aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Utils/Local.cpp
blob: 8c643c93ec4dc72c190e1978e92714ac7b610d47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
//===- Local.cpp - Functions to perform local transformations -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This family of functions perform various local transformations to the
// program.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/Local.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstdint>
#include <iterator>
#include <map>
#include <utility>

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "local"

STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");

//===----------------------------------------------------------------------===//
//  Local constant propagation.
//

/// ConstantFoldTerminator - If a terminator instruction is predicated on a
/// constant value, convert it into an unconditional branch to the constant
/// destination.  This is a nontrivial operation because the successors of this
/// basic block must have their PHI nodes updated.
/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
/// conditions and indirectbr addresses this might make dead if
/// DeleteDeadConditions is true.
bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
                                  const TargetLibraryInfo *TLI) {
  TerminatorInst *T = BB->getTerminator();
  IRBuilder<> Builder(T);

  // Branch - See if we are conditional jumping on constant
  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
    BasicBlock *Dest1 = BI->getSuccessor(0);
    BasicBlock *Dest2 = BI->getSuccessor(1);

    if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
      // Are we branching on constant?
      // YES.  Change to unconditional branch...
      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
      BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;

      //cerr << "Function: " << T->getParent()->getParent()
      //     << "\nRemoving branch from " << T->getParent()
      //     << "\n\nTo: " << OldDest << endl;

      // Let the basic block know that we are letting go of it.  Based on this,
      // it will adjust it's PHI nodes.
      OldDest->removePredecessor(BB);

      // Replace the conditional branch with an unconditional one.
      Builder.CreateBr(Destination);
      BI->eraseFromParent();
      return true;
    }

    if (Dest2 == Dest1) {       // Conditional branch to same location?
      // This branch matches something like this:
      //     br bool %cond, label %Dest, label %Dest
      // and changes it into:  br label %Dest

      // Let the basic block know that we are letting go of one copy of it.
      assert(BI->getParent() && "Terminator not inserted in block!");
      Dest1->removePredecessor(BI->getParent());

      // Replace the conditional branch with an unconditional one.
      Builder.CreateBr(Dest1);
      Value *Cond = BI->getCondition();
      BI->eraseFromParent();
      if (DeleteDeadConditions)
        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
      return true;
    }
    return false;
  }

  if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
    // If we are switching on a constant, we can convert the switch to an
    // unconditional branch.
    ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
    BasicBlock *DefaultDest = SI->getDefaultDest();
    BasicBlock *TheOnlyDest = DefaultDest;

    // If the default is unreachable, ignore it when searching for TheOnlyDest.
    if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
        SI->getNumCases() > 0) {
      TheOnlyDest = SI->case_begin()->getCaseSuccessor();
    }

    // Figure out which case it goes to.
    for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
      // Found case matching a constant operand?
      if (i->getCaseValue() == CI) {
        TheOnlyDest = i->getCaseSuccessor();
        break;
      }

      // Check to see if this branch is going to the same place as the default
      // dest.  If so, eliminate it as an explicit compare.
      if (i->getCaseSuccessor() == DefaultDest) {
        MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
        unsigned NCases = SI->getNumCases();
        // Fold the case metadata into the default if there will be any branches
        // left, unless the metadata doesn't match the switch.
        if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
          // Collect branch weights into a vector.
          SmallVector<uint32_t, 8> Weights;
          for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
               ++MD_i) {
            auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
            Weights.push_back(CI->getValue().getZExtValue());
          }
          // Merge weight of this case to the default weight.
          unsigned idx = i->getCaseIndex();
          Weights[0] += Weights[idx+1];
          // Remove weight for this case.
          std::swap(Weights[idx+1], Weights.back());
          Weights.pop_back();
          SI->setMetadata(LLVMContext::MD_prof,
                          MDBuilder(BB->getContext()).
                          createBranchWeights(Weights));
        }
        // Remove this entry.
        DefaultDest->removePredecessor(SI->getParent());
        i = SI->removeCase(i);
        e = SI->case_end();
        continue;
      }

      // Otherwise, check to see if the switch only branches to one destination.
      // We do this by reseting "TheOnlyDest" to null when we find two non-equal
      // destinations.
      if (i->getCaseSuccessor() != TheOnlyDest)
        TheOnlyDest = nullptr;

