aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Utils/SimplifyCFG.cpp
blob: 3c4dae92ebf3e2371cf82bc8bd3eda1c2feb3429 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Peephole optimize the CFG.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <map>
#include <set>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "simplifycfg"

// Chosen as 2 so as to be cheap, but still to have enough power to fold
// a select, so the "clamp" idiom (of a min followed by a max) will be caught.
// To catch this, we need to fold a compare and a select, hence '2' being the
// minimum reasonable default.
static cl::opt<unsigned> PHINodeFoldingThreshold(
    "phi-node-folding-threshold", cl::Hidden, cl::init(2),
    cl::desc(
        "Control the amount of phi node folding to perform (default = 2)"));

static cl::opt<bool> DupRet(
    "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
    cl::desc("Duplicate return instructions into unconditional branches"));

static cl::opt<bool>
    SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
               cl::desc("Sink common instructions down to the end block"));

static cl::opt<bool> HoistCondStores(
    "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
    cl::desc("Hoist conditional stores if an unconditional store precedes"));

static cl::opt<bool> MergeCondStores(
    "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
    cl::desc("Hoist conditional stores even if an unconditional store does not "
             "precede - hoist multiple conditional stores into a single "
             "predicated store"));

static cl::opt<bool> MergeCondStoresAggressively(
    "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
    cl::desc("When merging conditional stores, do so even if the resultant "
             "basic blocks are unlikely to be if-converted as a result"));

static cl::opt<bool> SpeculateOneExpensiveInst(
    "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
    cl::desc("Allow exactly one expensive instruction to be speculatively "
             "executed"));

static cl::opt<unsigned> MaxSpeculationDepth(
    "max-speculation-depth", cl::Hidden, cl::init(10),
    cl::desc("Limit maximum recursion depth when calculating costs of "
             "speculatively executed instructions"));

STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
STATISTIC(NumLinearMaps,
          "Number of switch instructions turned into linear mapping");
STATISTIC(NumLookupTables,
          "Number of switch instructions turned into lookup tables");
STATISTIC(
    NumLookupTablesHoles,
    "Number of switch instructions turned into lookup tables (holes checked)");
STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
STATISTIC(NumSinkCommons,
          "Number of common instructions sunk down to the end block");
STATISTIC(NumSpeculations, "Number of speculative executed instructions");

namespace {

// The first field contains the value that the switch produces when a certain
// case group is selected, and the second field is a vector containing the
// cases composing the case group.
using SwitchCaseResultVectorTy =
    SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;

// The first field contains the phi node that generates a result of the switch
// and the second field contains the value generated for a certain case in the
// switch for that PHI.
using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;

/// ValueEqualityComparisonCase - Represents a case of a switch.
struct ValueEqualityComparisonCase {
  ConstantInt *Value;
  BasicBlock *Dest;

  ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
      : Value(Value), Dest(Dest) {}

  bool operator<(ValueEqualityComparisonCase RHS) const {
    // Comparing pointers is ok as we only rely on the order for uniquing.
    return Value < RHS.Value;
  }

  bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
};

class SimplifyCFGOpt {
  const TargetTransformInfo &TTI;
  const DataLayout &DL;
  SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
  const SimplifyCFGOptions &Options;

  Value *isValueEqualityComparison(TerminatorInst *TI);
  BasicBlock *GetValueEqualityComparisonCases(
      TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
                                                     BasicBlock *Pred,
                                                     IRBuilder<> &Builder);
  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
                                           IRBuilder<> &Builder);

  bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
  bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
  bool SimplifySingleResume(ResumeInst *RI);
  bool SimplifyCommonResume(ResumeInst *RI);
  bool SimplifyCleanupReturn(CleanupReturnInst *RI);
  bool SimplifyUnreachable(UnreachableInst *UI);
  bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
  bool SimplifyIndirectBr(IndirectBrInst *IBI);
  bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
  bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);

public:
  SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
                 SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
                 const SimplifyCFGOptions &Opts)
      : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}

  bool run(BasicBlock *BB);
};

} // end anonymous namespace

/// Return true if it is safe to merge these two
/// terminator instructions together.
static bool
SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
                       SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
  if (SI1 == SI2)
    return false; // Can't merge with self!

  // It is not safe to merge these two switch instructions if they have a common
  // successor, and if that successor has a PHI node, and if *that* PHI node has
  // conflicting incoming values from the two switch blocks.
  BasicBlock *SI1BB = SI1->getParent();
  BasicBlock *SI2BB = SI2->getParent();

  SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
  bool Fail = false;
  for (BasicBlock *Succ : successors(SI2BB))
    if (SI1Succs.count(Succ))
      for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
        PHINode *PN = cast<PHINode>(BBI);
        if (PN->getIncomingValueForBlock(SI1BB) !=
            PN->getIncomingValueForBlock(SI2BB)) {
          if (FailBlocks)
            FailBlocks->insert(Succ);
          Fail = true;
        }
      }

  return !Fail;
}

/// Return true if it is safe and profitable to merge these two terminator
/// instructions together, where SI1 is an unconditional branch. PhiNodes will
/// store all PHI nodes in common successors.
static bool
isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
                                Instruction *Cond,
                                SmallVectorImpl<PHINode *> &PhiNodes) {
  if (SI1 == SI2)
    return false; // Can't merge with self!
  assert(SI1->isUnconditional() && SI2->isConditional());

  // We fold the unconditional branch if we can easily update all PHI nodes in
  // common successors:
  // 1> We have a constant incoming value for the conditional branch;
  // 2> We have "Cond" as the incoming value for the unconditional branch;
  // 3> SI2->getCondition() and Cond have same operands.
  CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
  if (!Ci2)
    return false;
  if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
        Cond->getOperand(1) == Ci2->getOperand(1)) &&
      !(Cond->getOperand(0) == Ci2->getOperand(1) &&
        Cond->getOperand(1) == Ci2->getOperand(0)))
    return false;

  BasicBlock *SI1BB = SI1->getParent();
  BasicBlock *SI2BB = SI2->getParent();
  SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
  for (BasicBlock *Succ : successors(SI2BB))
    if (SI1Succs.count(Succ))
      for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
        PHINode *PN = cast<PHINode>(BBI);
        if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
            !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
          return false;
        PhiNodes.push_back(PN);
      }
  return true;
}

/// Update PHI nodes in Succ to indicate that there will now be entries in it
/// from the 'NewPred' block. The values that will be flowing into the PHI nodes
/// will be the same as those coming in from ExistPred, an existing predecessor
/// of Succ.
static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
                                  BasicBlock *ExistPred) {
  if (!isa<PHINode>(Succ->begin()))
    return; // Quick exit if nothing to do

  PHINode *PN;
  for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
}

/// Compute an abstract "cost" of speculating the given instruction,
/// which is assumed to be safe to speculate. TCC_Free means cheap,
/// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
/// expensive.
static unsigned ComputeSpeculationCost(const User *I,
                                       const TargetTransformInfo &TTI) {
  assert(isSafeToSpeculativelyExecute(I) &&
         "Instruction is not safe to speculatively execute!");
  return TTI.getUserCost(I);
}

/// If we have a merge point of an "if condition" as accepted above,
/// return true if the specified value dominates the block.  We
/// don't handle the true generality of domination here, just a special case
/// which works well enough for us.
///
/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
/// see if V (which must be an instruction) and its recursive operands
/// that do not dominate BB have a combined cost lower than CostRemaining and
/// are non-trapping.  If both are true, the instruction is inserted into the
/// set and true is returned.
///
/// The cost for most non-trapping instructions is defined as 1 except for
/// Select whose cost is 2.
///
/// After this function returns, CostRemaining is decreased by the cost of
/// V plus its non-dominating operands.  If that cost is greater than
/// CostRemaining, false is returned and CostRemaining is undefined.
static bool DominatesMergePoint(Value *V, BasicBlock *BB,
                                SmallPtrSetImpl<Instruction *> *AggressiveInsts,
                                unsigned &CostRemaining,
                                const TargetTransformInfo &TTI,
                                unsigned Depth = 0) {
  // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
  // so limit the recursion depth.
  // TODO: While this recursion limit does prevent pathological behavior, it
  // would be better to track visited instructions to avoid cycles.
  if (Depth == MaxSpeculationDepth)
    return false;

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) {
    // Non-instructions all dominate instructions, but not all constantexprs
    // can be executed unconditionally.
    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
      if (C->canTrap())
        return false;
    return true;
  }
  BasicBlock *PBB = I->getParent();

  // We don't want to allow weird loops that might have the "if condition" in
  // the bottom of this block.
  if (PBB == BB)
    return false;

  // If this instruction is defined in a block that contains an unconditional
  // branch to BB, then it must be in the 'conditional' part of the "if
  // statement".  If not, it definitely dominates the region.
  BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
  if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
    return true;

  // If we aren't allowing aggressive promotion anymore, then don't consider
  // instructions in the 'if region'.
  if (!AggressiveInsts)
    return false;

  // If we have seen this instruction before, don't count it again.
  if (AggressiveInsts->count(I))
    return true;

  // Okay, it looks like the instruction IS in the "condition".  Check to
  // see if it's a cheap instruction to unconditionally compute, and if it
  // only uses stuff defined outside of the condition.  If so, hoist it out.
  if (!isSafeToSpeculativelyExecute(I))
    return false;

  unsigned Cost = ComputeSpeculationCost(I, TTI);

  // Allow exactly one instruction to be speculated regardless of its cost
  // (as long as it is safe to do so).
  // This is intended to flatten the CFG even if the instruction is a division
  // or other expensive operation. The speculation of an expensive instruction
  // is expected to be undone in CodeGenPrepare if the speculation has not
  // enabled further IR optimizations.
  if (Cost > CostRemaining &&
      (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
    return false;

  // Avoid unsigned wrap.
  CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;

  // Okay, we can only really hoist these out if their operands do
  // not take us over the cost threshold.
  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
    if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
                             Depth + 1))
      return false;
  // Okay, it's safe to do this!  Remember this instruction.
  AggressiveInsts->insert(I);
  return true;
}

/// Extract ConstantInt from value, looking through IntToPtr
/// and PointerNullValue. Return NULL if value is not a constant int.
static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
  // Normal constant int.
  ConstantInt *CI = dyn_cast<ConstantInt>(V);
  if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
    return CI;

  // This is some kind of pointer constant. Turn it into a pointer-sized
  // ConstantInt if possible.
  IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));

  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
  if (isa<ConstantPointerNull>(V))
    return ConstantInt::get(PtrTy, 0);

  // IntToPtr const int.
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    if (CE->getOpcode() == Instruction::IntToPtr)
      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
        // The constant is very likely to have the right type already.
        if (CI->getType() == PtrTy)
          return CI;
        else
          return cast<ConstantInt>(
              ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
      }
  return nullptr;
}

namespace {

/// Given a chain of or (||) or and (&&) comparison of a value against a
/// constant, this will try to recover the information required for a switch
/// structure.
/// It will depth-first traverse the chain of comparison, seeking for patterns
/// like %a == 12 or %a < 4 and combine them to produce a set of integer
/// representing the different cases for the switch.
/// Note that if the chain is composed of '||' it will build the set of elements
/// that matches the comparisons (i.e. any of this value validate the chain)
/// while for a chain of '&&' it will build the set elements that make the test
/// fail.
struct ConstantComparesGatherer {
  const DataLayout &DL;

  /// Value found for the switch comparison
  Value *CompValue = nullptr;

  /// Extra clause to be checked before the switch
  Value *Extra = nullptr;

  /// Set of integers to match in switch
  SmallVector<ConstantInt *, 8> Vals;

  /// Number of comparisons matched in the and/or chain
  unsigned UsedICmps = 0;

  /// Construct and compute the result for the comparison instruction Cond
  ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
    gather(Cond);
  }

  ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
  ConstantComparesGatherer &
  operator=(const ConstantComparesGatherer &) = delete;

private:
  /// Try to set the current value used for the comparison, it succeeds only if
  /// it wasn't set before or if the new value is the same as the old one
  bool setValueOnce(Value *NewVal) {
    if (CompValue && CompValue != NewVal)
      return false;
    CompValue = NewVal;
    return (CompValue != nullptr);
  }

  /// Try to match Instruction "I" as a comparison against a constant and
  /// populates the array Vals with the set of values that match (or do not
  /// match depending on isEQ).
  /// Return false on failure. On success, the Value the comparison matched
  /// against is placed in CompValue.
  /// If CompValue is already set, the function is expected to fail if a match
  /// is found but the value compared to is different.
  bool matchInstruction(Instruction *I, bool isEQ) {
    // If this is an icmp against a constant, handle this as one of the cases.
    ICmpInst *ICI;
    ConstantInt *C;
    if (!((ICI = dyn_cast<ICmpInst>(I)) &&
          (C = GetConstantInt(I->getOperand(1), DL)))) {
      return false;
    }

    Value *RHSVal;
    const APInt *RHSC;

    // Pattern match a special case
    // (x & ~2^z) == y --> x == y || x == y|2^z
    // This undoes a transformation done by instcombine to fuse 2 compares.
    if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
      // It's a little bit hard to see why the following transformations are
      // correct. Here is a CVC3 program to verify them for 64-bit values:

      /*
         ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
         x    : BITVECTOR(64);
         y    : BITVECTOR(64);
         z    : BITVECTOR(64);
         mask : BITVECTOR(64) = BVSHL(ONE, z);
         QUERY( (y & ~mask = y) =>
                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
         );
         QUERY( (y |  mask = y) =>
                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
         );
      */

      // Please note that each pattern must be a dual implication (<--> or
      // iff). One directional implication can create spurious matches. If the
      // implication is only one-way, an unsatisfiable condition on the left
      // side can imply a satisfiable condition on the right side. Dual
      // implication ensures that satisfiable conditions are transformed to
      // other satisfiable conditions and unsatisfiable conditions are
      // transformed to other unsatisfiable conditions.

      // Here is a concrete example of a unsatisfiable condition on the left
      // implying a satisfiable condition on the right:
      //
      // mask = (1 << z)
      // (x & ~mask) == y  --> (x == y || x == (y | mask))
      //
      // Substituting y = 3, z = 0 yields:
      // (x & -2) == 3 --> (x == 3 || x == 2)

      // Pattern match a special case:
      /*
        QUERY( (y & ~mask = y) =>
               ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
        );
      */
      if (match(ICI->getOperand(0),
                m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
        APInt Mask = ~*RHSC;
        if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
          // If we already have a value for the switch, it has to match!
          if (!setValueOnce(RHSVal))
            return false;

          Vals.push_back(C);
          Vals.push_back(
              ConstantInt::get(C->getContext(),
                               C->getValue() | Mask));
          UsedICmps++;
          return true;
        }
      }

      // Pattern match a special case:
      /*
        QUERY( (y |  mask = y) =>
               ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
        );
      */
      if (match(ICI->getOperand(0),
                m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
        APInt Mask = *RHSC;
        if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
          // If we already have a value for the switch, it has to match!
          if (!setValueOnce(RHSVal))
            return false;

          Vals.push_back(C);
          Vals.push_back(ConstantInt::get(C->getContext(),
                                          C->getValue() & ~Mask));
          UsedICmps++;
          return true;
        }
      }

      // If we already have a value for the switch, it has to match!
      if (!setValueOnce(ICI->getOperand(0)))
        return false;

      UsedICmps++;
      Vals.push_back(C);
      return ICI->getOperand(0);
    }

    // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
    ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
        ICI->getPredicate(), C->getValue());

    // Shift the range if the compare is fed by an add. This is the range
    // compare idiom as emitted by instcombine.
    Value *CandidateVal = I->getOperand(0);
    if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
      Span = Span.subtract(*RHSC);
      CandidateVal = RHSVal;
    }

    // If this is an and/!= check, then we are looking to build the set of
    // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
    // x != 0 && x != 1.
    if (!isEQ)
      Span = Span.inverse();

    // If there are a ton of values, we don't want to make a ginormous switch.
    if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
      return false;
    }

    // If we already have a value for the switch, it has to match!
    if (!setValueOnce(CandidateVal))
      return false;

    // Add all values from the range to the set
    for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
      Vals.push_back(ConstantInt::get(I->getContext(), Tmp));

    UsedICmps++;
    return true;
  }

  /// Given a potentially 'or'd or 'and'd together collection of icmp
  /// eq/ne/lt/gt instructions that compare a value against a constant, extract
  /// the value being compared, and stick the list constants into the Vals
  /// vector.
  /// One "Extra" case is allowed to differ from the other.
  void gather(Value *V) {
    Instruction *I = dyn_cast<Instruction>(V);
    bool isEQ = (I->getOpcode() == Instruction::Or);

    // Keep a stack (SmallVector for efficiency) for depth-first traversal
    SmallVector<Value *, 8> DFT;
    SmallPtrSet<Value *, 8> Visited;

    // Initialize
    Visited.insert(V);
    DFT.push_back(V);

    while (!DFT.empty()) {
      V = DFT.pop_back_val();

      if (Instruction *I = dyn_cast<Instruction>(V)) {
        // If it is a || (or && depending on isEQ), process the operands.
        if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
          if (Visited.insert(I->getOperand(1)).second)
            DFT.push_back(I->getOperand(1));
          if (Visited.insert(I->getOperand(0)).second)
            DFT.push_back(I->getOperand(0));
          continue;
        }

        // Try to match the current instruction
        if (matchInstruction(I, isEQ))
          // Match succeed, continue the loop
          continue;
      }

      // One element of the sequence of || (or &&) could not be match as a
      // comparison against the same value as the others.
      // We allow only one "Extra" case to be checked before the switch
      if (!Extra) {
        Extra = V;
        continue;
      }
      // Failed to parse a proper sequence, abort now
      CompValue = nullptr;
      break;
    }
  }
};

} // end anonymous namespace

static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
  Instruction *Cond = nullptr;
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    Cond = dyn_cast<Instruction>(SI->getCondition());
  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    if (BI->isConditional())
      Cond = dyn_cast<Instruction>(BI->getCondition());
  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
    Cond = dyn_cast<Instruction>(IBI->getAddress());
  }

  TI->eraseFromParent();
  if (Cond)
    RecursivelyDeleteTriviallyDeadInstructions(Cond);
}

/// Return true if the specified terminator checks
/// to see if a value is equal to constant integer value.
Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
  Value *CV = nullptr;
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    // Do not permit merging of large switch instructions into their
    // predecessors unless there is only one predecessor.
    if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
                                               pred_end(SI->getParent())) <=
        128)
      CV = SI->getCondition();
  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
    if (BI->isConditional() && BI->getCondition()->hasOneUse())
      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
        if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
          CV = ICI->getOperand(0);
      }

  // Unwrap any lossless ptrtoint cast.
  if (CV) {
    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
      Value *Ptr = PTII->getPointerOperand();
      if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
        CV = Ptr;
    }
  }
  return CV;
}

/// Given a value comparison instruction,
/// decode all of the 'cases' that it represents and return the 'default' block.
BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
    TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    Cases.reserve(SI->getNumCases());
    for (auto Case : SI->cases())
      Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
                                                  Case.getCaseSuccessor()));
    return SI->getDefaultDest();
  }

  BranchInst *BI = cast<BranchInst>(TI);
  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
  BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
  Cases.push_back(ValueEqualityComparisonCase(
      GetConstantInt(ICI->getOperand(1), DL), Succ));
  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
}

/// Given a vector of bb/value pairs, remove any entries
/// in the list that match the specified block.
static void
EliminateBlockCases(BasicBlock *BB,
                    std::vector<ValueEqualityComparisonCase> &Cases) {
  Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
}

/// Return true if there are any keys in C1 that exist in C2 as well.
static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
                          std::vector<ValueEqualityComparisonCase> &C2) {
  std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;

  // Make V1 be smaller than V2.
  if (V1->size() > V2->size())
    std::swap(V1, V2);

  if (V1->empty())
    return false;
  if (V1->size() == 1) {
    // Just scan V2.
    ConstantInt *TheVal = (*V1)[0].Value;
    for (unsigned i = 0, e = V2->size(); i != e; ++i)
      if (TheVal == (*V2)[i].Value)
        return true;
  }

  // Otherwise, just sort both lists and compare element by element.
  array_pod_sort(V1->begin(), V1->end());
  array_pod_sort(V2->begin(), V2->end());
  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
  while (i1 != e1 && i2 != e2) {
    if ((*V1)[i1].Value == (*V2)[i2].Value)
      return true;
    if ((*V1)[i1].Value < (*V2)[i2].Value)
      ++i1;
    else
      ++i2;
  }
  return false;
}

/// If TI is known to be a terminator instruction and its block is known to
/// only have a single predecessor block, check to see if that predecessor is
/// also a value comparison with the same value, and if that comparison
/// determines the outcome of this comparison. If so, simplify TI. This does a
/// very limited form of jump threading.
bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
    TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
  if (!PredVal)
    return false; // Not a value comparison in predecessor.

  Value *ThisVal = isValueEqualityComparison(TI);
  assert(ThisVal && "This isn't a value comparison!!");
  if (ThisVal != PredVal)
    return false; // Different predicates.

  // TODO: Preserve branch weight metadata, similarly to how
  // FoldValueComparisonIntoPredecessors preserves it.

  // Find out information about when control will move from Pred to TI's block.
  std::vector<ValueEqualityComparisonCase> PredCases;
  BasicBlock *PredDef =
      GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
  EliminateBlockCases(PredDef, PredCases); // Remove default from cases.

  // Find information about how control leaves this block.
  std::vector<ValueEqualityComparisonCase> ThisCases;
  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
  EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.

