |     v
  |    [  ] \
  |    [  ]_|   <-- vector loop.
  |     |
  |     v
  |   -[ ]   <--- middle-block.
  |  /  |
  | /   v
  -|- >[ ]     <--- new preheader.
   |    |
   |    v
   |   [ ] \
   |   [ ]_|   <-- old scalar loop to handle remainder.
    \   |
     \  v
      >[ ]     <-- exit block.
   ...
   */

  BasicBlock *OldBasicBlock = OrigLoop->getHeader();
  BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
  BasicBlock *ExitBlock = OrigLoop->getExitBlock();
  assert(VectorPH && "Invalid loop structure");
  assert(ExitBlock && "Must have an exit block");

  // Some loops have a single integer induction variable, while other loops
  // don't. One example is c++ iterators that often have multiple pointer
  // induction variables. In the code below we also support a case where we
  // don't have a single induction variable.
  //
  // We try to obtain an induction variable from the original loop as hard
  // as possible. However if we don't find one that:
  //   - is an integer
  //   - counts from zero, stepping by one
  //   - is the size of the widest induction variable type
  // then we create a new one.
  OldInduction = Legal->getPrimaryInduction();
  Type *IdxTy = Legal->getWidestInductionType();

  // Split the single block loop into the two loop structure described above.
  BasicBlock *VecBody =
      VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
  BasicBlock *MiddleBlock =
      VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
  BasicBlock *ScalarPH =
      MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");

  // Create and register the new vector loop.
  Loop *Lp = LI->AllocateLoop();
  Loop *ParentLoop = OrigLoop->getParentLoop();

  // Insert the new loop into the loop nest and register the new basic blocks
  // before calling any utilities such as SCEV that require valid LoopInfo.
  if (ParentLoop) {
    ParentLoop->addChildLoop(Lp);
    ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
    ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
  } else {
    LI->addTopLevelLoop(Lp);
  }
  Lp->addBasicBlockToLoop(VecBody, *LI);

  // Find the loop boundaries.
  Value *Count = getOrCreateTripCount(Lp);

  Value *StartIdx = ConstantInt::get(IdxTy, 0);

  // Now, compare the new count to zero. If it is zero skip the vector loop and
  // jump to the scalar loop. This check also covers the case where the
  // backedge-taken count is uint##_max: adding one to it will overflow leading
  // to an incorrect trip count of zero. In this (rare) case we will also jump
  // to the scalar loop.
  emitMinimumIterationCountCheck(Lp, ScalarPH);

  // Generate the code to check any assumptions that we've made for SCEV
  // expressions.
  emitSCEVChecks(Lp, ScalarPH);

  // Generate the code that checks in runtime if arrays overlap. We put the
  // checks into a separate block to make the more common case of few elements
  // faster.
  emitMemRuntimeChecks(Lp, ScalarPH);

  // Generate the induction variable.
  // The loop step is equal to the vectorization factor (num of SIMD elements)
  // times the unroll factor (num of SIMD instructions).
  Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
  Constant *Step = ConstantInt::get(IdxTy, VF * UF);
  Induction =
      createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
                              getDebugLocFromInstOrOperands(OldInduction));

  // We are going to resume the execution of the scalar loop.
  // Go over all of the induction variables that we found and fix the
  // PHIs that are left in the scalar version of the loop.
  // The starting values of PHI nodes depend on the counter of the last
  // iteration in the vectorized loop.
  // If we come from a bypass edge then we need to start from the original
  // start value.

  // This variable saves the new starting index for the scalar loop. It is used
  // to test if there are any tail iterations left once the vector loop has
  // completed.
  LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
  for (auto &InductionEntry : *List) {
    PHINode *OrigPhi = InductionEntry.first;
    InductionDescriptor II = InductionEntry.second;

    // Create phi nodes to merge from the  backedge-taken check block.
    PHINode *BCResumeVal = PHINode::Create(
        OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator());
    Value *&EndValue = IVEndValues[OrigPhi];
    if (OrigPhi == OldInduction) {
      // We know what the end value is.
      EndValue = CountRoundDown;
    } else {
      IRBuilder<> B(Lp->getLoopPreheader()->getTerminator());
      Type *StepType = II.getStep()->getType();
      Instruction::CastOps CastOp =
        CastInst::getCastOpcode(CountRoundDown, true, StepType, true);
      Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd");
      const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
      EndValue = II.transform(B, CRD, PSE.getSE(), DL);
      EndValue->setName("ind.end");
    }

    // The new PHI merges the original incoming value, in case of a bypass,
    // or the value at the end of the vectorized loop.
    BCResumeVal->addIncoming(EndValue, MiddleBlock);

    // Fix the scalar body counter (PHI node).
    unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);

    // The old induction's phi node in the scalar body needs the truncated
    // value.
    for (BasicBlock *BB : LoopBypassBlocks)
      BCResumeVal->addIncoming(II.getStartValue(), BB);
    OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
  }

  // Add a check in the middle block to see if we have completed
  // all of the iterations in the first vector loop.
  // If (N - N%VF) == N, then we *don't* need to run the remainder.
  Value *CmpN =
      CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
                      CountRoundDown, "cmp.n", MiddleBlock->getTerminator());
  ReplaceInstWithInst(MiddleBlock->getTerminator(),
                      BranchInst::Create(ExitBlock, ScalarPH, CmpN));

  // Get ready to start creating new instructions into the vectorized body.
  Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt());

  // Save the state.
  LoopVectorPreHeader = Lp->getLoopPreheader();
  LoopScalarPreHeader = ScalarPH;
  LoopMiddleBlock = MiddleBlock;
  LoopExitBlock = ExitBlock;
  LoopVectorBody = VecBody;
  LoopScalarBody = OldBasicBlock;

  // Keep all loop hints from the original loop on the vector loop (we'll
  // replace the vectorizer-specific hints below).
  if (MDNode *LID = OrigLoop->getLoopID())
    Lp->setLoopID(LID);

  LoopVectorizeHints Hints(Lp, true, *ORE);
  Hints.setAlreadyVectorized();

  return LoopVectorPreHeader;
}

// Fix up external users of the induction variable. At this point, we are
// in LCSSA form, with all external PHIs that use the IV having one input value,
// coming from the remainder loop. We need those PHIs to also have a correct
// value for the IV when arriving directly from the middle block.
void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
                                       const InductionDescriptor &II,
                                       Value *CountRoundDown, Value *EndValue,
                                       BasicBlock *MiddleBlock) {
  // There are two kinds of external IV usages - those that use the value
  // computed in the last iteration (the PHI) and those that use the penultimate
  // value (the value that feeds into the phi from the loop latch).
  // We allow both, but they, obviously, have different values.

  assert(OrigLoop->getExitBlock() && "Expected a single exit block");

  DenseMap<Value *, Value *> MissingVals;

  // An external user of the last iteration's value should see the value that
  // the remainder loop uses to initialize its own IV.
  Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
  for (User *U : PostInc->users()) {
    Instruction *UI = cast<Instruction>(U);
    if (!OrigLoop->contains(UI)) {
      assert(isa<PHINode>(UI) && "Expected LCSSA form");
      MissingVals[UI] = EndValue;
    }
  }

  // An external user of the penultimate value need to see EndValue - Step.
  // The simplest way to get this is to recompute it from the constituent SCEVs,
  // that is Start + (Step * (CRD - 1)).
  for (User *U : OrigPhi->users()) {
    auto *UI = cast<Instruction>(U);
    if (!OrigLoop->contains(UI)) {
      const DataLayout &DL =
          OrigLoop->getHeader()->getModule()->getDataLayout();
      assert(isa<PHINode>(UI) && "Expected LCSSA form");

      IRBuilder<> B(MiddleBlock->getTerminator());
      Value *CountMinusOne = B.CreateSub(
          CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
      Value *CMO =
          !II.getStep()->getType()->isIntegerTy()
              ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
                             II.getStep()->getType())
              : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
      CMO->setName("cast.cmo");
      Value *Escape = II.transform(B, CMO, PSE.getSE(), DL);
      Escape->setName("ind.escape");
      MissingVals[UI] = Escape;
    }
  }

  for (auto &I : MissingVals) {
    PHINode *PHI = cast<PHINode>(I.first);
    // One corner case we have to handle is two IVs "chasing" each-other,
    // that is %IV2 = phi [...], [ %IV1, %latch ]
    // In this case, if IV1 has an external use, we need to avoid adding both
    // "last value of IV1" and "penultimate value of IV2". So, verify that we
    // don't already have an incoming value for the middle block.
    if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
      PHI->addIncoming(I.second, MiddleBlock);
  }
}

namespace {

struct CSEDenseMapInfo {
  static bool canHandle(const Instruction *I) {
    return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
           isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
  }

  static inline Instruction *getEmptyKey() {
    return DenseMapInfo<Instruction *>::getEmptyKey();
  }

  static inline Instruction *getTombstoneKey() {
    return DenseMapInfo<Instruction *>::getTombstoneKey();
  }

  static unsigned getHashValue(const Instruction *I) {
    assert(canHandle(I) && "Unknown instruction!");
    return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
                                                           I->value_op_end()));
  }

  static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
    if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
        LHS == getTombstoneKey() || RHS == getTombstoneKey())
      return LHS == RHS;
    return LHS->isIdenticalTo(RHS);
  }
};

} // end anonymous namespace

///\brief Perform cse of induction variable instructions.
static void cse(BasicBlock *BB) {
  // Perform simple cse.
  SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
    Instruction *In = &*I++;

    if (!CSEDenseMapInfo::canHandle(In))
      continue;

    // Check if we can replace this instruction with any of the
    // visited instructions.
    if (Instruction *V = CSEMap.lookup(In)) {
      In->replaceAllUsesWith(V);
      In->eraseFromParent();
      continue;
    }

    CSEMap[In] = In;
  }
}

/// \brief Estimate the overhead of scalarizing an instruction. This is a
/// convenience wrapper for the type-based getScalarizationOverhead API.
static unsigned getScalarizationOverhead(Instruction *I, unsigned VF,
                                         const TargetTransformInfo &TTI) {
  if (VF == 1)
    return 0;

  unsigned Cost = 0;
  Type *RetTy = ToVectorTy(I->getType(), VF);
  if (!RetTy->isVoidTy() &&
      (!isa<LoadInst>(I) ||
       !TTI.supportsEfficientVectorElementLoadStore()))
    Cost += TTI.getScalarizationOverhead(RetTy, true, false);

  if (CallInst *CI = dyn_cast<CallInst>(I)) {
    SmallVector<const Value *, 4> Operands(CI->arg_operands());
    Cost += TTI.getOperandsScalarizationOverhead(Operands, VF);
  }
  else if (!isa<StoreInst>(I) ||
           !TTI.supportsEfficientVectorElementLoadStore()) {
    SmallVector<const Value *, 4> Operands(I->operand_values());
    Cost += TTI.getOperandsScalarizationOverhead(Operands, VF);
  }

  return Cost;
}

// Estimate cost of a call instruction CI if it were vectorized with factor VF.
// Return the cost of the instruction, including scalarization overhead if it's
// needed. The flag NeedToScalarize shows if the call needs to be scalarized -
// i.e. either vector version isn't available, or is too expensive.
static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
                                  const TargetTransformInfo &TTI,
                                  const TargetLibraryInfo *TLI,
                                  bool &NeedToScalarize) {
  Function *F = CI->getCalledFunction();
  StringRef FnName = CI->getCalledFunction()->getName();
  Type *ScalarRetTy = CI->getType();
  SmallVector<Type *, 4> Tys, ScalarTys;
  for (auto &ArgOp : CI->arg_operands())
    ScalarTys.push_back(ArgOp->getType());

  // Estimate cost of scalarized vector call. The source operands are assumed
  // to be vectors, so we need to extract individual elements from there,
  // execute VF scalar calls, and then gather the result into the vector return
  // value.
  unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
  if (VF == 1)
    return ScalarCallCost;

  // Compute corresponding vector type for return value and arguments.
  Type *RetTy = ToVectorTy(ScalarRetTy, VF);
  for (Type *ScalarTy : ScalarTys)
    Tys.push_back(ToVectorTy(ScalarTy, VF));

  // Compute costs of unpacking argument values for the scalar calls and
  // packing the return values to a vector.
  unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI);

  unsigned Cost = ScalarCallCost * VF + ScalarizationCost;

  // If we can't emit a vector call for this function, then the currently found
  // cost is the cost we need to return.
  NeedToScalarize = true;
  if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
    return Cost;

  // If the corresponding vector cost is cheaper, return its cost.
  unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
  if (VectorCallCost < Cost) {
    NeedToScalarize = false;
    return VectorCallCost;
  }
  return Cost;
}

// Estimate cost of an intrinsic call instruction CI if it were vectorized with
// factor VF.  Return the cost of the instruction, including scalarization
// overhead if it's needed.
static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
                                       const TargetTransformInfo &TTI,
                                       const TargetLibraryInfo *TLI) {
  Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
  assert(ID && "Expected intrinsic call!");

  FastMathFlags FMF;
  if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
    FMF = FPMO->getFastMathFlags();

  SmallVector<Value *, 4> Operands(CI->arg_operands());
  return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF);
}

static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
  auto *I1 = cast<IntegerType>(T1->getVectorElementType());
  auto *I2 = cast<IntegerType>(T2->getVectorElementType());
  return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
}
static Type *largestIntegerVectorType(Type *T1, Type *T2) {
  auto *I1 = cast<IntegerType>(T1->getVectorElementType());
  auto *I2 = cast<IntegerType>(T2->getVectorElementType());
  return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
}

void InnerLoopVectorizer::truncateToMinimalBitwidths() {
  // For every instruction `I` in MinBWs, truncate the operands, create a
  // truncated version of `I` and reextend its result. InstCombine runs
  // later and will remove any ext/trunc pairs.
  SmallPtrSet<Value *, 4> Erased;
  for (const auto &KV : Cost->getMinimalBitwidths()) {
    // If the value wasn't vectorized, we must maintain the original scalar
    // type. The absence of the value from VectorLoopValueMap indicates that it
    // wasn't vectorized.
    if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
      continue;
    for (unsigned Part = 0; Part < UF; ++Part) {
      Value *I = getOrCreateVectorValue(KV.first, Part);
      if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
        continue;
      Type *OriginalTy = I->getType();
      Type *ScalarTruncatedTy =
          IntegerType::get(OriginalTy->getContext(), KV.second);
      Type *TruncatedTy = VectorType::get(ScalarTruncatedTy,
                                          OriginalTy->getVectorNumElements());
      if (TruncatedTy == OriginalTy)
        continue;

      IRBuilder<> B(cast<Instruction>(I));
      auto ShrinkOperand = [&](Value *V) -> Value * {
        if (auto *ZI = dyn_cast<ZExtInst>(V))
          if (ZI->getSrcTy() == TruncatedTy)
            return ZI->getOperand(0);
        return B.CreateZExtOrTrunc(V, TruncatedTy);
      };

      // The actual instruction modification depends on the instruction type,
      // unfortunately.
      Value *NewI = nullptr;
      if (auto *BO = dyn_cast<BinaryOperator>(I)) {
        NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
                             ShrinkOperand(BO->getOperand(1)));

        // Any wrapping introduced by shrinking this operation shouldn't be
        // considered undefined behavior. So, we can't unconditionally copy
        // arithmetic wrapping flags to NewI.
        cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
      } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
        NewI =
            B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
                         ShrinkOperand(CI->getOperand(1)));
      } else if (auto *SI = dyn_cast<SelectInst>(I)) {
        NewI = B.CreateSelect(SI->getCondition(),
                              ShrinkOperand(SI->getTrueValue()),
                              ShrinkOperand(SI->getFalseValue()));
      } else if (auto *CI = dyn_cast<CastInst>(I)) {
        switch (CI->getOpcode()) {
        default:
          llvm_unreachable("Unhandled cast!");
        case Instruction::Trunc:
          NewI = ShrinkOperand(CI->getOperand(0));
          break;
        case Instruction::SExt:
          NewI = B.CreateSExtOrTrunc(
              CI->getOperand(0),
              smallestIntegerVectorType(OriginalTy, TruncatedTy));
          break;
        case Instruction::ZExt:
          NewI = B.CreateZExtOrTrunc(
              CI->getOperand(0),
              smallestIntegerVectorType(OriginalTy, TruncatedTy));
          break;
        }
      } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
        auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements();
        auto *O0 = B.CreateZExtOrTrunc(
            SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
        auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements();
        auto *O1 = B.CreateZExtOrTrunc(
            SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));

        NewI = B.CreateShuffleVector(O0, O1, SI->getMask());
      } else if (isa<LoadInst>(I)) {
        // Don't do anything with the operands, just extend the result.
        continue;
      } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
        auto Elements = IE->getOperand(0)->getType()->getVectorNumElements();
        auto *O0 = B.CreateZExtOrTrunc(
            IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
        auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
        NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
      } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
        auto Elements = EE->getOperand(0)->getType()->getVectorNumElements();
        auto *O0 = B.CreateZExtOrTrunc(
            EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
        NewI = B.CreateExtractElement(O0, EE->getOperand(2));
      } else {
        llvm_unreachable("Unhandled instruction type!");
      }

      // Lastly, extend the result.
      NewI->takeName(cast<Instruction>(I));
      Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
      I->replaceAllUsesWith(Res);
      cast<Instruction>(I)->eraseFromParent();
      Erased.insert(I);
      VectorLoopValueMap.resetVectorValue(KV.first, Part, Res);
    }
  }

  // We'll have created a bunch of ZExts that are now parentless. Clean up.
  for (const auto &KV : Cost->getMinimalBitwidths()) {
    // If the value wasn't vectorized, we must maintain the original scalar
    // type. The absence of the value from VectorLoopValueMap indicates that it
    // wasn't vectorized.
    if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
      continue;
    for (unsigned Part = 0; Part < UF; ++Part) {
      Value *I = getOrCreateVectorValue(KV.first, Part);
      ZExtInst *Inst = dyn_cast<ZExtInst>(I);
      if (Inst && Inst->use_empty()) {
        Value *NewI = Inst->getOperand(0);
        Inst->eraseFromParent();
        VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI);
      }
    }
  }
}

void InnerLoopVectorizer::fixVectorizedLoop() {
  // Insert truncates and extends for any truncated instructions as hints to
  // InstCombine.
  if (VF > 1)
    truncateToMinimalBitwidths();

  // At this point every instruction in the original loop is widened to a
  // vector form. Now we need to fix the recurrences in the loop. These PHI
  // nodes are currently empty because we did not want to introduce cycles.
  // This is the second stage of vectorizing recurrences.
  fixCrossIterationPHIs();

  // Update the dominator tree.
  //
  // FIXME: After creating the structure of the new loop, the dominator tree is
  //        no longer up-to-date, and it remains that way until we update it
  //        here. An out-of-date dominator tree is problematic for SCEV,
  //        because SCEVExpander uses it to guide code generation. The
  //        vectorizer use SCEVExpanders in several places. Instead, we should
  //        keep the dominator tree up-to-date as we go.
  updateAnalysis();

  // Fix-up external users of the induction variables.
  for (auto &Entry : *Legal->getInductionVars())
    fixupIVUsers(Entry.first, Entry.second,
                 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
                 IVEndValues[Entry.first], LoopMiddleBlock);

  fixLCSSAPHIs();
  for (Instruction *PI : PredicatedInstructions)
    sinkScalarOperands(&*PI);

  // Remove redundant induction instructions.
  cse(LoopVectorBody);
}

void InnerLoopVectorizer::fixCrossIterationPHIs() {
  // In order to support recurrences we need to be able to vectorize Phi nodes.
  // Phi nodes have cycles, so we need to vectorize them in two stages. This is
  // stage #2: We now need to fix the recurrences by adding incoming edges to
  // the currently empty PHI nodes. At this point every instruction in the
  // original loop is widened to a vector form so we can use them to construct
  // the incoming edges.
  for (Instruction &I : *OrigLoop->getHeader()) {
    PHINode *Phi = dyn_cast<PHINode>(&I);
    if (!Phi)
      break;
    // Handle first-order recurrences and reductions that need to be fixed.
    if (Legal->isFirstOrderRecurrence(Phi))
      fixFirstOrderRecurrence(Phi);
    else if (Legal->isReductionVariable(Phi))
      fixReduction(Phi);
  }
}

void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
  // This is the second phase of vectorizing first-order recurrences. An
  // overview of the transformation is described below. Suppose we have the
  // following loop.
  //
  //   for (int i = 0; i < n; ++i)
  //     b[i] = a[i] - a[i - 1];
  //
  // There is a first-order recurrence on "a". For this loop, the shorthand
  // scalar IR looks like:
  //
  //   scalar.ph:
  //     s_init = a[-1]
  //     br scalar.body
  //
  //   scalar.body:
  //     i = phi [0, scalar.ph], [i+1, scalar.body]
  //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
  //     s2 = a[i]
  //     b[i] = s2 - s1
  //     br cond, scalar.body, ...
  //
  // In this example, s1 is a recurrence because it's value depends on the
  // previous iteration. In the first phase of vectorization, we created a
  // temporary value for s1. We now complete the vectorization and produce the
  // shorthand vector IR shown below (for VF = 4, UF = 1).
  //
  //   vector.ph:
  //     v_init = vector(..., ..., ..., a[-1])
  //     br vector.body
  //
  //   vector.body
  //     i = phi [0, vector.ph], [i+4, vector.body]
  //     v1 = phi [v_init, vector.ph], [v2, vector.body]
  //     v2 = a[i, i+1, i+2, i+3];
  //     v3 = vector(v1(3), v2(0, 1, 2))
  //     b[i, i+1, i+2, i+3] = v2 - v3
  //     br cond, vector.body, middle.block
  //
  //   middle.block:
  //     x = v2(3)
  //     br scalar.ph
  //
  //   scalar.ph:
  //     s_init = phi [x, middle.block], [a[-1], otherwise]
  //     br scalar.body
  //
  // After execution completes the vector loop, we extract the next value of
  // the recurrence (x) to use as the initial value in the scalar loop.