      // Increment this iterator as we haven't removed the case.
      ++i;
    }

    if (CI && !TheOnlyDest) {
      // Branching on a constant, but not any of the cases, go to the default
      // successor.
      TheOnlyDest = SI->getDefaultDest();
    }

    // If we found a single destination that we can fold the switch into, do so
    // now.
    if (TheOnlyDest) {
      // Insert the new branch.
      Builder.CreateBr(TheOnlyDest);
      BasicBlock *BB = SI->getParent();

      // Remove entries from PHI nodes which we no longer branch to...
      for (BasicBlock *Succ : SI->successors()) {
        // Found case matching a constant operand?
        if (Succ == TheOnlyDest)
          TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
        else
          Succ->removePredecessor(BB);
      }

      // Delete the old switch.
      Value *Cond = SI->getCondition();
      SI->eraseFromParent();
      if (DeleteDeadConditions)
        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
      return true;
    }

    if (SI->getNumCases() == 1) {
      // Otherwise, we can fold this switch into a conditional branch
      // instruction if it has only one non-default destination.
      auto FirstCase = *SI->case_begin();
      Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
          FirstCase.getCaseValue(), "cond");

      // Insert the new branch.
      BranchInst *NewBr = Builder.CreateCondBr(Cond,
                                               FirstCase.getCaseSuccessor(),
                                               SI->getDefaultDest());
      MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
      if (MD && MD->getNumOperands() == 3) {
        ConstantInt *SICase =
            mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
        ConstantInt *SIDef =
            mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
        assert(SICase && SIDef);
        // The TrueWeight should be the weight for the single case of SI.
        NewBr->setMetadata(LLVMContext::MD_prof,
                        MDBuilder(BB->getContext()).
                        createBranchWeights(SICase->getValue().getZExtValue(),
                                            SIDef->getValue().getZExtValue()));
      }

      // Update make.implicit metadata to the newly-created conditional branch.
      MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
      if (MakeImplicitMD)
        NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);

      // Delete the old switch.
      SI->eraseFromParent();
      return true;
    }
    return false;
  }

  if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
    // indirectbr blockaddress(@F, @BB) -> br label @BB
    if (BlockAddress *BA =
          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
      BasicBlock *TheOnlyDest = BA->getBasicBlock();
      // Insert the new branch.
      Builder.CreateBr(TheOnlyDest);

      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
        if (IBI->getDestination(i) == TheOnlyDest)
          TheOnlyDest = nullptr;
        else
          IBI->getDestination(i)->removePredecessor(IBI->getParent());
      }
      Value *Address = IBI->getAddress();
      IBI->eraseFromParent();
      if (DeleteDeadConditions)
        RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);

      // If we didn't find our destination in the IBI successor list, then we
      // have undefined behavior.  Replace the unconditional branch with an
      // 'unreachable' instruction.
      if (TheOnlyDest) {
        BB->getTerminator()->eraseFromParent();
        new UnreachableInst(BB->getContext(), BB);
      }

      return true;
    }
  }

  return false;
}

//===----------------------------------------------------------------------===//
//  Local dead code elimination.
//

/// isInstructionTriviallyDead - Return true if the result produced by the
/// instruction is not used, and the instruction has no side effects.
///
bool llvm::isInstructionTriviallyDead(Instruction *I,
                                      const TargetLibraryInfo *TLI) {
  if (!I->use_empty())
    return false;
  return wouldInstructionBeTriviallyDead(I, TLI);
}

bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
                                           const TargetLibraryInfo *TLI) {
  if (isa<TerminatorInst>(I))
    return false;

  // We don't want the landingpad-like instructions removed by anything this
  // general.
  if (I->isEHPad())
    return false;

  // We don't want debug info removed by anything this general, unless
  // debug info is empty.
  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
    if (DDI->getAddress())
      return false;
    return true;
  }
  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
    if (DVI->getValue())
      return false;
    return true;
  }

  if (!I->mayHaveSideEffects())
    return true;