  // If TI's block is the default block from Pred's comparison, potentially
  // simplify TI based on this knowledge.
  if (PredDef == TI->getParent()) {
    // If we are here, we know that the value is none of those cases listed in
    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
    // can simplify TI.
    if (!ValuesOverlap(PredCases, ThisCases))
      return false;

    if (isa<BranchInst>(TI)) {
      // Okay, one of the successors of this condbr is dead.  Convert it to a
      // uncond br.
      assert(ThisCases.size() == 1 && "Branch can only have one case!");
      // Insert the new branch.
      Instruction *NI = Builder.CreateBr(ThisDef);
      (void)NI;

      // Remove PHI node entries for the dead edge.
      ThisCases[0].Dest->removePredecessor(TI->getParent());

      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
                   << "Through successor TI: " << *TI << "Leaving: " << *NI
                   << "\n");

      EraseTerminatorInstAndDCECond(TI);
      return true;
    }

    SwitchInst *SI = cast<SwitchInst>(TI);
    // Okay, TI has cases that are statically dead, prune them away.
    SmallPtrSet<Constant *, 16> DeadCases;
    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
      DeadCases.insert(PredCases[i].Value);

    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
                 << "Through successor TI: " << *TI);

    // Collect branch weights into a vector.
    SmallVector<uint32_t, 8> Weights;
    MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
    bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
    if (HasWeight)
      for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
           ++MD_i) {
        ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
        Weights.push_back(CI->getValue().getZExtValue());
      }
    for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
      --i;
      if (DeadCases.count(i->getCaseValue())) {
        if (HasWeight) {
          std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
          Weights.pop_back();
        }
        i->getCaseSuccessor()->removePredecessor(TI->getParent());
        SI->removeCase(i);
      }
    }
    if (HasWeight && Weights.size() >= 2)
      SI->setMetadata(LLVMContext::MD_prof,
                      MDBuilder(SI->getParent()->getContext())
                          .createBranchWeights(Weights));

    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
    return true;
  }

  // Otherwise, TI's block must correspond to some matched value.  Find out
  // which value (or set of values) this is.
  ConstantInt *TIV = nullptr;
  BasicBlock *TIBB = TI->getParent();
  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    if (PredCases[i].Dest == TIBB) {
      if (TIV)
        return false; // Cannot handle multiple values coming to this block.
      TIV = PredCases[i].Value;
    }
  assert(TIV && "No edge from pred to succ?");

  // Okay, we found the one constant that our value can be if we get into TI's
  // BB.  Find out which successor will unconditionally be branched to.
  BasicBlock *TheRealDest = nullptr;
  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
    if (ThisCases[i].Value == TIV) {
      TheRealDest = ThisCases[i].Dest;
      break;
    }

  // If not handled by any explicit cases, it is handled by the default case.
  if (!TheRealDest)
    TheRealDest = ThisDef;

  // Remove PHI node entries for dead edges.
  BasicBlock *CheckEdge = TheRealDest;
  for (BasicBlock *Succ : successors(TIBB))
    if (Succ != CheckEdge)
      Succ->removePredecessor(TIBB);
    else
      CheckEdge = nullptr;

  // Insert the new branch.
  Instruction *NI = Builder.CreateBr(TheRealDest);
  (void)NI;

  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
               << "Through successor TI: " << *TI << "Leaving: " << *NI
               << "\n");

  EraseTerminatorInstAndDCECond(TI);
  return true;
}

namespace {

/// This class implements a stable ordering of constant
/// integers that does not depend on their address.  This is important for
/// applications that sort ConstantInt's to ensure uniqueness.
struct ConstantIntOrdering {
  bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
    return LHS->getValue().ult(RHS->getValue());
  }
};

} // end anonymous namespace

static int ConstantIntSortPredicate(ConstantInt *const *P1,
                                    ConstantInt *const *P2) {
  const ConstantInt *LHS = *P1;
  const ConstantInt *RHS = *P2;
  if (LHS == RHS)
    return 0;
  return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
}

static inline bool HasBranchWeights(const Instruction *I) {
  MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
  if (ProfMD && ProfMD->getOperand(0))
    if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
      return MDS->getString().equals("branch_weights");

  return false;
}

/// Get Weights of a given TerminatorInst, the default weight is at the front
/// of the vector. If TI is a conditional eq, we need to swap the branch-weight
/// metadata.
static void GetBranchWeights(TerminatorInst *TI,
                             SmallVectorImpl<uint64_t> &Weights) {
  MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
  assert(MD);
  for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
    ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
    Weights.push_back(CI->getValue().getZExtValue());
  }

  // If TI is a conditional eq, the default case is the false case,
  // and the corresponding branch-weight data is at index 2. We swap the
  // default weight to be the first entry.
  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    assert(Weights.size() == 2);
    ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
      std::swap(Weights.front(), Weights.back());
  }
}

/// Keep halving the weights until all can fit in uint32_t.
static void FitWeights(MutableArrayRef<uint64_t> Weights) {
  uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
  if (Max > UINT_MAX) {
    unsigned Offset = 32 - countLeadingZeros(Max);
    for (uint64_t &I : Weights)
      I >>= Offset;
  }
}

/// The specified terminator is a value equality comparison instruction
/// (either a switch or a branch on "X == c").
/// See if any of the predecessors of the terminator block are value comparisons
/// on the same value.  If so, and if safe to do so, fold them together.
bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
                                                         IRBuilder<> &Builder) {
  BasicBlock *BB = TI->getParent();
  Value *CV = isValueEqualityComparison(TI); // CondVal
  assert(CV && "Not a comparison?");
  bool Changed = false;

  SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
  while (!Preds.empty()) {
    BasicBlock *Pred = Preds.pop_back_val();

    // See if the predecessor is a comparison with the same value.
    TerminatorInst *PTI = Pred->getTerminator();
    Value *PCV = isValueEqualityComparison(PTI); // PredCondVal

    if (PCV == CV && TI != PTI) {
      SmallSetVector<BasicBlock*, 4> FailBlocks;
      if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
        for (auto *Succ : FailBlocks) {
          if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
            return false;
        }
      }

      // Figure out which 'cases' to copy from SI to PSI.
      std::vector<ValueEqualityComparisonCase> BBCases;
      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);

      std::vector<ValueEqualityComparisonCase> PredCases;
      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);

      // Based on whether the default edge from PTI goes to BB or not, fill in
      // PredCases and PredDefault with the new switch cases we would like to
      // build.
      SmallVector<BasicBlock *, 8> NewSuccessors;

      // Update the branch weight metadata along the way
      SmallVector<uint64_t, 8> Weights;
      bool PredHasWeights = HasBranchWeights(PTI);
      bool SuccHasWeights = HasBranchWeights(TI);

      if (PredHasWeights) {
        GetBranchWeights(PTI, Weights);
        // branch-weight metadata is inconsistent here.
        if (Weights.size() != 1 + PredCases.size())
          PredHasWeights = SuccHasWeights = false;
      } else if (SuccHasWeights)
        // If there are no predecessor weights but there are successor weights,
        // populate Weights with 1, which will later be scaled to the sum of
        // successor's weights
        Weights.assign(1 + PredCases.size(), 1);

      SmallVector<uint64_t, 8> SuccWeights;
      if (SuccHasWeights) {
        GetBranchWeights(TI, SuccWeights);
        // branch-weight metadata is inconsistent here.
        if (SuccWeights.size() != 1 + BBCases.size())
          PredHasWeights = SuccHasWeights = false;
      } else if (PredHasWeights)
        SuccWeights.assign(1 + BBCases.size(), 1);

      if (PredDefault == BB) {
        // If this is the default destination from PTI, only the edges in TI
        // that don't occur in PTI, or that branch to BB will be activated.
        std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
          if (PredCases[i].Dest != BB)
            PTIHandled.insert(PredCases[i].Value);
          else {
            // The default destination is BB, we don't need explicit targets.
            std::swap(PredCases[i], PredCases.back());

            if (PredHasWeights || SuccHasWeights) {
              // Increase weight for the default case.
              Weights[0] += Weights[i + 1];
              std::swap(Weights[i + 1], Weights.back());
              Weights.pop_back();
            }

            PredCases.pop_back();
            --i;
            --e;
          }

        // Reconstruct the new switch statement we will be building.
        if (PredDefault != BBDefault) {
          PredDefault->removePredecessor(Pred);
          PredDefault = BBDefault;
          NewSuccessors.push_back(BBDefault);
        }

        unsigned CasesFromPred = Weights.size();
        uint64_t ValidTotalSuccWeight = 0;
        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
          if (!PTIHandled.count(BBCases[i].Value) &&
              BBCases[i].Dest != BBDefault) {
            PredCases.push_back(BBCases[i]);
            NewSuccessors.push_back(BBCases[i].Dest);
            if (SuccHasWeights || PredHasWeights) {
              // The default weight is at index 0, so weight for the ith case
              // should be at index i+1. Scale the cases from successor by
              // PredDefaultWeight (Weights[0]).
              Weights.push_back(Weights[0] * SuccWeights[i + 1]);
              ValidTotalSuccWeight += SuccWeights[i + 1];
            }
          }

        if (SuccHasWeights || PredHasWeights) {
          ValidTotalSuccWeight += SuccWeights[0];
          // Scale the cases from predecessor by ValidTotalSuccWeight.
          for (unsigned i = 1; i < CasesFromPred; ++i)
            Weights[i] *= ValidTotalSuccWeight;
          // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
          Weights[0] *= SuccWeights[0];
        }
      } else {
        // If this is not the default destination from PSI, only the edges
        // in SI that occur in PSI with a destination of BB will be
        // activated.
        std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
        std::map<ConstantInt *, uint64_t> WeightsForHandled;
        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
          if (PredCases[i].Dest == BB) {
            PTIHandled.insert(PredCases[i].Value);

            if (PredHasWeights || SuccHasWeights) {
              WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
              std::swap(Weights[i + 1], Weights.back());
              Weights.pop_back();
            }

            std::swap(PredCases[i], PredCases.back());
            PredCases.pop_back();
            --i;
            --e;
          }

        // Okay, now we know which constants were sent to BB from the
        // predecessor.  Figure out where they will all go now.
        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
          if (PTIHandled.count(BBCases[i].Value)) {
            // If this is one we are capable of getting...
            if (PredHasWeights || SuccHasWeights)
              Weights.push_back(WeightsForHandled[BBCases[i].Value]);
            PredCases.push_back(BBCases[i]);
            NewSuccessors.push_back(BBCases[i].Dest);
            PTIHandled.erase(
                BBCases[i].Value); // This constant is taken care of
          }

        // If there are any constants vectored to BB that TI doesn't handle,
        // they must go to the default destination of TI.
        for (ConstantInt *I : PTIHandled) {
          if (PredHasWeights || SuccHasWeights)
            Weights.push_back(WeightsForHandled[I]);
          PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
          NewSuccessors.push_back(BBDefault);
        }
      }

      // Okay, at this point, we know which new successor Pred will get.  Make
      // sure we update the number of entries in the PHI nodes for these
      // successors.
      for (BasicBlock *NewSuccessor : NewSuccessors)
        AddPredecessorToBlock(NewSuccessor, Pred, BB);

      Builder.SetInsertPoint(PTI);
      // Convert pointer to int before we switch.
      if (CV->getType()->isPointerTy()) {
        CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
                                    "magicptr");
      }

      // Now that the successors are updated, create the new Switch instruction.
      SwitchInst *NewSI =
          Builder.CreateSwitch(CV, PredDefault, PredCases.size());
      NewSI->setDebugLoc(PTI->getDebugLoc());
      for (ValueEqualityComparisonCase &V : PredCases)
        NewSI->addCase(V.Value, V.Dest);

      if (PredHasWeights || SuccHasWeights) {
        // Halve the weights if any of them cannot fit in an uint32_t
        FitWeights(Weights);

        SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());

        NewSI->setMetadata(
            LLVMContext::MD_prof,
            MDBuilder(BB->getContext()).createBranchWeights(MDWeights));
      }

      EraseTerminatorInstAndDCECond(PTI);

      // Okay, last check.  If BB is still a successor of PSI, then we must
      // have an infinite loop case.  If so, add an infinitely looping block
      // to handle the case to preserve the behavior of the code.
      BasicBlock *InfLoopBlock = nullptr;
      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
        if (NewSI->getSuccessor(i) == BB) {
          if (!InfLoopBlock) {
            // Insert it at the end of the function, because it's either code,
            // or it won't matter if it's hot. :)
            InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
                                              BB->getParent());
            BranchInst::Create(InfLoopBlock, InfLoopBlock);
          }
          NewSI->setSuccessor(i, InfLoopBlock);
        }

      Changed = true;
    }
  }
  return Changed;
}

// If we would need to insert a select that uses the value of this invoke
// (comments in HoistThenElseCodeToIf explain why we would need to do this), we
// can't hoist the invoke, as there is nowhere to put the select in this case.
static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
                                Instruction *I1, Instruction *I2) {
  for (BasicBlock *Succ : successors(BB1)) {
    PHINode *PN;
    for (BasicBlock::iterator BBI = Succ->begin();
         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
      Value *BB1V = PN->getIncomingValueForBlock(BB1);
      Value *BB2V = PN->getIncomingValueForBlock(BB2);
      if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
        return false;
      }
    }
  }
  return true;
}

static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);

/// Given a conditional branch that goes to BB1 and BB2, hoist any common code
/// in the two blocks up into the branch block. The caller of this function
/// guarantees that BI's block dominates BB1 and BB2.
static bool HoistThenElseCodeToIf(BranchInst *BI,
                                  const TargetTransformInfo &TTI) {
  // This does very trivial matching, with limited scanning, to find identical
  // instructions in the two blocks.  In particular, we don't want to get into
  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
  // such, we currently just scan for obviously identical instructions in an
  // identical order.
  BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
  BasicBlock *BB2 = BI->getSuccessor(1); // The false destination

  BasicBlock::iterator BB1_Itr = BB1->begin();
  BasicBlock::iterator BB2_Itr = BB2->begin();

  Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
  // Skip debug info if it is not identical.
  DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
  DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
    while (isa<DbgInfoIntrinsic>(I1))
      I1 = &*BB1_Itr++;
    while (isa<DbgInfoIntrinsic>(I2))
      I2 = &*BB2_Itr++;
  }
  if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
    return false;

  BasicBlock *BIParent = BI->getParent();

  bool Changed = false;
  do {
    // If we are hoisting the terminator instruction, don't move one (making a
    // broken BB), instead clone it, and remove BI.
    if (isa<TerminatorInst>(I1))
      goto HoistTerminator;

    if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
      return Changed;

    // For a normal instruction, we just move one to right before the branch,
    // then replace all uses of the other with the first.  Finally, we remove
    // the now redundant second instruction.
    BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
    if (!I2->use_empty())
      I2->replaceAllUsesWith(I1);
    I1->andIRFlags(I2);
    unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
                           LLVMContext::MD_range,
                           LLVMContext::MD_fpmath,
                           LLVMContext::MD_invariant_load,
                           LLVMContext::MD_nonnull,
                           LLVMContext::MD_invariant_group,
                           LLVMContext::MD_align,
                           LLVMContext::MD_dereferenceable,
                           LLVMContext::MD_dereferenceable_or_null,
                           LLVMContext::MD_mem_parallel_loop_access};
    combineMetadata(I1, I2, KnownIDs);

    // I1 and I2 are being combined into a single instruction.  Its debug
    // location is the merged locations of the original instructions.
    I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());

    I2->eraseFromParent();
    Changed = true;

    I1 = &*BB1_Itr++;
    I2 = &*BB2_Itr++;
    // Skip debug info if it is not identical.
    DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
    DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
    if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
      while (isa<DbgInfoIntrinsic>(I1))
        I1 = &*BB1_Itr++;
      while (isa<DbgInfoIntrinsic>(I2))
        I2 = &*BB2_Itr++;
    }
  } while (I1->isIdenticalToWhenDefined(I2));

  return true;

HoistTerminator:
  // It may not be possible to hoist an invoke.
  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
    return Changed;

  for (BasicBlock *Succ : successors(BB1)) {
    PHINode *PN;
    for (BasicBlock::iterator BBI = Succ->begin();
         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
      Value *BB1V = PN->getIncomingValueForBlock(BB1);
      Value *BB2V = PN->getIncomingValueForBlock(BB2);
      if (BB1V == BB2V)
        continue;

      // Check for passingValueIsAlwaysUndefined here because we would rather
      // eliminate undefined control flow then converting it to a select.
      if (passingValueIsAlwaysUndefined(BB1V, PN) ||
          passingValueIsAlwaysUndefined(BB2V, PN))
        return Changed;

      if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
        return Changed;
      if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
        return Changed;
    }
  }

  // Okay, it is safe to hoist the terminator.
  Instruction *NT = I1->clone();
  BIParent->getInstList().insert(BI->getIterator(), NT);
  if (!NT->getType()->isVoidTy()) {
    I1->replaceAllUsesWith(NT);
    I2->replaceAllUsesWith(NT);
    NT->takeName(I1);
  }

  IRBuilder<NoFolder> Builder(NT);
  // Hoisting one of the terminators from our successor is a great thing.
  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
  // nodes, so we insert select instruction to compute the final result.
  std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
  for (BasicBlock *Succ : successors(BB1)) {
    PHINode *PN;
    for (BasicBlock::iterator BBI = Succ->begin();
         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
      Value *BB1V = PN->getIncomingValueForBlock(BB1);
      Value *BB2V = PN->getIncomingValueForBlock(BB2);
      if (BB1V == BB2V)
        continue;

      // These values do not agree.  Insert a select instruction before NT
      // that determines the right value.
      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
      if (!SI)
        SI = cast<SelectInst>(
            Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
                                 BB1V->getName() + "." + BB2V->getName(), BI));

      // Make the PHI node use the select for all incoming values for BB1/BB2
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
          PN->setIncomingValue(i, SI);
    }
  }

  // Update any PHI nodes in our new successors.
  for (BasicBlock *Succ : successors(BB1))
    AddPredecessorToBlock(Succ, BIParent, BB1);

  EraseTerminatorInstAndDCECond(BI);
  return true;
}

// All instructions in Insts belong to different blocks that all unconditionally
// branch to a common successor. Analyze each instruction and return true if it
// would be possible to sink them into their successor, creating one common
// instruction instead. For every value that would be required to be provided by
// PHI node (because an operand varies in each input block), add to PHIOperands.
static bool canSinkInstructions(
    ArrayRef<Instruction *> Insts,
    DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
  // Prune out obviously bad instructions to move. Any non-store instruction
  // must have exactly one use, and we check later that use is by a single,
  // common PHI instruction in the successor.
  for (auto *I : Insts) {
    // These instructions may change or break semantics if moved.
    if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
        I->getType()->isTokenTy())
      return false;

    // Conservatively return false if I is an inline-asm instruction. Sinking
    // and merging inline-asm instructions can potentially create arguments
    // that cannot satisfy the inline-asm constraints.
    if (const auto *C = dyn_cast<CallInst>(I))
      if (C->isInlineAsm())
        return false;

    // Everything must have only one use too, apart from stores which
    // have no uses.
    if (!isa<StoreInst>(I) && !I->hasOneUse())
      return false;
  }

  const Instruction *I0 = Insts.front();
  for (auto *I : Insts)
    if (!I->isSameOperationAs(I0))
      return false;

  // All instructions in Insts are known to be the same opcode. If they aren't
  // stores, check the only user of each is a PHI or in the same block as the
  // instruction, because if a user is in the same block as an instruction
  // we're contemplating sinking, it must already be determined to be sinkable.
  if (!isa<StoreInst>(I0)) {
    auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
    auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
    if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
          auto *U = cast<Instruction>(*I->user_begin());
          return (PNUse &&
                  PNUse->getParent() == Succ &&
                  PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
                 U->getParent() == I->getParent();
        }))
      return false;
  }

  // Because SROA can't handle speculating stores of selects, try not
  // to sink loads or stores of allocas when we'd have to create a PHI for
  // the address operand. Also, because it is likely that loads or stores
  // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
  // This can cause code churn which can have unintended consequences down
  // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
  // FIXME: This is a workaround for a deficiency in SROA - see
  // https://llvm.org/bugs/show_bug.cgi?id=30188
  if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
        return isa<AllocaInst>(I->getOperand(1));
      }))
    return false;
  if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
        return isa<AllocaInst>(I->getOperand(0));
      }))
    return false;

  for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
    if (I0->getOperand(OI)->getType()->isTokenTy())
      // Don't touch any operand of token type.
      return false;

    auto SameAsI0 = [&I0, OI](const Instruction *I) {
      assert(I->getNumOperands() == I0->getNumOperands());
      return I->getOperand(OI) == I0->getOperand(OI);
    };
    if (!all_of(Insts, SameAsI0)) {
      if (!canReplaceOperandWithVariable(I0, OI))
        // We can't create a PHI from this GEP.
        return false;
      // Don't create indirect calls! The called value is the final operand.
      if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
        // FIXME: if the call was *already* indirect, we should do this.
        return false;
      }
      for (auto *I : Insts)
        PHIOperands[I].push_back(I->getOperand(OI));
    }
  }
  return true;
}

// Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
// instruction of every block in Blocks to their common successor, commoning
// into one instruction.
static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
  auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);

  // canSinkLastInstruction returning true guarantees that every block has at
  // least one non-terminator instruction.
  SmallVector<Instruction*,4> Insts;
  for (auto *BB : Blocks) {
    Instruction *I = BB->getTerminator();
    do {
      I = I->getPrevNode();
    } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
    if (!isa<DbgInfoIntrinsic>(I))
      Insts.push_back(I);
  }

  // The only checking we need to do now is that all users of all instructions
  // are the same PHI node. canSinkLastInstruction should have checked this but
  // it is slightly over-aggressive - it gets confused by commutative instructions
  // so double-check it here.
  Instruction *I0 = Insts.front();
  if (!isa<StoreInst>(I0)) {
    auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
    if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
          auto *U = cast<Instruction>(*I->user_begin());
          return U == PNUse;
        }))
      return false;
  }

  // We don't need to do any more checking here; canSinkLastInstruction should
  // have done it all for us.
  SmallVector<Value*, 4> NewOperands;
  for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
    // This check is different to that in canSinkLastInstruction. There, we
    // cared about the global view once simplifycfg (and instcombine) have
    // completed - it takes into account PHIs that become trivially
    // simplifiable.  However here we need a more local view; if an operand
    // differs we create a PHI and rely on instcombine to clean up the very
    // small mess we may make.
    bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
      return I->getOperand(O) != I0->getOperand(O);
    });
    if (!NeedPHI) {
      NewOperands.push_back(I0->getOperand(O));
      continue;
    }

    // Create a new PHI in the successor block and populate it.
    auto *Op = I0->getOperand(O);
    assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
    auto *PN = PHINode::Create(Op->getType(), Insts.size(),
                               Op->getName() + ".sink", &BBEnd->front());
    for (auto *I : Insts)
      PN->addIncoming(I->getOperand(O), I->getParent());
    NewOperands.push_back(PN);
  }

  // Arbitrarily use I0 as the new "common" instruction; remap its operands
  // and move it to the start of the successor block.
  for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
    I0->getOperandUse(O).set(NewOperands[O]);
  I0->moveBefore(&*BBEnd->getFirstInsertionPt());

  // Update metadata and IR flags, and merge debug locations.
  for (auto *I : Insts)
    if (I != I0) {
      // The debug location for the "common" instruction is the merged locations
      // of all the commoned instructions.  We start with the original location
      // of the "common" instruction and iteratively merge each location in the
      // loop below.
      // This is an N-way merge, which will be inefficient if I0 is a CallInst.
      // However, as N-way merge for CallInst is rare, so we use simplified API
      // instead of using complex API for N-way merge.
      I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
      combineMetadataForCSE(I0, I);
      I0->andIRFlags(I);
    }

  if (!isa<StoreInst>(I0)) {
    // canSinkLastInstruction checked that all instructions were used by
    // one and only one PHI node. Find that now, RAUW it to our common
    // instruction and nuke it.
    assert(I0->hasOneUse());
    auto *PN = cast<PHINode>(*I0->user_begin());
    PN->replaceAllUsesWith(I0);
    PN->eraseFromParent();
  }