  // Get the original loop preheader and single loop latch.
  auto *Preheader = OrigLoop->getLoopPreheader();
  auto *Latch = OrigLoop->getLoopLatch();

  // Get the initial and previous values of the scalar recurrence.
  auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
  auto *Previous = Phi->getIncomingValueForBlock(Latch);

  // Create a vector from the initial value.
  auto *VectorInit = ScalarInit;
  if (VF > 1) {
    Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
    VectorInit = Builder.CreateInsertElement(
        UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
        Builder.getInt32(VF - 1), "vector.recur.init");
  }

  // We constructed a temporary phi node in the first phase of vectorization.
  // This phi node will eventually be deleted.
  Builder.SetInsertPoint(
      cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0)));

  // Create a phi node for the new recurrence. The current value will either be
  // the initial value inserted into a vector or loop-varying vector value.
  auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
  VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);

  // Get the vectorized previous value of the last part UF - 1. It appears last
  // among all unrolled iterations, due to the order of their construction.
  Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);

  // Set the insertion point after the previous value if it is an instruction.
  // Note that the previous value may have been constant-folded so it is not
  // guaranteed to be an instruction in the vector loop. Also, if the previous
  // value is a phi node, we should insert after all the phi nodes to avoid
  // breaking basic block verification.
  if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) ||
      isa<PHINode>(PreviousLastPart))
    Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
  else
    Builder.SetInsertPoint(
        &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart)));

  // We will construct a vector for the recurrence by combining the values for
  // the current and previous iterations. This is the required shuffle mask.
  SmallVector<Constant *, 8> ShuffleMask(VF);
  ShuffleMask[0] = Builder.getInt32(VF - 1);
  for (unsigned I = 1; I < VF; ++I)
    ShuffleMask[I] = Builder.getInt32(I + VF - 1);

  // The vector from which to take the initial value for the current iteration
  // (actual or unrolled). Initially, this is the vector phi node.
  Value *Incoming = VecPhi;

  // Shuffle the current and previous vector and update the vector parts.
  for (unsigned Part = 0; Part < UF; ++Part) {
    Value *PreviousPart = getOrCreateVectorValue(Previous, Part);
    Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part);
    auto *Shuffle =
        VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart,
                                             ConstantVector::get(ShuffleMask))
               : Incoming;
    PhiPart->replaceAllUsesWith(Shuffle);
    cast<Instruction>(PhiPart)->eraseFromParent();
    VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle);
    Incoming = PreviousPart;
  }

  // Fix the latch value of the new recurrence in the vector loop.
  VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());

  // Extract the last vector element in the middle block. This will be the
  // initial value for the recurrence when jumping to the scalar loop.
  auto *ExtractForScalar = Incoming;
  if (VF > 1) {
    Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
    ExtractForScalar = Builder.CreateExtractElement(
        ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract");
  }
  // Extract the second last element in the middle block if the
  // Phi is used outside the loop. We need to extract the phi itself
  // and not the last element (the phi update in the current iteration). This
  // will be the value when jumping to the exit block from the LoopMiddleBlock,
  // when the scalar loop is not run at all.
  Value *ExtractForPhiUsedOutsideLoop = nullptr;
  if (VF > 1)
    ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
        Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi");
  // When loop is unrolled without vectorizing, initialize
  // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
  // `Incoming`. This is analogous to the vectorized case above: extracting the
  // second last element when VF > 1.
  else if (UF > 1)
    ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2);

  // Fix the initial value of the original recurrence in the scalar loop.
  Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
  auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
  for (auto *BB : predecessors(LoopScalarPreHeader)) {
    auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
    Start->addIncoming(Incoming, BB);
  }

  Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start);
  Phi->setName("scalar.recur");

  // Finally, fix users of the recurrence outside the loop. The users will need
  // either the last value of the scalar recurrence or the last value of the
  // vector recurrence we extracted in the middle block. Since the loop is in
  // LCSSA form, we just need to find the phi node for the original scalar
  // recurrence in the exit block, and then add an edge for the middle block.
  for (auto &I : *LoopExitBlock) {
    auto *LCSSAPhi = dyn_cast<PHINode>(&I);
    if (!LCSSAPhi)
      break;
    if (LCSSAPhi->getIncomingValue(0) == Phi) {
      LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
      break;
    }
  }
}

void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
  Constant *Zero = Builder.getInt32(0);

  // Get it's reduction variable descriptor.
  assert(Legal->isReductionVariable(Phi) &&
         "Unable to find the reduction variable");
  RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi];

  RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
  TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
  Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
  RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
    RdxDesc.getMinMaxRecurrenceKind();
  setDebugLocFromInst(Builder, ReductionStartValue);

  // We need to generate a reduction vector from the incoming scalar.
  // To do so, we need to generate the 'identity' vector and override
  // one of the elements with the incoming scalar reduction. We need
  // to do it in the vector-loop preheader.
  Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());

  // This is the vector-clone of the value that leaves the loop.
  Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType();

  // Find the reduction identity variable. Zero for addition, or, xor,
  // one for multiplication, -1 for And.
  Value *Identity;
  Value *VectorStart;
  if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
      RK == RecurrenceDescriptor::RK_FloatMinMax) {
    // MinMax reduction have the start value as their identify.
    if (VF == 1) {
      VectorStart = Identity = ReductionStartValue;
    } else {
      VectorStart = Identity =
        Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
    }
  } else {
    // Handle other reduction kinds:
    Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
        RK, VecTy->getScalarType());
    if (VF == 1) {
      Identity = Iden;
      // This vector is the Identity vector where the first element is the
      // incoming scalar reduction.
      VectorStart = ReductionStartValue;
    } else {
      Identity = ConstantVector::getSplat(VF, Iden);

      // This vector is the Identity vector where the first element is the
      // incoming scalar reduction.
      VectorStart =
        Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
    }
  }

  // Fix the vector-loop phi.

  // Reductions do not have to start at zero. They can start with
  // any loop invariant values.
  BasicBlock *Latch = OrigLoop->getLoopLatch();
  Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
  for (unsigned Part = 0; Part < UF; ++Part) {
    Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part);
    Value *Val = getOrCreateVectorValue(LoopVal, Part);
    // Make sure to add the reduction stat value only to the
    // first unroll part.
    Value *StartVal = (Part == 0) ? VectorStart : Identity;
    cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader);
    cast<PHINode>(VecRdxPhi)
      ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
  }

  // Before each round, move the insertion point right between
  // the PHIs and the values we are going to write.
  // This allows us to write both PHINodes and the extractelement
  // instructions.
  Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());

  setDebugLocFromInst(Builder, LoopExitInst);

  // If the vector reduction can be performed in a smaller type, we truncate
  // then extend the loop exit value to enable InstCombine to evaluate the
  // entire expression in the smaller type.
  if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
    Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
    Builder.SetInsertPoint(
        LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
    VectorParts RdxParts(UF);
    for (unsigned Part = 0; Part < UF; ++Part) {
      RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
      Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
      Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
                                        : Builder.CreateZExt(Trunc, VecTy);
      for (Value::user_iterator UI = RdxParts[Part]->user_begin();
           UI != RdxParts[Part]->user_end();)
        if (*UI != Trunc) {
          (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
          RdxParts[Part] = Extnd;
        } else {
          ++UI;
        }
    }
    Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
    for (unsigned Part = 0; Part < UF; ++Part) {
      RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
      VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]);
    }
  }

  // Reduce all of the unrolled parts into a single vector.
  Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0);
  unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
  setDebugLocFromInst(Builder, ReducedPartRdx);
  for (unsigned Part = 1; Part < UF; ++Part) {
    Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
    if (Op != Instruction::ICmp && Op != Instruction::FCmp)
      // Floating point operations had to be 'fast' to enable the reduction.
      ReducedPartRdx = addFastMathFlag(
          Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart,
                              ReducedPartRdx, "bin.rdx"));
    else
      ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp(
          Builder, MinMaxKind, ReducedPartRdx, RdxPart);
  }

  if (VF > 1) {
    bool NoNaN = Legal->hasFunNoNaNAttr();
    ReducedPartRdx =
        createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
    // If the reduction can be performed in a smaller type, we need to extend
    // the reduction to the wider type before we branch to the original loop.
    if (Phi->getType() != RdxDesc.getRecurrenceType())
      ReducedPartRdx =
        RdxDesc.isSigned()
        ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
        : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
  }

  // Create a phi node that merges control-flow from the backedge-taken check
  // block and the middle block.
  PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
                                        LoopScalarPreHeader->getTerminator());
  for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
    BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
  BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);

  // Now, we need to fix the users of the reduction variable
  // inside and outside of the scalar remainder loop.
  // We know that the loop is in LCSSA form. We need to update the
  // PHI nodes in the exit blocks.
  for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
         LEE = LoopExitBlock->end();
       LEI != LEE; ++LEI) {
    PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
    if (!LCSSAPhi)
      break;

    // All PHINodes need to have a single entry edge, or two if
    // we already fixed them.
    assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");

    // We found a reduction value exit-PHI. Update it with the
    // incoming bypass edge.
    if (LCSSAPhi->getIncomingValue(0) == LoopExitInst)
      LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
  } // end of the LCSSA phi scan.

    // Fix the scalar loop reduction variable with the incoming reduction sum
    // from the vector body and from the backedge value.
  int IncomingEdgeBlockIdx =
    Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
  assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
  // Pick the other block.
  int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
  Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
  Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
}

void InnerLoopVectorizer::fixLCSSAPHIs() {
  for (Instruction &LEI : *LoopExitBlock) {
    auto *LCSSAPhi = dyn_cast<PHINode>(&LEI);
    if (!LCSSAPhi)
      break;
    if (LCSSAPhi->getNumIncomingValues() == 1) {
      assert(OrigLoop->isLoopInvariant(LCSSAPhi->getIncomingValue(0)) &&
             "Incoming value isn't loop invariant");
      LCSSAPhi->addIncoming(LCSSAPhi->getIncomingValue(0), LoopMiddleBlock);
    }
  }
}

void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
  // The basic block and loop containing the predicated instruction.
  auto *PredBB = PredInst->getParent();
  auto *VectorLoop = LI->getLoopFor(PredBB);

  // Initialize a worklist with the operands of the predicated instruction.
  SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());

  // Holds instructions that we need to analyze again. An instruction may be
  // reanalyzed if we don't yet know if we can sink it or not.
  SmallVector<Instruction *, 8> InstsToReanalyze;

  // Returns true if a given use occurs in the predicated block. Phi nodes use
  // their operands in their corresponding predecessor blocks.
  auto isBlockOfUsePredicated = [&](Use &U) -> bool {
    auto *I = cast<Instruction>(U.getUser());
    BasicBlock *BB = I->getParent();
    if (auto *Phi = dyn_cast<PHINode>(I))
      BB = Phi->getIncomingBlock(
          PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
    return BB == PredBB;
  };

  // Iteratively sink the scalarized operands of the predicated instruction
  // into the block we created for it. When an instruction is sunk, it's
  // operands are then added to the worklist. The algorithm ends after one pass
  // through the worklist doesn't sink a single instruction.
  bool Changed;
  do {
    // Add the instructions that need to be reanalyzed to the worklist, and
    // reset the changed indicator.
    Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
    InstsToReanalyze.clear();
    Changed = false;

    while (!Worklist.empty()) {
      auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());

      // We can't sink an instruction if it is a phi node, is already in the
      // predicated block, is not in the loop, or may have side effects.
      if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
          !VectorLoop->contains(I) || I->mayHaveSideEffects())
        continue;

      // It's legal to sink the instruction if all its uses occur in the
      // predicated block. Otherwise, there's nothing to do yet, and we may
      // need to reanalyze the instruction.
      if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
        InstsToReanalyze.push_back(I);
        continue;
      }

      // Move the instruction to the beginning of the predicated block, and add
      // it's operands to the worklist.
      I->moveBefore(&*PredBB->getFirstInsertionPt());
      Worklist.insert(I->op_begin(), I->op_end());

      // The sinking may have enabled other instructions to be sunk, so we will
      // need to iterate.
      Changed = true;
    }
  } while (Changed);
}

InnerLoopVectorizer::VectorParts
InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
  assert(is_contained(predecessors(Dst), Src) && "Invalid edge");

  // Look for cached value.
  std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
  EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
  if (ECEntryIt != EdgeMaskCache.end())
    return ECEntryIt->second;

  VectorParts SrcMask = createBlockInMask(Src);

  // The terminator has to be a branch inst!
  BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
  assert(BI && "Unexpected terminator found");

  if (!BI->isConditional())
    return EdgeMaskCache[Edge] = SrcMask;

  VectorParts EdgeMask(UF);
  for (unsigned Part = 0; Part < UF; ++Part) {
    auto *EdgeMaskPart = getOrCreateVectorValue(BI->getCondition(), Part);
    if (BI->getSuccessor(0) != Dst)
      EdgeMaskPart = Builder.CreateNot(EdgeMaskPart);

    if (SrcMask[Part]) // Otherwise block in-mask is all-one, no need to AND.
      EdgeMaskPart = Builder.CreateAnd(EdgeMaskPart, SrcMask[Part]);

    EdgeMask[Part] = EdgeMaskPart;
  }

  return EdgeMaskCache[Edge] = EdgeMask;
}

InnerLoopVectorizer::VectorParts
InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
  assert(OrigLoop->contains(BB) && "Block is not a part of a loop");

  // Look for cached value.
  BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
  if (BCEntryIt != BlockMaskCache.end())
    return BCEntryIt->second;

  // All-one mask is modelled as no-mask following the convention for masked
  // load/store/gather/scatter. Initialize BlockMask to no-mask.
  VectorParts BlockMask(UF);
  for (unsigned Part = 0; Part < UF; ++Part)
    BlockMask[Part] = nullptr;

  // Loop incoming mask is all-one.
  if (OrigLoop->getHeader() == BB)
    return BlockMaskCache[BB] = BlockMask;

  // This is the block mask. We OR all incoming edges.
  for (auto *Predecessor : predecessors(BB)) {
    VectorParts EdgeMask = createEdgeMask(Predecessor, BB);
    if (!EdgeMask[0]) // Mask of predecessor is all-one so mask of block is too.
      return BlockMaskCache[BB] = EdgeMask;

    if (!BlockMask[0]) { // BlockMask has its initialized nullptr value.
      BlockMask = EdgeMask;
      continue;
    }

    for (unsigned Part = 0; Part < UF; ++Part)
      BlockMask[Part] = Builder.CreateOr(BlockMask[Part], EdgeMask[Part]);
  }

  return BlockMaskCache[BB] = BlockMask;
}

void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
                                              unsigned VF) {
  PHINode *P = cast<PHINode>(PN);
  // In order to support recurrences we need to be able to vectorize Phi nodes.
  // Phi nodes have cycles, so we need to vectorize them in two stages. This is
  // stage #1: We create a new vector PHI node with no incoming edges. We'll use
  // this value when we vectorize all of the instructions that use the PHI.
  if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
    for (unsigned Part = 0; Part < UF; ++Part) {
      // This is phase one of vectorizing PHIs.
      Type *VecTy =
          (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
      Value *EntryPart = PHINode::Create(
          VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
      VectorLoopValueMap.setVectorValue(P, Part, EntryPart);
    }
    return;
  }

  setDebugLocFromInst(Builder, P);
  // Check for PHI nodes that are lowered to vector selects.
  if (P->getParent() != OrigLoop->getHeader()) {
    // We know that all PHIs in non-header blocks are converted into
    // selects, so we don't have to worry about the insertion order and we
    // can just use the builder.
    // At this point we generate the predication tree. There may be
    // duplications since this is a simple recursive scan, but future
    // optimizations will clean it up.

    unsigned NumIncoming = P->getNumIncomingValues();

    // Generate a sequence of selects of the form:
    // SELECT(Mask3, In3,
    //      SELECT(Mask2, In2,
    //                   ( ...)))
    VectorParts Entry(UF);
    for (unsigned In = 0; In < NumIncoming; In++) {
      VectorParts Cond =
          createEdgeMask(P->getIncomingBlock(In), P->getParent());

      for (unsigned Part = 0; Part < UF; ++Part) {
        Value *In0 = getOrCreateVectorValue(P->getIncomingValue(In), Part);
        assert((Cond[Part] || NumIncoming == 1) &&
               "Multiple predecessors with one predecessor having a full mask");
        if (In == 0)
          Entry[Part] = In0; // Initialize with the first incoming value.
        else
          // Select between the current value and the previous incoming edge
          // based on the incoming mask.
          Entry[Part] = Builder.CreateSelect(Cond[Part], In0, Entry[Part],
                                             "predphi");
      }
    }
    for (unsigned Part = 0; Part < UF; ++Part)
      VectorLoopValueMap.setVectorValue(P, Part, Entry[Part]);
    return;
  }

  // This PHINode must be an induction variable.
  // Make sure that we know about it.
  assert(Legal->getInductionVars()->count(P) && "Not an induction variable");

  InductionDescriptor II = Legal->getInductionVars()->lookup(P);
  const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();

  // FIXME: The newly created binary instructions should contain nsw/nuw flags,
  // which can be found from the original scalar operations.
  switch (II.getKind()) {
  case InductionDescriptor::IK_NoInduction:
    llvm_unreachable("Unknown induction");
  case InductionDescriptor::IK_IntInduction:
  case InductionDescriptor::IK_FpInduction:
    llvm_unreachable("Integer/fp induction is handled elsewhere.");
  case InductionDescriptor::IK_PtrInduction: {
    // Handle the pointer induction variable case.
    assert(P->getType()->isPointerTy() && "Unexpected type.");
    // This is the normalized GEP that starts counting at zero.
    Value *PtrInd = Induction;
    PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
    // Determine the number of scalars we need to generate for each unroll
    // iteration. If the instruction is uniform, we only need to generate the
    // first lane. Otherwise, we generate all VF values.
    unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF;
    // These are the scalar results. Notice that we don't generate vector GEPs
    // because scalar GEPs result in better code.
    for (unsigned Part = 0; Part < UF; ++Part) {
      for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
        Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF);
        Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
        Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL);
        SclrGep->setName("next.gep");
        VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep);
      }
    }
    return;
  }
  }
}

/// A helper function for checking whether an integer division-related
/// instruction may divide by zero (in which case it must be predicated if
/// executed conditionally in the scalar code).
/// TODO: It may be worthwhile to generalize and check isKnownNonZero().
/// Non-zero divisors that are non compile-time constants will not be
/// converted into multiplication, so we will still end up scalarizing
/// the division, but can do so w/o predication.
static bool mayDivideByZero(Instruction &I) {
  assert((I.getOpcode() == Instruction::UDiv ||
          I.getOpcode() == Instruction::SDiv ||
          I.getOpcode() == Instruction::URem ||
          I.getOpcode() == Instruction::SRem) &&
         "Unexpected instruction");
  Value *Divisor = I.getOperand(1);
  auto *CInt = dyn_cast<ConstantInt>(Divisor);
  return !CInt || CInt->isZero();
}

void InnerLoopVectorizer::widenInstruction(Instruction &I) {
  switch (I.getOpcode()) {
  case Instruction::Br:
  case Instruction::PHI:
    llvm_unreachable("This instruction is handled by a different recipe.");
  case Instruction::GetElementPtr: {
    // Construct a vector GEP by widening the operands of the scalar GEP as
    // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
    // results in a vector of pointers when at least one operand of the GEP
    // is vector-typed. Thus, to keep the representation compact, we only use
    // vector-typed operands for loop-varying values.
    auto *GEP = cast<GetElementPtrInst>(&I);

    if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) {
      // If we are vectorizing, but the GEP has only loop-invariant operands,
      // the GEP we build (by only using vector-typed operands for
      // loop-varying values) would be a scalar pointer. Thus, to ensure we
      // produce a vector of pointers, we need to either arbitrarily pick an
      // operand to broadcast, or broadcast a clone of the original GEP.
      // Here, we broadcast a clone of the original.
      //
      // TODO: If at some point we decide to scalarize instructions having
      //       loop-invariant operands, this special case will no longer be
      //       required. We would add the scalarization decision to
      //       collectLoopScalars() and teach getVectorValue() to broadcast
      //       the lane-zero scalar value.
      auto *Clone = Builder.Insert(GEP->clone());
      for (unsigned Part = 0; Part < UF; ++Part) {
        Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
        VectorLoopValueMap.setVectorValue(&I, Part, EntryPart);
        addMetadata(EntryPart, GEP);
      }
    } else {
      // If the GEP has at least one loop-varying operand, we are sure to
      // produce a vector of pointers. But if we are only unrolling, we want
      // to produce a scalar GEP for each unroll part. Thus, the GEP we
      // produce with the code below will be scalar (if VF == 1) or vector
      // (otherwise). Note that for the unroll-only case, we still maintain
      // values in the vector mapping with initVector, as we do for other
      // instructions.
      for (unsigned Part = 0; Part < UF; ++Part) {
        // The pointer operand of the new GEP. If it's loop-invariant, we
        // won't broadcast it.
        auto *Ptr =
            OrigLoop->isLoopInvariant(GEP->getPointerOperand())
                ? GEP->getPointerOperand()
                : getOrCreateVectorValue(GEP->getPointerOperand(), Part);