  // Special case intrinsics that "may have side effects" but can be deleted
  // when dead.
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    // Safe to delete llvm.stacksave if dead.
    if (II->getIntrinsicID() == Intrinsic::stacksave)
      return true;

    // Lifetime intrinsics are dead when their right-hand is undef.
    if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
        II->getIntrinsicID() == Intrinsic::lifetime_end)
      return isa<UndefValue>(II->getArgOperand(1));

    // Assumptions are dead if their condition is trivially true.  Guards on
    // true are operationally no-ops.  In the future we can consider more
    // sophisticated tradeoffs for guards considering potential for check
    // widening, but for now we keep things simple.
    if (II->getIntrinsicID() == Intrinsic::assume ||
        II->getIntrinsicID() == Intrinsic::experimental_guard) {
      if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
        return !Cond->isZero();

      return false;
    }
  }

  if (isAllocLikeFn(I, TLI))
    return true;

  if (CallInst *CI = isFreeCall(I, TLI))
    if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
      return C->isNullValue() || isa<UndefValue>(C);

  if (CallSite CS = CallSite(I))
    if (isMathLibCallNoop(CS, TLI))
      return true;

  return false;
}

/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
/// trivially dead instruction, delete it.  If that makes any of its operands
/// trivially dead, delete them too, recursively.  Return true if any
/// instructions were deleted.
bool
llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
                                                 const TargetLibraryInfo *TLI) {
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
    return false;

  SmallVector<Instruction*, 16> DeadInsts;
  DeadInsts.push_back(I);

  do {
    I = DeadInsts.pop_back_val();

    // Null out all of the instruction's operands to see if any operand becomes
    // dead as we go.
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
      Value *OpV = I->getOperand(i);
      I->setOperand(i, nullptr);

      if (!OpV->use_empty()) continue;

      // If the operand is an instruction that became dead as we nulled out the
      // operand, and if it is 'trivially' dead, delete it in a future loop
      // iteration.
      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
        if (isInstructionTriviallyDead(OpI, TLI))
          DeadInsts.push_back(OpI);
    }

    I->eraseFromParent();
  } while (!DeadInsts.empty());

  return true;
}

/// areAllUsesEqual - Check whether the uses of a value are all the same.
/// This is similar to Instruction::hasOneUse() except this will also return
/// true when there are no uses or multiple uses that all refer to the same
/// value.
static bool areAllUsesEqual(Instruction *I) {
  Value::user_iterator UI = I->user_begin();
  Value::user_iterator UE = I->user_end();
  if (UI == UE)
    return true;

  User *TheUse = *UI;
  for (++UI; UI != UE; ++UI) {
    if (*UI != TheUse)
      return false;
  }
  return true;
}

/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
/// dead PHI node, due to being a def-use chain of single-use nodes that
/// either forms a cycle or is terminated by a trivially dead instruction,
/// delete it.  If that makes any of its operands trivially dead, delete them
/// too, recursively.  Return true if a change was made.
bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
                                        const TargetLibraryInfo *TLI) {
  SmallPtrSet<Instruction*, 4> Visited;
  for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
       I = cast<Instruction>(*I->user_begin())) {
    if (I->use_empty())
      return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);

    // If we find an instruction more than once, we're on a cycle that
    // won't prove fruitful.
    if (!Visited.insert(I).second) {
      // Break the cycle and delete the instruction and its operands.
      I->replaceAllUsesWith(UndefValue::get(I->getType()));
      (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
      return true;
    }
  }
  return false;
}

static bool
simplifyAndDCEInstruction(Instruction *I,
                          SmallSetVector<Instruction *, 16> &WorkList,
                          const DataLayout &DL,
                          const TargetLibraryInfo *TLI) {
  if (isInstructionTriviallyDead(I, TLI)) {
    // Null out all of the instruction's operands to see if any operand becomes
    // dead as we go.
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
      Value *OpV = I->getOperand(i);
      I->setOperand(i, nullptr);

      if (!OpV->use_empty() || I == OpV)
        continue;

      // If the operand is an instruction that became dead as we nulled out the
      // operand, and if it is 'trivially' dead, delete it in a future loop
      // iteration.
      if (Instruction *OpI = dyn_cast<Instruction>(OpV))
        if (isInstructionTriviallyDead(OpI, TLI))
          WorkList.insert(OpI);
    }