  // Finally nuke all instructions apart from the common instruction.
  for (auto *I : Insts)
    if (I != I0)
      I->eraseFromParent();

  return true;
}

namespace {

  // LockstepReverseIterator - Iterates through instructions
  // in a set of blocks in reverse order from the first non-terminator.
  // For example (assume all blocks have size n):
  //   LockstepReverseIterator I([B1, B2, B3]);
  //   *I-- = [B1[n], B2[n], B3[n]];
  //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
  //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
  //   ...
  class LockstepReverseIterator {
    ArrayRef<BasicBlock*> Blocks;
    SmallVector<Instruction*,4> Insts;
    bool Fail;

  public:
    LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
      reset();
    }

    void reset() {
      Fail = false;
      Insts.clear();
      for (auto *BB : Blocks) {
        Instruction *Inst = BB->getTerminator();
        for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
          Inst = Inst->getPrevNode();
        if (!Inst) {
          // Block wasn't big enough.
          Fail = true;
          return;
        }
        Insts.push_back(Inst);
      }
    }

    bool isValid() const {
      return !Fail;
    }

    void operator--() {
      if (Fail)
        return;
      for (auto *&Inst : Insts) {
        for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
          Inst = Inst->getPrevNode();
        // Already at beginning of block.
        if (!Inst) {
          Fail = true;
          return;
        }
      }
    }

    ArrayRef<Instruction*> operator * () const {
      return Insts;
    }
  };

} // end anonymous namespace

/// Given an unconditional branch that goes to BBEnd,
/// check whether BBEnd has only two predecessors and the other predecessor
/// ends with an unconditional branch. If it is true, sink any common code
/// in the two predecessors to BBEnd.
static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
  assert(BI1->isUnconditional());
  BasicBlock *BBEnd = BI1->getSuccessor(0);

  // We support two situations:
  //   (1) all incoming arcs are unconditional
  //   (2) one incoming arc is conditional
  //
  // (2) is very common in switch defaults and
  // else-if patterns;
  //
  //   if (a) f(1);
  //   else if (b) f(2);
  //
  // produces:
  //
  //       [if]
  //      /    \
  //    [f(1)] [if]
  //      |     | \
  //      |     |  |
  //      |  [f(2)]|
  //       \    | /
  //        [ end ]
  //
  // [end] has two unconditional predecessor arcs and one conditional. The
  // conditional refers to the implicit empty 'else' arc. This conditional
  // arc can also be caused by an empty default block in a switch.
  //
  // In this case, we attempt to sink code from all *unconditional* arcs.
  // If we can sink instructions from these arcs (determined during the scan
  // phase below) we insert a common successor for all unconditional arcs and
  // connect that to [end], to enable sinking:
  //
  //       [if]
  //      /    \
  //    [x(1)] [if]
  //      |     | \
  //      |     |  \
  //      |  [x(2)] |
  //       \   /    |
  //   [sink.split] |
  //         \     /
  //         [ end ]
  //
  SmallVector<BasicBlock*,4> UnconditionalPreds;
  Instruction *Cond = nullptr;
  for (auto *B : predecessors(BBEnd)) {
    auto *T = B->getTerminator();
    if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
      UnconditionalPreds.push_back(B);
    else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
      Cond = T;
    else
      return false;
  }
  if (UnconditionalPreds.size() < 2)
    return false;

  bool Changed = false;
  // We take a two-step approach to tail sinking. First we scan from the end of
  // each block upwards in lockstep. If the n'th instruction from the end of each
  // block can be sunk, those instructions are added to ValuesToSink and we
  // carry on. If we can sink an instruction but need to PHI-merge some operands
  // (because they're not identical in each instruction) we add these to
  // PHIOperands.
  unsigned ScanIdx = 0;
  SmallPtrSet<Value*,4> InstructionsToSink;
  DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
  LockstepReverseIterator LRI(UnconditionalPreds);
  while (LRI.isValid() &&
         canSinkInstructions(*LRI, PHIOperands)) {
    DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n");
    InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
    ++ScanIdx;
    --LRI;
  }

  auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
    unsigned NumPHIdValues = 0;
    for (auto *I : *LRI)
      for (auto *V : PHIOperands[I])
        if (InstructionsToSink.count(V) == 0)
          ++NumPHIdValues;
    DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
    unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
    if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
        NumPHIInsts++;

    return NumPHIInsts <= 1;
  };

  if (ScanIdx > 0 && Cond) {
    // Check if we would actually sink anything first! This mutates the CFG and
    // adds an extra block. The goal in doing this is to allow instructions that
    // couldn't be sunk before to be sunk - obviously, speculatable instructions
    // (such as trunc, add) can be sunk and predicated already. So we check that
    // we're going to sink at least one non-speculatable instruction.
    LRI.reset();
    unsigned Idx = 0;
    bool Profitable = false;
    while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
      if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
        Profitable = true;
        break;
      }
      --LRI;
      ++Idx;
    }
    if (!Profitable)
      return false;

    DEBUG(dbgs() << "SINK: Splitting edge\n");
    // We have a conditional edge and we're going to sink some instructions.
    // Insert a new block postdominating all blocks we're going to sink from.
    if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds,
                                ".sink.split"))
      // Edges couldn't be split.
      return false;
    Changed = true;
  }

  // Now that we've analyzed all potential sinking candidates, perform the
  // actual sink. We iteratively sink the last non-terminator of the source
  // blocks into their common successor unless doing so would require too
  // many PHI instructions to be generated (currently only one PHI is allowed
  // per sunk instruction).
  //
  // We can use InstructionsToSink to discount values needing PHI-merging that will
  // actually be sunk in a later iteration. This allows us to be more
  // aggressive in what we sink. This does allow a false positive where we
  // sink presuming a later value will also be sunk, but stop half way through
  // and never actually sink it which means we produce more PHIs than intended.
  // This is unlikely in practice though.
  for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
    DEBUG(dbgs() << "SINK: Sink: "
                 << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
                 << "\n");

    // Because we've sunk every instruction in turn, the current instruction to
    // sink is always at index 0.
    LRI.reset();
    if (!ProfitableToSinkInstruction(LRI)) {
      // Too many PHIs would be created.
      DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
      break;
    }

    if (!sinkLastInstruction(UnconditionalPreds))
      return Changed;
    NumSinkCommons++;
    Changed = true;
  }
  return Changed;
}

/// \brief Determine if we can hoist sink a sole store instruction out of a
/// conditional block.
///
/// We are looking for code like the following:
///   BrBB:
///     store i32 %add, i32* %arrayidx2
///     ... // No other stores or function calls (we could be calling a memory
///     ... // function).
///     %cmp = icmp ult %x, %y
///     br i1 %cmp, label %EndBB, label %ThenBB
///   ThenBB:
///     store i32 %add5, i32* %arrayidx2
///     br label EndBB
///   EndBB:
///     ...
///   We are going to transform this into:
///   BrBB:
///     store i32 %add, i32* %arrayidx2
///     ... //
///     %cmp = icmp ult %x, %y
///     %add.add5 = select i1 %cmp, i32 %add, %add5
///     store i32 %add.add5, i32* %arrayidx2
///     ...
///
/// \return The pointer to the value of the previous store if the store can be
///         hoisted into the predecessor block. 0 otherwise.
static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
                                     BasicBlock *StoreBB, BasicBlock *EndBB) {
  StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
  if (!StoreToHoist)
    return nullptr;

  // Volatile or atomic.
  if (!StoreToHoist->isSimple())
    return nullptr;

  Value *StorePtr = StoreToHoist->getPointerOperand();

  // Look for a store to the same pointer in BrBB.
  unsigned MaxNumInstToLookAt = 9;
  for (Instruction &CurI : reverse(*BrBB)) {
    if (!MaxNumInstToLookAt)
      break;
    // Skip debug info.
    if (isa<DbgInfoIntrinsic>(CurI))
      continue;
    --MaxNumInstToLookAt;

    // Could be calling an instruction that affects memory like free().
    if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
      return nullptr;

    if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
      // Found the previous store make sure it stores to the same location.
      if (SI->getPointerOperand() == StorePtr)
        // Found the previous store, return its value operand.
        return SI->getValueOperand();
      return nullptr; // Unknown store.
    }
  }

  return nullptr;
}

/// \brief Speculate a conditional basic block flattening the CFG.
///
/// Note that this is a very risky transform currently. Speculating
/// instructions like this is most often not desirable. Instead, there is an MI
/// pass which can do it with full awareness of the resource constraints.
/// However, some cases are "obvious" and we should do directly. An example of
/// this is speculating a single, reasonably cheap instruction.
///
/// There is only one distinct advantage to flattening the CFG at the IR level:
/// it makes very common but simplistic optimizations such as are common in
/// instcombine and the DAG combiner more powerful by removing CFG edges and
/// modeling their effects with easier to reason about SSA value graphs.
///
///
/// An illustration of this transform is turning this IR:
/// \code
///   BB:
///     %cmp = icmp ult %x, %y
///     br i1 %cmp, label %EndBB, label %ThenBB
///   ThenBB:
///     %sub = sub %x, %y
///     br label BB2
///   EndBB:
///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
///     ...
/// \endcode
///
/// Into this IR:
/// \code
///   BB:
///     %cmp = icmp ult %x, %y
///     %sub = sub %x, %y
///     %cond = select i1 %cmp, 0, %sub
///     ...
/// \endcode
///
/// \returns true if the conditional block is removed.
static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
                                   const TargetTransformInfo &TTI) {
  // Be conservative for now. FP select instruction can often be expensive.
  Value *BrCond = BI->getCondition();
  if (isa<FCmpInst>(BrCond))
    return false;

  BasicBlock *BB = BI->getParent();
  BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);

  // If ThenBB is actually on the false edge of the conditional branch, remember
  // to swap the select operands later.
  bool Invert = false;
  if (ThenBB != BI->getSuccessor(0)) {
    assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
    Invert = true;
  }
  assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");

  // Keep a count of how many times instructions are used within CondBB when
  // they are candidates for sinking into CondBB. Specifically:
  // - They are defined in BB, and
  // - They have no side effects, and
  // - All of their uses are in CondBB.
  SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;

  SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;

  unsigned SpeculationCost = 0;
  Value *SpeculatedStoreValue = nullptr;
  StoreInst *SpeculatedStore = nullptr;
  for (BasicBlock::iterator BBI = ThenBB->begin(),
                            BBE = std::prev(ThenBB->end());
       BBI != BBE; ++BBI) {
    Instruction *I = &*BBI;
    // Skip debug info.
    if (isa<DbgInfoIntrinsic>(I)) {
      SpeculatedDbgIntrinsics.push_back(I);
      continue;
    }

    // Only speculatively execute a single instruction (not counting the
    // terminator) for now.
    ++SpeculationCost;
    if (SpeculationCost > 1)
      return false;

    // Don't hoist the instruction if it's unsafe or expensive.
    if (!isSafeToSpeculativelyExecute(I) &&
        !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
                                  I, BB, ThenBB, EndBB))))
      return false;
    if (!SpeculatedStoreValue &&
        ComputeSpeculationCost(I, TTI) >
            PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
      return false;

    // Store the store speculation candidate.
    if (SpeculatedStoreValue)
      SpeculatedStore = cast<StoreInst>(I);

    // Do not hoist the instruction if any of its operands are defined but not
    // used in BB. The transformation will prevent the operand from
    // being sunk into the use block.
    for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
      Instruction *OpI = dyn_cast<Instruction>(*i);
      if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
        continue; // Not a candidate for sinking.

      ++SinkCandidateUseCounts[OpI];
    }
  }

  // Consider any sink candidates which are only used in CondBB as costs for
  // speculation. Note, while we iterate over a DenseMap here, we are summing
  // and so iteration order isn't significant.
  for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
           I = SinkCandidateUseCounts.begin(),
           E = SinkCandidateUseCounts.end();
       I != E; ++I)
    if (I->first->getNumUses() == I->second) {
      ++SpeculationCost;
      if (SpeculationCost > 1)
        return false;
    }

  // Check that the PHI nodes can be converted to selects.
  bool HaveRewritablePHIs = false;
  for (BasicBlock::iterator I = EndBB->begin();
       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    Value *OrigV = PN->getIncomingValueForBlock(BB);
    Value *ThenV = PN->getIncomingValueForBlock(ThenBB);

    // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
    // Skip PHIs which are trivial.
    if (ThenV == OrigV)
      continue;

    // Don't convert to selects if we could remove undefined behavior instead.
    if (passingValueIsAlwaysUndefined(OrigV, PN) ||
        passingValueIsAlwaysUndefined(ThenV, PN))
      return false;

    HaveRewritablePHIs = true;
    ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
    ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
    if (!OrigCE && !ThenCE)
      continue; // Known safe and cheap.

    if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
        (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
      return false;
    unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
    unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
    unsigned MaxCost =
        2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
    if (OrigCost + ThenCost > MaxCost)
      return false;

    // Account for the cost of an unfolded ConstantExpr which could end up
    // getting expanded into Instructions.
    // FIXME: This doesn't account for how many operations are combined in the
    // constant expression.
    ++SpeculationCost;
    if (SpeculationCost > 1)
      return false;
  }

  // If there are no PHIs to process, bail early. This helps ensure idempotence
  // as well.
  if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
    return false;

  // If we get here, we can hoist the instruction and if-convert.
  DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);

  // Insert a select of the value of the speculated store.
  if (SpeculatedStoreValue) {
    IRBuilder<NoFolder> Builder(BI);
    Value *TrueV = SpeculatedStore->getValueOperand();
    Value *FalseV = SpeculatedStoreValue;
    if (Invert)
      std::swap(TrueV, FalseV);
    Value *S = Builder.CreateSelect(
        BrCond, TrueV, FalseV, "spec.store.select", BI);
    SpeculatedStore->setOperand(0, S);
    SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
                                         SpeculatedStore->getDebugLoc());
  }

  // Metadata can be dependent on the condition we are hoisting above.
  // Conservatively strip all metadata on the instruction.
  for (auto &I : *ThenBB)
    I.dropUnknownNonDebugMetadata();

  // Hoist the instructions.
  BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
                           ThenBB->begin(), std::prev(ThenBB->end()));

  // Insert selects and rewrite the PHI operands.
  IRBuilder<NoFolder> Builder(BI);
  for (BasicBlock::iterator I = EndBB->begin();
       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    unsigned OrigI = PN->getBasicBlockIndex(BB);
    unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
    Value *OrigV = PN->getIncomingValue(OrigI);
    Value *ThenV = PN->getIncomingValue(ThenI);

    // Skip PHIs which are trivial.
    if (OrigV == ThenV)
      continue;

    // Create a select whose true value is the speculatively executed value and
    // false value is the preexisting value. Swap them if the branch
    // destinations were inverted.
    Value *TrueV = ThenV, *FalseV = OrigV;
    if (Invert)
      std::swap(TrueV, FalseV);
    Value *V = Builder.CreateSelect(
        BrCond, TrueV, FalseV, "spec.select", BI);
    PN->setIncomingValue(OrigI, V);
    PN->setIncomingValue(ThenI, V);
  }

  // Remove speculated dbg intrinsics.
  // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
  // dbg value for the different flows and inserting it after the select.
  for (Instruction *I : SpeculatedDbgIntrinsics)
    I->eraseFromParent();

  ++NumSpeculations;
  return true;
}

/// Return true if we can thread a branch across this block.
static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
  unsigned Size = 0;

  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
    if (isa<DbgInfoIntrinsic>(BBI))
      continue;
    if (Size > 10)
      return false; // Don't clone large BB's.
    ++Size;

    // We can only support instructions that do not define values that are
    // live outside of the current basic block.
    for (User *U : BBI->users()) {
      Instruction *UI = cast<Instruction>(U);
      if (UI->getParent() != BB || isa<PHINode>(UI))
        return false;
    }

    // Looks ok, continue checking.
  }

  return true;
}

/// If we have a conditional branch on a PHI node value that is defined in the
/// same block as the branch and if any PHI entries are constants, thread edges
/// corresponding to that entry to be branches to their ultimate destination.
static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
                                AssumptionCache *AC) {
  BasicBlock *BB = BI->getParent();
  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
  // NOTE: we currently cannot transform this case if the PHI node is used
  // outside of the block.
  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
    return false;

  // Degenerate case of a single entry PHI.
  if (PN->getNumIncomingValues() == 1) {
    FoldSingleEntryPHINodes(PN->getParent());
    return true;
  }

  // Now we know that this block has multiple preds and two succs.
  if (!BlockIsSimpleEnoughToThreadThrough(BB))
    return false;

  // Can't fold blocks that contain noduplicate or convergent calls.
  if (any_of(*BB, [](const Instruction &I) {
        const CallInst *CI = dyn_cast<CallInst>(&I);
        return CI && (CI->cannotDuplicate() || CI->isConvergent());
      }))
    return false;

  // Okay, this is a simple enough basic block.  See if any phi values are
  // constants.
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
    if (!CB || !CB->getType()->isIntegerTy(1))
      continue;

    // Okay, we now know that all edges from PredBB should be revectored to
    // branch to RealDest.
    BasicBlock *PredBB = PN->getIncomingBlock(i);
    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());

    if (RealDest == BB)
      continue; // Skip self loops.
    // Skip if the predecessor's terminator is an indirect branch.
    if (isa<IndirectBrInst>(PredBB->getTerminator()))
      continue;

    // The dest block might have PHI nodes, other predecessors and other
    // difficult cases.  Instead of being smart about this, just insert a new
    // block that jumps to the destination block, effectively splitting
    // the edge we are about to create.
    BasicBlock *EdgeBB =
        BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
                           RealDest->getParent(), RealDest);
    BranchInst::Create(RealDest, EdgeBB);

    // Update PHI nodes.
    AddPredecessorToBlock(RealDest, EdgeBB, BB);

    // BB may have instructions that are being threaded over.  Clone these
    // instructions into EdgeBB.  We know that there will be no uses of the
    // cloned instructions outside of EdgeBB.
    BasicBlock::iterator InsertPt = EdgeBB->begin();
    DenseMap<Value *, Value *> TranslateMap; // Track translated values.
    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
        continue;
      }
      // Clone the instruction.
      Instruction *N = BBI->clone();
      if (BBI->hasName())
        N->setName(BBI->getName() + ".c");

      // Update operands due to translation.
      for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
        DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
        if (PI != TranslateMap.end())
          *i = PI->second;
      }

      // Check for trivial simplification.
      if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
        if (!BBI->use_empty())
          TranslateMap[&*BBI] = V;
        if (!N->mayHaveSideEffects()) {
          N->deleteValue(); // Instruction folded away, don't need actual inst
          N = nullptr;
        }
      } else {
        if (!BBI->use_empty())
          TranslateMap[&*BBI] = N;
      }
      // Insert the new instruction into its new home.
      if (N)
        EdgeBB->getInstList().insert(InsertPt, N);

      // Register the new instruction with the assumption cache if necessary.
      if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
        if (II->getIntrinsicID() == Intrinsic::assume)
          AC->registerAssumption(II);
    }

    // Loop over all of the edges from PredBB to BB, changing them to branch
    // to EdgeBB instead.
    TerminatorInst *PredBBTI = PredBB->getTerminator();
    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
      if (PredBBTI->getSuccessor(i) == BB) {
        BB->removePredecessor(PredBB);
        PredBBTI->setSuccessor(i, EdgeBB);
      }

    // Recurse, simplifying any other constants.
    return FoldCondBranchOnPHI(BI, DL, AC) | true;
  }

  return false;
}

/// Given a BB that starts with the specified two-entry PHI node,
/// see if we can eliminate it.
static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
                                const DataLayout &DL) {
  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
  // statement", which has a very simple dominance structure.  Basically, we
  // are trying to find the condition that is being branched on, which
  // subsequently causes this merge to happen.  We really want control
  // dependence information for this check, but simplifycfg can't keep it up
  // to date, and this catches most of the cases we care about anyway.
  BasicBlock *BB = PN->getParent();
  BasicBlock *IfTrue, *IfFalse;
  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
  if (!IfCond ||
      // Don't bother if the branch will be constant folded trivially.
      isa<ConstantInt>(IfCond))
    return false;

  // Okay, we found that we can merge this two-entry phi node into a select.
  // Doing so would require us to fold *all* two entry phi nodes in this block.
  // At some point this becomes non-profitable (particularly if the target
  // doesn't support cmov's).  Only do this transformation if there are two or
  // fewer PHI nodes in this block.
  unsigned NumPhis = 0;
  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
    if (NumPhis > 2)
      return false;

  // Loop over the PHI's seeing if we can promote them all to select
  // instructions.  While we are at it, keep track of the instructions
  // that need to be moved to the dominating block.
  SmallPtrSet<Instruction *, 4> AggressiveInsts;
  unsigned MaxCostVal0 = PHINodeFoldingThreshold,
           MaxCostVal1 = PHINodeFoldingThreshold;
  MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
  MaxCostVal1 *= TargetTransformInfo::TCC_Basic;

  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
    PHINode *PN = cast<PHINode>(II++);
    if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
      PN->replaceAllUsesWith(V);
      PN->eraseFromParent();
      continue;
    }

    if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
                             MaxCostVal0, TTI) ||
        !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
                             MaxCostVal1, TTI))
      return false;
  }

  // If we folded the first phi, PN dangles at this point.  Refresh it.  If
  // we ran out of PHIs then we simplified them all.
  PN = dyn_cast<PHINode>(BB->begin());
  if (!PN)
    return true;

  // Don't fold i1 branches on PHIs which contain binary operators.  These can
  // often be turned into switches and other things.
  if (PN->getType()->isIntegerTy(1) &&
      (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
       isa<BinaryOperator>(PN->getIncomingValue(1)) ||
       isa<BinaryOperator>(IfCond)))
    return false;

  // If all PHI nodes are promotable, check to make sure that all instructions
  // in the predecessor blocks can be promoted as well. If not, we won't be able
  // to get rid of the control flow, so it's not worth promoting to select
  // instructions.
  BasicBlock *DomBlock = nullptr;
  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
    IfBlock1 = nullptr;
  } else {
    DomBlock = *pred_begin(IfBlock1);
    for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
         ++I)
      if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
        // This is not an aggressive instruction that we can promote.
        // Because of this, we won't be able to get rid of the control flow, so
        // the xform is not worth it.
        return false;
      }
  }