        // Collect all the indices for the new GEP. If any index is
        // loop-invariant, we won't broadcast it.
        SmallVector<Value *, 4> Indices;
        for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) {
          if (OrigLoop->isLoopInvariant(U.get()))
            Indices.push_back(U.get());
          else
            Indices.push_back(getOrCreateVectorValue(U.get(), Part));
        }

        // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
        // but it should be a vector, otherwise.
        auto *NewGEP = GEP->isInBounds()
                           ? Builder.CreateInBoundsGEP(Ptr, Indices)
                           : Builder.CreateGEP(Ptr, Indices);
        assert((VF == 1 || NewGEP->getType()->isVectorTy()) &&
               "NewGEP is not a pointer vector");
        VectorLoopValueMap.setVectorValue(&I, Part, NewGEP);
        addMetadata(NewGEP, GEP);
      }
    }

    break;
  }
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::SRem:
  case Instruction::URem:
  case Instruction::Add:
  case Instruction::FAdd:
  case Instruction::Sub:
  case Instruction::FSub:
  case Instruction::Mul:
  case Instruction::FMul:
  case Instruction::FDiv:
  case Instruction::FRem:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor: {
    // Just widen binops.
    auto *BinOp = cast<BinaryOperator>(&I);
    setDebugLocFromInst(Builder, BinOp);

    for (unsigned Part = 0; Part < UF; ++Part) {
      Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part);
      Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part);
      Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B);

      if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
        VecOp->copyIRFlags(BinOp);

      // Use this vector value for all users of the original instruction.
      VectorLoopValueMap.setVectorValue(&I, Part, V);
      addMetadata(V, BinOp);
    }

    break;
  }
  case Instruction::Select: {
    // Widen selects.
    // If the selector is loop invariant we can create a select
    // instruction with a scalar condition. Otherwise, use vector-select.
    auto *SE = PSE.getSE();
    bool InvariantCond =
        SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop);
    setDebugLocFromInst(Builder, &I);

    // The condition can be loop invariant  but still defined inside the
    // loop. This means that we can't just use the original 'cond' value.
    // We have to take the 'vectorized' value and pick the first lane.
    // Instcombine will make this a no-op.

    auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0});

    for (unsigned Part = 0; Part < UF; ++Part) {
      Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part);
      Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part);
      Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part);
      Value *Sel =
          Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1);
      VectorLoopValueMap.setVectorValue(&I, Part, Sel);
      addMetadata(Sel, &I);
    }

    break;
  }

  case Instruction::ICmp:
  case Instruction::FCmp: {
    // Widen compares. Generate vector compares.
    bool FCmp = (I.getOpcode() == Instruction::FCmp);
    auto *Cmp = dyn_cast<CmpInst>(&I);
    setDebugLocFromInst(Builder, Cmp);
    for (unsigned Part = 0; Part < UF; ++Part) {
      Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part);
      Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part);
      Value *C = nullptr;
      if (FCmp) {
        // Propagate fast math flags.
        IRBuilder<>::FastMathFlagGuard FMFG(Builder);
        Builder.setFastMathFlags(Cmp->getFastMathFlags());
        C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
      } else {
        C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
      }
      VectorLoopValueMap.setVectorValue(&I, Part, C);
      addMetadata(C, &I);
    }

    break;
  }

  case Instruction::Store:
  case Instruction::Load:
    vectorizeMemoryInstruction(&I);
    break;
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::FPExt:
  case Instruction::PtrToInt:
  case Instruction::IntToPtr:
  case Instruction::SIToFP:
  case Instruction::UIToFP:
  case Instruction::Trunc:
  case Instruction::FPTrunc:
  case Instruction::BitCast: {
    auto *CI = dyn_cast<CastInst>(&I);
    setDebugLocFromInst(Builder, CI);

    /// Vectorize casts.
    Type *DestTy =
        (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF);

    for (unsigned Part = 0; Part < UF; ++Part) {
      Value *A = getOrCreateVectorValue(CI->getOperand(0), Part);
      Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
      VectorLoopValueMap.setVectorValue(&I, Part, Cast);
      addMetadata(Cast, &I);
    }
    break;
  }

  case Instruction::Call: {
    // Ignore dbg intrinsics.
    if (isa<DbgInfoIntrinsic>(I))
      break;
    setDebugLocFromInst(Builder, &I);

    Module *M = I.getParent()->getParent()->getParent();
    auto *CI = cast<CallInst>(&I);

    StringRef FnName = CI->getCalledFunction()->getName();
    Function *F = CI->getCalledFunction();
    Type *RetTy = ToVectorTy(CI->getType(), VF);
    SmallVector<Type *, 4> Tys;
    for (Value *ArgOperand : CI->arg_operands())
      Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));

    Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);

    // The flag shows whether we use Intrinsic or a usual Call for vectorized
    // version of the instruction.
    // Is it beneficial to perform intrinsic call compared to lib call?
    bool NeedToScalarize;
    unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
    bool UseVectorIntrinsic =
        ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
    assert((UseVectorIntrinsic || !NeedToScalarize) &&
           "Instruction should be scalarized elsewhere.");

    for (unsigned Part = 0; Part < UF; ++Part) {
      SmallVector<Value *, 4> Args;
      for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
        Value *Arg = CI->getArgOperand(i);
        // Some intrinsics have a scalar argument - don't replace it with a
        // vector.
        if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i))
          Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part);
        Args.push_back(Arg);
      }

      Function *VectorF;
      if (UseVectorIntrinsic) {
        // Use vector version of the intrinsic.
        Type *TysForDecl[] = {CI->getType()};
        if (VF > 1)
          TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
        VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
      } else {
        // Use vector version of the library call.
        StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
        assert(!VFnName.empty() && "Vector function name is empty.");
        VectorF = M->getFunction(VFnName);
        if (!VectorF) {
          // Generate a declaration
          FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
          VectorF =
              Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
          VectorF->copyAttributesFrom(F);
        }
      }
      assert(VectorF && "Can't create vector function.");

      SmallVector<OperandBundleDef, 1> OpBundles;
      CI->getOperandBundlesAsDefs(OpBundles);
      CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);

      if (isa<FPMathOperator>(V))
        V->copyFastMathFlags(CI);

      VectorLoopValueMap.setVectorValue(&I, Part, V);
      addMetadata(V, &I);
    }

    break;
  }

  default:
    // All other instructions are scalarized.
    DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
    llvm_unreachable("Unhandled instruction!");
  } // end of switch.
}

void InnerLoopVectorizer::updateAnalysis() {
  // Forget the original basic block.
  PSE.getSE()->forgetLoop(OrigLoop);

  // Update the dominator tree information.
  assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
         "Entry does not dominate exit.");

  DT->addNewBlock(LoopMiddleBlock,
                  LI->getLoopFor(LoopVectorBody)->getLoopLatch());
  DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
  DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
  DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
  DEBUG(DT->verifyDomTree());
}

/// \brief Check whether it is safe to if-convert this phi node.
///
/// Phi nodes with constant expressions that can trap are not safe to if
/// convert.
static bool canIfConvertPHINodes(BasicBlock *BB) {
  for (Instruction &I : *BB) {
    auto *Phi = dyn_cast<PHINode>(&I);
    if (!Phi)
      return true;
    for (Value *V : Phi->incoming_values())
      if (auto *C = dyn_cast<Constant>(V))
        if (C->canTrap())
          return false;
  }
  return true;
}

bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
  if (!EnableIfConversion) {
    ORE->emit(createMissedAnalysis("IfConversionDisabled")
              << "if-conversion is disabled");
    return false;
  }

  assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");

  // A list of pointers that we can safely read and write to.
  SmallPtrSet<Value *, 8> SafePointes;

  // Collect safe addresses.
  for (BasicBlock *BB : TheLoop->blocks()) {
    if (blockNeedsPredication(BB))
      continue;

    for (Instruction &I : *BB)
      if (auto *Ptr = getPointerOperand(&I))
        SafePointes.insert(Ptr);
  }

  // Collect the blocks that need predication.
  BasicBlock *Header = TheLoop->getHeader();
  for (BasicBlock *BB : TheLoop->blocks()) {
    // We don't support switch statements inside loops.
    if (!isa<BranchInst>(BB->getTerminator())) {
      ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator())
                << "loop contains a switch statement");
      return false;
    }

    // We must be able to predicate all blocks that need to be predicated.
    if (blockNeedsPredication(BB)) {
      if (!blockCanBePredicated(BB, SafePointes)) {
        ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
                  << "control flow cannot be substituted for a select");
        return false;
      }
    } else if (BB != Header && !canIfConvertPHINodes(BB)) {
      ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
                << "control flow cannot be substituted for a select");
      return false;
    }
  }

  // We can if-convert this loop.
  return true;
}

bool LoopVectorizationLegality::canVectorize() {
  // Store the result and return it at the end instead of exiting early, in case
  // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
  bool Result = true;
  
  bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
  if (DoExtraAnalysis)
  // We must have a loop in canonical form. Loops with indirectbr in them cannot
  // be canonicalized.
  if (!TheLoop->getLoopPreheader()) {
    ORE->emit(createMissedAnalysis("CFGNotUnderstood")
              << "loop control flow is not understood by vectorizer");
  if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // FIXME: The code is currently dead, since the loop gets sent to
  // LoopVectorizationLegality is already an innermost loop.
  //
  // We can only vectorize innermost loops.
  if (!TheLoop->empty()) {
    ORE->emit(createMissedAnalysis("NotInnermostLoop")
              << "loop is not the innermost loop");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // We must have a single backedge.
  if (TheLoop->getNumBackEdges() != 1) {
    ORE->emit(createMissedAnalysis("CFGNotUnderstood")
              << "loop control flow is not understood by vectorizer");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // We must have a single exiting block.
  if (!TheLoop->getExitingBlock()) {
    ORE->emit(createMissedAnalysis("CFGNotUnderstood")
              << "loop control flow is not understood by vectorizer");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // We only handle bottom-tested loops, i.e. loop in which the condition is
  // checked at the end of each iteration. With that we can assume that all
  // instructions in the loop are executed the same number of times.
  if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
    ORE->emit(createMissedAnalysis("CFGNotUnderstood")
              << "loop control flow is not understood by vectorizer");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // We need to have a loop header.
  DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
               << '\n');

  // Check if we can if-convert non-single-bb loops.
  unsigned NumBlocks = TheLoop->getNumBlocks();
  if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
    DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // Check if we can vectorize the instructions and CFG in this loop.
  if (!canVectorizeInstrs()) {
    DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // Go over each instruction and look at memory deps.
  if (!canVectorizeMemory()) {
    DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  DEBUG(dbgs() << "LV: We can vectorize this loop"
               << (LAI->getRuntimePointerChecking()->Need
                       ? " (with a runtime bound check)"
                       : "")
               << "!\n");

  bool UseInterleaved = TTI->enableInterleavedAccessVectorization();

  // If an override option has been passed in for interleaved accesses, use it.
  if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
    UseInterleaved = EnableInterleavedMemAccesses;

  // Analyze interleaved memory accesses.
  if (UseInterleaved)
    InterleaveInfo.analyzeInterleaving(*getSymbolicStrides());

  unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
  if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
    SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;

  if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
    ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks")
              << "Too many SCEV assumptions need to be made and checked "
              << "at runtime");
    DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
    if (DoExtraAnalysis)
      Result = false;
    else
      return false;
  }

  // Okay! We've done all the tests. If any have failed, return false. Otherwise
  // we can vectorize, and at this point we don't have any other mem analysis
  // which may limit our maximum vectorization factor, so just return true with
  // no restrictions.
  return Result;
}

static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
  if (Ty->isPointerTy())
    return DL.getIntPtrType(Ty);

  // It is possible that char's or short's overflow when we ask for the loop's
  // trip count, work around this by changing the type size.
  if (Ty->getScalarSizeInBits() < 32)
    return Type::getInt32Ty(Ty->getContext());

  return Ty;
}

static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
  Ty0 = convertPointerToIntegerType(DL, Ty0);
  Ty1 = convertPointerToIntegerType(DL, Ty1);
  if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
    return Ty0;
  return Ty1;
}

/// \brief Check that the instruction has outside loop users and is not an
/// identified reduction variable.
static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
                               SmallPtrSetImpl<Value *> &AllowedExit) {
  // Reduction and Induction instructions are allowed to have exit users. All
  // other instructions must not have external users.
  if (!AllowedExit.count(Inst))
    // Check that all of the users of the loop are inside the BB.
    for (User *U : Inst->users()) {
      Instruction *UI = cast<Instruction>(U);
      // This user may be a reduction exit value.
      if (!TheLoop->contains(UI)) {
        DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
        return true;
      }
    }
  return false;
}

void LoopVectorizationLegality::addInductionPhi(
    PHINode *Phi, const InductionDescriptor &ID,
    SmallPtrSetImpl<Value *> &AllowedExit) {
  Inductions[Phi] = ID;
  Type *PhiTy = Phi->getType();
  const DataLayout &DL = Phi->getModule()->getDataLayout();

  // Get the widest type.
  if (!PhiTy->isFloatingPointTy()) {
    if (!WidestIndTy)
      WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
    else
      WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
  }

  // Int inductions are special because we only allow one IV.
  if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
      ID.getConstIntStepValue() &&
      ID.getConstIntStepValue()->isOne() &&
      isa<Constant>(ID.getStartValue()) &&
      cast<Constant>(ID.getStartValue())->isNullValue()) {

    // Use the phi node with the widest type as induction. Use the last
    // one if there are multiple (no good reason for doing this other
    // than it is expedient). We've checked that it begins at zero and
    // steps by one, so this is a canonical induction variable.
    if (!PrimaryInduction || PhiTy == WidestIndTy)
      PrimaryInduction = Phi;
  }

  // Both the PHI node itself, and the "post-increment" value feeding
  // back into the PHI node may have external users.
  // We can allow those uses, except if the SCEVs we have for them rely
  // on predicates that only hold within the loop, since allowing the exit
  // currently means re-using this SCEV outside the loop.
  if (PSE.getUnionPredicate().isAlwaysTrue()) {
    AllowedExit.insert(Phi);
    AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
  }

  DEBUG(dbgs() << "LV: Found an induction variable.\n");
}

bool LoopVectorizationLegality::canVectorizeInstrs() {
  BasicBlock *Header = TheLoop->getHeader();

  // Look for the attribute signaling the absence of NaNs.
  Function &F = *Header->getParent();
  HasFunNoNaNAttr =
      F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";

  // For each block in the loop.
  for (BasicBlock *BB : TheLoop->blocks()) {
    // Scan the instructions in the block and look for hazards.
    for (Instruction &I : *BB) {
      if (auto *Phi = dyn_cast<PHINode>(&I)) {
        Type *PhiTy = Phi->getType();
        // Check that this PHI type is allowed.
        if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
            !PhiTy->isPointerTy()) {
          ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
                    << "loop control flow is not understood by vectorizer");
          DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
          return false;
        }

        // If this PHINode is not in the header block, then we know that we
        // can convert it to select during if-conversion. No need to check if
        // the PHIs in this block are induction or reduction variables.
        if (BB != Header) {
          // Check that this instruction has no outside users or is an
          // identified reduction value with an outside user.
          if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit))
            continue;
          ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi)
                    << "value could not be identified as "
                       "an induction or reduction variable");
          return false;
        }

        // We only allow if-converted PHIs with exactly two incoming values.
        if (Phi->getNumIncomingValues() != 2) {
          ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
                    << "control flow not understood by vectorizer");
          DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
          return false;
        }

        RecurrenceDescriptor RedDes;
        if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) {
          if (RedDes.hasUnsafeAlgebra())
            Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
          AllowedExit.insert(RedDes.getLoopExitInstr());
          Reductions[Phi] = RedDes;
          continue;
        }

        InductionDescriptor ID;
        if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
          addInductionPhi(Phi, ID, AllowedExit);
          if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
            Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
          continue;
        }

        if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
                                                         SinkAfter, DT)) {
          FirstOrderRecurrences.insert(Phi);
          continue;
        }

        // As a last resort, coerce the PHI to a AddRec expression
        // and re-try classifying it a an induction PHI.
        if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
          addInductionPhi(Phi, ID, AllowedExit);
          continue;
        }

        ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi)
                  << "value that could not be identified as "
                     "reduction is used outside the loop");
        DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n");
        return false;
      } // end of PHI handling

      // We handle calls that:
      //   * Are debug info intrinsics.
      //   * Have a mapping to an IR intrinsic.
      //   * Have a vector version available.
      auto *CI = dyn_cast<CallInst>(&I);
      if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
          !isa<DbgInfoIntrinsic>(CI) &&
          !(CI->getCalledFunction() && TLI &&
            TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
        ORE->emit(createMissedAnalysis("CantVectorizeCall", CI)
                  << "call instruction cannot be vectorized");
        DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
        return false;
      }

      // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
      // second argument is the same (i.e. loop invariant)
      if (CI && hasVectorInstrinsicScalarOpd(
                    getVectorIntrinsicIDForCall(CI, TLI), 1)) {
        auto *SE = PSE.getSE();
        if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
          ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI)
                    << "intrinsic instruction cannot be vectorized");
          DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
          return false;
        }
      }

      // Check that the instruction return type is vectorizable.
      // Also, we can't vectorize extractelement instructions.
      if ((!VectorType::isValidElementType(I.getType()) &&
           !I.getType()->isVoidTy()) ||
          isa<ExtractElementInst>(I)) {
        ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I)
                  << "instruction return type cannot be vectorized");
        DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
        return false;
      }

      // Check that the stored type is vectorizable.
      if (auto *ST = dyn_cast<StoreInst>(&I)) {
        Type *T = ST->getValueOperand()->getType();
        if (!VectorType::isValidElementType(T)) {
          ORE->emit(createMissedAnalysis("CantVectorizeStore", ST)
                    << "store instruction cannot be vectorized");
          return false;
        }

        // FP instructions can allow unsafe algebra, thus vectorizable by
        // non-IEEE-754 compliant SIMD units.
        // This applies to floating-point math operations and calls, not memory
        // operations, shuffles, or casts, as they don't change precision or
        // semantics.
      } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
                 !I.hasUnsafeAlgebra()) {
        DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
        Hints->setPotentiallyUnsafe();
      }

      // Reduction instructions are allowed to have exit users.
      // All other instructions must not have external users.
      if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
        ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I)
                  << "value cannot be used outside the loop");
        return false;
      }
    } // next instr.
  }

  if (!PrimaryInduction) {
    DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
    if (Inductions.empty()) {
      ORE->emit(createMissedAnalysis("NoInductionVariable")
                << "loop induction variable could not be identified");
      return false;
    }
  }

  // Now we know the widest induction type, check if our found induction
  // is the same size. If it's not, unset it here and InnerLoopVectorizer
  // will create another.
  if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
    PrimaryInduction = nullptr;

  return true;
}

void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) {
  // We should not collect Scalars more than once per VF. Right now, this
  // function is called from collectUniformsAndScalars(), which already does
  // this check. Collecting Scalars for VF=1 does not make any sense.
  assert(VF >= 2 && !Scalars.count(VF) &&
         "This function should not be visited twice for the same VF");

  SmallSetVector<Instruction *, 8> Worklist;

  // These sets are used to seed the analysis with pointers used by memory
  // accesses that will remain scalar.
  SmallSetVector<Instruction *, 8> ScalarPtrs;
  SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;

  // A helper that returns true if the use of Ptr by MemAccess will be scalar.
  // The pointer operands of loads and stores will be scalar as long as the
  // memory access is not a gather or scatter operation. The value operand of a
  // store will remain scalar if the store is scalarized.
  auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
    InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
    assert(WideningDecision != CM_Unknown &&
           "Widening decision should be ready at this moment");
    if (auto *Store = dyn_cast<StoreInst>(MemAccess))
      if (Ptr == Store->getValueOperand())
        return WideningDecision == CM_Scalarize;
    assert(Ptr == getPointerOperand(MemAccess) &&
           "Ptr is neither a value or pointer operand");
    return WideningDecision != CM_GatherScatter;
  };