    I->eraseFromParent();

    return true;
  }

  if (Value *SimpleV = SimplifyInstruction(I, DL)) {
    // Add the users to the worklist. CAREFUL: an instruction can use itself,
    // in the case of a phi node.
    for (User *U : I->users()) {
      if (U != I) {
        WorkList.insert(cast<Instruction>(U));
      }
    }

    // Replace the instruction with its simplified value.
    bool Changed = false;
    if (!I->use_empty()) {
      I->replaceAllUsesWith(SimpleV);
      Changed = true;
    }
    if (isInstructionTriviallyDead(I, TLI)) {
      I->eraseFromParent();
      Changed = true;
    }
    return Changed;
  }
  return false;
}

/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
/// simplify any instructions in it and recursively delete dead instructions.
///
/// This returns true if it changed the code, note that it can delete
/// instructions in other blocks as well in this block.
bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
                                       const TargetLibraryInfo *TLI) {
  bool MadeChange = false;
  const DataLayout &DL = BB->getModule()->getDataLayout();

#ifndef NDEBUG
  // In debug builds, ensure that the terminator of the block is never replaced
  // or deleted by these simplifications. The idea of simplification is that it
  // cannot introduce new instructions, and there is no way to replace the
  // terminator of a block without introducing a new instruction.
  AssertingVH<Instruction> TerminatorVH(&BB->back());
#endif

  SmallSetVector<Instruction *, 16> WorkList;
  // Iterate over the original function, only adding insts to the worklist
  // if they actually need to be revisited. This avoids having to pre-init
  // the worklist with the entire function's worth of instructions.
  for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
       BI != E;) {
    assert(!BI->isTerminator());
    Instruction *I = &*BI;
    ++BI;

    // We're visiting this instruction now, so make sure it's not in the
    // worklist from an earlier visit.
    if (!WorkList.count(I))
      MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
  }

  while (!WorkList.empty()) {
    Instruction *I = WorkList.pop_back_val();
    MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
  }
  return MadeChange;
}

//===----------------------------------------------------------------------===//
//  Control Flow Graph Restructuring.
//

/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
/// method is called when we're about to delete Pred as a predecessor of BB.  If
/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
///
/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
/// nodes that collapse into identity values.  For example, if we have:
///   x = phi(1, 0, 0, 0)
///   y = and x, z
///
/// .. and delete the predecessor corresponding to the '1', this will attempt to
/// recursively fold the and to 0.
void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
  // This only adjusts blocks with PHI nodes.
  if (!isa<PHINode>(BB->begin()))
    return;

  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
  // them down.  This will leave us with single entry phi nodes and other phis
  // that can be removed.
  BB->removePredecessor(Pred, true);

  WeakTrackingVH PhiIt = &BB->front();
  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
    Value *OldPhiIt = PhiIt;

    if (!recursivelySimplifyInstruction(PN))
      continue;

    // If recursive simplification ended up deleting the next PHI node we would
    // iterate to, then our iterator is invalid, restart scanning from the top
    // of the block.
    if (PhiIt != OldPhiIt) PhiIt = &BB->front();
  }
}

/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
/// between them, moving the instructions in the predecessor into DestBB and
/// deleting the predecessor block.
void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
  // If BB has single-entry PHI nodes, fold them.
  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
    Value *NewVal = PN->getIncomingValue(0);
    // Replace self referencing PHI with undef, it must be dead.
    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
    PN->replaceAllUsesWith(NewVal);
    PN->eraseFromParent();
  }

  BasicBlock *PredBB = DestBB->getSinglePredecessor();
  assert(PredBB && "Block doesn't have a single predecessor!");

  // Zap anything that took the address of DestBB.  Not doing this will give the
  // address an invalid value.
  if (DestBB->hasAddressTaken()) {
    BlockAddress *BA = BlockAddress::get(DestBB);
    Constant *Replacement =
      ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
                                                     BA->getType()));
    BA->destroyConstant();
  }

  // Anything that branched to PredBB now branches to DestBB.
  PredBB->replaceAllUsesWith(DestBB);