  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
    IfBlock2 = nullptr;
  } else {
    DomBlock = *pred_begin(IfBlock2);
    for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
         ++I)
      if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
        // This is not an aggressive instruction that we can promote.
        // Because of this, we won't be able to get rid of the control flow, so
        // the xform is not worth it.
        return false;
      }
  }

  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
               << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");

  // If we can still promote the PHI nodes after this gauntlet of tests,
  // do all of the PHI's now.
  Instruction *InsertPt = DomBlock->getTerminator();
  IRBuilder<NoFolder> Builder(InsertPt);

  // Move all 'aggressive' instructions, which are defined in the
  // conditional parts of the if's up to the dominating block.
  if (IfBlock1) {
    for (auto &I : *IfBlock1)
      I.dropUnknownNonDebugMetadata();
    DomBlock->getInstList().splice(InsertPt->getIterator(),
                                   IfBlock1->getInstList(), IfBlock1->begin(),
                                   IfBlock1->getTerminator()->getIterator());
  }
  if (IfBlock2) {
    for (auto &I : *IfBlock2)
      I.dropUnknownNonDebugMetadata();
    DomBlock->getInstList().splice(InsertPt->getIterator(),
                                   IfBlock2->getInstList(), IfBlock2->begin(),
                                   IfBlock2->getTerminator()->getIterator());
  }

  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
    // Change the PHI node into a select instruction.
    Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);

    Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
    PN->replaceAllUsesWith(Sel);
    Sel->takeName(PN);
    PN->eraseFromParent();
  }

  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
  // has been flattened.  Change DomBlock to jump directly to our new block to
  // avoid other simplifycfg's kicking in on the diamond.
  TerminatorInst *OldTI = DomBlock->getTerminator();
  Builder.SetInsertPoint(OldTI);
  Builder.CreateBr(BB);
  OldTI->eraseFromParent();
  return true;
}

/// If we found a conditional branch that goes to two returning blocks,
/// try to merge them together into one return,
/// introducing a select if the return values disagree.
static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
                                           IRBuilder<> &Builder) {
  assert(BI->isConditional() && "Must be a conditional branch");
  BasicBlock *TrueSucc = BI->getSuccessor(0);
  BasicBlock *FalseSucc = BI->getSuccessor(1);
  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());

  // Check to ensure both blocks are empty (just a return) or optionally empty
  // with PHI nodes.  If there are other instructions, merging would cause extra
  // computation on one path or the other.
  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
    return false;
  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
    return false;

  Builder.SetInsertPoint(BI);
  // Okay, we found a branch that is going to two return nodes.  If
  // there is no return value for this function, just change the
  // branch into a return.
  if (FalseRet->getNumOperands() == 0) {
    TrueSucc->removePredecessor(BI->getParent());
    FalseSucc->removePredecessor(BI->getParent());
    Builder.CreateRetVoid();
    EraseTerminatorInstAndDCECond(BI);
    return true;
  }

  // Otherwise, figure out what the true and false return values are
  // so we can insert a new select instruction.
  Value *TrueValue = TrueRet->getReturnValue();
  Value *FalseValue = FalseRet->getReturnValue();

  // Unwrap any PHI nodes in the return blocks.
  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
    if (TVPN->getParent() == TrueSucc)
      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
    if (FVPN->getParent() == FalseSucc)
      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());

  // In order for this transformation to be safe, we must be able to
  // unconditionally execute both operands to the return.  This is
  // normally the case, but we could have a potentially-trapping
  // constant expression that prevents this transformation from being
  // safe.
  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
    if (TCV->canTrap())
      return false;
  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
    if (FCV->canTrap())
      return false;

  // Okay, we collected all the mapped values and checked them for sanity, and
  // defined to really do this transformation.  First, update the CFG.
  TrueSucc->removePredecessor(BI->getParent());
  FalseSucc->removePredecessor(BI->getParent());

  // Insert select instructions where needed.
  Value *BrCond = BI->getCondition();
  if (TrueValue) {
    // Insert a select if the results differ.
    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
    } else if (isa<UndefValue>(TrueValue)) {
      TrueValue = FalseValue;
    } else {
      TrueValue =
          Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
    }
  }

  Value *RI =
      !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);

  (void)RI;

  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
               << "\n  " << *BI << "NewRet = " << *RI
               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);

  EraseTerminatorInstAndDCECond(BI);

  return true;
}

/// Return true if the given instruction is available
/// in its predecessor block. If yes, the instruction will be removed.
static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
  if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
    return false;
  for (Instruction &I : *PB) {
    Instruction *PBI = &I;
    // Check whether Inst and PBI generate the same value.
    if (Inst->isIdenticalTo(PBI)) {
      Inst->replaceAllUsesWith(PBI);
      Inst->eraseFromParent();
      return true;
    }
  }
  return false;
}

/// Return true if either PBI or BI has branch weight available, and store
/// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
/// not have branch weight, use 1:1 as its weight.
static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
                                   uint64_t &PredTrueWeight,
                                   uint64_t &PredFalseWeight,
                                   uint64_t &SuccTrueWeight,
                                   uint64_t &SuccFalseWeight) {
  bool PredHasWeights =
      PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
  bool SuccHasWeights =
      BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
  if (PredHasWeights || SuccHasWeights) {
    if (!PredHasWeights)
      PredTrueWeight = PredFalseWeight = 1;
    if (!SuccHasWeights)
      SuccTrueWeight = SuccFalseWeight = 1;
    return true;
  } else {
    return false;
  }
}

/// If this basic block is simple enough, and if a predecessor branches to us
/// and one of our successors, fold the block into the predecessor and use
/// logical operations to pick the right destination.
bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
  BasicBlock *BB = BI->getParent();

  Instruction *Cond = nullptr;
  if (BI->isConditional())
    Cond = dyn_cast<Instruction>(BI->getCondition());
  else {
    // For unconditional branch, check for a simple CFG pattern, where
    // BB has a single predecessor and BB's successor is also its predecessor's
    // successor. If such pattern exists, check for CSE between BB and its
    // predecessor.
    if (BasicBlock *PB = BB->getSinglePredecessor())
      if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
        if (PBI->isConditional() &&
            (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
             BI->getSuccessor(0) == PBI->getSuccessor(1))) {
          for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
            Instruction *Curr = &*I++;
            if (isa<CmpInst>(Curr)) {
              Cond = Curr;
              break;
            }
            // Quit if we can't remove this instruction.
            if (!checkCSEInPredecessor(Curr, PB))
              return false;
          }
        }

    if (!Cond)
      return false;
  }

  if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
      Cond->getParent() != BB || !Cond->hasOneUse())
    return false;

  // Make sure the instruction after the condition is the cond branch.
  BasicBlock::iterator CondIt = ++Cond->getIterator();

  // Ignore dbg intrinsics.
  while (isa<DbgInfoIntrinsic>(CondIt))
    ++CondIt;

  if (&*CondIt != BI)
    return false;

  // Only allow this transformation if computing the condition doesn't involve
  // too many instructions and these involved instructions can be executed
  // unconditionally. We denote all involved instructions except the condition
  // as "bonus instructions", and only allow this transformation when the
  // number of the bonus instructions does not exceed a certain threshold.
  unsigned NumBonusInsts = 0;
  for (auto I = BB->begin(); Cond != &*I; ++I) {
    // Ignore dbg intrinsics.
    if (isa<DbgInfoIntrinsic>(I))
      continue;
    if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
      return false;
    // I has only one use and can be executed unconditionally.
    Instruction *User = dyn_cast<Instruction>(I->user_back());
    if (User == nullptr || User->getParent() != BB)
      return false;
    // I is used in the same BB. Since BI uses Cond and doesn't have more slots
    // to use any other instruction, User must be an instruction between next(I)
    // and Cond.
    ++NumBonusInsts;
    // Early exits once we reach the limit.
    if (NumBonusInsts > BonusInstThreshold)
      return false;
  }

  // Cond is known to be a compare or binary operator.  Check to make sure that
  // neither operand is a potentially-trapping constant expression.
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
    if (CE->canTrap())
      return false;
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
    if (CE->canTrap())
      return false;

  // Finally, don't infinitely unroll conditional loops.
  BasicBlock *TrueDest = BI->getSuccessor(0);
  BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
  if (TrueDest == BB || FalseDest == BB)
    return false;

  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    BasicBlock *PredBlock = *PI;
    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());

    // Check that we have two conditional branches.  If there is a PHI node in
    // the common successor, verify that the same value flows in from both
    // blocks.
    SmallVector<PHINode *, 4> PHIs;
    if (!PBI || PBI->isUnconditional() ||
        (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
        (!BI->isConditional() &&
         !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
      continue;

    // Determine if the two branches share a common destination.
    Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
    bool InvertPredCond = false;

    if (BI->isConditional()) {
      if (PBI->getSuccessor(0) == TrueDest) {
        Opc = Instruction::Or;
      } else if (PBI->getSuccessor(1) == FalseDest) {
        Opc = Instruction::And;
      } else if (PBI->getSuccessor(0) == FalseDest) {
        Opc = Instruction::And;
        InvertPredCond = true;
      } else if (PBI->getSuccessor(1) == TrueDest) {
        Opc = Instruction::Or;
        InvertPredCond = true;
      } else {
        continue;
      }
    } else {
      if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
        continue;
    }

    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
    IRBuilder<> Builder(PBI);

    // If we need to invert the condition in the pred block to match, do so now.
    if (InvertPredCond) {
      Value *NewCond = PBI->getCondition();

      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
        CmpInst *CI = cast<CmpInst>(NewCond);
        CI->setPredicate(CI->getInversePredicate());
      } else {
        NewCond =
            Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
      }

      PBI->setCondition(NewCond);
      PBI->swapSuccessors();
    }

    // If we have bonus instructions, clone them into the predecessor block.
    // Note that there may be multiple predecessor blocks, so we cannot move
    // bonus instructions to a predecessor block.
    ValueToValueMapTy VMap; // maps original values to cloned values
    // We already make sure Cond is the last instruction before BI. Therefore,
    // all instructions before Cond other than DbgInfoIntrinsic are bonus
    // instructions.
    for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
      if (isa<DbgInfoIntrinsic>(BonusInst))
        continue;
      Instruction *NewBonusInst = BonusInst->clone();
      RemapInstruction(NewBonusInst, VMap,
                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
      VMap[&*BonusInst] = NewBonusInst;

      // If we moved a load, we cannot any longer claim any knowledge about
      // its potential value. The previous information might have been valid
      // only given the branch precondition.
      // For an analogous reason, we must also drop all the metadata whose
      // semantics we don't understand.
      NewBonusInst->dropUnknownNonDebugMetadata();

      PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
      NewBonusInst->takeName(&*BonusInst);
      BonusInst->setName(BonusInst->getName() + ".old");
    }

    // Clone Cond into the predecessor basic block, and or/and the
    // two conditions together.
    Instruction *New = Cond->clone();
    RemapInstruction(New, VMap,
                     RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
    PredBlock->getInstList().insert(PBI->getIterator(), New);
    New->takeName(Cond);
    Cond->setName(New->getName() + ".old");

    if (BI->isConditional()) {
      Instruction *NewCond = cast<Instruction>(
          Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
      PBI->setCondition(NewCond);

      uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
      bool HasWeights =
          extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
                                 SuccTrueWeight, SuccFalseWeight);
      SmallVector<uint64_t, 8> NewWeights;

      if (PBI->getSuccessor(0) == BB) {
        if (HasWeights) {
          // PBI: br i1 %x, BB, FalseDest
          // BI:  br i1 %y, TrueDest, FalseDest
          // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
          NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
          // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
          //               TrueWeight for PBI * FalseWeight for BI.
          // We assume that total weights of a BranchInst can fit into 32 bits.
          // Therefore, we will not have overflow using 64-bit arithmetic.
          NewWeights.push_back(PredFalseWeight *
                                   (SuccFalseWeight + SuccTrueWeight) +
                               PredTrueWeight * SuccFalseWeight);
        }
        AddPredecessorToBlock(TrueDest, PredBlock, BB);
        PBI->setSuccessor(0, TrueDest);
      }
      if (PBI->getSuccessor(1) == BB) {
        if (HasWeights) {
          // PBI: br i1 %x, TrueDest, BB
          // BI:  br i1 %y, TrueDest, FalseDest
          // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
          //              FalseWeight for PBI * TrueWeight for BI.
          NewWeights.push_back(PredTrueWeight *
                                   (SuccFalseWeight + SuccTrueWeight) +
                               PredFalseWeight * SuccTrueWeight);
          // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
          NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
        }
        AddPredecessorToBlock(FalseDest, PredBlock, BB);
        PBI->setSuccessor(1, FalseDest);
      }
      if (NewWeights.size() == 2) {
        // Halve the weights if any of them cannot fit in an uint32_t
        FitWeights(NewWeights);

        SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
                                           NewWeights.end());
        PBI->setMetadata(
            LLVMContext::MD_prof,
            MDBuilder(BI->getContext()).createBranchWeights(MDWeights));
      } else
        PBI->setMetadata(LLVMContext::MD_prof, nullptr);
    } else {
      // Update PHI nodes in the common successors.
      for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
        ConstantInt *PBI_C = cast<ConstantInt>(
            PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
        assert(PBI_C->getType()->isIntegerTy(1));
        Instruction *MergedCond = nullptr;
        if (PBI->getSuccessor(0) == TrueDest) {
          // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
          // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
          //       is false: !PBI_Cond and BI_Value
          Instruction *NotCond = cast<Instruction>(
              Builder.CreateNot(PBI->getCondition(), "not.cond"));
          MergedCond = cast<Instruction>(
              Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
          if (PBI_C->isOne())
            MergedCond = cast<Instruction>(Builder.CreateBinOp(
                Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
        } else {
          // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
          // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
          //       is false: PBI_Cond and BI_Value
          MergedCond = cast<Instruction>(Builder.CreateBinOp(
              Instruction::And, PBI->getCondition(), New, "and.cond"));
          if (PBI_C->isOne()) {
            Instruction *NotCond = cast<Instruction>(
                Builder.CreateNot(PBI->getCondition(), "not.cond"));
            MergedCond = cast<Instruction>(Builder.CreateBinOp(
                Instruction::Or, NotCond, MergedCond, "or.cond"));
          }
        }
        // Update PHI Node.
        PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
                                  MergedCond);
      }
      // Change PBI from Conditional to Unconditional.
      BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
      EraseTerminatorInstAndDCECond(PBI);
      PBI = New_PBI;
    }

    // If BI was a loop latch, it may have had associated loop metadata.
    // We need to copy it to the new latch, that is, PBI.
    if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
      PBI->setMetadata(LLVMContext::MD_loop, LoopMD);

    // TODO: If BB is reachable from all paths through PredBlock, then we
    // could replace PBI's branch probabilities with BI's.

    // Copy any debug value intrinsics into the end of PredBlock.
    for (Instruction &I : *BB)
      if (isa<DbgInfoIntrinsic>(I))
        I.clone()->insertBefore(PBI);

    return true;
  }
  return false;
}

// If there is only one store in BB1 and BB2, return it, otherwise return
// nullptr.
static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
  StoreInst *S = nullptr;
  for (auto *BB : {BB1, BB2}) {
    if (!BB)
      continue;
    for (auto &I : *BB)
      if (auto *SI = dyn_cast<StoreInst>(&I)) {
        if (S)
          // Multiple stores seen.
          return nullptr;
        else
          S = SI;
      }
  }
  return S;
}

static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
                                              Value *AlternativeV = nullptr) {
  // PHI is going to be a PHI node that allows the value V that is defined in
  // BB to be referenced in BB's only successor.
  //
  // If AlternativeV is nullptr, the only value we care about in PHI is V. It
  // doesn't matter to us what the other operand is (it'll never get used). We
  // could just create a new PHI with an undef incoming value, but that could
  // increase register pressure if EarlyCSE/InstCombine can't fold it with some
  // other PHI. So here we directly look for some PHI in BB's successor with V
  // as an incoming operand. If we find one, we use it, else we create a new
  // one.
  //
  // If AlternativeV is not nullptr, we care about both incoming values in PHI.
  // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
  // where OtherBB is the single other predecessor of BB's only successor.
  PHINode *PHI = nullptr;
  BasicBlock *Succ = BB->getSingleSuccessor();

  for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
    if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
      PHI = cast<PHINode>(I);
      if (!AlternativeV)
        break;

      assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
      auto PredI = pred_begin(Succ);
      BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
      if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
        break;
      PHI = nullptr;
    }
  if (PHI)
    return PHI;

  // If V is not an instruction defined in BB, just return it.
  if (!AlternativeV &&
      (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
    return V;

  PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
  PHI->addIncoming(V, BB);
  for (BasicBlock *PredBB : predecessors(Succ))
    if (PredBB != BB)
      PHI->addIncoming(
          AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
  return PHI;
}

static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
                                           BasicBlock *QTB, BasicBlock *QFB,
                                           BasicBlock *PostBB, Value *Address,
                                           bool InvertPCond, bool InvertQCond,
                                           const DataLayout &DL) {
  auto IsaBitcastOfPointerType = [](const Instruction &I) {
    return Operator::getOpcode(&I) == Instruction::BitCast &&
           I.getType()->isPointerTy();
  };

  // If we're not in aggressive mode, we only optimize if we have some
  // confidence that by optimizing we'll allow P and/or Q to be if-converted.
  auto IsWorthwhile = [&](BasicBlock *BB) {
    if (!BB)
      return true;
    // Heuristic: if the block can be if-converted/phi-folded and the
    // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
    // thread this store.
    unsigned N = 0;
    for (auto &I : *BB) {
      // Cheap instructions viable for folding.
      if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
          isa<StoreInst>(I))
        ++N;
      // Free instructions.
      else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
               IsaBitcastOfPointerType(I))
        continue;
      else
        return false;
    }
    return N <= PHINodeFoldingThreshold;
  };

  if (!MergeCondStoresAggressively &&
      (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
       !IsWorthwhile(QFB)))
    return false;

  // For every pointer, there must be exactly two stores, one coming from
  // PTB or PFB, and the other from QTB or QFB. We don't support more than one
  // store (to any address) in PTB,PFB or QTB,QFB.
  // FIXME: We could relax this restriction with a bit more work and performance
  // testing.
  StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
  StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
  if (!PStore || !QStore)
    return false;

  // Now check the stores are compatible.
  if (!QStore->isUnordered() || !PStore->isUnordered())
    return false;

  // Check that sinking the store won't cause program behavior changes. Sinking
  // the store out of the Q blocks won't change any behavior as we're sinking
  // from a block to its unconditional successor. But we're moving a store from
  // the P blocks down through the middle block (QBI) and past both QFB and QTB.
  // So we need to check that there are no aliasing loads or stores in
  // QBI, QTB and QFB. We also need to check there are no conflicting memory
  // operations between PStore and the end of its parent block.
  //
  // The ideal way to do this is to query AliasAnalysis, but we don't
  // preserve AA currently so that is dangerous. Be super safe and just
  // check there are no other memory operations at all.
  for (auto &I : *QFB->getSinglePredecessor())
    if (I.mayReadOrWriteMemory())
      return false;
  for (auto &I : *QFB)
    if (&I != QStore && I.mayReadOrWriteMemory())
      return false;
  if (QTB)
    for (auto &I : *QTB)
      if (&I != QStore && I.mayReadOrWriteMemory())
        return false;
  for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
       I != E; ++I)
    if (&*I != PStore && I->mayReadOrWriteMemory())
      return false;

  // OK, we're going to sink the stores to PostBB. The store has to be
  // conditional though, so first create the predicate.
  Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
                     ->getCondition();
  Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
                     ->getCondition();

  Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
                                                PStore->getParent());
  Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
                                                QStore->getParent(), PPHI);

  IRBuilder<> QB(&*PostBB->getFirstInsertionPt());

  Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
  Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);

  if (InvertPCond)
    PPred = QB.CreateNot(PPred);
  if (InvertQCond)
    QPred = QB.CreateNot(QPred);
  Value *CombinedPred = QB.CreateOr(PPred, QPred);

  auto *T =
      SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
  QB.SetInsertPoint(T);
  StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
  AAMDNodes AAMD;
  PStore->getAAMetadata(AAMD, /*Merge=*/false);
  PStore->getAAMetadata(AAMD, /*Merge=*/true);
  SI->setAAMetadata(AAMD);
  unsigned PAlignment = PStore->getAlignment();
  unsigned QAlignment = QStore->getAlignment();
  unsigned TypeAlignment =
      DL.getABITypeAlignment(SI->getValueOperand()->getType());
  unsigned MinAlignment;
  unsigned MaxAlignment;
  std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
  // Choose the minimum alignment. If we could prove both stores execute, we
  // could use biggest one.  In this case, though, we only know that one of the
  // stores executes.  And we don't know it's safe to take the alignment from a
  // store that doesn't execute.
  if (MinAlignment != 0) {
    // Choose the minimum of all non-zero alignments.
    SI->setAlignment(MinAlignment);
  } else if (MaxAlignment != 0) {
    // Choose the minimal alignment between the non-zero alignment and the ABI
    // default alignment for the type of the stored value.
    SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
  } else {
    // If both alignments are zero, use ABI default alignment for the type of
    // the stored value.
    SI->setAlignment(TypeAlignment);
  }

  QStore->eraseFromParent();
  PStore->eraseFromParent();

  return true;
}

static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
                                   const DataLayout &DL) {
  // The intention here is to find diamonds or triangles (see below) where each
  // conditional block contains a store to the same address. Both of these
  // stores are conditional, so they can't be unconditionally sunk. But it may
  // be profitable to speculatively sink the stores into one merged store at the
  // end, and predicate the merged store on the union of the two conditions of
  // PBI and QBI.
  //
  // This can reduce the number of stores executed if both of the conditions are
  // true, and can allow the blocks to become small enough to be if-converted.
  // This optimization will also chain, so that ladders of test-and-set
  // sequences can be if-converted away.
  //
  // We only deal with simple diamonds or triangles:
  //
  //     PBI       or      PBI        or a combination of the two
  //    /   \               | \
  //   PTB  PFB             |  PFB
  //    \   /               | /
  //     QBI                QBI
  //    /  \                | \
  //   QTB  QFB             |  QFB
  //    \  /                | /
  //    PostBB            PostBB
  //
  // We model triangles as a type of diamond with a nullptr "true" block.
  // Triangles are canonicalized so that the fallthrough edge is represented by
  // a true condition, as in the diagram above.
  BasicBlock *PTB = PBI->getSuccessor(0);
  BasicBlock *PFB = PBI->getSuccessor(1);
  BasicBlock *QTB = QBI->getSuccessor(0);
  BasicBlock *QFB = QBI->getSuccessor(1);
  BasicBlock *PostBB = QFB->getSingleSuccessor();