  // A helper that returns true if the given value is a bitcast or
  // getelementptr instruction contained in the loop.
  auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
    return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
            isa<GetElementPtrInst>(V)) &&
           !TheLoop->isLoopInvariant(V);
  };

  // A helper that evaluates a memory access's use of a pointer. If the use
  // will be a scalar use, and the pointer is only used by memory accesses, we
  // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in
  // PossibleNonScalarPtrs.
  auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
    // We only care about bitcast and getelementptr instructions contained in
    // the loop.
    if (!isLoopVaryingBitCastOrGEP(Ptr))
      return;

    // If the pointer has already been identified as scalar (e.g., if it was
    // also identified as uniform), there's nothing to do.
    auto *I = cast<Instruction>(Ptr);
    if (Worklist.count(I))
      return;

    // If the use of the pointer will be a scalar use, and all users of the
    // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
    // place the pointer in PossibleNonScalarPtrs.
    if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
          return isa<LoadInst>(U) || isa<StoreInst>(U);
        }))
      ScalarPtrs.insert(I);
    else
      PossibleNonScalarPtrs.insert(I);
  };

  // We seed the scalars analysis with three classes of instructions: (1)
  // instructions marked uniform-after-vectorization, (2) bitcast and
  // getelementptr instructions used by memory accesses requiring a scalar use,
  // and (3) pointer induction variables and their update instructions (we
  // currently only scalarize these).
  //
  // (1) Add to the worklist all instructions that have been identified as
  // uniform-after-vectorization.
  Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());

  // (2) Add to the worklist all bitcast and getelementptr instructions used by
  // memory accesses requiring a scalar use. The pointer operands of loads and
  // stores will be scalar as long as the memory accesses is not a gather or
  // scatter operation. The value operand of a store will remain scalar if the
  // store is scalarized.
  for (auto *BB : TheLoop->blocks())
    for (auto &I : *BB) {
      if (auto *Load = dyn_cast<LoadInst>(&I)) {
        evaluatePtrUse(Load, Load->getPointerOperand());
      } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
        evaluatePtrUse(Store, Store->getPointerOperand());
        evaluatePtrUse(Store, Store->getValueOperand());
      }
    }
  for (auto *I : ScalarPtrs)
    if (!PossibleNonScalarPtrs.count(I)) {
      DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
      Worklist.insert(I);
    }

  // (3) Add to the worklist all pointer induction variables and their update
  // instructions.
  //
  // TODO: Once we are able to vectorize pointer induction variables we should
  //       no longer insert them into the worklist here.
  auto *Latch = TheLoop->getLoopLatch();
  for (auto &Induction : *Legal->getInductionVars()) {
    auto *Ind = Induction.first;
    auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
    if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction)
      continue;
    Worklist.insert(Ind);
    Worklist.insert(IndUpdate);
    DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
    DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n");
  }

  // Insert the forced scalars.
  // FIXME: Currently widenPHIInstruction() often creates a dead vector
  // induction variable when the PHI user is scalarized.
  if (ForcedScalars.count(VF))
    for (auto *I : ForcedScalars.find(VF)->second)
      Worklist.insert(I);

  // Expand the worklist by looking through any bitcasts and getelementptr
  // instructions we've already identified as scalar. This is similar to the
  // expansion step in collectLoopUniforms(); however, here we're only
  // expanding to include additional bitcasts and getelementptr instructions.
  unsigned Idx = 0;
  while (Idx != Worklist.size()) {
    Instruction *Dst = Worklist[Idx++];
    if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
      continue;
    auto *Src = cast<Instruction>(Dst->getOperand(0));
    if (llvm::all_of(Src->users(), [&](User *U) -> bool {
          auto *J = cast<Instruction>(U);
          return !TheLoop->contains(J) || Worklist.count(J) ||
                 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
                  isScalarUse(J, Src));
        })) {
      Worklist.insert(Src);
      DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
    }
  }

  // An induction variable will remain scalar if all users of the induction
  // variable and induction variable update remain scalar.
  for (auto &Induction : *Legal->getInductionVars()) {
    auto *Ind = Induction.first;
    auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));

    // We already considered pointer induction variables, so there's no reason
    // to look at their users again.
    //
    // TODO: Once we are able to vectorize pointer induction variables we
    //       should no longer skip over them here.
    if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction)
      continue;

    // Determine if all users of the induction variable are scalar after
    // vectorization.
    auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
      auto *I = cast<Instruction>(U);
      return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
    });
    if (!ScalarInd)
      continue;

    // Determine if all users of the induction variable update instruction are
    // scalar after vectorization.
    auto ScalarIndUpdate =
        llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
          auto *I = cast<Instruction>(U);
          return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
        });
    if (!ScalarIndUpdate)
      continue;

    // The induction variable and its update instruction will remain scalar.
    Worklist.insert(Ind);
    Worklist.insert(IndUpdate);
    DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
    DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n");
  }

  Scalars[VF].insert(Worklist.begin(), Worklist.end());
}

bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) {
  if (!blockNeedsPredication(I->getParent()))
    return false;
  switch(I->getOpcode()) {
  default:
    break;
  case Instruction::Store:
    return !isMaskRequired(I);
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::SRem:
  case Instruction::URem:
    return mayDivideByZero(*I);
  }
  return false;
}

bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I,
                                                              unsigned VF) {
  // Get and ensure we have a valid memory instruction.
  LoadInst *LI = dyn_cast<LoadInst>(I);
  StoreInst *SI = dyn_cast<StoreInst>(I);
  assert((LI || SI) && "Invalid memory instruction");

  auto *Ptr = getPointerOperand(I);

  // In order to be widened, the pointer should be consecutive, first of all.
  if (!isConsecutivePtr(Ptr))
    return false;

  // If the instruction is a store located in a predicated block, it will be
  // scalarized.
  if (isScalarWithPredication(I))
    return false;

  // If the instruction's allocated size doesn't equal it's type size, it
  // requires padding and will be scalarized.
  auto &DL = I->getModule()->getDataLayout();
  auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
  if (hasIrregularType(ScalarTy, DL, VF))
    return false;

  return true;
}

void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) {
  // We should not collect Uniforms more than once per VF. Right now,
  // this function is called from collectUniformsAndScalars(), which
  // already does this check. Collecting Uniforms for VF=1 does not make any
  // sense.

  assert(VF >= 2 && !Uniforms.count(VF) &&
         "This function should not be visited twice for the same VF");

  // Visit the list of Uniforms. If we'll not find any uniform value, we'll
  // not analyze again.  Uniforms.count(VF) will return 1.
  Uniforms[VF].clear();

  // We now know that the loop is vectorizable!
  // Collect instructions inside the loop that will remain uniform after
  // vectorization.

  // Global values, params and instructions outside of current loop are out of
  // scope.
  auto isOutOfScope = [&](Value *V) -> bool {
    Instruction *I = dyn_cast<Instruction>(V);
    return (!I || !TheLoop->contains(I));
  };

  SetVector<Instruction *> Worklist;
  BasicBlock *Latch = TheLoop->getLoopLatch();

  // Start with the conditional branch. If the branch condition is an
  // instruction contained in the loop that is only used by the branch, it is
  // uniform.
  auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
  if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) {
    Worklist.insert(Cmp);
    DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n");
  }

  // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
  // are pointers that are treated like consecutive pointers during
  // vectorization. The pointer operands of interleaved accesses are an
  // example.
  SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs;

  // Holds pointer operands of instructions that are possibly non-uniform.
  SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;

  auto isUniformDecision = [&](Instruction *I, unsigned VF) {
    InstWidening WideningDecision = getWideningDecision(I, VF);
    assert(WideningDecision != CM_Unknown &&
           "Widening decision should be ready at this moment");

    return (WideningDecision == CM_Widen ||
            WideningDecision == CM_Interleave);
  };
  // Iterate over the instructions in the loop, and collect all
  // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
  // that a consecutive-like pointer operand will be scalarized, we collect it
  // in PossibleNonUniformPtrs instead. We use two sets here because a single
  // getelementptr instruction can be used by both vectorized and scalarized
  // memory instructions. For example, if a loop loads and stores from the same
  // location, but the store is conditional, the store will be scalarized, and
  // the getelementptr won't remain uniform.
  for (auto *BB : TheLoop->blocks())
    for (auto &I : *BB) {
      // If there's no pointer operand, there's nothing to do.
      auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I));
      if (!Ptr)
        continue;

      // True if all users of Ptr are memory accesses that have Ptr as their
      // pointer operand.
      auto UsersAreMemAccesses =
          llvm::all_of(Ptr->users(), [&](User *U) -> bool {
            return getPointerOperand(U) == Ptr;
          });

      // Ensure the memory instruction will not be scalarized or used by
      // gather/scatter, making its pointer operand non-uniform. If the pointer
      // operand is used by any instruction other than a memory access, we
      // conservatively assume the pointer operand may be non-uniform.
      if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
        PossibleNonUniformPtrs.insert(Ptr);

      // If the memory instruction will be vectorized and its pointer operand
      // is consecutive-like, or interleaving - the pointer operand should
      // remain uniform.
      else
        ConsecutiveLikePtrs.insert(Ptr);
    }

  // Add to the Worklist all consecutive and consecutive-like pointers that
  // aren't also identified as possibly non-uniform.
  for (auto *V : ConsecutiveLikePtrs)
    if (!PossibleNonUniformPtrs.count(V)) {
      DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n");
      Worklist.insert(V);
    }

  // Expand Worklist in topological order: whenever a new instruction
  // is added , its users should be either already inside Worklist, or
  // out of scope. It ensures a uniform instruction will only be used
  // by uniform instructions or out of scope instructions.
  unsigned idx = 0;
  while (idx != Worklist.size()) {
    Instruction *I = Worklist[idx++];

    for (auto OV : I->operand_values()) {
      if (isOutOfScope(OV))
        continue;
      auto *OI = cast<Instruction>(OV);
      if (llvm::all_of(OI->users(), [&](User *U) -> bool {
            auto *J = cast<Instruction>(U);
            return !TheLoop->contains(J) || Worklist.count(J) ||
                   (OI == getPointerOperand(J) && isUniformDecision(J, VF));
          })) {
        Worklist.insert(OI);
        DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n");
      }
    }
  }

  // Returns true if Ptr is the pointer operand of a memory access instruction
  // I, and I is known to not require scalarization.
  auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
    return getPointerOperand(I) == Ptr && isUniformDecision(I, VF);
  };

  // For an instruction to be added into Worklist above, all its users inside
  // the loop should also be in Worklist. However, this condition cannot be
  // true for phi nodes that form a cyclic dependence. We must process phi
  // nodes separately. An induction variable will remain uniform if all users
  // of the induction variable and induction variable update remain uniform.
  // The code below handles both pointer and non-pointer induction variables.
  for (auto &Induction : *Legal->getInductionVars()) {
    auto *Ind = Induction.first;
    auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));

    // Determine if all users of the induction variable are uniform after
    // vectorization.
    auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
      auto *I = cast<Instruction>(U);
      return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
             isVectorizedMemAccessUse(I, Ind);
    });
    if (!UniformInd)
      continue;

    // Determine if all users of the induction variable update instruction are
    // uniform after vectorization.
    auto UniformIndUpdate =
        llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
          auto *I = cast<Instruction>(U);
          return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
                 isVectorizedMemAccessUse(I, IndUpdate);
        });
    if (!UniformIndUpdate)
      continue;

    // The induction variable and its update instruction will remain uniform.
    Worklist.insert(Ind);
    Worklist.insert(IndUpdate);
    DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n");
    DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n");
  }

  Uniforms[VF].insert(Worklist.begin(), Worklist.end());
}

bool LoopVectorizationLegality::canVectorizeMemory() {
  LAI = &(*GetLAA)(*TheLoop);
  InterleaveInfo.setLAI(LAI);
  const OptimizationRemarkAnalysis *LAR = LAI->getReport();
  if (LAR) {
    ORE->emit([&]() {
      return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
                                        "loop not vectorized: ", *LAR);
    });
  }
  if (!LAI->canVectorizeMemory())
    return false;

  if (LAI->hasStoreToLoopInvariantAddress()) {
    ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
              << "write to a loop invariant address could not be vectorized");
    DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
    return false;
  }

  Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
  PSE.addPredicate(LAI->getPSE().getUnionPredicate());

  return true;
}

bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
  Value *In0 = const_cast<Value *>(V);
  PHINode *PN = dyn_cast_or_null<PHINode>(In0);
  if (!PN)
    return false;

  return Inductions.count(PN);
}

bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
  return FirstOrderRecurrences.count(Phi);
}

bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
  return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
}

bool LoopVectorizationLegality::blockCanBePredicated(
    BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();

  for (Instruction &I : *BB) {
    // Check that we don't have a constant expression that can trap as operand.
    for (Value *Operand : I.operands()) {
      if (auto *C = dyn_cast<Constant>(Operand))
        if (C->canTrap())
          return false;
    }
    // We might be able to hoist the load.
    if (I.mayReadFromMemory()) {
      auto *LI = dyn_cast<LoadInst>(&I);
      if (!LI)
        return false;
      if (!SafePtrs.count(LI->getPointerOperand())) {
        if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) ||
            isLegalMaskedGather(LI->getType())) {
          MaskedOp.insert(LI);
          continue;
        }
        // !llvm.mem.parallel_loop_access implies if-conversion safety.
        if (IsAnnotatedParallel)
          continue;
        return false;
      }
    }

    if (I.mayWriteToMemory()) {
      auto *SI = dyn_cast<StoreInst>(&I);
      // We only support predication of stores in basic blocks with one
      // predecessor.
      if (!SI)
        return false;

      // Build a masked store if it is legal for the target.
      if (isLegalMaskedStore(SI->getValueOperand()->getType(),
                             SI->getPointerOperand()) ||
          isLegalMaskedScatter(SI->getValueOperand()->getType())) {
        MaskedOp.insert(SI);
        continue;
      }

      bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0);
      bool isSinglePredecessor = SI->getParent()->getSinglePredecessor();

      if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr ||
          !isSinglePredecessor)
        return false;
    }
    if (I.mayThrow())
      return false;
  }

  return true;
}

void InterleavedAccessInfo::collectConstStrideAccesses(
    MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
    const ValueToValueMap &Strides) {
  auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();

  // Since it's desired that the load/store instructions be maintained in
  // "program order" for the interleaved access analysis, we have to visit the
  // blocks in the loop in reverse postorder (i.e., in a topological order).
  // Such an ordering will ensure that any load/store that may be executed
  // before a second load/store will precede the second load/store in
  // AccessStrideInfo.
  LoopBlocksDFS DFS(TheLoop);
  DFS.perform(LI);
  for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
    for (auto &I : *BB) {
      auto *LI = dyn_cast<LoadInst>(&I);
      auto *SI = dyn_cast<StoreInst>(&I);
      if (!LI && !SI)
        continue;

      Value *Ptr = getPointerOperand(&I);
      // We don't check wrapping here because we don't know yet if Ptr will be
      // part of a full group or a group with gaps. Checking wrapping for all
      // pointers (even those that end up in groups with no gaps) will be overly
      // conservative. For full groups, wrapping should be ok since if we would
      // wrap around the address space we would do a memory access at nullptr
      // even without the transformation. The wrapping checks are therefore
      // deferred until after we've formed the interleaved groups.
      int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
                                    /*Assume=*/true, /*ShouldCheckWrap=*/false);

      const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
      PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
      uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());

      // An alignment of 0 means target ABI alignment.
      unsigned Align = getMemInstAlignment(&I);
      if (!Align)
        Align = DL.getABITypeAlignment(PtrTy->getElementType());

      AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
    }
}

// Analyze interleaved accesses and collect them into interleaved load and
// store groups.
//
// When generating code for an interleaved load group, we effectively hoist all
// loads in the group to the location of the first load in program order. When
// generating code for an interleaved store group, we sink all stores to the
// location of the last store. This code motion can change the order of load
// and store instructions and may break dependences.
//
// The code generation strategy mentioned above ensures that we won't violate
// any write-after-read (WAR) dependences.
//
// E.g., for the WAR dependence:  a = A[i];      // (1)
//                                A[i] = b;      // (2)
//
// The store group of (2) is always inserted at or below (2), and the load
// group of (1) is always inserted at or above (1). Thus, the instructions will
// never be reordered. All other dependences are checked to ensure the
// correctness of the instruction reordering.
//
// The algorithm visits all memory accesses in the loop in bottom-up program
// order. Program order is established by traversing the blocks in the loop in
// reverse postorder when collecting the accesses.
//
// We visit the memory accesses in bottom-up order because it can simplify the
// construction of store groups in the presence of write-after-write (WAW)
// dependences.
//
// E.g., for the WAW dependence:  A[i] = a;      // (1)
//                                A[i] = b;      // (2)
//                                A[i + 1] = c;  // (3)
//
// We will first create a store group with (3) and (2). (1) can't be added to
// this group because it and (2) are dependent. However, (1) can be grouped
// with other accesses that may precede it in program order. Note that a
// bottom-up order does not imply that WAW dependences should not be checked.
void InterleavedAccessInfo::analyzeInterleaving(
    const ValueToValueMap &Strides) {
  DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");

  // Holds all accesses with a constant stride.
  MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
  collectConstStrideAccesses(AccessStrideInfo, Strides);

  if (AccessStrideInfo.empty())
    return;

  // Collect the dependences in the loop.
  collectDependences();

  // Holds all interleaved store groups temporarily.
  SmallSetVector<InterleaveGroup *, 4> StoreGroups;
  // Holds all interleaved load groups temporarily.
  SmallSetVector<InterleaveGroup *, 4> LoadGroups;

  // Search in bottom-up program order for pairs of accesses (A and B) that can
  // form interleaved load or store groups. In the algorithm below, access A
  // precedes access B in program order. We initialize a group for B in the
  // outer loop of the algorithm, and then in the inner loop, we attempt to
  // insert each A into B's group if:
  //
  //  1. A and B have the same stride,
  //  2. A and B have the same memory object size, and
  //  3. A belongs in B's group according to its distance from B.
  //
  // Special care is taken to ensure group formation will not break any
  // dependences.
  for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
       BI != E; ++BI) {
    Instruction *B = BI->first;
    StrideDescriptor DesB = BI->second;

    // Initialize a group for B if it has an allowable stride. Even if we don't
    // create a group for B, we continue with the bottom-up algorithm to ensure
    // we don't break any of B's dependences.
    InterleaveGroup *Group = nullptr;
    if (isStrided(DesB.Stride)) {
      Group = getInterleaveGroup(B);
      if (!Group) {
        DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n');
        Group = createInterleaveGroup(B, DesB.Stride, DesB.Align);
      }
      if (B->mayWriteToMemory())
        StoreGroups.insert(Group);
      else
        LoadGroups.insert(Group);
    }

    for (auto AI = std::next(BI); AI != E; ++AI) {
      Instruction *A = AI->first;
      StrideDescriptor DesA = AI->second;

      // Our code motion strategy implies that we can't have dependences
      // between accesses in an interleaved group and other accesses located
      // between the first and last member of the group. Note that this also
      // means that a group can't have more than one member at a given offset.
      // The accesses in a group can have dependences with other accesses, but
      // we must ensure we don't extend the boundaries of the group such that
      // we encompass those dependent accesses.
      //
      // For example, assume we have the sequence of accesses shown below in a
      // stride-2 loop:
      //
      //  (1, 2) is a group | A[i]   = a;  // (1)
      //                    | A[i-1] = b;  // (2) |
      //                      A[i-3] = c;  // (3)
      //                      A[i]   = d;  // (4) | (2, 4) is not a group
      //
      // Because accesses (2) and (3) are dependent, we can group (2) with (1)
      // but not with (4). If we did, the dependent access (3) would be within
      // the boundaries of the (2, 4) group.
      if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
        // If a dependence exists and A is already in a group, we know that A
        // must be a store since A precedes B and WAR dependences are allowed.
        // Thus, A would be sunk below B. We release A's group to prevent this
        // illegal code motion. A will then be free to form another group with
        // instructions that precede it.
        if (isInterleaved(A)) {
          InterleaveGroup *StoreGroup = getInterleaveGroup(A);
          StoreGroups.remove(StoreGroup);
          releaseGroup(StoreGroup);
        }

        // If a dependence exists and A is not already in a group (or it was
        // and we just released it), B might be hoisted above A (if B is a
        // load) or another store might be sunk below A (if B is a store). In
        // either case, we can't add additional instructions to B's group. B
        // will only form a group with instructions that it precedes.
        break;
      }

      // At this point, we've checked for illegal code motion. If either A or B
      // isn't strided, there's nothing left to do.
      if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
        continue;

      // Ignore A if it's already in a group or isn't the same kind of memory
      // operation as B.
      if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory())
        continue;

      // Check rules 1 and 2. Ignore A if its stride or size is different from
      // that of B.
      if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
        continue;

      // Ignore A if the memory object of A and B don't belong to the same
      // address space
      if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B))
        continue;

      // Calculate the distance from A to B.
      const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
          PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
      if (!DistToB)
        continue;
      int64_t DistanceToB = DistToB->getAPInt().getSExtValue();

      // Check rule 3. Ignore A if its distance to B is not a multiple of the
      // size.
      if (DistanceToB % static_cast<int64_t>(DesB.Size))
        continue;

      // Ignore A if either A or B is in a predicated block. Although we
      // currently prevent group formation for predicated accesses, we may be
      // able to relax this limitation in the future once we handle more
      // complicated blocks.
      if (isPredicated(A->getParent()) || isPredicated(B->getParent()))
        continue;

      // The index of A is the index of B plus A's distance to B in multiples
      // of the size.
      int IndexA =
          Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);

      // Try to insert A into B's group.
      if (Group->insertMember(A, IndexA, DesA.Align)) {
        DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
                     << "    into the interleave group with" << *B << '\n');
        InterleaveGroupMap[A] = Group;

        // Set the first load in program order as the insert position.
        if (A->mayReadFromMemory())
          Group->setInsertPos(A);
      }
    } // Iteration over A accesses.
  } // Iteration over B accesses.