  // Splice all the instructions from PredBB to DestBB.
  PredBB->getTerminator()->eraseFromParent();
  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());

  // If the PredBB is the entry block of the function, move DestBB up to
  // become the entry block after we erase PredBB.
  if (PredBB == &DestBB->getParent()->getEntryBlock())
    DestBB->moveAfter(PredBB);

  if (DT) {
    // For some irreducible CFG we end up having forward-unreachable blocks
    // so check if getNode returns a valid node before updating the domtree.
    if (DomTreeNode *DTN = DT->getNode(PredBB)) {
      BasicBlock *PredBBIDom = DTN->getIDom()->getBlock();
      DT->changeImmediateDominator(DestBB, PredBBIDom);
      DT->eraseNode(PredBB);
    }
  }
  // Nuke BB.
  PredBB->eraseFromParent();
}

/// CanMergeValues - Return true if we can choose one of these values to use
/// in place of the other. Note that we will always choose the non-undef
/// value to keep.
static bool CanMergeValues(Value *First, Value *Second) {
  return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
}

/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
/// almost-empty BB ending in an unconditional branch to Succ, into Succ.
///
/// Assumption: Succ is the single successor for BB.
static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");

  DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
        << Succ->getName() << "\n");
  // Shortcut, if there is only a single predecessor it must be BB and merging
  // is always safe
  if (Succ->getSinglePredecessor()) return true;

  // Make a list of the predecessors of BB
  SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));

  // Look at all the phi nodes in Succ, to see if they present a conflict when
  // merging these blocks
  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);

    // If the incoming value from BB is again a PHINode in
    // BB which has the same incoming value for *PI as PN does, we can
    // merge the phi nodes and then the blocks can still be merged
    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
    if (BBPN && BBPN->getParent() == BB) {
      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
        BasicBlock *IBB = PN->getIncomingBlock(PI);
        if (BBPreds.count(IBB) &&
            !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
                            PN->getIncomingValue(PI))) {
          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
                << Succ->getName() << " is conflicting with "
                << BBPN->getName() << " with regard to common predecessor "
                << IBB->getName() << "\n");
          return false;
        }
      }
    } else {
      Value* Val = PN->getIncomingValueForBlock(BB);
      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
        // See if the incoming value for the common predecessor is equal to the
        // one for BB, in which case this phi node will not prevent the merging
        // of the block.
        BasicBlock *IBB = PN->getIncomingBlock(PI);
        if (BBPreds.count(IBB) &&
            !CanMergeValues(Val, PN->getIncomingValue(PI))) {
          DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
                << Succ->getName() << " is conflicting with regard to common "
                << "predecessor " << IBB->getName() << "\n");
          return false;
        }
      }
    }
  }

  return true;
}

using PredBlockVector = SmallVector<BasicBlock *, 16>;
using IncomingValueMap = DenseMap<BasicBlock *, Value *>;

/// \brief Determines the value to use as the phi node input for a block.
///
/// Select between \p OldVal any value that we know flows from \p BB
/// to a particular phi on the basis of which one (if either) is not
/// undef. Update IncomingValues based on the selected value.
///
/// \param OldVal The value we are considering selecting.
/// \param BB The block that the value flows in from.
/// \param IncomingValues A map from block-to-value for other phi inputs
/// that we have examined.
///
/// \returns the selected value.
static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
                                          IncomingValueMap &IncomingValues) {
  if (!isa<UndefValue>(OldVal)) {
    assert((!IncomingValues.count(BB) ||
            IncomingValues.find(BB)->second == OldVal) &&
           "Expected OldVal to match incoming value from BB!");

    IncomingValues.insert(std::make_pair(BB, OldVal));
    return OldVal;
  }

  IncomingValueMap::const_iterator It = IncomingValues.find(BB);
  if (It != IncomingValues.end()) return It->second;

  return OldVal;
}

/// \brief Create a map from block to value for the operands of a
/// given phi.
///
/// Create a map from block to value for each non-undef value flowing
/// into \p PN.
///
/// \param PN The phi we are collecting the map for.
/// \param IncomingValues [out] The map from block to value for this phi.
static void gatherIncomingValuesToPhi(PHINode *PN,
                                      IncomingValueMap &IncomingValues) {
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    BasicBlock *BB = PN->getIncomingBlock(i);
    Value *V = PN->getIncomingValue(i);

    if (!isa<UndefValue>(V))
      IncomingValues.insert(std::make_pair(BB, V));
  }
}