  // Make sure we have a good guess for PostBB. If QTB's only successor is
  // QFB, then QFB is a better PostBB.
  if (QTB->getSingleSuccessor() == QFB)
    PostBB = QFB;

  // If we couldn't find a good PostBB, stop.
  if (!PostBB)
    return false;

  bool InvertPCond = false, InvertQCond = false;
  // Canonicalize fallthroughs to the true branches.
  if (PFB == QBI->getParent()) {
    std::swap(PFB, PTB);
    InvertPCond = true;
  }
  if (QFB == PostBB) {
    std::swap(QFB, QTB);
    InvertQCond = true;
  }

  // From this point on we can assume PTB or QTB may be fallthroughs but PFB
  // and QFB may not. Model fallthroughs as a nullptr block.
  if (PTB == QBI->getParent())
    PTB = nullptr;
  if (QTB == PostBB)
    QTB = nullptr;

  // Legality bailouts. We must have at least the non-fallthrough blocks and
  // the post-dominating block, and the non-fallthroughs must only have one
  // predecessor.
  auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
    return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
  };
  if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
      !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
    return false;
  if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
      (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
    return false;
  if (!PostBB->hasNUses(2) || !QBI->getParent()->hasNUses(2))
    return false;

  // OK, this is a sequence of two diamonds or triangles.
  // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
  SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
  for (auto *BB : {PTB, PFB}) {
    if (!BB)
      continue;
    for (auto &I : *BB)
      if (StoreInst *SI = dyn_cast<StoreInst>(&I))
        PStoreAddresses.insert(SI->getPointerOperand());
  }
  for (auto *BB : {QTB, QFB}) {
    if (!BB)
      continue;
    for (auto &I : *BB)
      if (StoreInst *SI = dyn_cast<StoreInst>(&I))
        QStoreAddresses.insert(SI->getPointerOperand());
  }

  set_intersect(PStoreAddresses, QStoreAddresses);
  // set_intersect mutates PStoreAddresses in place. Rename it here to make it
  // clear what it contains.
  auto &CommonAddresses = PStoreAddresses;

  bool Changed = false;
  for (auto *Address : CommonAddresses)
    Changed |= mergeConditionalStoreToAddress(
        PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
  return Changed;
}

/// If we have a conditional branch as a predecessor of another block,
/// this function tries to simplify it.  We know
/// that PBI and BI are both conditional branches, and BI is in one of the
/// successor blocks of PBI - PBI branches to BI.
static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
                                           const DataLayout &DL) {
  assert(PBI->isConditional() && BI->isConditional());
  BasicBlock *BB = BI->getParent();

  // If this block ends with a branch instruction, and if there is a
  // predecessor that ends on a branch of the same condition, make
  // this conditional branch redundant.
  if (PBI->getCondition() == BI->getCondition() &&
      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
    // Okay, the outcome of this conditional branch is statically
    // knowable.  If this block had a single pred, handle specially.
    if (BB->getSinglePredecessor()) {
      // Turn this into a branch on constant.
      bool CondIsTrue = PBI->getSuccessor(0) == BB;
      BI->setCondition(
          ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
      return true; // Nuke the branch on constant.
    }

    // Otherwise, if there are multiple predecessors, insert a PHI that merges
    // in the constant and simplify the block result.  Subsequent passes of
    // simplifycfg will thread the block.
    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
      pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
      PHINode *NewPN = PHINode::Create(
          Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
          BI->getCondition()->getName() + ".pr", &BB->front());
      // Okay, we're going to insert the PHI node.  Since PBI is not the only
      // predecessor, compute the PHI'd conditional value for all of the preds.
      // Any predecessor where the condition is not computable we keep symbolic.
      for (pred_iterator PI = PB; PI != PE; ++PI) {
        BasicBlock *P = *PI;
        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
            PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
          bool CondIsTrue = PBI->getSuccessor(0) == BB;
          NewPN->addIncoming(
              ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
              P);
        } else {
          NewPN->addIncoming(BI->getCondition(), P);
        }
      }

      BI->setCondition(NewPN);
      return true;
    }
  }

  if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
    if (CE->canTrap())
      return false;

  // If both branches are conditional and both contain stores to the same
  // address, remove the stores from the conditionals and create a conditional
  // merged store at the end.
  if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
    return true;

  // If this is a conditional branch in an empty block, and if any
  // predecessors are a conditional branch to one of our destinations,
  // fold the conditions into logical ops and one cond br.
  BasicBlock::iterator BBI = BB->begin();
  // Ignore dbg intrinsics.
  while (isa<DbgInfoIntrinsic>(BBI))
    ++BBI;
  if (&*BBI != BI)
    return false;

  int PBIOp, BIOp;
  if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
    PBIOp = 0;
    BIOp = 0;
  } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
    PBIOp = 0;
    BIOp = 1;
  } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
    PBIOp = 1;
    BIOp = 0;
  } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
    PBIOp = 1;
    BIOp = 1;
  } else {
    return false;
  }

  // Check to make sure that the other destination of this branch
  // isn't BB itself.  If so, this is an infinite loop that will
  // keep getting unwound.
  if (PBI->getSuccessor(PBIOp) == BB)
    return false;

  // Do not perform this transformation if it would require
  // insertion of a large number of select instructions. For targets
  // without predication/cmovs, this is a big pessimization.

  // Also do not perform this transformation if any phi node in the common
  // destination block can trap when reached by BB or PBB (PR17073). In that
  // case, it would be unsafe to hoist the operation into a select instruction.

  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
  unsigned NumPhis = 0;
  for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
       ++II, ++NumPhis) {
    if (NumPhis > 2) // Disable this xform.
      return false;

    PHINode *PN = cast<PHINode>(II);
    Value *BIV = PN->getIncomingValueForBlock(BB);
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
      if (CE->canTrap())
        return false;

    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
    Value *PBIV = PN->getIncomingValue(PBBIdx);
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
      if (CE->canTrap())
        return false;
  }

  // Finally, if everything is ok, fold the branches to logical ops.
  BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);

  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
               << "AND: " << *BI->getParent());

  // If OtherDest *is* BB, then BB is a basic block with a single conditional
  // branch in it, where one edge (OtherDest) goes back to itself but the other
  // exits.  We don't *know* that the program avoids the infinite loop
  // (even though that seems likely).  If we do this xform naively, we'll end up
  // recursively unpeeling the loop.  Since we know that (after the xform is
  // done) that the block *is* infinite if reached, we just make it an obviously
  // infinite loop with no cond branch.
  if (OtherDest == BB) {
    // Insert it at the end of the function, because it's either code,
    // or it won't matter if it's hot. :)
    BasicBlock *InfLoopBlock =
        BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
    BranchInst::Create(InfLoopBlock, InfLoopBlock);
    OtherDest = InfLoopBlock;
  }

  DEBUG(dbgs() << *PBI->getParent()->getParent());

  // BI may have other predecessors.  Because of this, we leave
  // it alone, but modify PBI.

  // Make sure we get to CommonDest on True&True directions.
  Value *PBICond = PBI->getCondition();
  IRBuilder<NoFolder> Builder(PBI);
  if (PBIOp)
    PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");

  Value *BICond = BI->getCondition();
  if (BIOp)
    BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");

  // Merge the conditions.
  Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");

  // Modify PBI to branch on the new condition to the new dests.
  PBI->setCondition(Cond);
  PBI->setSuccessor(0, CommonDest);
  PBI->setSuccessor(1, OtherDest);

  // Update branch weight for PBI.
  uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
  uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
  bool HasWeights =
      extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
                             SuccTrueWeight, SuccFalseWeight);
  if (HasWeights) {
    PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
    PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
    SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
    SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
    // The weight to CommonDest should be PredCommon * SuccTotal +
    //                                    PredOther * SuccCommon.
    // The weight to OtherDest should be PredOther * SuccOther.
    uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
                                  PredOther * SuccCommon,
                              PredOther * SuccOther};
    // Halve the weights if any of them cannot fit in an uint32_t
    FitWeights(NewWeights);

    PBI->setMetadata(LLVMContext::MD_prof,
                     MDBuilder(BI->getContext())
                         .createBranchWeights(NewWeights[0], NewWeights[1]));
  }

  // OtherDest may have phi nodes.  If so, add an entry from PBI's
  // block that are identical to the entries for BI's block.
  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);

  // We know that the CommonDest already had an edge from PBI to
  // it.  If it has PHIs though, the PHIs may have different
  // entries for BB and PBI's BB.  If so, insert a select to make
  // them agree.
  PHINode *PN;
  for (BasicBlock::iterator II = CommonDest->begin();
       (PN = dyn_cast<PHINode>(II)); ++II) {
    Value *BIV = PN->getIncomingValueForBlock(BB);
    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
    Value *PBIV = PN->getIncomingValue(PBBIdx);
    if (BIV != PBIV) {
      // Insert a select in PBI to pick the right value.
      SelectInst *NV = cast<SelectInst>(
          Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
      PN->setIncomingValue(PBBIdx, NV);
      // Although the select has the same condition as PBI, the original branch
      // weights for PBI do not apply to the new select because the select's
      // 'logical' edges are incoming edges of the phi that is eliminated, not
      // the outgoing edges of PBI.
      if (HasWeights) {
        uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
        uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
        uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
        uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
        // The weight to PredCommonDest should be PredCommon * SuccTotal.
        // The weight to PredOtherDest should be PredOther * SuccCommon.
        uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
                                  PredOther * SuccCommon};

        FitWeights(NewWeights);

        NV->setMetadata(LLVMContext::MD_prof,
                        MDBuilder(BI->getContext())
                            .createBranchWeights(NewWeights[0], NewWeights[1]));
      }
    }
  }

  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
  DEBUG(dbgs() << *PBI->getParent()->getParent());

  // This basic block is probably dead.  We know it has at least
  // one fewer predecessor.
  return true;
}

// Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
// true or to FalseBB if Cond is false.
// Takes care of updating the successors and removing the old terminator.
// Also makes sure not to introduce new successors by assuming that edges to
// non-successor TrueBBs and FalseBBs aren't reachable.
static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
                                       BasicBlock *TrueBB, BasicBlock *FalseBB,
                                       uint32_t TrueWeight,
                                       uint32_t FalseWeight) {
  // Remove any superfluous successor edges from the CFG.
  // First, figure out which successors to preserve.
  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
  // successor.
  BasicBlock *KeepEdge1 = TrueBB;
  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;

  // Then remove the rest.
  for (BasicBlock *Succ : OldTerm->successors()) {
    // Make sure only to keep exactly one copy of each edge.
    if (Succ == KeepEdge1)
      KeepEdge1 = nullptr;
    else if (Succ == KeepEdge2)
      KeepEdge2 = nullptr;
    else
      Succ->removePredecessor(OldTerm->getParent(),
                              /*DontDeleteUselessPHIs=*/true);
  }

  IRBuilder<> Builder(OldTerm);
  Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());

  // Insert an appropriate new terminator.
  if (!KeepEdge1 && !KeepEdge2) {
    if (TrueBB == FalseBB)
      // We were only looking for one successor, and it was present.
      // Create an unconditional branch to it.
      Builder.CreateBr(TrueBB);
    else {
      // We found both of the successors we were looking for.
      // Create a conditional branch sharing the condition of the select.
      BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
      if (TrueWeight != FalseWeight)
        NewBI->setMetadata(LLVMContext::MD_prof,
                           MDBuilder(OldTerm->getContext())
                               .createBranchWeights(TrueWeight, FalseWeight));
    }
  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
    // Neither of the selected blocks were successors, so this
    // terminator must be unreachable.
    new UnreachableInst(OldTerm->getContext(), OldTerm);
  } else {
    // One of the selected values was a successor, but the other wasn't.
    // Insert an unconditional branch to the one that was found;
    // the edge to the one that wasn't must be unreachable.
    if (!KeepEdge1)
      // Only TrueBB was found.
      Builder.CreateBr(TrueBB);
    else
      // Only FalseBB was found.
      Builder.CreateBr(FalseBB);
  }

  EraseTerminatorInstAndDCECond(OldTerm);
  return true;
}

// Replaces
//   (switch (select cond, X, Y)) on constant X, Y
// with a branch - conditional if X and Y lead to distinct BBs,
// unconditional otherwise.
static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
  // Check for constant integer values in the select.
  ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
  ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
  if (!TrueVal || !FalseVal)
    return false;

  // Find the relevant condition and destinations.
  Value *Condition = Select->getCondition();
  BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
  BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();

  // Get weight for TrueBB and FalseBB.
  uint32_t TrueWeight = 0, FalseWeight = 0;
  SmallVector<uint64_t, 8> Weights;
  bool HasWeights = HasBranchWeights(SI);
  if (HasWeights) {
    GetBranchWeights(SI, Weights);
    if (Weights.size() == 1 + SI->getNumCases()) {
      TrueWeight =
          (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
      FalseWeight =
          (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
    }
  }

  // Perform the actual simplification.
  return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
                                    FalseWeight);
}

// Replaces
//   (indirectbr (select cond, blockaddress(@fn, BlockA),
//                             blockaddress(@fn, BlockB)))
// with
//   (br cond, BlockA, BlockB).
static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
  // Check that both operands of the select are block addresses.
  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
  if (!TBA || !FBA)
    return false;

  // Extract the actual blocks.
  BasicBlock *TrueBB = TBA->getBasicBlock();
  BasicBlock *FalseBB = FBA->getBasicBlock();

  // Perform the actual simplification.
  return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
                                    0);
}

/// This is called when we find an icmp instruction
/// (a seteq/setne with a constant) as the only instruction in a
/// block that ends with an uncond branch.  We are looking for a very specific
/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
/// this case, we merge the first two "or's of icmp" into a switch, but then the
/// default value goes to an uncond block with a seteq in it, we get something
/// like:
///
///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
/// DEFAULT:
///   %tmp = icmp eq i8 %A, 92
///   br label %end
/// end:
///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
///
/// We prefer to split the edge to 'end' so that there is a true/false entry to
/// the PHI, merging the third icmp into the switch.
static bool tryToSimplifyUncondBranchWithICmpInIt(
    ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
    const TargetTransformInfo &TTI, const SimplifyCFGOptions &Options) {
  BasicBlock *BB = ICI->getParent();

  // If the block has any PHIs in it or the icmp has multiple uses, it is too
  // complex.
  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
    return false;

  Value *V = ICI->getOperand(0);
  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));

  // The pattern we're looking for is where our only predecessor is a switch on
  // 'V' and this block is the default case for the switch.  In this case we can
  // fold the compared value into the switch to simplify things.
  BasicBlock *Pred = BB->getSinglePredecessor();
  if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
    return false;

  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
  if (SI->getCondition() != V)
    return false;

  // If BB is reachable on a non-default case, then we simply know the value of
  // V in this block.  Substitute it and constant fold the icmp instruction
  // away.
  if (SI->getDefaultDest() != BB) {
    ConstantInt *VVal = SI->findCaseDest(BB);
    assert(VVal && "Should have a unique destination value");
    ICI->setOperand(0, VVal);

    if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
      ICI->replaceAllUsesWith(V);
      ICI->eraseFromParent();
    }
    // BB is now empty, so it is likely to simplify away.
    return simplifyCFG(BB, TTI, Options) | true;
  }

  // Ok, the block is reachable from the default dest.  If the constant we're
  // comparing exists in one of the other edges, then we can constant fold ICI
  // and zap it.
  if (SI->findCaseValue(Cst) != SI->case_default()) {
    Value *V;
    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
      V = ConstantInt::getFalse(BB->getContext());
    else
      V = ConstantInt::getTrue(BB->getContext());

    ICI->replaceAllUsesWith(V);
    ICI->eraseFromParent();
    // BB is now empty, so it is likely to simplify away.
    return simplifyCFG(BB, TTI, Options) | true;
  }

  // The use of the icmp has to be in the 'end' block, by the only PHI node in
  // the block.
  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
  PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
  if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
    return false;

  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
  // true in the PHI.
  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
  Constant *NewCst = ConstantInt::getFalse(BB->getContext());

  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
    std::swap(DefaultCst, NewCst);

  // Replace ICI (which is used by the PHI for the default value) with true or
  // false depending on if it is EQ or NE.
  ICI->replaceAllUsesWith(DefaultCst);
  ICI->eraseFromParent();

  // Okay, the switch goes to this block on a default value.  Add an edge from
  // the switch to the merge point on the compared value.
  BasicBlock *NewBB =
      BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
  SmallVector<uint64_t, 8> Weights;
  bool HasWeights = HasBranchWeights(SI);
  if (HasWeights) {
    GetBranchWeights(SI, Weights);
    if (Weights.size() == 1 + SI->getNumCases()) {
      // Split weight for default case to case for "Cst".
      Weights[0] = (Weights[0] + 1) >> 1;
      Weights.push_back(Weights[0]);

      SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
      SI->setMetadata(
          LLVMContext::MD_prof,
          MDBuilder(SI->getContext()).createBranchWeights(MDWeights));
    }
  }
  SI->addCase(Cst, NewBB);

  // NewBB branches to the phi block, add the uncond branch and the phi entry.
  Builder.SetInsertPoint(NewBB);
  Builder.SetCurrentDebugLocation(SI->getDebugLoc());
  Builder.CreateBr(SuccBlock);
  PHIUse->addIncoming(NewCst, NewBB);
  return true;
}

/// The specified branch is a conditional branch.
/// Check to see if it is branching on an or/and chain of icmp instructions, and
/// fold it into a switch instruction if so.
static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
                                      const DataLayout &DL) {
  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
  if (!Cond)
    return false;

  // Change br (X == 0 | X == 1), T, F into a switch instruction.
  // If this is a bunch of seteq's or'd together, or if it's a bunch of
  // 'setne's and'ed together, collect them.

  // Try to gather values from a chain of and/or to be turned into a switch
  ConstantComparesGatherer ConstantCompare(Cond, DL);
  // Unpack the result
  SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
  Value *CompVal = ConstantCompare.CompValue;
  unsigned UsedICmps = ConstantCompare.UsedICmps;
  Value *ExtraCase = ConstantCompare.Extra;

  // If we didn't have a multiply compared value, fail.
  if (!CompVal)
    return false;

  // Avoid turning single icmps into a switch.
  if (UsedICmps <= 1)
    return false;

  bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);

  // There might be duplicate constants in the list, which the switch
  // instruction can't handle, remove them now.
  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());

  // If Extra was used, we require at least two switch values to do the
  // transformation.  A switch with one value is just a conditional branch.
  if (ExtraCase && Values.size() < 2)
    return false;

  // TODO: Preserve branch weight metadata, similarly to how
  // FoldValueComparisonIntoPredecessors preserves it.

  // Figure out which block is which destination.
  BasicBlock *DefaultBB = BI->getSuccessor(1);
  BasicBlock *EdgeBB = BI->getSuccessor(0);
  if (!TrueWhenEqual)
    std::swap(DefaultBB, EdgeBB);

  BasicBlock *BB = BI->getParent();

  DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
               << " cases into SWITCH.  BB is:\n"
               << *BB);

  // If there are any extra values that couldn't be folded into the switch
  // then we evaluate them with an explicit branch first.  Split the block
  // right before the condbr to handle it.
  if (ExtraCase) {
    BasicBlock *NewBB =
        BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
    // Remove the uncond branch added to the old block.
    TerminatorInst *OldTI = BB->getTerminator();
    Builder.SetInsertPoint(OldTI);

    if (TrueWhenEqual)
      Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
    else
      Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);

    OldTI->eraseFromParent();

    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
    // for the edge we just added.
    AddPredecessorToBlock(EdgeBB, BB, NewBB);

    DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
                 << "\nEXTRABB = " << *BB);
    BB = NewBB;
  }

  Builder.SetInsertPoint(BI);
  // Convert pointer to int before we switch.
  if (CompVal->getType()->isPointerTy()) {
    CompVal = Builder.CreatePtrToInt(
        CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
  }

  // Create the new switch instruction now.
  SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());

  // Add all of the 'cases' to the switch instruction.
  for (unsigned i = 0, e = Values.size(); i != e; ++i)
    New->addCase(Values[i], EdgeBB);

  // We added edges from PI to the EdgeBB.  As such, if there were any
  // PHI nodes in EdgeBB, they need entries to be added corresponding to
  // the number of edges added.
  for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
    PHINode *PN = cast<PHINode>(BBI);
    Value *InVal = PN->getIncomingValueForBlock(BB);
    for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
      PN->addIncoming(InVal, BB);
  }

  // Erase the old branch instruction.
  EraseTerminatorInstAndDCECond(BI);

  DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
  return true;
}

bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
  if (isa<PHINode>(RI->getValue()))
    return SimplifyCommonResume(RI);
  else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
           RI->getValue() == RI->getParent()->getFirstNonPHI())
    // The resume must unwind the exception that caused control to branch here.
    return SimplifySingleResume(RI);

  return false;
}

// Simplify resume that is shared by several landing pads (phi of landing pad).
bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
  BasicBlock *BB = RI->getParent();

  // Check that there are no other instructions except for debug intrinsics
  // between the phi of landing pads (RI->getValue()) and resume instruction.
  BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
                       E = RI->getIterator();
  while (++I != E)
    if (!isa<DbgInfoIntrinsic>(I))
      return false;

  SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
  auto *PhiLPInst = cast<PHINode>(RI->getValue());

  // Check incoming blocks to see if any of them are trivial.
  for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
       Idx++) {
    auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
    auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);

    // If the block has other successors, we can not delete it because
    // it has other dependents.
    if (IncomingBB->getUniqueSuccessor() != BB)
      continue;

    auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
    // Not the landing pad that caused the control to branch here.
    if (IncomingValue != LandingPad)
      continue;

    bool isTrivial = true;

    I = IncomingBB->getFirstNonPHI()->getIterator();
    E = IncomingBB->getTerminator()->getIterator();
    while (++I != E)
      if (!isa<DbgInfoIntrinsic>(I)) {
        isTrivial = false;
        break;
      }

    if (isTrivial)
      TrivialUnwindBlocks.insert(IncomingBB);
  }

  // If no trivial unwind blocks, don't do any simplifications.
  if (TrivialUnwindBlocks.empty())
    return false;

  // Turn all invokes that unwind here into calls.
  for (auto *TrivialBB : TrivialUnwindBlocks) {
    // Blocks that will be simplified should be removed from the phi node.
    // Note there could be multiple edges to the resume block, and we need
    // to remove them all.
    while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
      BB->removePredecessor(TrivialBB, true);

    for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
         PI != PE;) {
      BasicBlock *Pred = *PI++;
      removeUnwindEdge(Pred);
    }