  // Remove interleaved store groups with gaps.
  for (InterleaveGroup *Group : StoreGroups)
    if (Group->getNumMembers() != Group->getFactor()) {
      DEBUG(dbgs() << "LV: Invalidate candidate interleaved store group due "
                      "to gaps.\n");
      releaseGroup(Group);
    }
  // Remove interleaved groups with gaps (currently only loads) whose memory
  // accesses may wrap around. We have to revisit the getPtrStride analysis,
  // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
  // not check wrapping (see documentation there).
  // FORNOW we use Assume=false;
  // TODO: Change to Assume=true but making sure we don't exceed the threshold
  // of runtime SCEV assumptions checks (thereby potentially failing to
  // vectorize altogether).
  // Additional optional optimizations:
  // TODO: If we are peeling the loop and we know that the first pointer doesn't
  // wrap then we can deduce that all pointers in the group don't wrap.
  // This means that we can forcefully peel the loop in order to only have to
  // check the first pointer for no-wrap. When we'll change to use Assume=true
  // we'll only need at most one runtime check per interleaved group.
  for (InterleaveGroup *Group : LoadGroups) {
    // Case 1: A full group. Can Skip the checks; For full groups, if the wide
    // load would wrap around the address space we would do a memory access at
    // nullptr even without the transformation.
    if (Group->getNumMembers() == Group->getFactor())
      continue;

    // Case 2: If first and last members of the group don't wrap this implies
    // that all the pointers in the group don't wrap.
    // So we check only group member 0 (which is always guaranteed to exist),
    // and group member Factor - 1; If the latter doesn't exist we rely on
    // peeling (if it is a non-reveresed accsess -- see Case 3).
    Value *FirstMemberPtr = getPointerOperand(Group->getMember(0));
    if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
                      /*ShouldCheckWrap=*/true)) {
      DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
                      "first group member potentially pointer-wrapping.\n");
      releaseGroup(Group);
      continue;
    }
    Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
    if (LastMember) {
      Value *LastMemberPtr = getPointerOperand(LastMember);
      if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
                        /*ShouldCheckWrap=*/true)) {
        DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
                        "last group member potentially pointer-wrapping.\n");
        releaseGroup(Group);
      }
    } else {
      // Case 3: A non-reversed interleaved load group with gaps: We need
      // to execute at least one scalar epilogue iteration. This will ensure
      // we don't speculatively access memory out-of-bounds. We only need
      // to look for a member at index factor - 1, since every group must have
      // a member at index zero.
      if (Group->isReverse()) {
        DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
                        "a reverse access with gaps.\n");
        releaseGroup(Group);
        continue;
      }
      DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
      RequiresScalarEpilogue = true;
    }
  }
}

Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) {
  if (!EnableCondStoresVectorization && Legal->getNumPredStores()) {
    ORE->emit(createMissedAnalysis("ConditionalStore")
              << "store that is conditionally executed prevents vectorization");
    DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
    return None;
  }

  if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
    // TODO: It may by useful to do since it's still likely to be dynamically
    // uniform if the target can skip.
    DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target");

    ORE->emit(
      createMissedAnalysis("CantVersionLoopWithDivergentTarget")
      << "runtime pointer checks needed. Not enabled for divergent target");

    return None;
  }

  unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
  if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize.
    return computeFeasibleMaxVF(OptForSize, TC);

  if (Legal->getRuntimePointerChecking()->Need) {
    ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize")
              << "runtime pointer checks needed. Enable vectorization of this "
                 "loop with '#pragma clang loop vectorize(enable)' when "
                 "compiling with -Os/-Oz");
    DEBUG(dbgs()
          << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n");
    return None;
  }

  // If we optimize the program for size, avoid creating the tail loop.
  DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');

  // If we don't know the precise trip count, don't try to vectorize.
  if (TC < 2) {
    ORE->emit(
        createMissedAnalysis("UnknownLoopCountComplexCFG")
        << "unable to calculate the loop count due to complex control flow");
    DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
    return None;
  }

  unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC);

  if (TC % MaxVF != 0) {
    // If the trip count that we found modulo the vectorization factor is not
    // zero then we require a tail.
    // FIXME: look for a smaller MaxVF that does divide TC rather than give up.
    // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a
    //        smaller MaxVF that does not require a scalar epilog.

    ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize")
              << "cannot optimize for size and vectorize at the "
                 "same time. Enable vectorization of this loop "
                 "with '#pragma clang loop vectorize(enable)' "
                 "when compiling with -Os/-Oz");
    DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
    return None;
  }

  return MaxVF;
}

unsigned
LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize,
                                                 unsigned ConstTripCount) {
  MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
  unsigned SmallestType, WidestType;
  std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
  unsigned WidestRegister = TTI.getRegisterBitWidth(true);

  // Get the maximum safe dependence distance in bits computed by LAA.
  // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
  // the memory accesses that is most restrictive (involved in the smallest
  // dependence distance).
  unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth();

  WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth);

  unsigned MaxVectorSize = WidestRegister / WidestType;

  DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / "
               << WidestType << " bits.\n");
  DEBUG(dbgs() << "LV: The Widest register safe to use is: " << WidestRegister
               << " bits.\n");

  assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"
                                " into one vector!");
  if (MaxVectorSize == 0) {
    DEBUG(dbgs() << "LV: The target has no vector registers.\n");
    MaxVectorSize = 1;
    return MaxVectorSize;
  } else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
             isPowerOf2_32(ConstTripCount)) {
    // We need to clamp the VF to be the ConstTripCount. There is no point in
    // choosing a higher viable VF as done in the loop below.
    DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
                 << ConstTripCount << "\n");
    MaxVectorSize = ConstTripCount;
    return MaxVectorSize;
  }

  unsigned MaxVF = MaxVectorSize;
  if (MaximizeBandwidth && !OptForSize) {
    // Collect all viable vectorization factors larger than the default MaxVF
    // (i.e. MaxVectorSize).
    SmallVector<unsigned, 8> VFs;
    unsigned NewMaxVectorSize = WidestRegister / SmallestType;
    for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2)
      VFs.push_back(VS);

    // For each VF calculate its register usage.
    auto RUs = calculateRegisterUsage(VFs);

    // Select the largest VF which doesn't require more registers than existing
    // ones.
    unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true);
    for (int i = RUs.size() - 1; i >= 0; --i) {
      if (RUs[i].MaxLocalUsers <= TargetNumRegisters) {
        MaxVF = VFs[i];
        break;
      }
    }
  }
  return MaxVF;
}

LoopVectorizationCostModel::VectorizationFactor
LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) {
  float Cost = expectedCost(1).first;
#ifndef NDEBUG
  const float ScalarCost = Cost;
#endif /* NDEBUG */
  unsigned Width = 1;
  DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");

  bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
  // Ignore scalar width, because the user explicitly wants vectorization.
  if (ForceVectorization && MaxVF > 1) {
    Width = 2;
    Cost = expectedCost(Width).first / (float)Width;
  }

  for (unsigned i = 2; i <= MaxVF; i *= 2) {
    // Notice that the vector loop needs to be executed less times, so
    // we need to divide the cost of the vector loops by the width of
    // the vector elements.
    VectorizationCostTy C = expectedCost(i);
    float VectorCost = C.first / (float)i;
    DEBUG(dbgs() << "LV: Vector loop of width " << i
                 << " costs: " << (int)VectorCost << ".\n");
    if (!C.second && !ForceVectorization) {
      DEBUG(
          dbgs() << "LV: Not considering vector loop of width " << i
                 << " because it will not generate any vector instructions.\n");
      continue;
    }
    if (VectorCost < Cost) {
      Cost = VectorCost;
      Width = i;
    }
  }

  DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
        << "LV: Vectorization seems to be not beneficial, "
        << "but was forced by a user.\n");
  DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
  VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)};
  return Factor;
}

std::pair<unsigned, unsigned>
LoopVectorizationCostModel::getSmallestAndWidestTypes() {
  unsigned MinWidth = -1U;
  unsigned MaxWidth = 8;
  const DataLayout &DL = TheFunction->getParent()->getDataLayout();

  // For each block.
  for (BasicBlock *BB : TheLoop->blocks()) {
    // For each instruction in the loop.
    for (Instruction &I : *BB) {
      Type *T = I.getType();

      // Skip ignored values.
      if (ValuesToIgnore.count(&I))
        continue;

      // Only examine Loads, Stores and PHINodes.
      if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
        continue;

      // Examine PHI nodes that are reduction variables. Update the type to
      // account for the recurrence type.
      if (auto *PN = dyn_cast<PHINode>(&I)) {
        if (!Legal->isReductionVariable(PN))
          continue;
        RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN];
        T = RdxDesc.getRecurrenceType();
      }

      // Examine the stored values.
      if (auto *ST = dyn_cast<StoreInst>(&I))
        T = ST->getValueOperand()->getType();

      // Ignore loaded pointer types and stored pointer types that are not
      // vectorizable.
      //
      // FIXME: The check here attempts to predict whether a load or store will
      //        be vectorized. We only know this for certain after a VF has
      //        been selected. Here, we assume that if an access can be
      //        vectorized, it will be. We should also look at extending this
      //        optimization to non-pointer types.
      //
      if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
          !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I))
        continue;

      MinWidth = std::min(MinWidth,
                          (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
      MaxWidth = std::max(MaxWidth,
                          (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
    }
  }

  return {MinWidth, MaxWidth};
}

unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize,
                                                           unsigned VF,
                                                           unsigned LoopCost) {
  // -- The interleave heuristics --
  // We interleave the loop in order to expose ILP and reduce the loop overhead.
  // There are many micro-architectural considerations that we can't predict
  // at this level. For example, frontend pressure (on decode or fetch) due to
  // code size, or the number and capabilities of the execution ports.
  //
  // We use the following heuristics to select the interleave count:
  // 1. If the code has reductions, then we interleave to break the cross
  // iteration dependency.
  // 2. If the loop is really small, then we interleave to reduce the loop
  // overhead.
  // 3. We don't interleave if we think that we will spill registers to memory
  // due to the increased register pressure.

  // When we optimize for size, we don't interleave.
  if (OptForSize)
    return 1;

  // We used the distance for the interleave count.
  if (Legal->getMaxSafeDepDistBytes() != -1U)
    return 1;

  // Do not interleave loops with a relatively small trip count.
  unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
  if (TC > 1 && TC < TinyTripCountInterleaveThreshold)
    return 1;

  unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
  DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
               << " registers\n");

  if (VF == 1) {
    if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
      TargetNumRegisters = ForceTargetNumScalarRegs;
  } else {
    if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
      TargetNumRegisters = ForceTargetNumVectorRegs;
  }

  RegisterUsage R = calculateRegisterUsage({VF})[0];
  // We divide by these constants so assume that we have at least one
  // instruction that uses at least one register.
  R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
  R.NumInstructions = std::max(R.NumInstructions, 1U);

  // We calculate the interleave count using the following formula.
  // Subtract the number of loop invariants from the number of available
  // registers. These registers are used by all of the interleaved instances.
  // Next, divide the remaining registers by the number of registers that is
  // required by the loop, in order to estimate how many parallel instances
  // fit without causing spills. All of this is rounded down if necessary to be
  // a power of two. We want power of two interleave count to simplify any
  // addressing operations or alignment considerations.
  unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
                              R.MaxLocalUsers);

  // Don't count the induction variable as interleaved.
  if (EnableIndVarRegisterHeur)
    IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
                       std::max(1U, (R.MaxLocalUsers - 1)));

  // Clamp the interleave ranges to reasonable counts.
  unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);

  // Check if the user has overridden the max.
  if (VF == 1) {
    if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
      MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
  } else {
    if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
      MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
  }

  // If we did not calculate the cost for VF (because the user selected the VF)
  // then we calculate the cost of VF here.
  if (LoopCost == 0)
    LoopCost = expectedCost(VF).first;

  // Clamp the calculated IC to be between the 1 and the max interleave count
  // that the target allows.
  if (IC > MaxInterleaveCount)
    IC = MaxInterleaveCount;
  else if (IC < 1)
    IC = 1;

  // Interleave if we vectorized this loop and there is a reduction that could
  // benefit from interleaving.
  if (VF > 1 && !Legal->getReductionVars()->empty()) {
    DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
    return IC;
  }

  // Note that if we've already vectorized the loop we will have done the
  // runtime check and so interleaving won't require further checks.
  bool InterleavingRequiresRuntimePointerCheck =
      (VF == 1 && Legal->getRuntimePointerChecking()->Need);

  // We want to interleave small loops in order to reduce the loop overhead and
  // potentially expose ILP opportunities.
  DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
  if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
    // We assume that the cost overhead is 1 and we use the cost model
    // to estimate the cost of the loop and interleave until the cost of the
    // loop overhead is about 5% of the cost of the loop.
    unsigned SmallIC =
        std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));

    // Interleave until store/load ports (estimated by max interleave count) are
    // saturated.
    unsigned NumStores = Legal->getNumStores();
    unsigned NumLoads = Legal->getNumLoads();
    unsigned StoresIC = IC / (NumStores ? NumStores : 1);
    unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);

    // If we have a scalar reduction (vector reductions are already dealt with
    // by this point), we can increase the critical path length if the loop
    // we're interleaving is inside another loop. Limit, by default to 2, so the
    // critical path only gets increased by one reduction operation.
    if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) {
      unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
      SmallIC = std::min(SmallIC, F);
      StoresIC = std::min(StoresIC, F);
      LoadsIC = std::min(LoadsIC, F);
    }

    if (EnableLoadStoreRuntimeInterleave &&
        std::max(StoresIC, LoadsIC) > SmallIC) {
      DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n");
      return std::max(StoresIC, LoadsIC);
    }

    DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
    return SmallIC;
  }

  // Interleave if this is a large loop (small loops are already dealt with by
  // this point) that could benefit from interleaving.
  bool HasReductions = !Legal->getReductionVars()->empty();
  if (TTI.enableAggressiveInterleaving(HasReductions)) {
    DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
    return IC;
  }

  DEBUG(dbgs() << "LV: Not Interleaving.\n");
  return 1;
}

SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
  // This function calculates the register usage by measuring the highest number
  // of values that are alive at a single location. Obviously, this is a very
  // rough estimation. We scan the loop in a topological order in order and
  // assign a number to each instruction. We use RPO to ensure that defs are
  // met before their users. We assume that each instruction that has in-loop
  // users starts an interval. We record every time that an in-loop value is
  // used, so we have a list of the first and last occurrences of each
  // instruction. Next, we transpose this data structure into a multi map that
  // holds the list of intervals that *end* at a specific location. This multi
  // map allows us to perform a linear search. We scan the instructions linearly
  // and record each time that a new interval starts, by placing it in a set.
  // If we find this value in the multi-map then we remove it from the set.
  // The max register usage is the maximum size of the set.
  // We also search for instructions that are defined outside the loop, but are
  // used inside the loop. We need this number separately from the max-interval
  // usage number because when we unroll, loop-invariant values do not take
  // more register.
  LoopBlocksDFS DFS(TheLoop);
  DFS.perform(LI);

  RegisterUsage RU;
  RU.NumInstructions = 0;

  // Each 'key' in the map opens a new interval. The values
  // of the map are the index of the 'last seen' usage of the
  // instruction that is the key.
  using IntervalMap = DenseMap<Instruction *, unsigned>;

  // Maps instruction to its index.
  DenseMap<unsigned, Instruction *> IdxToInstr;
  // Marks the end of each interval.
  IntervalMap EndPoint;
  // Saves the list of instruction indices that are used in the loop.
  SmallSet<Instruction *, 8> Ends;
  // Saves the list of values that are used in the loop but are
  // defined outside the loop, such as arguments and constants.
  SmallPtrSet<Value *, 8> LoopInvariants;

  unsigned Index = 0;
  for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
    RU.NumInstructions += BB->size();
    for (Instruction &I : *BB) {
      IdxToInstr[Index++] = &I;

      // Save the end location of each USE.
      for (Value *U : I.operands()) {
        auto *Instr = dyn_cast<Instruction>(U);

        // Ignore non-instruction values such as arguments, constants, etc.
        if (!Instr)
          continue;

        // If this instruction is outside the loop then record it and continue.
        if (!TheLoop->contains(Instr)) {
          LoopInvariants.insert(Instr);
          continue;
        }

        // Overwrite previous end points.
        EndPoint[Instr] = Index;
        Ends.insert(Instr);
      }
    }
  }

  // Saves the list of intervals that end with the index in 'key'.
  using InstrList = SmallVector<Instruction *, 2>;
  DenseMap<unsigned, InstrList> TransposeEnds;

  // Transpose the EndPoints to a list of values that end at each index.
  for (auto &Interval : EndPoint)
    TransposeEnds[Interval.second].push_back(Interval.first);

  SmallSet<Instruction *, 8> OpenIntervals;

  // Get the size of the widest register.
  unsigned MaxSafeDepDist = -1U;
  if (Legal->getMaxSafeDepDistBytes() != -1U)
    MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
  unsigned WidestRegister =
      std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
  const DataLayout &DL = TheFunction->getParent()->getDataLayout();

  SmallVector<RegisterUsage, 8> RUs(VFs.size());
  SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0);

  DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");

  // A lambda that gets the register usage for the given type and VF.
  auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
    if (Ty->isTokenTy())
      return 0U;
    unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
    return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
  };

  for (unsigned int i = 0; i < Index; ++i) {
    Instruction *I = IdxToInstr[i];

    // Remove all of the instructions that end at this location.
    InstrList &List = TransposeEnds[i];
    for (Instruction *ToRemove : List)
      OpenIntervals.erase(ToRemove);

    // Ignore instructions that are never used within the loop.
    if (!Ends.count(I))
      continue;

    // Skip ignored values.
    if (ValuesToIgnore.count(I))
      continue;

    // For each VF find the maximum usage of registers.
    for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
      if (VFs[j] == 1) {
        MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size());
        continue;
      }
      collectUniformsAndScalars(VFs[j]);
      // Count the number of live intervals.
      unsigned RegUsage = 0;
      for (auto Inst : OpenIntervals) {
        // Skip ignored values for VF > 1.
        if (VecValuesToIgnore.count(Inst) ||
            isScalarAfterVectorization(Inst, VFs[j]))
          continue;
        RegUsage += GetRegUsage(Inst->getType(), VFs[j]);
      }
      MaxUsages[j] = std::max(MaxUsages[j], RegUsage);
    }

    DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
                 << OpenIntervals.size() << '\n');

    // Add the current instruction to the list of open intervals.
    OpenIntervals.insert(I);
  }

  for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
    unsigned Invariant = 0;
    if (VFs[i] == 1)
      Invariant = LoopInvariants.size();
    else {
      for (auto Inst : LoopInvariants)
        Invariant += GetRegUsage(Inst->getType(), VFs[i]);
    }

    DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n');
    DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n');
    DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
    DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n');

    RU.LoopInvariantRegs = Invariant;
    RU.MaxLocalUsers = MaxUsages[i];
    RUs[i] = RU;
  }

  return RUs;
}

void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) {
  // If we aren't vectorizing the loop, or if we've already collected the
  // instructions to scalarize, there's nothing to do. Collection may already
  // have occurred if we have a user-selected VF and are now computing the
  // expected cost for interleaving.
  if (VF < 2 || InstsToScalarize.count(VF))
    return;

  // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
  // not profitable to scalarize any instructions, the presence of VF in the
  // map will indicate that we've analyzed it already.
  ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];

  // Find all the instructions that are scalar with predication in the loop and
  // determine if it would be better to not if-convert the blocks they are in.
  // If so, we also record the instructions to scalarize.
  for (BasicBlock *BB : TheLoop->blocks()) {
    if (!Legal->blockNeedsPredication(BB))
      continue;
    for (Instruction &I : *BB)
      if (Legal->isScalarWithPredication(&I)) {
        ScalarCostsTy ScalarCosts;
        if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
          ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());