/// \brief Replace the incoming undef values to a phi with the values
/// from a block-to-value map.
///
/// \param PN The phi we are replacing the undefs in.
/// \param IncomingValues A map from block to value.
static void replaceUndefValuesInPhi(PHINode *PN,
                                    const IncomingValueMap &IncomingValues) {
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    Value *V = PN->getIncomingValue(i);

    if (!isa<UndefValue>(V)) continue;

    BasicBlock *BB = PN->getIncomingBlock(i);
    IncomingValueMap::const_iterator It = IncomingValues.find(BB);
    if (It == IncomingValues.end()) continue;

    PN->setIncomingValue(i, It->second);
  }
}

/// \brief Replace a value flowing from a block to a phi with
/// potentially multiple instances of that value flowing from the
/// block's predecessors to the phi.
///
/// \param BB The block with the value flowing into the phi.
/// \param BBPreds The predecessors of BB.
/// \param PN The phi that we are updating.
static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
                                                const PredBlockVector &BBPreds,
                                                PHINode *PN) {
  Value *OldVal = PN->removeIncomingValue(BB, false);
  assert(OldVal && "No entry in PHI for Pred BB!");

  IncomingValueMap IncomingValues;

  // We are merging two blocks - BB, and the block containing PN - and
  // as a result we need to redirect edges from the predecessors of BB
  // to go to the block containing PN, and update PN
  // accordingly. Since we allow merging blocks in the case where the
  // predecessor and successor blocks both share some predecessors,
  // and where some of those common predecessors might have undef
  // values flowing into PN, we want to rewrite those values to be
  // consistent with the non-undef values.

  gatherIncomingValuesToPhi(PN, IncomingValues);

  // If this incoming value is one of the PHI nodes in BB, the new entries
  // in the PHI node are the entries from the old PHI.
  if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
    PHINode *OldValPN = cast<PHINode>(OldVal);
    for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
      // Note that, since we are merging phi nodes and BB and Succ might
      // have common predecessors, we could end up with a phi node with
      // identical incoming branches. This will be cleaned up later (and
      // will trigger asserts if we try to clean it up now, without also
      // simplifying the corresponding conditional branch).
      BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
      Value *PredVal = OldValPN->getIncomingValue(i);
      Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
                                                    IncomingValues);

      // And add a new incoming value for this predecessor for the
      // newly retargeted branch.
      PN->addIncoming(Selected, PredBB);
    }
  } else {
    for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
      // Update existing incoming values in PN for this
      // predecessor of BB.
      BasicBlock *PredBB = BBPreds[i];
      Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
                                                    IncomingValues);

      // And add a new incoming value for this predecessor for the
      // newly retargeted branch.
      PN->addIncoming(Selected, PredBB);
    }
  }

  replaceUndefValuesInPhi(PN, IncomingValues);
}

/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
/// unconditional branch, and contains no instructions other than PHI nodes,
/// potential side-effect free intrinsics and the branch.  If possible,
/// eliminate BB by rewriting all the predecessors to branch to the successor
/// block and return true.  If we can't transform, return false.
bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
  assert(BB != &BB->getParent()->getEntryBlock() &&
         "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");

  // We can't eliminate infinite loops.
  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
  if (BB == Succ) return false;

  // Check to see if merging these blocks would cause conflicts for any of the
  // phi nodes in BB or Succ. If not, we can safely merge.
  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;