    // In each SimplifyCFG run, only the current processed block can be erased.
    // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
    // of erasing TrivialBB, we only remove the branch to the common resume
    // block so that we can later erase the resume block since it has no
    // predecessors.
    TrivialBB->getTerminator()->eraseFromParent();
    new UnreachableInst(RI->getContext(), TrivialBB);
  }

  // Delete the resume block if all its predecessors have been removed.
  if (pred_empty(BB))
    BB->eraseFromParent();

  return !TrivialUnwindBlocks.empty();
}

// Simplify resume that is only used by a single (non-phi) landing pad.
bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
  BasicBlock *BB = RI->getParent();
  LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
  assert(RI->getValue() == LPInst &&
         "Resume must unwind the exception that caused control to here");

  // Check that there are no other instructions except for debug intrinsics.
  BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
  while (++I != E)
    if (!isa<DbgInfoIntrinsic>(I))
      return false;

  // Turn all invokes that unwind here into calls and delete the basic block.
  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
    BasicBlock *Pred = *PI++;
    removeUnwindEdge(Pred);
  }

  // The landingpad is now unreachable.  Zap it.
  BB->eraseFromParent();
  if (LoopHeaders)
    LoopHeaders->erase(BB);
  return true;
}

static bool removeEmptyCleanup(CleanupReturnInst *RI) {
  // If this is a trivial cleanup pad that executes no instructions, it can be
  // eliminated.  If the cleanup pad continues to the caller, any predecessor
  // that is an EH pad will be updated to continue to the caller and any
  // predecessor that terminates with an invoke instruction will have its invoke
  // instruction converted to a call instruction.  If the cleanup pad being
  // simplified does not continue to the caller, each predecessor will be
  // updated to continue to the unwind destination of the cleanup pad being
  // simplified.
  BasicBlock *BB = RI->getParent();
  CleanupPadInst *CPInst = RI->getCleanupPad();
  if (CPInst->getParent() != BB)
    // This isn't an empty cleanup.
    return false;

  // We cannot kill the pad if it has multiple uses.  This typically arises
  // from unreachable basic blocks.
  if (!CPInst->hasOneUse())
    return false;

  // Check that there are no other instructions except for benign intrinsics.
  BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
  while (++I != E) {
    auto *II = dyn_cast<IntrinsicInst>(I);
    if (!II)
      return false;

    Intrinsic::ID IntrinsicID = II->getIntrinsicID();
    switch (IntrinsicID) {
    case Intrinsic::dbg_declare:
    case Intrinsic::dbg_value:
    case Intrinsic::lifetime_end:
      break;
    default:
      return false;
    }
  }

  // If the cleanup return we are simplifying unwinds to the caller, this will
  // set UnwindDest to nullptr.
  BasicBlock *UnwindDest = RI->getUnwindDest();
  Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;

  // We're about to remove BB from the control flow.  Before we do, sink any
  // PHINodes into the unwind destination.  Doing this before changing the
  // control flow avoids some potentially slow checks, since we can currently
  // be certain that UnwindDest and BB have no common predecessors (since they
  // are both EH pads).
  if (UnwindDest) {
    // First, go through the PHI nodes in UnwindDest and update any nodes that
    // reference the block we are removing
    for (BasicBlock::iterator I = UnwindDest->begin(),
                              IE = DestEHPad->getIterator();
         I != IE; ++I) {
      PHINode *DestPN = cast<PHINode>(I);

      int Idx = DestPN->getBasicBlockIndex(BB);
      // Since BB unwinds to UnwindDest, it has to be in the PHI node.
      assert(Idx != -1);
      // This PHI node has an incoming value that corresponds to a control
      // path through the cleanup pad we are removing.  If the incoming
      // value is in the cleanup pad, it must be a PHINode (because we
      // verified above that the block is otherwise empty).  Otherwise, the
      // value is either a constant or a value that dominates the cleanup
      // pad being removed.
      //
      // Because BB and UnwindDest are both EH pads, all of their
      // predecessors must unwind to these blocks, and since no instruction
      // can have multiple unwind destinations, there will be no overlap in
      // incoming blocks between SrcPN and DestPN.
      Value *SrcVal = DestPN->getIncomingValue(Idx);
      PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);

      // Remove the entry for the block we are deleting.
      DestPN->removeIncomingValue(Idx, false);

      if (SrcPN && SrcPN->getParent() == BB) {
        // If the incoming value was a PHI node in the cleanup pad we are
        // removing, we need to merge that PHI node's incoming values into
        // DestPN.
        for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
             SrcIdx != SrcE; ++SrcIdx) {
          DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
                              SrcPN->getIncomingBlock(SrcIdx));
        }
      } else {
        // Otherwise, the incoming value came from above BB and
        // so we can just reuse it.  We must associate all of BB's
        // predecessors with this value.
        for (auto *pred : predecessors(BB)) {
          DestPN->addIncoming(SrcVal, pred);
        }
      }
    }

    // Sink any remaining PHI nodes directly into UnwindDest.
    Instruction *InsertPt = DestEHPad;
    for (BasicBlock::iterator I = BB->begin(),
                              IE = BB->getFirstNonPHI()->getIterator();
         I != IE;) {
      // The iterator must be incremented here because the instructions are
      // being moved to another block.
      PHINode *PN = cast<PHINode>(I++);
      if (PN->use_empty())
        // If the PHI node has no uses, just leave it.  It will be erased
        // when we erase BB below.
        continue;

      // Otherwise, sink this PHI node into UnwindDest.
      // Any predecessors to UnwindDest which are not already represented
      // must be back edges which inherit the value from the path through
      // BB.  In this case, the PHI value must reference itself.
      for (auto *pred : predecessors(UnwindDest))
        if (pred != BB)
          PN->addIncoming(PN, pred);
      PN->moveBefore(InsertPt);
    }
  }

  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
    // The iterator must be updated here because we are removing this pred.
    BasicBlock *PredBB = *PI++;
    if (UnwindDest == nullptr) {
      removeUnwindEdge(PredBB);
    } else {
      TerminatorInst *TI = PredBB->getTerminator();
      TI->replaceUsesOfWith(BB, UnwindDest);
    }
  }

  // The cleanup pad is now unreachable.  Zap it.
  BB->eraseFromParent();
  return true;
}

// Try to merge two cleanuppads together.
static bool mergeCleanupPad(CleanupReturnInst *RI) {
  // Skip any cleanuprets which unwind to caller, there is nothing to merge
  // with.
  BasicBlock *UnwindDest = RI->getUnwindDest();
  if (!UnwindDest)
    return false;

  // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
  // be safe to merge without code duplication.
  if (UnwindDest->getSinglePredecessor() != RI->getParent())
    return false;

  // Verify that our cleanuppad's unwind destination is another cleanuppad.
  auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
  if (!SuccessorCleanupPad)
    return false;

  CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
  // Replace any uses of the successor cleanupad with the predecessor pad
  // The only cleanuppad uses should be this cleanupret, it's cleanupret and
  // funclet bundle operands.
  SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
  // Remove the old cleanuppad.
  SuccessorCleanupPad->eraseFromParent();
  // Now, we simply replace the cleanupret with a branch to the unwind
  // destination.
  BranchInst::Create(UnwindDest, RI->getParent());
  RI->eraseFromParent();

  return true;
}

bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
  // It is possible to transiantly have an undef cleanuppad operand because we
  // have deleted some, but not all, dead blocks.
  // Eventually, this block will be deleted.
  if (isa<UndefValue>(RI->getOperand(0)))
    return false;

  if (mergeCleanupPad(RI))
    return true;

  if (removeEmptyCleanup(RI))
    return true;

  return false;
}

bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
  BasicBlock *BB = RI->getParent();
  if (!BB->getFirstNonPHIOrDbg()->isTerminator())
    return false;

  // Find predecessors that end with branches.
  SmallVector<BasicBlock *, 8> UncondBranchPreds;
  SmallVector<BranchInst *, 8> CondBranchPreds;
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    BasicBlock *P = *PI;
    TerminatorInst *PTI = P->getTerminator();
    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
      if (BI->isUnconditional())
        UncondBranchPreds.push_back(P);
      else
        CondBranchPreds.push_back(BI);
    }
  }

  // If we found some, do the transformation!
  if (!UncondBranchPreds.empty() && DupRet) {
    while (!UncondBranchPreds.empty()) {
      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
      DEBUG(dbgs() << "FOLDING: " << *BB
                   << "INTO UNCOND BRANCH PRED: " << *Pred);
      (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
    }

    // If we eliminated all predecessors of the block, delete the block now.
    if (pred_empty(BB)) {
      // We know there are no successors, so just nuke the block.
      BB->eraseFromParent();
      if (LoopHeaders)
        LoopHeaders->erase(BB);
    }

    return true;
  }

  // Check out all of the conditional branches going to this return
  // instruction.  If any of them just select between returns, change the
  // branch itself into a select/return pair.
  while (!CondBranchPreds.empty()) {
    BranchInst *BI = CondBranchPreds.pop_back_val();

    // Check to see if the non-BB successor is also a return block.
    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
        SimplifyCondBranchToTwoReturns(BI, Builder))
      return true;
  }
  return false;
}

bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
  BasicBlock *BB = UI->getParent();

  bool Changed = false;

  // If there are any instructions immediately before the unreachable that can
  // be removed, do so.
  while (UI->getIterator() != BB->begin()) {
    BasicBlock::iterator BBI = UI->getIterator();
    --BBI;
    // Do not delete instructions that can have side effects which might cause
    // the unreachable to not be reachable; specifically, calls and volatile
    // operations may have this effect.
    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
      break;

    if (BBI->mayHaveSideEffects()) {
      if (auto *SI = dyn_cast<StoreInst>(BBI)) {
        if (SI->isVolatile())
          break;
      } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
        if (LI->isVolatile())
          break;
      } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
        if (RMWI->isVolatile())
          break;
      } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
        if (CXI->isVolatile())
          break;
      } else if (isa<CatchPadInst>(BBI)) {
        // A catchpad may invoke exception object constructors and such, which
        // in some languages can be arbitrary code, so be conservative by
        // default.
        // For CoreCLR, it just involves a type test, so can be removed.
        if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
            EHPersonality::CoreCLR)
          break;
      } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
                 !isa<LandingPadInst>(BBI)) {
        break;
      }
      // Note that deleting LandingPad's here is in fact okay, although it
      // involves a bit of subtle reasoning. If this inst is a LandingPad,
      // all the predecessors of this block will be the unwind edges of Invokes,
      // and we can therefore guarantee this block will be erased.
    }

    // Delete this instruction (any uses are guaranteed to be dead)
    if (!BBI->use_empty())
      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
    BBI->eraseFromParent();
    Changed = true;
  }

  // If the unreachable instruction is the first in the block, take a gander
  // at all of the predecessors of this instruction, and simplify them.
  if (&BB->front() != UI)
    return Changed;

  SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
    TerminatorInst *TI = Preds[i]->getTerminator();
    IRBuilder<> Builder(TI);
    if (auto *BI = dyn_cast<BranchInst>(TI)) {
      if (BI->isUnconditional()) {
        if (BI->getSuccessor(0) == BB) {
          new UnreachableInst(TI->getContext(), TI);
          TI->eraseFromParent();
          Changed = true;
        }
      } else {
        if (BI->getSuccessor(0) == BB) {
          Builder.CreateBr(BI->getSuccessor(1));
          EraseTerminatorInstAndDCECond(BI);
        } else if (BI->getSuccessor(1) == BB) {
          Builder.CreateBr(BI->getSuccessor(0));
          EraseTerminatorInstAndDCECond(BI);
          Changed = true;
        }
      }
    } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
      for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
        if (i->getCaseSuccessor() != BB) {
          ++i;
          continue;
        }
        BB->removePredecessor(SI->getParent());
        i = SI->removeCase(i);
        e = SI->case_end();
        Changed = true;
      }
    } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
      if (II->getUnwindDest() == BB) {
        removeUnwindEdge(TI->getParent());
        Changed = true;
      }
    } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
      if (CSI->getUnwindDest() == BB) {
        removeUnwindEdge(TI->getParent());
        Changed = true;
        continue;
      }

      for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
                                             E = CSI->handler_end();
           I != E; ++I) {
        if (*I == BB) {
          CSI->removeHandler(I);
          --I;
          --E;
          Changed = true;
        }
      }
      if (CSI->getNumHandlers() == 0) {
        BasicBlock *CatchSwitchBB = CSI->getParent();
        if (CSI->hasUnwindDest()) {
          // Redirect preds to the unwind dest
          CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
        } else {
          // Rewrite all preds to unwind to caller (or from invoke to call).
          SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
          for (BasicBlock *EHPred : EHPreds)
            removeUnwindEdge(EHPred);
        }
        // The catchswitch is no longer reachable.
        new UnreachableInst(CSI->getContext(), CSI);
        CSI->eraseFromParent();
        Changed = true;
      }
    } else if (isa<CleanupReturnInst>(TI)) {
      new UnreachableInst(TI->getContext(), TI);
      TI->eraseFromParent();
      Changed = true;
    }
  }

  // If this block is now dead, remove it.
  if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
    // We know there are no successors, so just nuke the block.
    BB->eraseFromParent();
    if (LoopHeaders)
      LoopHeaders->erase(BB);
    return true;
  }

  return Changed;
}

static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
  assert(Cases.size() >= 1);

  array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
  for (size_t I = 1, E = Cases.size(); I != E; ++I) {
    if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
      return false;
  }
  return true;
}

/// Turn a switch with two reachable destinations into an integer range
/// comparison and branch.
static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
  assert(SI->getNumCases() > 1 && "Degenerate switch?");

  bool HasDefault =
      !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());

  // Partition the cases into two sets with different destinations.
  BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
  BasicBlock *DestB = nullptr;
  SmallVector<ConstantInt *, 16> CasesA;
  SmallVector<ConstantInt *, 16> CasesB;

  for (auto Case : SI->cases()) {
    BasicBlock *Dest = Case.getCaseSuccessor();
    if (!DestA)
      DestA = Dest;
    if (Dest == DestA) {
      CasesA.push_back(Case.getCaseValue());
      continue;
    }
    if (!DestB)
      DestB = Dest;
    if (Dest == DestB) {
      CasesB.push_back(Case.getCaseValue());
      continue;
    }
    return false; // More than two destinations.
  }

  assert(DestA && DestB &&
         "Single-destination switch should have been folded.");
  assert(DestA != DestB);
  assert(DestB != SI->getDefaultDest());
  assert(!CasesB.empty() && "There must be non-default cases.");
  assert(!CasesA.empty() || HasDefault);

  // Figure out if one of the sets of cases form a contiguous range.
  SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
  BasicBlock *ContiguousDest = nullptr;
  BasicBlock *OtherDest = nullptr;
  if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
    ContiguousCases = &CasesA;
    ContiguousDest = DestA;
    OtherDest = DestB;
  } else if (CasesAreContiguous(CasesB)) {
    ContiguousCases = &CasesB;
    ContiguousDest = DestB;
    OtherDest = DestA;
  } else
    return false;

  // Start building the compare and branch.

  Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
  Constant *NumCases =
      ConstantInt::get(Offset->getType(), ContiguousCases->size());

  Value *Sub = SI->getCondition();
  if (!Offset->isNullValue())
    Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");

  Value *Cmp;
  // If NumCases overflowed, then all possible values jump to the successor.
  if (NumCases->isNullValue() && !ContiguousCases->empty())
    Cmp = ConstantInt::getTrue(SI->getContext());
  else
    Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
  BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);

  // Update weight for the newly-created conditional branch.
  if (HasBranchWeights(SI)) {
    SmallVector<uint64_t, 8> Weights;
    GetBranchWeights(SI, Weights);
    if (Weights.size() == 1 + SI->getNumCases()) {
      uint64_t TrueWeight = 0;
      uint64_t FalseWeight = 0;
      for (size_t I = 0, E = Weights.size(); I != E; ++I) {
        if (SI->getSuccessor(I) == ContiguousDest)
          TrueWeight += Weights[I];
        else
          FalseWeight += Weights[I];
      }
      while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
        TrueWeight /= 2;
        FalseWeight /= 2;
      }
      NewBI->setMetadata(LLVMContext::MD_prof,
                         MDBuilder(SI->getContext())
                             .createBranchWeights((uint32_t)TrueWeight,
                                                  (uint32_t)FalseWeight));
    }
  }

  // Prune obsolete incoming values off the successors' PHI nodes.
  for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
    unsigned PreviousEdges = ContiguousCases->size();
    if (ContiguousDest == SI->getDefaultDest())
      ++PreviousEdges;
    for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
  }
  for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
    unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
    if (OtherDest == SI->getDefaultDest())
      ++PreviousEdges;
    for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
  }

  // Drop the switch.
  SI->eraseFromParent();

  return true;
}

/// Compute masked bits for the condition of a switch
/// and use it to remove dead cases.
static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
                                     const DataLayout &DL) {
  Value *Cond = SI->getCondition();
  unsigned Bits = Cond->getType()->getIntegerBitWidth();
  KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);

  // We can also eliminate cases by determining that their values are outside of
  // the limited range of the condition based on how many significant (non-sign)
  // bits are in the condition value.
  unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
  unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;

  // Gather dead cases.
  SmallVector<ConstantInt *, 8> DeadCases;
  for (auto &Case : SI->cases()) {
    const APInt &CaseVal = Case.getCaseValue()->getValue();
    if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
        (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
      DeadCases.push_back(Case.getCaseValue());
      DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
    }
  }

  // If we can prove that the cases must cover all possible values, the
  // default destination becomes dead and we can remove it.  If we know some
  // of the bits in the value, we can use that to more precisely compute the
  // number of possible unique case values.
  bool HasDefault =
      !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
  const unsigned NumUnknownBits =
      Bits - (Known.Zero | Known.One).countPopulation();
  assert(NumUnknownBits <= Bits);
  if (HasDefault && DeadCases.empty() &&
      NumUnknownBits < 64 /* avoid overflow */ &&
      SI->getNumCases() == (1ULL << NumUnknownBits)) {
    DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
    BasicBlock *NewDefault =
        SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
    SI->setDefaultDest(&*NewDefault);
    SplitBlock(&*NewDefault, &NewDefault->front());
    auto *OldTI = NewDefault->getTerminator();
    new UnreachableInst(SI->getContext(), OldTI);
    EraseTerminatorInstAndDCECond(OldTI);
    return true;
  }

  SmallVector<uint64_t, 8> Weights;
  bool HasWeight = HasBranchWeights(SI);
  if (HasWeight) {
    GetBranchWeights(SI, Weights);
    HasWeight = (Weights.size() == 1 + SI->getNumCases());
  }

  // Remove dead cases from the switch.
  for (ConstantInt *DeadCase : DeadCases) {
    SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
    assert(CaseI != SI->case_default() &&
           "Case was not found. Probably mistake in DeadCases forming.");
    if (HasWeight) {
      std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
      Weights.pop_back();
    }

    // Prune unused values from PHI nodes.
    CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
    SI->removeCase(CaseI);
  }
  if (HasWeight && Weights.size() >= 2) {
    SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
    SI->setMetadata(LLVMContext::MD_prof,
                    MDBuilder(SI->getParent()->getContext())
                        .createBranchWeights(MDWeights));
  }

  return !DeadCases.empty();
}

/// If BB would be eligible for simplification by
/// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
/// by an unconditional branch), look at the phi node for BB in the successor
/// block and see if the incoming value is equal to CaseValue. If so, return
/// the phi node, and set PhiIndex to BB's index in the phi node.
static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
                                              BasicBlock *BB, int *PhiIndex) {
  if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
    return nullptr; // BB must be empty to be a candidate for simplification.
  if (!BB->getSinglePredecessor())
    return nullptr; // BB must be dominated by the switch.

  BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
  if (!Branch || !Branch->isUnconditional())
    return nullptr; // Terminator must be unconditional branch.

  BasicBlock *Succ = Branch->getSuccessor(0);

  BasicBlock::iterator I = Succ->begin();
  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
    int Idx = PHI->getBasicBlockIndex(BB);
    assert(Idx >= 0 && "PHI has no entry for predecessor?");

    Value *InValue = PHI->getIncomingValue(Idx);
    if (InValue != CaseValue)
      continue;

    *PhiIndex = Idx;
    return PHI;
  }

  return nullptr;
}

/// Try to forward the condition of a switch instruction to a phi node
/// dominated by the switch, if that would mean that some of the destination
/// blocks of the switch can be folded away. Return true if a change is made.
static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
  using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;

  ForwardingNodesMap ForwardingNodes;
  BasicBlock *SwitchBlock = SI->getParent();
  bool Changed = false;
  for (auto &Case : SI->cases()) {
    ConstantInt *CaseValue = Case.getCaseValue();
    BasicBlock *CaseDest = Case.getCaseSuccessor();

    // Replace phi operands in successor blocks that are using the constant case
    // value rather than the switch condition variable:
    //   switchbb:
    //   switch i32 %x, label %default [
    //     i32 17, label %succ
    //   ...
    //   succ:
    //     %r = phi i32 ... [ 17, %switchbb ] ...
    // -->
    //     %r = phi i32 ... [ %x, %switchbb ] ...

    for (Instruction &InstInCaseDest : *CaseDest) {
      auto *Phi = dyn_cast<PHINode>(&InstInCaseDest);
      if (!Phi) break;

      // This only works if there is exactly 1 incoming edge from the switch to
      // a phi. If there is >1, that means multiple cases of the switch map to 1
      // value in the phi, and that phi value is not the switch condition. Thus,
      // this transform would not make sense (the phi would be invalid because
      // a phi can't have different incoming values from the same block).
      int SwitchBBIdx = Phi->getBasicBlockIndex(SwitchBlock);
      if (Phi->getIncomingValue(SwitchBBIdx) == CaseValue &&
          count(Phi->blocks(), SwitchBlock) == 1) {
        Phi->setIncomingValue(SwitchBBIdx, SI->getCondition());
        Changed = true;
      }
    }

    // Collect phi nodes that are indirectly using this switch's case constants.
    int PhiIdx;
    if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
      ForwardingNodes[Phi].push_back(PhiIdx);
  }

  for (auto &ForwardingNode : ForwardingNodes) {
    PHINode *Phi = ForwardingNode.first;
    SmallVectorImpl<int> &Indexes = ForwardingNode.second;
    if (Indexes.size() < 2)
      continue;

    for (int Index : Indexes)
      Phi->setIncomingValue(Index, SI->getCondition());
    Changed = true;
  }

  return Changed;
}

/// Return true if the backend will be able to handle
/// initializing an array of constants like C.
static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
  if (C->isThreadDependent())
    return false;
  if (C->isDLLImportDependent())
    return false;

  if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
      !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
      !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
    return false;

  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    if (!CE->isGEPWithNoNotionalOverIndexing())
      return false;
    if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
      return false;
  }

  if (!TTI.shouldBuildLookupTablesForConstant(C))
    return false;

  return true;
}

/// If V is a Constant, return it. Otherwise, try to look up
/// its constant value in ConstantPool, returning 0 if it's not there.
static Constant *
LookupConstant(Value *V,
               const SmallDenseMap<Value *, Constant *> &ConstantPool) {
  if (Constant *C = dyn_cast<Constant>(V))
    return C;
  return ConstantPool.lookup(V);
}

/// Try to fold instruction I into a constant. This works for
/// simple instructions such as binary operations where both operands are
/// constant or can be replaced by constants from the ConstantPool. Returns the
/// resulting constant on success, 0 otherwise.
static Constant *
ConstantFold(Instruction *I, const DataLayout &DL,
             const SmallDenseMap<Value *, Constant *> &ConstantPool) {
  if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
    Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
    if (!A)
      return nullptr;
    if (A->isAllOnesValue())
      return LookupConstant(Select->getTrueValue(), ConstantPool);
    if (A->isNullValue())
      return LookupConstant(Select->getFalseValue(), ConstantPool);
    return nullptr;
  }

  SmallVector<Constant *, 4> COps;
  for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
    if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
      COps.push_back(A);
    else
      return nullptr;
  }

  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
    return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
                                           COps[1], DL);
  }

  return ConstantFoldInstOperands(I, COps, DL);
}

/// Try to determine the resulting constant values in phi nodes
/// at the common destination basic block, *CommonDest, for one of the case
/// destionations CaseDest corresponding to value CaseVal (0 for the default
/// case), of a switch instruction SI.
static bool
GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
               BasicBlock **CommonDest,
               SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
               const DataLayout &DL, const TargetTransformInfo &TTI) {
  // The block from which we enter the common destination.
  BasicBlock *Pred = SI->getParent();

  // If CaseDest is empty except for some side-effect free instructions through
  // which we can constant-propagate the CaseVal, continue to its successor.
  SmallDenseMap<Value *, Constant *> ConstantPool;
  ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
  for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
       ++I) {
    if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
      // If the terminator is a simple branch, continue to the next block.
      if (T->getNumSuccessors() != 1 || T->isExceptional())
        return false;
      Pred = CaseDest;
      CaseDest = T->getSuccessor(0);
    } else if (isa<DbgInfoIntrinsic>(I)) {
      // Skip debug intrinsic.
      continue;
    } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
      // Instruction is side-effect free and constant.