        // Remember that BB will remain after vectorization.
        PredicatedBBsAfterVectorization.insert(BB);
      }
  }
}

int LoopVectorizationCostModel::computePredInstDiscount(
    Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
    unsigned VF) {
  assert(!isUniformAfterVectorization(PredInst, VF) &&
         "Instruction marked uniform-after-vectorization will be predicated");

  // Initialize the discount to zero, meaning that the scalar version and the
  // vector version cost the same.
  int Discount = 0;

  // Holds instructions to analyze. The instructions we visit are mapped in
  // ScalarCosts. Those instructions are the ones that would be scalarized if
  // we find that the scalar version costs less.
  SmallVector<Instruction *, 8> Worklist;

  // Returns true if the given instruction can be scalarized.
  auto canBeScalarized = [&](Instruction *I) -> bool {
    // We only attempt to scalarize instructions forming a single-use chain
    // from the original predicated block that would otherwise be vectorized.
    // Although not strictly necessary, we give up on instructions we know will
    // already be scalar to avoid traversing chains that are unlikely to be
    // beneficial.
    if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
        isScalarAfterVectorization(I, VF))
      return false;

    // If the instruction is scalar with predication, it will be analyzed
    // separately. We ignore it within the context of PredInst.
    if (Legal->isScalarWithPredication(I))
      return false;

    // If any of the instruction's operands are uniform after vectorization,
    // the instruction cannot be scalarized. This prevents, for example, a
    // masked load from being scalarized.
    //
    // We assume we will only emit a value for lane zero of an instruction
    // marked uniform after vectorization, rather than VF identical values.
    // Thus, if we scalarize an instruction that uses a uniform, we would
    // create uses of values corresponding to the lanes we aren't emitting code
    // for. This behavior can be changed by allowing getScalarValue to clone
    // the lane zero values for uniforms rather than asserting.
    for (Use &U : I->operands())
      if (auto *J = dyn_cast<Instruction>(U.get()))
        if (isUniformAfterVectorization(J, VF))
          return false;

    // Otherwise, we can scalarize the instruction.
    return true;
  };

  // Returns true if an operand that cannot be scalarized must be extracted
  // from a vector. We will account for this scalarization overhead below. Note
  // that the non-void predicated instructions are placed in their own blocks,
  // and their return values are inserted into vectors. Thus, an extract would
  // still be required.
  auto needsExtract = [&](Instruction *I) -> bool {
    return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF);
  };

  // Compute the expected cost discount from scalarizing the entire expression
  // feeding the predicated instruction. We currently only consider expressions
  // that are single-use instruction chains.
  Worklist.push_back(PredInst);
  while (!Worklist.empty()) {
    Instruction *I = Worklist.pop_back_val();

    // If we've already analyzed the instruction, there's nothing to do.
    if (ScalarCosts.count(I))
      continue;

    // Compute the cost of the vector instruction. Note that this cost already
    // includes the scalarization overhead of the predicated instruction.
    unsigned VectorCost = getInstructionCost(I, VF).first;

    // Compute the cost of the scalarized instruction. This cost is the cost of
    // the instruction as if it wasn't if-converted and instead remained in the
    // predicated block. We will scale this cost by block probability after
    // computing the scalarization overhead.
    unsigned ScalarCost = VF * getInstructionCost(I, 1).first;

    // Compute the scalarization overhead of needed insertelement instructions
    // and phi nodes.
    if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
      ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF),
                                                 true, false);
      ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI);
    }

    // Compute the scalarization overhead of needed extractelement
    // instructions. For each of the instruction's operands, if the operand can
    // be scalarized, add it to the worklist; otherwise, account for the
    // overhead.
    for (Use &U : I->operands())
      if (auto *J = dyn_cast<Instruction>(U.get())) {
        assert(VectorType::isValidElementType(J->getType()) &&
               "Instruction has non-scalar type");
        if (canBeScalarized(J))
          Worklist.push_back(J);
        else if (needsExtract(J))
          ScalarCost += TTI.getScalarizationOverhead(
                              ToVectorTy(J->getType(),VF), false, true);
      }

    // Scale the total scalar cost by block probability.
    ScalarCost /= getReciprocalPredBlockProb();

    // Compute the discount. A non-negative discount means the vector version
    // of the instruction costs more, and scalarizing would be beneficial.
    Discount += VectorCost - ScalarCost;
    ScalarCosts[I] = ScalarCost;
  }

  return Discount;
}

LoopVectorizationCostModel::VectorizationCostTy
LoopVectorizationCostModel::expectedCost(unsigned VF) {
  VectorizationCostTy Cost;

  // For each block.
  for (BasicBlock *BB : TheLoop->blocks()) {
    VectorizationCostTy BlockCost;

    // For each instruction in the old loop.
    for (Instruction &I : *BB) {
      // Skip dbg intrinsics.
      if (isa<DbgInfoIntrinsic>(I))
        continue;

      // Skip ignored values.
      if (ValuesToIgnore.count(&I))
        continue;

      VectorizationCostTy C = getInstructionCost(&I, VF);

      // Check if we should override the cost.
      if (ForceTargetInstructionCost.getNumOccurrences() > 0)
        C.first = ForceTargetInstructionCost;

      BlockCost.first += C.first;
      BlockCost.second |= C.second;
      DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF "
                   << VF << " For instruction: " << I << '\n');
    }

    // If we are vectorizing a predicated block, it will have been
    // if-converted. This means that the block's instructions (aside from
    // stores and instructions that may divide by zero) will now be
    // unconditionally executed. For the scalar case, we may not always execute
    // the predicated block. Thus, scale the block's cost by the probability of
    // executing it.
    if (VF == 1 && Legal->blockNeedsPredication(BB))
      BlockCost.first /= getReciprocalPredBlockProb();

    Cost.first += BlockCost.first;
    Cost.second |= BlockCost.second;
  }

  return Cost;
}

/// \brief Gets Address Access SCEV after verifying that the access pattern
/// is loop invariant except the induction variable dependence.
///
/// This SCEV can be sent to the Target in order to estimate the address
/// calculation cost.
static const SCEV *getAddressAccessSCEV(
              Value *Ptr,
              LoopVectorizationLegality *Legal,
              ScalarEvolution *SE,
              const Loop *TheLoop) {
  auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
  if (!Gep)
    return nullptr;

  // We are looking for a gep with all loop invariant indices except for one
  // which should be an induction variable.
  unsigned NumOperands = Gep->getNumOperands();
  for (unsigned i = 1; i < NumOperands; ++i) {
    Value *Opd = Gep->getOperand(i);
    if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
        !Legal->isInductionVariable(Opd))
      return nullptr;
  }

  // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
  return SE->getSCEV(Ptr);
}

static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
  return Legal->hasStride(I->getOperand(0)) ||
         Legal->hasStride(I->getOperand(1));
}

unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
                                                                 unsigned VF) {
  Type *ValTy = getMemInstValueType(I);
  auto SE = PSE.getSE();

  unsigned Alignment = getMemInstAlignment(I);
  unsigned AS = getMemInstAddressSpace(I);
  Value *Ptr = getPointerOperand(I);
  Type *PtrTy = ToVectorTy(Ptr->getType(), VF);

  // Figure out whether the access is strided and get the stride value
  // if it's known in compile time
  const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop);

  // Get the cost of the scalar memory instruction and address computation.
  unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);

  Cost += VF *
          TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
                              AS, I);

  // Get the overhead of the extractelement and insertelement instructions
  // we might create due to scalarization.
  Cost += getScalarizationOverhead(I, VF, TTI);

  // If we have a predicated store, it may not be executed for each vector
  // lane. Scale the cost by the probability of executing the predicated
  // block.
  if (Legal->isScalarWithPredication(I))
    Cost /= getReciprocalPredBlockProb();

  return Cost;
}

unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
                                                             unsigned VF) {
  Type *ValTy = getMemInstValueType(I);
  Type *VectorTy = ToVectorTy(ValTy, VF);
  unsigned Alignment = getMemInstAlignment(I);
  Value *Ptr = getPointerOperand(I);
  unsigned AS = getMemInstAddressSpace(I);
  int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);

  assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
         "Stride should be 1 or -1 for consecutive memory access");
  unsigned Cost = 0;
  if (Legal->isMaskRequired(I))
    Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
  else
    Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I);

  bool Reverse = ConsecutiveStride < 0;
  if (Reverse)
    Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
  return Cost;
}

unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
                                                         unsigned VF) {
  LoadInst *LI = cast<LoadInst>(I);
  Type *ValTy = LI->getType();
  Type *VectorTy = ToVectorTy(ValTy, VF);
  unsigned Alignment = LI->getAlignment();
  unsigned AS = LI->getPointerAddressSpace();

  return TTI.getAddressComputationCost(ValTy) +
         TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) +
         TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
}

unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
                                                          unsigned VF) {
  Type *ValTy = getMemInstValueType(I);
  Type *VectorTy = ToVectorTy(ValTy, VF);
  unsigned Alignment = getMemInstAlignment(I);
  Value *Ptr = getPointerOperand(I);

  return TTI.getAddressComputationCost(VectorTy) +
         TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
                                    Legal->isMaskRequired(I), Alignment);
}

unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
                                                            unsigned VF) {
  Type *ValTy = getMemInstValueType(I);
  Type *VectorTy = ToVectorTy(ValTy, VF);
  unsigned AS = getMemInstAddressSpace(I);

  auto Group = Legal->getInterleavedAccessGroup(I);
  assert(Group && "Fail to get an interleaved access group.");

  unsigned InterleaveFactor = Group->getFactor();
  Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);

  // Holds the indices of existing members in an interleaved load group.
  // An interleaved store group doesn't need this as it doesn't allow gaps.
  SmallVector<unsigned, 4> Indices;
  if (isa<LoadInst>(I)) {
    for (unsigned i = 0; i < InterleaveFactor; i++)
      if (Group->getMember(i))
        Indices.push_back(i);
  }

  // Calculate the cost of the whole interleaved group.
  unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy,
                                                 Group->getFactor(), Indices,
                                                 Group->getAlignment(), AS);

  if (Group->isReverse())
    Cost += Group->getNumMembers() *
            TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
  return Cost;
}

unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
                                                              unsigned VF) {
  // Calculate scalar cost only. Vectorization cost should be ready at this
  // moment.
  if (VF == 1) {
    Type *ValTy = getMemInstValueType(I);
    unsigned Alignment = getMemInstAlignment(I);
    unsigned AS = getMemInstAddressSpace(I);

    return TTI.getAddressComputationCost(ValTy) +
           TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I);
  }
  return getWideningCost(I, VF);
}

LoopVectorizationCostModel::VectorizationCostTy
LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
  // If we know that this instruction will remain uniform, check the cost of
  // the scalar version.
  if (isUniformAfterVectorization(I, VF))
    VF = 1;

  if (VF > 1 && isProfitableToScalarize(I, VF))
    return VectorizationCostTy(InstsToScalarize[VF][I], false);

  // Forced scalars do not have any scalarization overhead.
  if (VF > 1 && ForcedScalars.count(VF) &&
      ForcedScalars.find(VF)->second.count(I))
    return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false);

  Type *VectorTy;
  unsigned C = getInstructionCost(I, VF, VectorTy);

  bool TypeNotScalarized =
      VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF;
  return VectorizationCostTy(C, TypeNotScalarized);
}

void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) {
  if (VF == 1)
    return;
  for (BasicBlock *BB : TheLoop->blocks()) {
    // For each instruction in the old loop.
    for (Instruction &I : *BB) {
      Value *Ptr = getPointerOperand(&I);
      if (!Ptr)
        continue;

      if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) {
        // Scalar load + broadcast
        unsigned Cost = getUniformMemOpCost(&I, VF);
        setWideningDecision(&I, VF, CM_Scalarize, Cost);
        continue;
      }

      // We assume that widening is the best solution when possible.
      if (Legal->memoryInstructionCanBeWidened(&I, VF)) {
        unsigned Cost = getConsecutiveMemOpCost(&I, VF);
        setWideningDecision(&I, VF, CM_Widen, Cost);
        continue;
      }

      // Choose between Interleaving, Gather/Scatter or Scalarization.
      unsigned InterleaveCost = std::numeric_limits<unsigned>::max();
      unsigned NumAccesses = 1;
      if (Legal->isAccessInterleaved(&I)) {
        auto Group = Legal->getInterleavedAccessGroup(&I);
        assert(Group && "Fail to get an interleaved access group.");

        // Make one decision for the whole group.
        if (getWideningDecision(&I, VF) != CM_Unknown)
          continue;

        NumAccesses = Group->getNumMembers();
        InterleaveCost = getInterleaveGroupCost(&I, VF);
      }

      unsigned GatherScatterCost =
          Legal->isLegalGatherOrScatter(&I)
              ? getGatherScatterCost(&I, VF) * NumAccesses
              : std::numeric_limits<unsigned>::max();

      unsigned ScalarizationCost =
          getMemInstScalarizationCost(&I, VF) * NumAccesses;

      // Choose better solution for the current VF,
      // write down this decision and use it during vectorization.
      unsigned Cost;
      InstWidening Decision;
      if (InterleaveCost <= GatherScatterCost &&
          InterleaveCost < ScalarizationCost) {
        Decision = CM_Interleave;
        Cost = InterleaveCost;
      } else if (GatherScatterCost < ScalarizationCost) {
        Decision = CM_GatherScatter;
        Cost = GatherScatterCost;
      } else {
        Decision = CM_Scalarize;
        Cost = ScalarizationCost;
      }
      // If the instructions belongs to an interleave group, the whole group
      // receives the same decision. The whole group receives the cost, but
      // the cost will actually be assigned to one instruction.
      if (auto Group = Legal->getInterleavedAccessGroup(&I))
        setWideningDecision(Group, VF, Decision, Cost);
      else
        setWideningDecision(&I, VF, Decision, Cost);
    }
  }

  // Make sure that any load of address and any other address computation
  // remains scalar unless there is gather/scatter support. This avoids
  // inevitable extracts into address registers, and also has the benefit of
  // activating LSR more, since that pass can't optimize vectorized
  // addresses.
  if (TTI.prefersVectorizedAddressing())
    return;

  // Start with all scalar pointer uses.
  SmallPtrSet<Instruction *, 8> AddrDefs;
  for (BasicBlock *BB : TheLoop->blocks())
    for (Instruction &I : *BB) {
      Instruction *PtrDef =
        dyn_cast_or_null<Instruction>(getPointerOperand(&I));
      if (PtrDef && TheLoop->contains(PtrDef) &&
          getWideningDecision(&I, VF) != CM_GatherScatter)
        AddrDefs.insert(PtrDef);
    }

  // Add all instructions used to generate the addresses.
  SmallVector<Instruction *, 4> Worklist;
  for (auto *I : AddrDefs)
    Worklist.push_back(I);
  while (!Worklist.empty()) {
    Instruction *I = Worklist.pop_back_val();
    for (auto &Op : I->operands())
      if (auto *InstOp = dyn_cast<Instruction>(Op))
        if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
            AddrDefs.insert(InstOp).second)
          Worklist.push_back(InstOp);
  }

  for (auto *I : AddrDefs) {
    if (isa<LoadInst>(I)) {
      // Setting the desired widening decision should ideally be handled in
      // by cost functions, but since this involves the task of finding out
      // if the loaded register is involved in an address computation, it is
      // instead changed here when we know this is the case.
      if (getWideningDecision(I, VF) == CM_Widen)
        // Scalarize a widened load of address.
        setWideningDecision(I, VF, CM_Scalarize,
                            (VF * getMemoryInstructionCost(I, 1)));
      else if (auto Group = Legal->getInterleavedAccessGroup(I)) {
        // Scalarize an interleave group of address loads.
        for (unsigned I = 0; I < Group->getFactor(); ++I) {
          if (Instruction *Member = Group->getMember(I))
            setWideningDecision(Member, VF, CM_Scalarize,
                                (VF * getMemoryInstructionCost(Member, 1)));
        }
      }
    } else
      // Make sure I gets scalarized and a cost estimate without
      // scalarization overhead.
      ForcedScalars[VF].insert(I);
  }
}

unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
                                                        unsigned VF,
                                                        Type *&VectorTy) {
  Type *RetTy = I->getType();
  if (canTruncateToMinimalBitwidth(I, VF))
    RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
  VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
  auto SE = PSE.getSE();

  // TODO: We need to estimate the cost of intrinsic calls.
  switch (I->getOpcode()) {
  case Instruction::GetElementPtr:
    // We mark this instruction as zero-cost because the cost of GEPs in
    // vectorized code depends on whether the corresponding memory instruction
    // is scalarized or not. Therefore, we handle GEPs with the memory
    // instruction cost.
    return 0;
  case Instruction::Br: {
    // In cases of scalarized and predicated instructions, there will be VF
    // predicated blocks in the vectorized loop. Each branch around these
    // blocks requires also an extract of its vector compare i1 element.
    bool ScalarPredicatedBB = false;
    BranchInst *BI = cast<BranchInst>(I);
    if (VF > 1 && BI->isConditional() &&
        (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
         PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
      ScalarPredicatedBB = true;

    if (ScalarPredicatedBB) {
      // Return cost for branches around scalarized and predicated blocks.
      Type *Vec_i1Ty =
          VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
      return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) +
              (TTI.getCFInstrCost(Instruction::Br) * VF));
    } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1)
      // The back-edge branch will remain, as will all scalar branches.
      return TTI.getCFInstrCost(Instruction::Br);
    else
      // This branch will be eliminated by if-conversion.
      return 0;
    // Note: We currently assume zero cost for an unconditional branch inside
    // a predicated block since it will become a fall-through, although we
    // may decide in the future to call TTI for all branches.
  }
  case Instruction::PHI: {
    auto *Phi = cast<PHINode>(I);

    // First-order recurrences are replaced by vector shuffles inside the loop.
    if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
      return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
                                VectorTy, VF - 1, VectorTy);

    // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
    // converted into select instructions. We require N - 1 selects per phi
    // node, where N is the number of incoming values.
    if (VF > 1 && Phi->getParent() != TheLoop->getHeader())
      return (Phi->getNumIncomingValues() - 1) *
             TTI.getCmpSelInstrCost(
                 Instruction::Select, ToVectorTy(Phi->getType(), VF),
                 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF));

    return TTI.getCFInstrCost(Instruction::PHI);
  }
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::URem:
  case Instruction::SRem:
    // If we have a predicated instruction, it may not be executed for each
    // vector lane. Get the scalarization cost and scale this amount by the
    // probability of executing the predicated block. If the instruction is not
    // predicated, we fall through to the next case.
    if (VF > 1 && Legal->isScalarWithPredication(I)) {
      unsigned Cost = 0;

      // These instructions have a non-void type, so account for the phi nodes
      // that we will create. This cost is likely to be zero. The phi node
      // cost, if any, should be scaled by the block probability because it
      // models a copy at the end of each predicated block.
      Cost += VF * TTI.getCFInstrCost(Instruction::PHI);

      // The cost of the non-predicated instruction.
      Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy);

      // The cost of insertelement and extractelement instructions needed for
      // scalarization.
      Cost += getScalarizationOverhead(I, VF, TTI);

      // Scale the cost by the probability of executing the predicated blocks.
      // This assumes the predicated block for each vector lane is equally
      // likely.
      return Cost / getReciprocalPredBlockProb();
    }
    LLVM_FALLTHROUGH;
  case Instruction::Add:
  case Instruction::FAdd:
  case Instruction::Sub:
  case Instruction::FSub:
  case Instruction::Mul:
  case Instruction::FMul:
  case Instruction::FDiv:
  case Instruction::FRem:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor: {
    // Since we will replace the stride by 1 the multiplication should go away.
    if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
      return 0;
    // Certain instructions can be cheaper to vectorize if they have a constant
    // second vector operand. One example of this are shifts on x86.
    TargetTransformInfo::OperandValueKind Op1VK =
        TargetTransformInfo::OK_AnyValue;
    TargetTransformInfo::OperandValueKind Op2VK =
        TargetTransformInfo::OK_AnyValue;
    TargetTransformInfo::OperandValueProperties Op1VP =
        TargetTransformInfo::OP_None;
    TargetTransformInfo::OperandValueProperties Op2VP =
        TargetTransformInfo::OP_None;
    Value *Op2 = I->getOperand(1);

    // Check for a splat or for a non uniform vector of constants.
    if (isa<ConstantInt>(Op2)) {
      ConstantInt *CInt = cast<ConstantInt>(Op2);
      if (CInt && CInt->getValue().isPowerOf2())
        Op2VP = TargetTransformInfo::OP_PowerOf2;
      Op2VK = TargetTransformInfo::OK_UniformConstantValue;
    } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
      Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
      Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
      if (SplatValue) {
        ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
        if (CInt && CInt->getValue().isPowerOf2())
          Op2VP = TargetTransformInfo::OP_PowerOf2;
        Op2VK = TargetTransformInfo::OK_UniformConstantValue;
      }
    } else if (Legal->isUniform(Op2)) {
      Op2VK = TargetTransformInfo::OK_UniformValue;
    }
    SmallVector<const Value *, 4> Operands(I->operand_values());
    unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
    return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK,
                                          Op2VK, Op1VP, Op2VP, Operands);
  }
  case Instruction::Select: {
    SelectInst *SI = cast<SelectInst>(I);
    const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
    bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
    Type *CondTy = SI->getCondition()->getType();
    if (!ScalarCond)
      CondTy = VectorType::get(CondTy, VF);

    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I);
  }
  case Instruction::ICmp:
  case Instruction::FCmp: {
    Type *ValTy = I->getOperand(0)->getType();
    Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
    if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
      ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
    VectorTy = ToVectorTy(ValTy, VF);
    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I);
  }
  case Instruction::Store:
  case Instruction::Load: {
    unsigned Width = VF;
    if (Width > 1) {
      InstWidening Decision = getWideningDecision(I, Width);
      assert(Decision != CM_Unknown &&
             "CM decision should be taken at this point");
      if (Decision == CM_Scalarize)
        Width = 1;
    }
    VectorTy = ToVectorTy(getMemInstValueType(I), Width);
    return getMemoryInstructionCost(I, VF);
  }
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::FPExt:
  case Instruction::PtrToInt:
  case Instruction::IntToPtr:
  case Instruction::SIToFP:
  case Instruction::UIToFP:
  case Instruction::Trunc:
  case Instruction::FPTrunc:
  case Instruction::BitCast: {
    // We optimize the truncation of induction variables having constant
    // integer steps. The cost of these truncations is the same as the scalar
    // operation.
    if (isOptimizableIVTruncate(I, VF)) {
      auto *Trunc = cast<TruncInst>(I);
      return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
                                  Trunc->getSrcTy(), Trunc);
    }

    Type *SrcScalarTy = I->getOperand(0)->getType();
    Type *SrcVecTy =
        VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
    if (canTruncateToMinimalBitwidth(I, VF)) {
      // This cast is going to be shrunk. This may remove the cast or it might
      // turn it into slightly different cast. For example, if MinBW == 16,
      // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
      //
      // Calculate the modified src and dest types.
      Type *MinVecTy = VectorTy;
      if (I->getOpcode() == Instruction::Trunc) {
        SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
        VectorTy =
            largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
      } else if (I->getOpcode() == Instruction::ZExt ||
                 I->getOpcode() == Instruction::SExt) {
        SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
        VectorTy =
            smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
      }
    }

    unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
    return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I);
  }
  case Instruction::Call: {
    bool NeedToScalarize;
    CallInst *CI = cast<CallInst>(I);
    unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize);
    if (getVectorIntrinsicIDForCall(CI, TLI))
      return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI));
    return CallCost;
  }
  default:
    // The cost of executing VF copies of the scalar instruction. This opcode
    // is unknown. Assume that it is the same as 'mul'.
    return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) +
           getScalarizationOverhead(I, VF, TTI);
  } // end of switch.
}

char LoopVectorize::ID = 0;

static const char lv_name[] = "Loop Vectorization";

INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)

namespace llvm {

Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
  return new LoopVectorize(NoUnrolling, AlwaysVectorize);
}

} // end namespace llvm

bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
  // Check if the pointer operand of a load or store instruction is
  // consecutive.
  if (auto *Ptr = getPointerOperand(Inst))
    return Legal->isConsecutivePtr(Ptr);
  return false;
}

void LoopVectorizationCostModel::collectValuesToIgnore() {
  // Ignore ephemeral values.
  CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);

  // Ignore type-promoting instructions we identified during reduction
  // detection.
  for (auto &Reduction : *Legal->getReductionVars()) {
    RecurrenceDescriptor &RedDes = Reduction.second;
    SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
    VecValuesToIgnore.insert(Casts.begin(), Casts.end());
  }
}

LoopVectorizationCostModel::VectorizationFactor
LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) {
  // Width 1 means no vectorize, cost 0 means uncomputed cost.
  const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U,
                                                                           0U};
  Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize);
  if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize.
    return NoVectorization;

  if (UserVF) {
    DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
    assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
    // Collect the instructions (and their associated costs) that will be more
    // profitable to scalarize.
    CM.selectUserVectorizationFactor(UserVF);
    buildVPlans(UserVF, UserVF);
    DEBUG(printPlans(dbgs()));
    return {UserVF, 0};
  }

  unsigned MaxVF = MaybeMaxVF.getValue();
  assert(MaxVF != 0 && "MaxVF is zero.");

  for (unsigned VF = 1; VF <= MaxVF; VF *= 2) {
    // Collect Uniform and Scalar instructions after vectorization with VF.
    CM.collectUniformsAndScalars(VF);

    // Collect the instructions (and their associated costs) that will be more
    // profitable to scalarize.
    if (VF > 1)
      CM.collectInstsToScalarize(VF);
  }

  buildVPlans(1, MaxVF);
  DEBUG(printPlans(dbgs()));
  if (MaxVF == 1)
    return NoVectorization;

  // Select the optimal vectorization factor.
  return CM.selectVectorizationFactor(MaxVF);
}

void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) {
  DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n');
  BestVF = VF;
  BestUF = UF;

  erase_if(VPlans, [VF](const std::unique_ptr<VPlan> &Plan) {
    return !Plan->hasVF(VF);
  });
  assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
}

void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
                                           DominatorTree *DT) {
  // Perform the actual loop transformation.

  // 1. Create a new empty loop. Unlink the old loop and connect the new one.
  VPTransformState State{
      BestVF, BestUF, LI, DT, ILV.Builder, ILV.VectorLoopValueMap, &ILV};
  State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();

  //===------------------------------------------------===//
  //
  // Notice: any optimization or new instruction that go
  // into the code below should also be implemented in
  // the cost-model.
  //
  //===------------------------------------------------===//

  // 2. Copy and widen instructions from the old loop into the new loop.
  assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
  VPlans.front()->execute(&State);

  // 3. Fix the vectorized code: take care of header phi's, live-outs,
  //    predication, updating analyses.
  ILV.fixVectorizedLoop();
}

void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
    SmallPtrSetImpl<Instruction *> &DeadInstructions) {
  BasicBlock *Latch = OrigLoop->getLoopLatch();

  // We create new control-flow for the vectorized loop, so the original
  // condition will be dead after vectorization if it's only used by the
  // branch.
  auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
  if (Cmp && Cmp->hasOneUse())
    DeadInstructions.insert(Cmp);

  // We create new "steps" for induction variable updates to which the original
  // induction variables map. An original update instruction will be dead if
  // all its users except the induction variable are dead.
  for (auto &Induction : *Legal->getInductionVars()) {
    PHINode *Ind = Induction.first;
    auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
    if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
          return U == Ind || DeadInstructions.count(cast<Instruction>(U));
        }))
      DeadInstructions.insert(IndUpdate);
  }
}

Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }

Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }

Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
                                        Instruction::BinaryOps BinOp) {
  // When unrolling and the VF is 1, we only need to add a simple scalar.
  Type *Ty = Val->getType();
  assert(!Ty->isVectorTy() && "Val must be a scalar");

  if (Ty->isFloatingPointTy()) {
    Constant *C = ConstantFP::get(Ty, (double)StartIdx);

    // Floating point operations had to be 'fast' to enable the unrolling.
    Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
    return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
  }
  Constant *C = ConstantInt::get(Ty, StartIdx);
  return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
}

static void AddRuntimeUnrollDisableMetaData(Loop *L) {
  SmallVector<Metadata *, 4> MDs;
  // Reserve first location for self reference to the LoopID metadata node.
  MDs.push_back(nullptr);
  bool IsUnrollMetadata = false;
  MDNode *LoopID = L->getLoopID();
  if (LoopID) {
    // First find existing loop unrolling disable metadata.
    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
      auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
      if (MD) {
        const auto *S = dyn_cast<MDString>(MD->getOperand(0));
        IsUnrollMetadata =
            S && S->getString().startswith("llvm.loop.unroll.disable");
      }
      MDs.push_back(LoopID->getOperand(i));
    }
  }

  if (!IsUnrollMetadata) {
    // Add runtime unroll disable metadata.
    LLVMContext &Context = L->getHeader()->getContext();
    SmallVector<Metadata *, 1> DisableOperands;
    DisableOperands.push_back(
        MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
    MDNode *DisableNode = MDNode::get(Context, DisableOperands);
    MDs.push_back(DisableNode);
    MDNode *NewLoopID = MDNode::get(Context, MDs);
    // Set operand 0 to refer to the loop id itself.
    NewLoopID->replaceOperandWith(0, NewLoopID);
    L->setLoopID(NewLoopID);
  }
}

namespace {

/// VPWidenRecipe is a recipe for producing a copy of vector type for each
/// Instruction in its ingredients independently, in order. This recipe covers
/// most of the traditional vectorization cases where each ingredient transforms
/// into a vectorized version of itself.
class VPWidenRecipe : public VPRecipeBase {
private:
  /// Hold the ingredients by pointing to their original BasicBlock location.
  BasicBlock::iterator Begin;
  BasicBlock::iterator End;

public:
  VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) {
    End = I->getIterator();
    Begin = End++;
  }

  ~VPWidenRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPWidenSC;
  }

  /// Produce widened copies of all Ingredients.
  void execute(VPTransformState &State) override {
    for (auto &Instr : make_range(Begin, End))
      State.ILV->widenInstruction(Instr);
  }

  /// Augment the recipe to include Instr, if it lies at its End.
  bool appendInstruction(Instruction *Instr) {
    if (End != Instr->getIterator())
      return false;
    End++;
    return true;
  }

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override {
    O << " +\n" << Indent << "\"WIDEN\\l\"";
    for (auto &Instr : make_range(Begin, End))
      O << " +\n" << Indent << "\"  " << VPlanIngredient(&Instr) << "\\l\"";
  }
};

/// A recipe for handling phi nodes of integer and floating-point inductions,
/// producing their vector and scalar values.
class VPWidenIntOrFpInductionRecipe : public VPRecipeBase {
private:
  PHINode *IV;
  TruncInst *Trunc;

public:
  VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr)
      : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {}
  ~VPWidenIntOrFpInductionRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
  }

  /// Generate the vectorized and scalarized versions of the phi node as
  /// needed by their users.
  void execute(VPTransformState &State) override {
    assert(!State.Instance && "Int or FP induction being replicated.");
    State.ILV->widenIntOrFpInduction(IV, Trunc);
  }

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override {
    O << " +\n" << Indent << "\"WIDEN-INDUCTION";
    if (Trunc) {
      O << "\\l\"";
      O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
      O << " +\n" << Indent << "\"  " << VPlanIngredient(Trunc) << "\\l\"";
    } else
      O << " " << VPlanIngredient(IV) << "\\l\"";
  }
};

/// A recipe for handling all phi nodes except for integer and FP inductions.
class VPWidenPHIRecipe : public VPRecipeBase {
private:
  PHINode *Phi;

public:
  VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {}
  ~VPWidenPHIRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC;
  }

  /// Generate the phi/select nodes.
  void execute(VPTransformState &State) override {
    State.ILV->widenPHIInstruction(Phi, State.UF, State.VF);
  }

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override {
    O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\"";
  }
};

/// VPInterleaveRecipe is a recipe for transforming an interleave group of load
/// or stores into one wide load/store and shuffles.
class VPInterleaveRecipe : public VPRecipeBase {
private:
  const InterleaveGroup *IG;

public:
  VPInterleaveRecipe(const InterleaveGroup *IG)
      : VPRecipeBase(VPInterleaveSC), IG(IG) {}
  ~VPInterleaveRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC;
  }

  /// Generate the wide load or store, and shuffles.
  void execute(VPTransformState &State) override {
    assert(!State.Instance && "Interleave group being replicated.");
    State.ILV->vectorizeInterleaveGroup(IG->getInsertPos());
  }

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override;

  const InterleaveGroup *getInterleaveGroup() { return IG; }
};

/// VPReplicateRecipe replicates a given instruction producing multiple scalar
/// copies of the original scalar type, one per lane, instead of producing a
/// single copy of widened type for all lanes. If the instruction is known to be
/// uniform only one copy, per lane zero, will be generated.
class VPReplicateRecipe : public VPRecipeBase {
private:
  /// The instruction being replicated.
  Instruction *Ingredient;

  /// Indicator if only a single replica per lane is needed.
  bool IsUniform;

  /// Indicator if the replicas are also predicated.
  bool IsPredicated;

  /// Indicator if the scalar values should also be packed into a vector.
  bool AlsoPack;

public:
  VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false)
      : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform),
        IsPredicated(IsPredicated) {
    // Retain the previous behavior of predicateInstructions(), where an
    // insert-element of a predicated instruction got hoisted into the
    // predicated basic block iff it was its only user. This is achieved by
    // having predicated instructions also pack their values into a vector by
    // default unless they have a replicated user which uses their scalar value.
    AlsoPack = IsPredicated && !I->use_empty();
  }

  ~VPReplicateRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC;
  }

  /// Generate replicas of the desired Ingredient. Replicas will be generated
  /// for all parts and lanes unless a specific part and lane are specified in
  /// the \p State.
  void execute(VPTransformState &State) override;

  void setAlsoPack(bool Pack) { AlsoPack = Pack; }

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override {
    O << " +\n"
      << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ")
      << VPlanIngredient(Ingredient);
    if (AlsoPack)
      O << " (S->V)";
    O << "\\l\"";
  }
};

/// A recipe for generating conditional branches on the bits of a mask.
class VPBranchOnMaskRecipe : public VPRecipeBase {
private:
  /// The input IR basic block used to obtain the mask providing the condition
  /// bits for the branch.
  BasicBlock *MaskedBasicBlock;

public:
  VPBranchOnMaskRecipe(BasicBlock *BB)
      : VPRecipeBase(VPBranchOnMaskSC), MaskedBasicBlock(BB) {}

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC;
  }

  /// Generate the extraction of the appropriate bit from the block mask and the
  /// conditional branch.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override {
    O << " +\n"
      << Indent << "\"BRANCH-ON-MASK-OF " << MaskedBasicBlock->getName()
      << "\\l\"";
  }
};

/// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
/// control converges back from a Branch-on-Mask. The phi nodes are needed in
/// order to merge values that are set under such a branch and feed their uses.
/// The phi nodes can be scalar or vector depending on the users of the value.
/// This recipe works in concert with VPBranchOnMaskRecipe.
class VPPredInstPHIRecipe : public VPRecipeBase {
private:
  Instruction *PredInst;

public:
  /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
  /// nodes after merging back from a Branch-on-Mask.
  VPPredInstPHIRecipe(Instruction *PredInst)
      : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {}
  ~VPPredInstPHIRecipe() override = default;

  /// Method to support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const VPRecipeBase *V) {
    return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC;
  }

  /// Generates phi nodes for live-outs as needed to retain SSA form.
  void execute(VPTransformState &State) override;

  /// Print the recipe.
  void print(raw_ostream &O, const Twine &Indent) const override {
    O << " +\n"
      << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst)
      << "\\l\"";
  }
};

} // end anonymous namespace

bool LoopVectorizationPlanner::getDecisionAndClampRange(
    const std::function<bool(unsigned)> &Predicate, VFRange &Range) {
  assert(Range.End > Range.Start && "Trying to test an empty VF range.");
  bool PredicateAtRangeStart = Predicate(Range.Start);

  for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2)
    if (Predicate(TmpVF) != PredicateAtRangeStart) {
      Range.End = TmpVF;
      break;
    }

  return PredicateAtRangeStart;
}

/// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
/// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
/// of VF's starting at a given VF and extending it as much as possible. Each
/// vectorization decision can potentially shorten this sub-range during
/// buildVPlan().
void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) {
  for (unsigned VF = MinVF; VF < MaxVF + 1;) {
    VFRange SubRange = {VF, MaxVF + 1};
    VPlans.push_back(buildVPlan(SubRange));
    VF = SubRange.End;
  }
}

VPInterleaveRecipe *
LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I,
                                                VFRange &Range) {
  const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(I);
  if (!IG)
    return nullptr;

  // Now check if IG is relevant for VF's in the given range.
  auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> {
    return [=](unsigned VF) -> bool {
      return (VF >= 2 && // Query is illegal for VF == 1
              CM.getWideningDecision(I, VF) ==
                  LoopVectorizationCostModel::CM_Interleave);
    };
  };
  if (!getDecisionAndClampRange(isIGMember(I), Range))
    return nullptr;

  // I is a member of an InterleaveGroup for VF's in the (possibly trimmed)
  // range. If it's the primary member of the IG construct a VPInterleaveRecipe.
  // Otherwise, it's an adjunct member of the IG, do not construct any Recipe.
  assert(I == IG->getInsertPos() &&
         "Generating a recipe for an adjunct member of an interleave group");

  return new VPInterleaveRecipe(IG);
}

VPWidenIntOrFpInductionRecipe *
LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I,
                                                 VFRange &Range) {
  if (PHINode *Phi = dyn_cast<PHINode>(I)) {
    // Check if this is an integer or fp induction. If so, build the recipe that
    // produces its scalar and vector values.
    InductionDescriptor II = Legal->getInductionVars()->lookup(Phi);
    if (II.getKind() == InductionDescriptor::IK_IntInduction ||
        II.getKind() == InductionDescriptor::IK_FpInduction)
      return new VPWidenIntOrFpInductionRecipe(Phi);

    return nullptr;
  }

  // Optimize the special case where the source is a constant integer
  // induction variable. Notice that we can only optimize the 'trunc' case
  // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
  // (c) other casts depend on pointer size.

  // Determine whether \p K is a truncation based on an induction variable that
  // can be optimized.
  auto isOptimizableIVTruncate =
      [&](Instruction *K) -> std::function<bool(unsigned)> {
    return
        [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); };
  };

  if (isa<TruncInst>(I) &&
      getDecisionAndClampRange(isOptimizableIVTruncate(I), Range))
    return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
                                             cast<TruncInst>(I));
  return nullptr;
}

bool LoopVectorizationPlanner::tryToWiden(Instruction *I, VPBasicBlock *VPBB,
                                          VFRange &Range) {
  if (Legal->isScalarWithPredication(I))
    return false;

  auto IsVectorizableOpcode = [](unsigned Opcode) {
    switch (Opcode) {
    case Instruction::Add:
    case Instruction::And:
    case Instruction::AShr:
    case Instruction::BitCast:
    case Instruction::Br:
    case Instruction::Call:
    case Instruction::FAdd:
    case Instruction::FCmp:
    case Instruction::FDiv:
    case Instruction::FMul:
    case Instruction::FPExt:
    case Instruction::FPToSI:
    case Instruction::FPToUI:
    case Instruction::FPTrunc:
    case Instruction::FRem:
    case Instruction::FSub:
    case Instruction::GetElementPtr:
    case Instruction::ICmp:
    case Instruction::IntToPtr:
    case Instruction::Load:
    case Instruction::LShr:
    case Instruction::Mul:
    case Instruction::Or:
    case Instruction::PHI:
    case Instruction::PtrToInt:
    case Instruction::SDiv:
    case Instruction::Select:
    case Instruction::SExt:
    case Instruction::Shl:
    case Instruction::SIToFP:
    case Instruction::SRem:
    case Instruction::Store:
    case Instruction::Sub:
    case Instruction::Trunc:
    case Instruction::UDiv:
    case Instruction::UIToFP:
    case Instruction::URem:
    case Instruction::Xor:
    case Instruction::ZExt:
      return true;
    }
    return false;
  };

  if (!IsVectorizableOpcode(I->getOpcode()))
    return false;

  if (CallInst *CI = dyn_cast<CallInst>(I)) {
    Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
    if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
               ID == Intrinsic::lifetime_start))
      return false;
  }

  auto willWiden = [&](unsigned VF) -> bool {
    if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) ||
                             CM.isProfitableToScalarize(I, VF)))
      return false;
    if (CallInst *CI = dyn_cast<CallInst>(I)) {
      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
      // The following case may be scalarized depending on the VF.
      // The flag shows whether we use Intrinsic or a usual Call for vectorized
      // version of the instruction.
      // Is it beneficial to perform intrinsic call compared to lib call?
      bool NeedToScalarize;
      unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
      bool UseVectorIntrinsic =
          ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
      return UseVectorIntrinsic || !NeedToScalarize;
    }
    if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
      LoopVectorizationCostModel::InstWidening Decision =
          CM.getWideningDecision(I, VF);
      assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
             "CM decision should be taken at this point.");
      assert(Decision != LoopVectorizationCostModel::CM_Interleave &&
             "Interleave memory opportunity should be caught earlier.");
      return Decision != LoopVectorizationCostModel::CM_Scalarize;
    }
    return true;
  };

  if (!getDecisionAndClampRange(willWiden, Range))
    return false;

  // Success: widen this instruction. We optimize the common case where
  // consecutive instructions can be represented by a single recipe.
  if (!VPBB->empty()) {
    VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back());
    if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I))
      return true;
  }

  VPBB->appendRecipe(new VPWidenRecipe(I));
  return true;
}

VPBasicBlock *LoopVectorizationPlanner::handleReplication(
    Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
    DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe) {
  bool IsUniform = getDecisionAndClampRange(
      [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); },
      Range);

  bool IsPredicated = Legal->isScalarWithPredication(I);
  auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated);

  // Find if I uses a predicated instruction. If so, it will use its scalar
  // value. Avoid hoisting the insert-element which packs the scalar value into
  // a vector value, as that happens iff all users use the vector value.
  for (auto &Op : I->operands())
    if (auto *PredInst = dyn_cast<Instruction>(Op))
      if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end())
        PredInst2Recipe[PredInst]->setAlsoPack(false);

  // Finalize the recipe for Instr, first if it is not predicated.
  if (!IsPredicated) {
    DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
    VPBB->appendRecipe(Recipe);
    return VPBB;
  }
  DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
  assert(VPBB->getSuccessors().empty() &&
         "VPBB has successors when handling predicated replication.");
  // Record predicated instructions for above packing optimizations.
  PredInst2Recipe[I] = Recipe;
  VPBlockBase *Region = VPBB->setOneSuccessor(createReplicateRegion(I, Recipe));
  return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock()));
}

VPRegionBlock *
LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr,
                                                VPRecipeBase *PredRecipe) {
  // Instructions marked for predication are replicated and placed under an
  // if-then construct to prevent side-effects.