      // If the instruction has uses outside this block or a phi node slot for
      // the block, it is not safe to bypass the instruction since it would then
      // no longer dominate all its uses.
      for (auto &Use : I->uses()) {
        User *User = Use.getUser();
        if (Instruction *I = dyn_cast<Instruction>(User))
          if (I->getParent() == CaseDest)
            continue;
        if (PHINode *Phi = dyn_cast<PHINode>(User))
          if (Phi->getIncomingBlock(Use) == CaseDest)
            continue;
        return false;
      }

      ConstantPool.insert(std::make_pair(&*I, C));
    } else {
      break;
    }
  }

  // If we did not have a CommonDest before, use the current one.
  if (!*CommonDest)
    *CommonDest = CaseDest;
  // If the destination isn't the common one, abort.
  if (CaseDest != *CommonDest)
    return false;

  // Get the values for this case from phi nodes in the destination block.
  BasicBlock::iterator I = (*CommonDest)->begin();
  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
    int Idx = PHI->getBasicBlockIndex(Pred);
    if (Idx == -1)
      continue;

    Constant *ConstVal =
        LookupConstant(PHI->getIncomingValue(Idx), ConstantPool);
    if (!ConstVal)
      return false;

    // Be conservative about which kinds of constants we support.
    if (!ValidLookupTableConstant(ConstVal, TTI))
      return false;

    Res.push_back(std::make_pair(PHI, ConstVal));
  }

  return Res.size() > 0;
}

// Helper function used to add CaseVal to the list of cases that generate
// Result.
static void MapCaseToResult(ConstantInt *CaseVal,
                            SwitchCaseResultVectorTy &UniqueResults,
                            Constant *Result) {
  for (auto &I : UniqueResults) {
    if (I.first == Result) {
      I.second.push_back(CaseVal);
      return;
    }
  }
  UniqueResults.push_back(
      std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
}

// Helper function that initializes a map containing
// results for the PHI node of the common destination block for a switch
// instruction. Returns false if multiple PHI nodes have been found or if
// there is not a common destination block for the switch.
static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
                                  BasicBlock *&CommonDest,
                                  SwitchCaseResultVectorTy &UniqueResults,
                                  Constant *&DefaultResult,
                                  const DataLayout &DL,
                                  const TargetTransformInfo &TTI) {
  for (auto &I : SI->cases()) {
    ConstantInt *CaseVal = I.getCaseValue();

    // Resulting value at phi nodes for this case value.
    SwitchCaseResultsTy Results;
    if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
                        DL, TTI))
      return false;

    // Only one value per case is permitted
    if (Results.size() > 1)
      return false;
    MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);

    // Check the PHI consistency.
    if (!PHI)
      PHI = Results[0].first;
    else if (PHI != Results[0].first)
      return false;
  }
  // Find the default result value.
  SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
  BasicBlock *DefaultDest = SI->getDefaultDest();
  GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
                 DL, TTI);
  // If the default value is not found abort unless the default destination
  // is unreachable.
  DefaultResult =
      DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
  if ((!DefaultResult &&
       !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
    return false;

  return true;
}

// Helper function that checks if it is possible to transform a switch with only
// two cases (or two cases + default) that produces a result into a select.
// Example:
// switch (a) {
//   case 10:                %0 = icmp eq i32 %a, 10
//     return 10;            %1 = select i1 %0, i32 10, i32 4
//   case 20:        ---->   %2 = icmp eq i32 %a, 20
//     return 2;             %3 = select i1 %2, i32 2, i32 %1
//   default:
//     return 4;
// }
static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
                                   Constant *DefaultResult, Value *Condition,
                                   IRBuilder<> &Builder) {
  assert(ResultVector.size() == 2 &&
         "We should have exactly two unique results at this point");
  // If we are selecting between only two cases transform into a simple
  // select or a two-way select if default is possible.
  if (ResultVector[0].second.size() == 1 &&
      ResultVector[1].second.size() == 1) {
    ConstantInt *const FirstCase = ResultVector[0].second[0];
    ConstantInt *const SecondCase = ResultVector[1].second[0];

    bool DefaultCanTrigger = DefaultResult;
    Value *SelectValue = ResultVector[1].first;
    if (DefaultCanTrigger) {
      Value *const ValueCompare =
          Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
      SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
                                         DefaultResult, "switch.select");
    }
    Value *const ValueCompare =
        Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
    return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
                                SelectValue, "switch.select");
  }

  return nullptr;
}

// Helper function to cleanup a switch instruction that has been converted into
// a select, fixing up PHI nodes and basic blocks.
static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
                                              Value *SelectValue,
                                              IRBuilder<> &Builder) {
  BasicBlock *SelectBB = SI->getParent();
  while (PHI->getBasicBlockIndex(SelectBB) >= 0)
    PHI->removeIncomingValue(SelectBB);
  PHI->addIncoming(SelectValue, SelectBB);

  Builder.CreateBr(PHI->getParent());

  // Remove the switch.
  for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
    BasicBlock *Succ = SI->getSuccessor(i);

    if (Succ == PHI->getParent())
      continue;
    Succ->removePredecessor(SelectBB);
  }
  SI->eraseFromParent();
}

/// If the switch is only used to initialize one or more
/// phi nodes in a common successor block with only two different
/// constant values, replace the switch with select.
static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
                           const DataLayout &DL,
                           const TargetTransformInfo &TTI) {
  Value *const Cond = SI->getCondition();
  PHINode *PHI = nullptr;
  BasicBlock *CommonDest = nullptr;
  Constant *DefaultResult;
  SwitchCaseResultVectorTy UniqueResults;
  // Collect all the cases that will deliver the same value from the switch.
  if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
                             DL, TTI))
    return false;
  // Selects choose between maximum two values.
  if (UniqueResults.size() != 2)
    return false;
  assert(PHI != nullptr && "PHI for value select not found");

  Builder.SetInsertPoint(SI);
  Value *SelectValue =
      ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
  if (SelectValue) {
    RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
    return true;
  }
  // The switch couldn't be converted into a select.
  return false;
}

namespace {

/// This class represents a lookup table that can be used to replace a switch.
class SwitchLookupTable {
public:
  /// Create a lookup table to use as a switch replacement with the contents
  /// of Values, using DefaultValue to fill any holes in the table.
  SwitchLookupTable(
      Module &M, uint64_t TableSize, ConstantInt *Offset,
      const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
      Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);

  /// Build instructions with Builder to retrieve the value at
  /// the position given by Index in the lookup table.
  Value *BuildLookup(Value *Index, IRBuilder<> &Builder);

  /// Return true if a table with TableSize elements of
  /// type ElementType would fit in a target-legal register.
  static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
                                 Type *ElementType);

private:
  // Depending on the contents of the table, it can be represented in
  // different ways.
  enum {
    // For tables where each element contains the same value, we just have to
    // store that single value and return it for each lookup.
    SingleValueKind,

    // For tables where there is a linear relationship between table index
    // and values. We calculate the result with a simple multiplication
    // and addition instead of a table lookup.
    LinearMapKind,

    // For small tables with integer elements, we can pack them into a bitmap
    // that fits into a target-legal register. Values are retrieved by
    // shift and mask operations.
    BitMapKind,

    // The table is stored as an array of values. Values are retrieved by load
    // instructions from the table.
    ArrayKind
  } Kind;

  // For SingleValueKind, this is the single value.
  Constant *SingleValue = nullptr;

  // For BitMapKind, this is the bitmap.
  ConstantInt *BitMap = nullptr;
  IntegerType *BitMapElementTy = nullptr;

  // For LinearMapKind, these are the constants used to derive the value.
  ConstantInt *LinearOffset = nullptr;
  ConstantInt *LinearMultiplier = nullptr;

  // For ArrayKind, this is the array.
  GlobalVariable *Array = nullptr;
};

} // end anonymous namespace

SwitchLookupTable::SwitchLookupTable(
    Module &M, uint64_t TableSize, ConstantInt *Offset,
    const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
    Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
  assert(Values.size() && "Can't build lookup table without values!");
  assert(TableSize >= Values.size() && "Can't fit values in table!");

  // If all values in the table are equal, this is that value.
  SingleValue = Values.begin()->second;

  Type *ValueType = Values.begin()->second->getType();

  // Build up the table contents.
  SmallVector<Constant *, 64> TableContents(TableSize);
  for (size_t I = 0, E = Values.size(); I != E; ++I) {
    ConstantInt *CaseVal = Values[I].first;
    Constant *CaseRes = Values[I].second;
    assert(CaseRes->getType() == ValueType);

    uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
    TableContents[Idx] = CaseRes;

    if (CaseRes != SingleValue)
      SingleValue = nullptr;
  }

  // Fill in any holes in the table with the default result.
  if (Values.size() < TableSize) {
    assert(DefaultValue &&
           "Need a default value to fill the lookup table holes.");
    assert(DefaultValue->getType() == ValueType);
    for (uint64_t I = 0; I < TableSize; ++I) {
      if (!TableContents[I])
        TableContents[I] = DefaultValue;
    }

    if (DefaultValue != SingleValue)
      SingleValue = nullptr;
  }

  // If each element in the table contains the same value, we only need to store
  // that single value.
  if (SingleValue) {
    Kind = SingleValueKind;
    return;
  }

  // Check if we can derive the value with a linear transformation from the
  // table index.
  if (isa<IntegerType>(ValueType)) {
    bool LinearMappingPossible = true;
    APInt PrevVal;
    APInt DistToPrev;
    assert(TableSize >= 2 && "Should be a SingleValue table.");
    // Check if there is the same distance between two consecutive values.
    for (uint64_t I = 0; I < TableSize; ++I) {
      ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
      if (!ConstVal) {
        // This is an undef. We could deal with it, but undefs in lookup tables
        // are very seldom. It's probably not worth the additional complexity.
        LinearMappingPossible = false;
        break;
      }
      const APInt &Val = ConstVal->getValue();
      if (I != 0) {
        APInt Dist = Val - PrevVal;
        if (I == 1) {
          DistToPrev = Dist;
        } else if (Dist != DistToPrev) {
          LinearMappingPossible = false;
          break;
        }
      }
      PrevVal = Val;
    }
    if (LinearMappingPossible) {
      LinearOffset = cast<ConstantInt>(TableContents[0]);
      LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
      Kind = LinearMapKind;
      ++NumLinearMaps;
      return;
    }
  }

  // If the type is integer and the table fits in a register, build a bitmap.
  if (WouldFitInRegister(DL, TableSize, ValueType)) {
    IntegerType *IT = cast<IntegerType>(ValueType);
    APInt TableInt(TableSize * IT->getBitWidth(), 0);
    for (uint64_t I = TableSize; I > 0; --I) {
      TableInt <<= IT->getBitWidth();
      // Insert values into the bitmap. Undef values are set to zero.
      if (!isa<UndefValue>(TableContents[I - 1])) {
        ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
        TableInt |= Val->getValue().zext(TableInt.getBitWidth());
      }
    }
    BitMap = ConstantInt::get(M.getContext(), TableInt);
    BitMapElementTy = IT;
    Kind = BitMapKind;
    ++NumBitMaps;
    return;
  }

  // Store the table in an array.
  ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
  Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);

  Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
                             GlobalVariable::PrivateLinkage, Initializer,
                             "switch.table." + FuncName);
  Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
  Kind = ArrayKind;
}

Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
  switch (Kind) {
  case SingleValueKind:
    return SingleValue;
  case LinearMapKind: {
    // Derive the result value from the input value.
    Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
                                          false, "switch.idx.cast");
    if (!LinearMultiplier->isOne())
      Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
    if (!LinearOffset->isZero())
      Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
    return Result;
  }
  case BitMapKind: {
    // Type of the bitmap (e.g. i59).
    IntegerType *MapTy = BitMap->getType();

    // Cast Index to the same type as the bitmap.
    // Note: The Index is <= the number of elements in the table, so
    // truncating it to the width of the bitmask is safe.
    Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");

    // Multiply the shift amount by the element width.
    ShiftAmt = Builder.CreateMul(
        ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
        "switch.shiftamt");

    // Shift down.
    Value *DownShifted =
        Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
    // Mask off.
    return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
  }
  case ArrayKind: {
    // Make sure the table index will not overflow when treated as signed.
    IntegerType *IT = cast<IntegerType>(Index->getType());
    uint64_t TableSize =
        Array->getInitializer()->getType()->getArrayNumElements();
    if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
      Index = Builder.CreateZExt(
          Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
          "switch.tableidx.zext");

    Value *GEPIndices[] = {Builder.getInt32(0), Index};
    Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
                                           GEPIndices, "switch.gep");
    return Builder.CreateLoad(GEP, "switch.load");
  }
  }
  llvm_unreachable("Unknown lookup table kind!");
}

bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
                                           uint64_t TableSize,
                                           Type *ElementType) {
  auto *IT = dyn_cast<IntegerType>(ElementType);
  if (!IT)
    return false;
  // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
  // are <= 15, we could try to narrow the type.

  // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
  if (TableSize >= UINT_MAX / IT->getBitWidth())
    return false;
  return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
}

/// Determine whether a lookup table should be built for this switch, based on
/// the number of cases, size of the table, and the types of the results.
static bool
ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
                       const TargetTransformInfo &TTI, const DataLayout &DL,
                       const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
  if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
    return false; // TableSize overflowed, or mul below might overflow.

  bool AllTablesFitInRegister = true;
  bool HasIllegalType = false;
  for (const auto &I : ResultTypes) {
    Type *Ty = I.second;

    // Saturate this flag to true.
    HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);

    // Saturate this flag to false.
    AllTablesFitInRegister =
        AllTablesFitInRegister &&
        SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);

    // If both flags saturate, we're done. NOTE: This *only* works with
    // saturating flags, and all flags have to saturate first due to the
    // non-deterministic behavior of iterating over a dense map.
    if (HasIllegalType && !AllTablesFitInRegister)
      break;
  }

  // If each table would fit in a register, we should build it anyway.
  if (AllTablesFitInRegister)
    return true;

  // Don't build a table that doesn't fit in-register if it has illegal types.
  if (HasIllegalType)
    return false;

  // The table density should be at least 40%. This is the same criterion as for
  // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
  // FIXME: Find the best cut-off.
  return SI->getNumCases() * 10 >= TableSize * 4;
}

/// Try to reuse the switch table index compare. Following pattern:
/// \code
///     if (idx < tablesize)
///        r = table[idx]; // table does not contain default_value
///     else
///        r = default_value;
///     if (r != default_value)
///        ...
/// \endcode
/// Is optimized to:
/// \code
///     cond = idx < tablesize;
///     if (cond)
///        r = table[idx];
///     else
///        r = default_value;
///     if (cond)
///        ...
/// \endcode
/// Jump threading will then eliminate the second if(cond).
static void reuseTableCompare(
    User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
    Constant *DefaultValue,
    const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
  ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
  if (!CmpInst)
    return;

  // We require that the compare is in the same block as the phi so that jump
  // threading can do its work afterwards.
  if (CmpInst->getParent() != PhiBlock)
    return;

  Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
  if (!CmpOp1)
    return;

  Value *RangeCmp = RangeCheckBranch->getCondition();
  Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
  Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());

  // Check if the compare with the default value is constant true or false.
  Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
                                                 DefaultValue, CmpOp1, true);
  if (DefaultConst != TrueConst && DefaultConst != FalseConst)
    return;

  // Check if the compare with the case values is distinct from the default
  // compare result.
  for (auto ValuePair : Values) {
    Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
                                                ValuePair.second, CmpOp1, true);
    if (!CaseConst || CaseConst == DefaultConst)
      return;
    assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
           "Expect true or false as compare result.");
  }

  // Check if the branch instruction dominates the phi node. It's a simple
  // dominance check, but sufficient for our needs.
  // Although this check is invariant in the calling loops, it's better to do it
  // at this late stage. Practically we do it at most once for a switch.
  BasicBlock *BranchBlock = RangeCheckBranch->getParent();
  for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
    BasicBlock *Pred = *PI;
    if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
      return;
  }

  if (DefaultConst == FalseConst) {
    // The compare yields the same result. We can replace it.
    CmpInst->replaceAllUsesWith(RangeCmp);
    ++NumTableCmpReuses;
  } else {
    // The compare yields the same result, just inverted. We can replace it.
    Value *InvertedTableCmp = BinaryOperator::CreateXor(
        RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
        RangeCheckBranch);
    CmpInst->replaceAllUsesWith(InvertedTableCmp);
    ++NumTableCmpReuses;
  }
}

/// If the switch is only used to initialize one or more phi nodes in a common
/// successor block with different constant values, replace the switch with
/// lookup tables.
static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
                                const DataLayout &DL,
                                const TargetTransformInfo &TTI) {
  assert(SI->getNumCases() > 1 && "Degenerate switch?");

  Function *Fn = SI->getParent()->getParent();
  // Only build lookup table when we have a target that supports it or the
  // attribute is not set.
  if (!TTI.shouldBuildLookupTables() ||
      (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
    return false;

  // FIXME: If the switch is too sparse for a lookup table, perhaps we could
  // split off a dense part and build a lookup table for that.

  // FIXME: This creates arrays of GEPs to constant strings, which means each
  // GEP needs a runtime relocation in PIC code. We should just build one big
  // string and lookup indices into that.