  // Build the triangular if-then region.
  std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
  assert(Instr->getParent() && "Predicated instruction not in any basic block");
  auto *BOMRecipe = new VPBranchOnMaskRecipe(Instr->getParent());
  auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
  auto *PHIRecipe =
      Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr);
  auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
  auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
  VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);

  // Note: first set Entry as region entry and then connect successors starting
  // from it in order, to propagate the "parent" of each VPBasicBlock.
  Entry->setTwoSuccessors(Pred, Exit);
  Pred->setOneSuccessor(Exit);

  return Region;
}

std::unique_ptr<VPlan> LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
  DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
  DenseMap<Instruction *, Instruction *> SinkAfterInverse;

  // Collect instructions from the original loop that will become trivially dead
  // in the vectorized loop. We don't need to vectorize these instructions. For
  // example, original induction update instructions can become dead because we
  // separately emit induction "steps" when generating code for the new loop.
  // Similarly, we create a new latch condition when setting up the structure
  // of the new loop, so the old one can become dead.
  SmallPtrSet<Instruction *, 4> DeadInstructions;
  collectTriviallyDeadInstructions(DeadInstructions);

  // Hold a mapping from predicated instructions to their recipes, in order to
  // fix their AlsoPack behavior if a user is determined to replicate and use a
  // scalar instead of vector value.
  DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe;

  // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
  VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
  auto Plan = llvm::make_unique<VPlan>(VPBB);

  // Scan the body of the loop in a topological order to visit each basic block
  // after having visited its predecessor basic blocks.
  LoopBlocksDFS DFS(OrigLoop);
  DFS.perform(LI);

  for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
    // Relevant instructions from basic block BB will be grouped into VPRecipe
    // ingredients and fill a new VPBasicBlock.
    unsigned VPBBsForBB = 0;
    auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
    VPBB->setOneSuccessor(FirstVPBBForBB);
    VPBB = FirstVPBBForBB;

    std::vector<Instruction *> Ingredients;

    // Organize the ingredients to vectorize from current basic block in the
    // right order.
    for (Instruction &I : *BB) {
      Instruction *Instr = &I;

      // First filter out irrelevant instructions, to ensure no recipes are
      // built for them.
      if (isa<BranchInst>(Instr) || isa<DbgInfoIntrinsic>(Instr) ||
          DeadInstructions.count(Instr))
        continue;

      // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct
      // member of the IG, do not construct any Recipe for it.
      const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(Instr);
      if (IG && Instr != IG->getInsertPos() &&
          Range.Start >= 2 && // Query is illegal for VF == 1
          CM.getWideningDecision(Instr, Range.Start) ==
              LoopVectorizationCostModel::CM_Interleave) {
        if (SinkAfterInverse.count(Instr))
          Ingredients.push_back(SinkAfterInverse.find(Instr)->second);
        continue;
      }

      // Move instructions to handle first-order recurrences, step 1: avoid
      // handling this instruction until after we've handled the instruction it
      // should follow.
      auto SAIt = SinkAfter.find(Instr);
      if (SAIt != SinkAfter.end()) {
        DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->second
                     << " to vectorize a 1st order recurrence.\n");
        SinkAfterInverse[SAIt->second] = Instr;
        continue;
      }

      Ingredients.push_back(Instr);

      // Move instructions to handle first-order recurrences, step 2: push the
      // instruction to be sunk at its insertion point.
      auto SAInvIt = SinkAfterInverse.find(Instr);
      if (SAInvIt != SinkAfterInverse.end())
        Ingredients.push_back(SAInvIt->second);
    }

    // Introduce each ingredient into VPlan.
    for (Instruction *Instr : Ingredients) {
      VPRecipeBase *Recipe = nullptr;

      // Check if Instr should belong to an interleave memory recipe, or already
      // does. In the latter case Instr is irrelevant.
      if ((Recipe = tryToInterleaveMemory(Instr, Range))) {
        VPBB->appendRecipe(Recipe);
        continue;
      }

      // Check if Instr should form some PHI recipe.
      if ((Recipe = tryToOptimizeInduction(Instr, Range))) {
        VPBB->appendRecipe(Recipe);
        continue;
      }
      if (PHINode *Phi = dyn_cast<PHINode>(Instr)) {
        VPBB->appendRecipe(new VPWidenPHIRecipe(Phi));
        continue;
      }

      // Check if Instr is to be widened by a general VPWidenRecipe, after
      // having first checked for specific widening recipes that deal with
      // Interleave Groups, Inductions and Phi nodes.
      if (tryToWiden(Instr, VPBB, Range))
        continue;

      // Otherwise, if all widening options failed, Instruction is to be
      // replicated. This may create a successor for VPBB.
      VPBasicBlock *NextVPBB =
          handleReplication(Instr, Range, VPBB, PredInst2Recipe);
      if (NextVPBB != VPBB) {
        VPBB = NextVPBB;
        VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
                                    : "");
      }
    }
  }

  // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
  // may also be empty, such as the last one VPBB, reflecting original
  // basic-blocks with no recipes.
  VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
  assert(PreEntry->empty() && "Expecting empty pre-entry block.");
  VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
  PreEntry->disconnectSuccessor(Entry);
  delete PreEntry;

  std::string PlanName;
  raw_string_ostream RSO(PlanName);
  unsigned VF = Range.Start;
  Plan->addVF(VF);
  RSO << "Initial VPlan for VF={" << VF;
  for (VF *= 2; VF < Range.End; VF *= 2) {
    Plan->addVF(VF);
    RSO << "," << VF;
  }
  RSO << "},UF>=1";
  RSO.flush();
  Plan->setName(PlanName);

  return Plan;
}

void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const {
  O << " +\n"
    << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
  IG->getInsertPos()->printAsOperand(O, false);
  O << "\\l\"";
  for (unsigned i = 0; i < IG->getFactor(); ++i)
    if (Instruction *I = IG->getMember(i))
      O << " +\n"
        << Indent << "\"  " << VPlanIngredient(I) << " " << i << "\\l\"";
}

void VPReplicateRecipe::execute(VPTransformState &State) {
  if (State.Instance) { // Generate a single instance.
    State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated);
    // Insert scalar instance packing it into a vector.
    if (AlsoPack && State.VF > 1) {
      // If we're constructing lane 0, initialize to start from undef.
      if (State.Instance->Lane == 0) {
        Value *Undef =
            UndefValue::get(VectorType::get(Ingredient->getType(), State.VF));
        State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef);
      }
      State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance);
    }
    return;
  }

  // Generate scalar instances for all VF lanes of all UF parts, unless the
  // instruction is uniform inwhich case generate only the first lane for each
  // of the UF parts.
  unsigned EndLane = IsUniform ? 1 : State.VF;
  for (unsigned Part = 0; Part < State.UF; ++Part)
    for (unsigned Lane = 0; Lane < EndLane; ++Lane)
      State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated);
}

void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
  assert(State.Instance && "Branch on Mask works only on single instance.");

  unsigned Part = State.Instance->Part;
  unsigned Lane = State.Instance->Lane;

  auto Cond = State.ILV->createBlockInMask(MaskedBasicBlock);

  Value *ConditionBit = Cond[Part];
  if (!ConditionBit) // Block in mask is all-one.
    ConditionBit = State.Builder.getTrue();
  else if (ConditionBit->getType()->isVectorTy())
    ConditionBit = State.Builder.CreateExtractElement(
        ConditionBit, State.Builder.getInt32(Lane));

  // Replace the temporary unreachable terminator with a new conditional branch,
  // whose two destinations will be set later when they are created.
  auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
  assert(isa<UnreachableInst>(CurrentTerminator) &&
         "Expected to replace unreachable terminator with conditional branch.");
  auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
  CondBr->setSuccessor(0, nullptr);
  ReplaceInstWithInst(CurrentTerminator, CondBr);

  DEBUG(dbgs() << "\nLV: vectorizing BranchOnMask recipe "
               << MaskedBasicBlock->getName());
}

void VPPredInstPHIRecipe::execute(VPTransformState &State) {
  assert(State.Instance && "Predicated instruction PHI works per instance.");
  Instruction *ScalarPredInst = cast<Instruction>(
      State.ValueMap.getScalarValue(PredInst, *State.Instance));
  BasicBlock *PredicatedBB = ScalarPredInst->getParent();
  BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
  assert(PredicatingBB && "Predicated block has no single predecessor.");

  // By current pack/unpack logic we need to generate only a single phi node: if
  // a vector value for the predicated instruction exists at this point it means
  // the instruction has vector users only, and a phi for the vector value is
  // needed. In this case the recipe of the predicated instruction is marked to
  // also do that packing, thereby "hoisting" the insert-element sequence.
  // Otherwise, a phi node for the scalar value is needed.
  unsigned Part = State.Instance->Part;
  if (State.ValueMap.hasVectorValue(PredInst, Part)) {
    Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part);
    InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
    PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
    VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
    VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
    State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache.
  } else {
    Type *PredInstType = PredInst->getType();
    PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
    Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB);
    Phi->addIncoming(ScalarPredInst, PredicatedBB);
    State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi);
  }
}

bool LoopVectorizePass::processLoop(Loop *L) {
  assert(L->empty() && "Only process inner loops.");

#ifndef NDEBUG
  const std::string DebugLocStr = getDebugLocString(L);
#endif /* NDEBUG */

  DEBUG(dbgs() << "\nLV: Checking a loop in \""
               << L->getHeader()->getParent()->getName() << "\" from "
               << DebugLocStr << "\n");

  LoopVectorizeHints Hints(L, DisableUnrolling, *ORE);

  DEBUG(dbgs() << "LV: Loop hints:"
               << " force="
               << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
                       ? "disabled"
                       : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
                              ? "enabled"
                              : "?"))
               << " width=" << Hints.getWidth()
               << " unroll=" << Hints.getInterleave() << "\n");

  // Function containing loop
  Function *F = L->getHeader()->getParent();

  // Looking at the diagnostic output is the only way to determine if a loop
  // was vectorized (other than looking at the IR or machine code), so it
  // is important to generate an optimization remark for each loop. Most of
  // these messages are generated as OptimizationRemarkAnalysis. Remarks
  // generated as OptimizationRemark and OptimizationRemarkMissed are
  // less verbose reporting vectorized loops and unvectorized loops that may
  // benefit from vectorization, respectively.

  if (!Hints.allowVectorization(F, L, AlwaysVectorize)) {
    DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
    return false;
  }

  PredicatedScalarEvolution PSE(*SE, *L);

  // Check if it is legal to vectorize the loop.
  LoopVectorizationRequirements Requirements(*ORE);
  LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE,
                                &Requirements, &Hints);
  if (!LVL.canVectorize()) {
    DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
    emitMissedWarning(F, L, Hints, ORE);
    return false;
  }

  // Check the function attributes to find out if this function should be
  // optimized for size.
  bool OptForSize =
      Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize();

  // Check the loop for a trip count threshold: vectorize loops with a tiny trip
  // count by optimizing for size, to minimize overheads.
  unsigned ExpectedTC = SE->getSmallConstantMaxTripCount(L);
  bool HasExpectedTC = (ExpectedTC > 0);

  if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) {
    auto EstimatedTC = getLoopEstimatedTripCount(L);
    if (EstimatedTC) {
      ExpectedTC = *EstimatedTC;
      HasExpectedTC = true;
    }
  }

  if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) {
    DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
                 << "This loop is worth vectorizing only if no scalar "
                 << "iteration overheads are incurred.");
    if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
      DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
    else {
      DEBUG(dbgs() << "\n");
      // Loops with a very small trip count are considered for vectorization
      // under OptForSize, thereby making sure the cost of their loop body is
      // dominant, free of runtime guards and scalar iteration overheads.
      OptForSize = true;
    }
  }

  // Check the function attributes to see if implicit floats are allowed.
  // FIXME: This check doesn't seem possibly correct -- what if the loop is
  // an integer loop and the vector instructions selected are purely integer
  // vector instructions?
  if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
    DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
                    "attribute is used.\n");
    ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(),
                                   "NoImplicitFloat", L)
              << "loop not vectorized due to NoImplicitFloat attribute");
    emitMissedWarning(F, L, Hints, ORE);
    return false;
  }

  // Check if the target supports potentially unsafe FP vectorization.
  // FIXME: Add a check for the type of safety issue (denormal, signaling)
  // for the target we're vectorizing for, to make sure none of the
  // additional fp-math flags can help.
  if (Hints.isPotentiallyUnsafe() &&
      TTI->isFPVectorizationPotentiallyUnsafe()) {
    DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n");
    ORE->emit(
        createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L)
        << "loop not vectorized due to unsafe FP support.");
    emitMissedWarning(F, L, Hints, ORE);
    return false;
  }

  // Use the cost model.
  LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F,
                                &Hints);
  CM.collectValuesToIgnore();

  // Use the planner for vectorization.
  LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM);

  // Get user vectorization factor.
  unsigned UserVF = Hints.getWidth();

  // Plan how to best vectorize, return the best VF and its cost.
  LoopVectorizationCostModel::VectorizationFactor VF =
      LVP.plan(OptForSize, UserVF);

  // Select the interleave count.
  unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost);

  // Get user interleave count.
  unsigned UserIC = Hints.getInterleave();

  // Identify the diagnostic messages that should be produced.
  std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
  bool VectorizeLoop = true, InterleaveLoop = true;
  if (Requirements.doesNotMeet(F, L, Hints)) {
    DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
                    "requirements.\n");
    emitMissedWarning(F, L, Hints, ORE);
    return false;
  }

  if (VF.Width == 1) {
    DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
    VecDiagMsg = std::make_pair(
        "VectorizationNotBeneficial",
        "the cost-model indicates that vectorization is not beneficial");
    VectorizeLoop = false;
  }

  if (IC == 1 && UserIC <= 1) {
    // Tell the user interleaving is not beneficial.
    DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
    IntDiagMsg = std::make_pair(
        "InterleavingNotBeneficial",
        "the cost-model indicates that interleaving is not beneficial");
    InterleaveLoop = false;
    if (UserIC == 1) {
      IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
      IntDiagMsg.second +=
          " and is explicitly disabled or interleave count is set to 1";
    }
  } else if (IC > 1 && UserIC == 1) {
    // Tell the user interleaving is beneficial, but it explicitly disabled.
    DEBUG(dbgs()
          << "LV: Interleaving is beneficial but is explicitly disabled.");
    IntDiagMsg = std::make_pair(
        "InterleavingBeneficialButDisabled",
        "the cost-model indicates that interleaving is beneficial "
        "but is explicitly disabled or interleave count is set to 1");
    InterleaveLoop = false;
  }

  // Override IC if user provided an interleave count.
  IC = UserIC > 0 ? UserIC : IC;

  // Emit diagnostic messages, if any.
  const char *VAPassName = Hints.vectorizeAnalysisPassName();
  if (!VectorizeLoop && !InterleaveLoop) {
    // Do not vectorize or interleaving the loop.
    ORE->emit([&]() {
      return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
                                      L->getStartLoc(), L->getHeader())
             << VecDiagMsg.second;
    });
    ORE->emit([&]() {
      return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
                                      L->getStartLoc(), L->getHeader())
             << IntDiagMsg.second;
    });
    return false;
  } else if (!VectorizeLoop && InterleaveLoop) {
    DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
    ORE->emit([&]() {
      return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
                                        L->getStartLoc(), L->getHeader())
             << VecDiagMsg.second;
    });
  } else if (VectorizeLoop && !InterleaveLoop) {
    DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
                 << DebugLocStr << '\n');
    ORE->emit([&]() {
      return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
                                        L->getStartLoc(), L->getHeader())
             << IntDiagMsg.second;
    });
  } else if (VectorizeLoop && InterleaveLoop) {
    DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
                 << DebugLocStr << '\n');
    DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
  }

  LVP.setBestPlan(VF.Width, IC);

  using namespace ore;

  if (!VectorizeLoop) {
    assert(IC > 1 && "interleave count should not be 1 or 0");
    // If we decided that it is not legal to vectorize the loop, then
    // interleave it.
    InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
                               &CM);
    LVP.executePlan(Unroller, DT);

    ORE->emit([&]() {
      return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
                                L->getHeader())
             << "interleaved loop (interleaved count: "
             << NV("InterleaveCount", IC) << ")";
    });
  } else {
    // If we decided that it is *legal* to vectorize the loop, then do it.
    InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
                           &LVL, &CM);
    LVP.executePlan(LB, DT);
    ++LoopsVectorized;

    // Add metadata to disable runtime unrolling a scalar loop when there are
    // no runtime checks about strides and memory. A scalar loop that is
    // rarely used is not worth unrolling.
    if (!LB.areSafetyChecksAdded())
      AddRuntimeUnrollDisableMetaData(L);

    // Report the vectorization decision.
    ORE->emit([&]() {
      return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
                                L->getHeader())
             << "vectorized loop (vectorization width: "
             << NV("VectorizationFactor", VF.Width)
             << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
    });
  }

  // Mark the loop as already vectorized to avoid vectorizing again.
  Hints.setAlreadyVectorized();

  DEBUG(verifyFunction(*L->getHeader()->getParent()));
  return true;
}

bool LoopVectorizePass::runImpl(
    Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
    DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
    DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
    std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
    OptimizationRemarkEmitter &ORE_) {
  SE = &SE_;
  LI = &LI_;
  TTI = &TTI_;
  DT = &DT_;
  BFI = &BFI_;
  TLI = TLI_;
  AA = &AA_;
  AC = &AC_;
  GetLAA = &GetLAA_;
  DB = &DB_;
  ORE = &ORE_;

  // Don't attempt if
  // 1. the target claims to have no vector registers, and
  // 2. interleaving won't help ILP.
  //
  // The second condition is necessary because, even if the target has no
  // vector registers, loop vectorization may still enable scalar
  // interleaving.
  if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2)
    return false;

  bool Changed = false;

  // The vectorizer requires loops to be in simplified form.
  // Since simplification may add new inner loops, it has to run before the
  // legality and profitability checks. This means running the loop vectorizer
  // will simplify all loops, regardless of whether anything end up being
  // vectorized.
  for (auto &L : *LI)
    Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */);

  // Build up a worklist of inner-loops to vectorize. This is necessary as
  // the act of vectorizing or partially unrolling a loop creates new loops
  // and can invalidate iterators across the loops.
  SmallVector<Loop *, 8> Worklist;

  for (Loop *L : *LI)
    addAcyclicInnerLoop(*L, Worklist);

  LoopsAnalyzed += Worklist.size();

  // Now walk the identified inner loops.
  while (!Worklist.empty()) {
    Loop *L = Worklist.pop_back_val();

    // For the inner loops we actually process, form LCSSA to simplify the
    // transform.
    Changed |= formLCSSARecursively(*L, *DT, LI, SE);

    Changed |= processLoop(L);
  }

  // Process each loop nest in the function.
  return Changed;
}

PreservedAnalyses LoopVectorizePass::run(Function &F,
                                         FunctionAnalysisManager &AM) {
    auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
    auto &LI = AM.getResult<LoopAnalysis>(F);
    auto &TTI = AM.getResult<TargetIRAnalysis>(F);
    auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
    auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
    auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
    auto &AA = AM.getResult<AAManager>(F);
    auto &AC = AM.getResult<AssumptionAnalysis>(F);
    auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
    auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);

    auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
    std::function<const LoopAccessInfo &(Loop &)> GetLAA =
        [&](Loop &L) -> const LoopAccessInfo & {
      LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI};
      return LAM.getResult<LoopAccessAnalysis>(L, AR);
    };
    bool Changed =
        runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE);
    if (!Changed)
      return PreservedAnalyses::all();
    PreservedAnalyses PA;
    PA.preserve<LoopAnalysis>();
    PA.preserve<DominatorTreeAnalysis>();
    PA.preserve<BasicAA>();
    PA.preserve<GlobalsAA>();
    return PA;
}