  // Ignore switches with less than three cases. Lookup tables will not make
  // them faster, so we don't analyze them.
  if (SI->getNumCases() < 3)
    return false;

  // Figure out the corresponding result for each case value and phi node in the
  // common destination, as well as the min and max case values.
  assert(SI->case_begin() != SI->case_end());
  SwitchInst::CaseIt CI = SI->case_begin();
  ConstantInt *MinCaseVal = CI->getCaseValue();
  ConstantInt *MaxCaseVal = CI->getCaseValue();

  BasicBlock *CommonDest = nullptr;

  using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
  SmallDenseMap<PHINode *, ResultListTy> ResultLists;

  SmallDenseMap<PHINode *, Constant *> DefaultResults;
  SmallDenseMap<PHINode *, Type *> ResultTypes;
  SmallVector<PHINode *, 4> PHIs;

  for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
    ConstantInt *CaseVal = CI->getCaseValue();
    if (CaseVal->getValue().slt(MinCaseVal->getValue()))
      MinCaseVal = CaseVal;
    if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
      MaxCaseVal = CaseVal;

    // Resulting value at phi nodes for this case value.
    using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
    ResultsTy Results;
    if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
                        Results, DL, TTI))
      return false;

    // Append the result from this case to the list for each phi.
    for (const auto &I : Results) {
      PHINode *PHI = I.first;
      Constant *Value = I.second;
      if (!ResultLists.count(PHI))
        PHIs.push_back(PHI);
      ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
    }
  }

  // Keep track of the result types.
  for (PHINode *PHI : PHIs) {
    ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
  }

  uint64_t NumResults = ResultLists[PHIs[0]].size();
  APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
  uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
  bool TableHasHoles = (NumResults < TableSize);

  // If the table has holes, we need a constant result for the default case
  // or a bitmask that fits in a register.
  SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
  bool HasDefaultResults =
      GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
                     DefaultResultsList, DL, TTI);

  bool NeedMask = (TableHasHoles && !HasDefaultResults);
  if (NeedMask) {
    // As an extra penalty for the validity test we require more cases.
    if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
      return false;
    if (!DL.fitsInLegalInteger(TableSize))
      return false;
  }

  for (const auto &I : DefaultResultsList) {
    PHINode *PHI = I.first;
    Constant *Result = I.second;
    DefaultResults[PHI] = Result;
  }

  if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
    return false;

  // Create the BB that does the lookups.
  Module &Mod = *CommonDest->getParent()->getParent();
  BasicBlock *LookupBB = BasicBlock::Create(
      Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);

  // Compute the table index value.
  Builder.SetInsertPoint(SI);
  Value *TableIndex;
  if (MinCaseVal->isNullValue())
    TableIndex = SI->getCondition();
  else
    TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
                                   "switch.tableidx");

  // Compute the maximum table size representable by the integer type we are
  // switching upon.
  unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
  uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
  assert(MaxTableSize >= TableSize &&
         "It is impossible for a switch to have more entries than the max "
         "representable value of its input integer type's size.");

  // If the default destination is unreachable, or if the lookup table covers
  // all values of the conditional variable, branch directly to the lookup table
  // BB. Otherwise, check that the condition is within the case range.
  const bool DefaultIsReachable =
      !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
  const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
  BranchInst *RangeCheckBranch = nullptr;

  if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
    Builder.CreateBr(LookupBB);
    // Note: We call removeProdecessor later since we need to be able to get the
    // PHI value for the default case in case we're using a bit mask.
  } else {
    Value *Cmp = Builder.CreateICmpULT(
        TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
    RangeCheckBranch =
        Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
  }

  // Populate the BB that does the lookups.
  Builder.SetInsertPoint(LookupBB);

  if (NeedMask) {
    // Before doing the lookup, we do the hole check. The LookupBB is therefore
    // re-purposed to do the hole check, and we create a new LookupBB.
    BasicBlock *MaskBB = LookupBB;
    MaskBB->setName("switch.hole_check");
    LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
                                  CommonDest->getParent(), CommonDest);

    // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
    // unnecessary illegal types.
    uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
    APInt MaskInt(TableSizePowOf2, 0);
    APInt One(TableSizePowOf2, 1);
    // Build bitmask; fill in a 1 bit for every case.
    const ResultListTy &ResultList = ResultLists[PHIs[0]];
    for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
      uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
                         .getLimitedValue();
      MaskInt |= One << Idx;
    }
    ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);

    // Get the TableIndex'th bit of the bitmask.
    // If this bit is 0 (meaning hole) jump to the default destination,
    // else continue with table lookup.
    IntegerType *MapTy = TableMask->getType();
    Value *MaskIndex =
        Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
    Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
    Value *LoBit = Builder.CreateTrunc(
        Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
    Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());

    Builder.SetInsertPoint(LookupBB);
    AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
  }

  if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
    // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
    // do not delete PHINodes here.
    SI->getDefaultDest()->removePredecessor(SI->getParent(),
                                            /*DontDeleteUselessPHIs=*/true);
  }

  bool ReturnedEarly = false;
  for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
    PHINode *PHI = PHIs[I];
    const ResultListTy &ResultList = ResultLists[PHI];

    // If using a bitmask, use any value to fill the lookup table holes.
    Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
    StringRef FuncName = Fn->getName();
    SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
                            FuncName);

    Value *Result = Table.BuildLookup(TableIndex, Builder);

    // If the result is used to return immediately from the function, we want to
    // do that right here.
    if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
        PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
      Builder.CreateRet(Result);
      ReturnedEarly = true;
      break;
    }

    // Do a small peephole optimization: re-use the switch table compare if
    // possible.
    if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
      BasicBlock *PhiBlock = PHI->getParent();
      // Search for compare instructions which use the phi.
      for (auto *User : PHI->users()) {
        reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
      }
    }

    PHI->addIncoming(Result, LookupBB);
  }

  if (!ReturnedEarly)
    Builder.CreateBr(CommonDest);

  // Remove the switch.
  for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
    BasicBlock *Succ = SI->getSuccessor(i);

    if (Succ == SI->getDefaultDest())
      continue;
    Succ->removePredecessor(SI->getParent());
  }
  SI->eraseFromParent();

  ++NumLookupTables;
  if (NeedMask)
    ++NumLookupTablesHoles;
  return true;
}

static bool isSwitchDense(ArrayRef<int64_t> Values) {
  // See also SelectionDAGBuilder::isDense(), which this function was based on.
  uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
  uint64_t Range = Diff + 1;
  uint64_t NumCases = Values.size();
  // 40% is the default density for building a jump table in optsize/minsize mode.
  uint64_t MinDensity = 40;

  return NumCases * 100 >= Range * MinDensity;
}

/// Try to transform a switch that has "holes" in it to a contiguous sequence
/// of cases.
///
/// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
/// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
///
/// This converts a sparse switch into a dense switch which allows better
/// lowering and could also allow transforming into a lookup table.
static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
                              const DataLayout &DL,
                              const TargetTransformInfo &TTI) {
  auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
  if (CondTy->getIntegerBitWidth() > 64 ||
      !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
    return false;
  // Only bother with this optimization if there are more than 3 switch cases;
  // SDAG will only bother creating jump tables for 4 or more cases.
  if (SI->getNumCases() < 4)
    return false;

  // This transform is agnostic to the signedness of the input or case values. We
  // can treat the case values as signed or unsigned. We can optimize more common
  // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
  // as signed.
  SmallVector<int64_t,4> Values;
  for (auto &C : SI->cases())
    Values.push_back(C.getCaseValue()->getValue().getSExtValue());
  std::sort(Values.begin(), Values.end());

  // If the switch is already dense, there's nothing useful to do here.
  if (isSwitchDense(Values))
    return false;

  // First, transform the values such that they start at zero and ascend.
  int64_t Base = Values[0];
  for (auto &V : Values)
    V -= (uint64_t)(Base);

  // Now we have signed numbers that have been shifted so that, given enough
  // precision, there are no negative values. Since the rest of the transform
  // is bitwise only, we switch now to an unsigned representation.
  uint64_t GCD = 0;
  for (auto &V : Values)
    GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);

  // This transform can be done speculatively because it is so cheap - it results
  // in a single rotate operation being inserted. This can only happen if the
  // factor extracted is a power of 2.
  // FIXME: If the GCD is an odd number we can multiply by the multiplicative
  // inverse of GCD and then perform this transform.
  // FIXME: It's possible that optimizing a switch on powers of two might also
  // be beneficial - flag values are often powers of two and we could use a CLZ
  // as the key function.
  if (GCD <= 1 || !isPowerOf2_64(GCD))
    // No common divisor found or too expensive to compute key function.
    return false;

  unsigned Shift = Log2_64(GCD);
  for (auto &V : Values)
    V = (int64_t)((uint64_t)V >> Shift);

  if (!isSwitchDense(Values))
    // Transform didn't create a dense switch.
    return false;

  // The obvious transform is to shift the switch condition right and emit a
  // check that the condition actually cleanly divided by GCD, i.e.
  //   C & (1 << Shift - 1) == 0
  // inserting a new CFG edge to handle the case where it didn't divide cleanly.
  //
  // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
  // shift and puts the shifted-off bits in the uppermost bits. If any of these
  // are nonzero then the switch condition will be very large and will hit the
  // default case.

  auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
  Builder.SetInsertPoint(SI);
  auto *ShiftC = ConstantInt::get(Ty, Shift);
  auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
  auto *LShr = Builder.CreateLShr(Sub, ShiftC);
  auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
  auto *Rot = Builder.CreateOr(LShr, Shl);
  SI->replaceUsesOfWith(SI->getCondition(), Rot);

  for (auto Case : SI->cases()) {
    auto *Orig = Case.getCaseValue();
    auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
    Case.setValue(
        cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
  }
  return true;
}

bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
  BasicBlock *BB = SI->getParent();

  if (isValueEqualityComparison(SI)) {
    // If we only have one predecessor, and if it is a branch on this value,
    // see if that predecessor totally determines the outcome of this switch.
    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
      if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
        return simplifyCFG(BB, TTI, Options) | true;

    Value *Cond = SI->getCondition();
    if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
      if (SimplifySwitchOnSelect(SI, Select))
        return simplifyCFG(BB, TTI, Options) | true;

    // If the block only contains the switch, see if we can fold the block
    // away into any preds.
    BasicBlock::iterator BBI = BB->begin();
    // Ignore dbg intrinsics.
    while (isa<DbgInfoIntrinsic>(BBI))
      ++BBI;
    if (SI == &*BBI)
      if (FoldValueComparisonIntoPredecessors(SI, Builder))
        return simplifyCFG(BB, TTI, Options) | true;
  }

  // Try to transform the switch into an icmp and a branch.
  if (TurnSwitchRangeIntoICmp(SI, Builder))
    return simplifyCFG(BB, TTI, Options) | true;

  // Remove unreachable cases.
  if (eliminateDeadSwitchCases(SI, Options.AC, DL))
    return simplifyCFG(BB, TTI, Options) | true;

  if (switchToSelect(SI, Builder, DL, TTI))
    return simplifyCFG(BB, TTI, Options) | true;

  if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
    return simplifyCFG(BB, TTI, Options) | true;

  // The conversion from switch to lookup tables results in difficult-to-analyze
  // code and makes pruning branches much harder. This is a problem if the
  // switch expression itself can still be restricted as a result of inlining or
  // CVP. Therefore, only apply this transformation during late stages of the
  // optimisation pipeline.
  if (Options.ConvertSwitchToLookupTable &&
      SwitchToLookupTable(SI, Builder, DL, TTI))
    return simplifyCFG(BB, TTI, Options) | true;

  if (ReduceSwitchRange(SI, Builder, DL, TTI))
    return simplifyCFG(BB, TTI, Options) | true;

  return false;
}

bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
  BasicBlock *BB = IBI->getParent();
  bool Changed = false;

  // Eliminate redundant destinations.
  SmallPtrSet<Value *, 8> Succs;
  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
    BasicBlock *Dest = IBI->getDestination(i);
    if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
      Dest->removePredecessor(BB);
      IBI->removeDestination(i);
      --i;
      --e;
      Changed = true;
    }
  }

  if (IBI->getNumDestinations() == 0) {
    // If the indirectbr has no successors, change it to unreachable.
    new UnreachableInst(IBI->getContext(), IBI);
    EraseTerminatorInstAndDCECond(IBI);
    return true;
  }

  if (IBI->getNumDestinations() == 1) {
    // If the indirectbr has one successor, change it to a direct branch.
    BranchInst::Create(IBI->getDestination(0), IBI);
    EraseTerminatorInstAndDCECond(IBI);
    return true;
  }

  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
    if (SimplifyIndirectBrOnSelect(IBI, SI))
      return simplifyCFG(BB, TTI, Options) | true;
  }
  return Changed;
}

/// Given an block with only a single landing pad and a unconditional branch
/// try to find another basic block which this one can be merged with.  This
/// handles cases where we have multiple invokes with unique landing pads, but
/// a shared handler.
///
/// We specifically choose to not worry about merging non-empty blocks
/// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
/// practice, the optimizer produces empty landing pad blocks quite frequently
/// when dealing with exception dense code.  (see: instcombine, gvn, if-else
/// sinking in this file)
///
/// This is primarily a code size optimization.  We need to avoid performing
/// any transform which might inhibit optimization (such as our ability to
/// specialize a particular handler via tail commoning).  We do this by not
/// merging any blocks which require us to introduce a phi.  Since the same
/// values are flowing through both blocks, we don't loose any ability to
/// specialize.  If anything, we make such specialization more likely.
///
/// TODO - This transformation could remove entries from a phi in the target
/// block when the inputs in the phi are the same for the two blocks being
/// merged.  In some cases, this could result in removal of the PHI entirely.
static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
                                 BasicBlock *BB) {
  auto Succ = BB->getUniqueSuccessor();
  assert(Succ);
  // If there's a phi in the successor block, we'd likely have to introduce
  // a phi into the merged landing pad block.
  if (isa<PHINode>(*Succ->begin()))
    return false;

  for (BasicBlock *OtherPred : predecessors(Succ)) {
    if (BB == OtherPred)
      continue;
    BasicBlock::iterator I = OtherPred->begin();
    LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
    if (!LPad2 || !LPad2->isIdenticalTo(LPad))
      continue;
    for (++I; isa<DbgInfoIntrinsic>(I); ++I)
      ;
    BranchInst *BI2 = dyn_cast<BranchInst>(I);
    if (!BI2 || !BI2->isIdenticalTo(BI))
      continue;

    // We've found an identical block.  Update our predecessors to take that
    // path instead and make ourselves dead.
    SmallSet<BasicBlock *, 16> Preds;
    Preds.insert(pred_begin(BB), pred_end(BB));
    for (BasicBlock *Pred : Preds) {
      InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
      assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
             "unexpected successor");
      II->setUnwindDest(OtherPred);
    }

    // The debug info in OtherPred doesn't cover the merged control flow that
    // used to go through BB.  We need to delete it or update it.
    for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
      Instruction &Inst = *I;
      I++;
      if (isa<DbgInfoIntrinsic>(Inst))
        Inst.eraseFromParent();
    }

    SmallSet<BasicBlock *, 16> Succs;
    Succs.insert(succ_begin(BB), succ_end(BB));
    for (BasicBlock *Succ : Succs) {
      Succ->removePredecessor(BB);
    }

    IRBuilder<> Builder(BI);
    Builder.CreateUnreachable();
    BI->eraseFromParent();
    return true;
  }
  return false;
}

bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
                                          IRBuilder<> &Builder) {
  BasicBlock *BB = BI->getParent();
  BasicBlock *Succ = BI->getSuccessor(0);

  if (SinkCommon && SinkThenElseCodeToEnd(BI))
    return true;

  // If the Terminator is the only non-phi instruction, simplify the block.
  // If LoopHeader is provided, check if the block or its successor is a loop
  // header. (This is for early invocations before loop simplify and
  // vectorization to keep canonical loop forms for nested loops. These blocks
  // can be eliminated when the pass is invoked later in the back-end.)
  bool NeedCanonicalLoop =
      Options.NeedCanonicalLoop &&
      (LoopHeaders && (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
  BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
      !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
    return true;

  // If the only instruction in the block is a seteq/setne comparison against a
  // constant, try to simplify the block.
  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
        ;
      if (I->isTerminator() &&
          tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, Options))
        return true;
    }

  // See if we can merge an empty landing pad block with another which is
  // equivalent.
  if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
    for (++I; isa<DbgInfoIntrinsic>(I); ++I)
      ;
    if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
      return true;
  }

  // If this basic block is ONLY a compare and a branch, and if a predecessor
  // branches to us and our successor, fold the comparison into the
  // predecessor and use logical operations to update the incoming value
  // for PHI nodes in common successor.
  if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
    return simplifyCFG(BB, TTI, Options) | true;
  return false;
}

static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
  BasicBlock *PredPred = nullptr;
  for (auto *P : predecessors(BB)) {
    BasicBlock *PPred = P->getSinglePredecessor();
    if (!PPred || (PredPred && PredPred != PPred))
      return nullptr;
    PredPred = PPred;
  }
  return PredPred;
}

bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
  BasicBlock *BB = BI->getParent();

  // Conditional branch
  if (isValueEqualityComparison(BI)) {
    // If we only have one predecessor, and if it is a branch on this value,
    // see if that predecessor totally determines the outcome of this
    // switch.
    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
        return simplifyCFG(BB, TTI, Options) | true;

    // This block must be empty, except for the setcond inst, if it exists.
    // Ignore dbg intrinsics.
    BasicBlock::iterator I = BB->begin();
    // Ignore dbg intrinsics.
    while (isa<DbgInfoIntrinsic>(I))
      ++I;
    if (&*I == BI) {
      if (FoldValueComparisonIntoPredecessors(BI, Builder))
        return simplifyCFG(BB, TTI, Options) | true;
    } else if (&*I == cast<Instruction>(BI->getCondition())) {
      ++I;
      // Ignore dbg intrinsics.
      while (isa<DbgInfoIntrinsic>(I))
        ++I;
      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
        return simplifyCFG(BB, TTI, Options) | true;
    }
  }

  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
  if (SimplifyBranchOnICmpChain(BI, Builder, DL))
    return true;

  // If this basic block has a single dominating predecessor block and the
  // dominating block's condition implies BI's condition, we know the direction
  // of the BI branch.
  if (BasicBlock *Dom = BB->getSinglePredecessor()) {
    auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
    if (PBI && PBI->isConditional() &&
        PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
      assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB);
      bool CondIsTrue = PBI->getSuccessor(0) == BB;
      Optional<bool> Implication = isImpliedCondition(
          PBI->getCondition(), BI->getCondition(), DL, CondIsTrue);
      if (Implication) {
        // Turn this into a branch on constant.
        auto *OldCond = BI->getCondition();
        ConstantInt *CI = *Implication
                              ? ConstantInt::getTrue(BB->getContext())
                              : ConstantInt::getFalse(BB->getContext());
        BI->setCondition(CI);
        RecursivelyDeleteTriviallyDeadInstructions(OldCond);
        return simplifyCFG(BB, TTI, Options) | true;
      }
    }
  }

  // If this basic block is ONLY a compare and a branch, and if a predecessor
  // branches to us and one of our successors, fold the comparison into the
  // predecessor and use logical operations to pick the right destination.
  if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
    return simplifyCFG(BB, TTI, Options) | true;

  // We have a conditional branch to two blocks that are only reachable
  // from BI.  We know that the condbr dominates the two blocks, so see if
  // there is any identical code in the "then" and "else" blocks.  If so, we
  // can hoist it up to the branching block.
  if (BI->getSuccessor(0)->getSinglePredecessor()) {
    if (BI->getSuccessor(1)->getSinglePredecessor()) {
      if (HoistThenElseCodeToIf(BI, TTI))
        return simplifyCFG(BB, TTI, Options) | true;
    } else {
      // If Successor #1 has multiple preds, we may be able to conditionally
      // execute Successor #0 if it branches to Successor #1.
      TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
      if (Succ0TI->getNumSuccessors() == 1 &&
          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
          return simplifyCFG(BB, TTI, Options) | true;
    }
  } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
    // If Successor #0 has multiple preds, we may be able to conditionally
    // execute Successor #1 if it branches to Successor #0.
    TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
    if (Succ1TI->getNumSuccessors() == 1 &&
        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
        return simplifyCFG(BB, TTI, Options) | true;
  }

  // If this is a branch on a phi node in the current block, thread control
  // through this block if any PHI node entries are constants.
  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
    if (PN->getParent() == BI->getParent())
      if (FoldCondBranchOnPHI(BI, DL, Options.AC))
        return simplifyCFG(BB, TTI, Options) | true;

  // Scan predecessor blocks for conditional branches.
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
      if (PBI != BI && PBI->isConditional())
        if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
          return simplifyCFG(BB, TTI, Options) | true;

  // Look for diamond patterns.
  if (MergeCondStores)
    if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
      if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
        if (PBI != BI && PBI->isConditional())
          if (mergeConditionalStores(PBI, BI, DL))
            return simplifyCFG(BB, TTI, Options) | true;

  return false;
}

/// Check if passing a value to an instruction will cause undefined behavior.
static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
  Constant *C = dyn_cast<Constant>(V);
  if (!C)
    return false;

  if (I->use_empty())
    return false;

  if (C->isNullValue() || isa<UndefValue>(C)) {
    // Only look at the first use, avoid hurting compile time with long uselists
    User *Use = *I->user_begin();

    // Now make sure that there are no instructions in between that can alter
    // control flow (eg. calls)
    for (BasicBlock::iterator
             i = ++BasicBlock::iterator(I),
             UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
         i != UI; ++i)
      if (i == I->getParent()->end() || i->mayHaveSideEffects())
        return false;

    // Look through GEPs. A load from a GEP derived from NULL is still undefined
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
      if (GEP->getPointerOperand() == I)
        return passingValueIsAlwaysUndefined(V, GEP);

    // Look through bitcasts.
    if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
      return passingValueIsAlwaysUndefined(V, BC);

    // Load from null is undefined.
    if (LoadInst *LI = dyn_cast<LoadInst>(Use))
      if (!LI->isVolatile())
        return LI->getPointerAddressSpace() == 0;

    // Store to null is undefined.
    if (StoreInst *SI = dyn_cast<StoreInst>(Use))
      if (!SI->isVolatile())
        return SI->getPointerAddressSpace() == 0 &&
               SI->getPointerOperand() == I;

    // A call to null is undefined.
    if (auto CS = CallSite(Use))
      return CS.getCalledValue() == I;
  }
  return false;
}

/// If BB has an incoming value that will always trigger undefined behavior
/// (eg. null pointer dereference), remove the branch leading here.
static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
  for (BasicBlock::iterator i = BB->begin();
       PHINode *PHI = dyn_cast<PHINode>(i); ++i)
    for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
      if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
        TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
        IRBuilder<> Builder(T);
        if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
          BB->removePredecessor(PHI->getIncomingBlock(i));
          // Turn uncoditional branches into unreachables and remove the dead
          // destination from conditional branches.
          if (BI->isUnconditional())
            Builder.CreateUnreachable();
          else
            Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
                                                       : BI->getSuccessor(0));
          BI->eraseFromParent();
          return true;
        }
        // TODO: SwitchInst.
      }

  return false;
}

bool SimplifyCFGOpt::run(BasicBlock *BB) {
  bool Changed = false;

  assert(BB && BB->getParent() && "Block not embedded in function!");
  assert(BB->getTerminator() && "Degenerate basic block encountered!");

  // Remove basic blocks that have no predecessors (except the entry block)...
  // or that just have themself as a predecessor.  These are unreachable.
  if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
      BB->getSinglePredecessor() == BB) {
    DEBUG(dbgs() << "Removing BB: \n" << *BB);
    DeleteDeadBlock(BB);
    return true;
  }

  // Check to see if we can constant propagate this terminator instruction
  // away...
  Changed |= ConstantFoldTerminator(BB, true);

  // Check for and eliminate duplicate PHI nodes in this block.
  Changed |= EliminateDuplicatePHINodes(BB);

  // Check for and remove branches that will always cause undefined behavior.
  Changed |= removeUndefIntroducingPredecessor(BB);

  // Merge basic blocks into their predecessor if there is only one distinct
  // pred, and if there is only one distinct successor of the predecessor, and
  // if there are no PHI nodes.
  if (MergeBlockIntoPredecessor(BB))
    return true;

  IRBuilder<> Builder(BB);

  // If there is a trivial two-entry PHI node in this basic block, and we can
  // eliminate it, do so now.
  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
    if (PN->getNumIncomingValues() == 2)
      Changed |= FoldTwoEntryPHINode(PN, TTI, DL);

  Builder.SetInsertPoint(BB->getTerminator());
  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
    if (BI->isUnconditional()) {
      if (SimplifyUncondBranch(BI, Builder))
        return true;
    } else {
      if (SimplifyCondBranch(BI, Builder))
        return true;
    }
  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
    if (SimplifyReturn(RI, Builder))
      return true;
  } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
    if (SimplifyResume(RI, Builder))
      return true;
  } else if (CleanupReturnInst *RI =
                 dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
    if (SimplifyCleanupReturn(RI))
      return true;
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
    if (SimplifySwitch(SI, Builder))
      return true;
  } else if (UnreachableInst *UI =
                 dyn_cast<UnreachableInst>(BB->getTerminator())) {
    if (SimplifyUnreachable(UI))
      return true;
  } else if (IndirectBrInst *IBI =
                 dyn_cast<IndirectBrInst>(BB->getTerminator())) {
    if (SimplifyIndirectBr(IBI))
      return true;
  }

  return Changed;
}

bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
                       const SimplifyCFGOptions &Options,
                       SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
  return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
                        Options)
      .run(BB);
}