  // Check for cases where Succ has multiple predecessors and a PHI node in BB
  // has uses which will not disappear when the PHI nodes are merged.  It is
  // possible to handle such cases, but difficult: it requires checking whether
  // BB dominates Succ, which is non-trivial to calculate in the case where
  // Succ has multiple predecessors.  Also, it requires checking whether
  // constructing the necessary self-referential PHI node doesn't introduce any
  // conflicts; this isn't too difficult, but the previous code for doing this
  // was incorrect.
  //
  // Note that if this check finds a live use, BB dominates Succ, so BB is
  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
  // folding the branch isn't profitable in that case anyway.
  if (!Succ->getSinglePredecessor()) {
    BasicBlock::iterator BBI = BB->begin();
    while (isa<PHINode>(*BBI)) {
      for (Use &U : BBI->uses()) {
        if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
          if (PN->getIncomingBlock(U) != BB)
            return false;
        } else {
          return false;
        }
      }
      ++BBI;
    }
  }

  DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);

  if (isa<PHINode>(Succ->begin())) {
    // If there is more than one pred of succ, and there are PHI nodes in
    // the successor, then we need to add incoming edges for the PHI nodes
    //
    const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));

    // Loop over all of the PHI nodes in the successor of BB.
    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
      PHINode *PN = cast<PHINode>(I);

      redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
    }
  }

  if (Succ->getSinglePredecessor()) {
    // BB is the only predecessor of Succ, so Succ will end up with exactly
    // the same predecessors BB had.

    // Copy over any phi, debug or lifetime instruction.
    BB->getTerminator()->eraseFromParent();
    Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
                               BB->getInstList());
  } else {
    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
      assert(PN->use_empty() && "There shouldn't be any uses here!");
      PN->eraseFromParent();
    }
  }

  // If the unconditional branch we replaced contains llvm.loop metadata, we
  // add the metadata to the branch instructions in the predecessors.
  unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
  Instruction *TI = BB->getTerminator();
  if (TI)
    if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
        BasicBlock *Pred = *PI;
        Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
      }

  // Everything that jumped to BB now goes to Succ.
  BB->replaceAllUsesWith(Succ);
  if (!Succ->hasName()) Succ->takeName(BB);
  BB->eraseFromParent();              // Delete the old basic block.
  return true;
}

/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
/// nodes in this block. This doesn't try to be clever about PHI nodes
/// which differ only in the order of the incoming values, but instcombine
/// orders them so it usually won't matter.
bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
  // This implementation doesn't currently consider undef operands
  // specially. Theoretically, two phis which are identical except for
  // one having an undef where the other doesn't could be collapsed.

  struct PHIDenseMapInfo {
    static PHINode *getEmptyKey() {
      return DenseMapInfo<PHINode *>::getEmptyKey();
    }

    static PHINode *getTombstoneKey() {
      return DenseMapInfo<PHINode *>::getTombstoneKey();
    }

    static unsigned getHashValue(PHINode *PN) {
      // Compute a hash value on the operands. Instcombine will likely have
      // sorted them, which helps expose duplicates, but we have to check all
      // the operands to be safe in case instcombine hasn't run.
      return static_cast<unsigned>(hash_combine(
          hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
          hash_combine_range(PN->block_begin(), PN->block_end())));
    }

    static bool isEqual(PHINode *LHS, PHINode *RHS) {
      if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
          RHS == getEmptyKey() || RHS == getTombstoneKey())
        return LHS == RHS;
      return LHS->isIdenticalTo(RHS);
    }
  };

  // Set of unique PHINodes.
  DenseSet<PHINode *, PHIDenseMapInfo> PHISet;

  // Examine each PHI.
  bool Changed = false;
  for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
    auto Inserted = PHISet.insert(PN);
    if (!Inserted.second) {
      // A duplicate. Replace this PHI with its duplicate.
      PN->replaceAllUsesWith(*Inserted.first);
      PN->eraseFromParent();
      Changed = true;

      // The RAUW can change PHIs that we already visited. Start over from the
      // beginning.
      PHISet.clear();
      I = BB->begin();
    }
  }

  return Changed;
}

/// enforceKnownAlignment - If the specified pointer points to an object that
/// we control, modify the object's alignment to PrefAlign. This isn't
/// often possible though. If alignment is important, a more reliable approach
/// is to simply align all global variables and allocation instructions to
/// their preferred alignment from the beginning.
static unsigned enforceKnownAlignment(Value *V, unsigned Align,
                                      unsigned PrefAlign,
                                      const DataLayout &DL) {
  assert(PrefAlign > Align);

  V = V->stripPointerCasts();

  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
    // TODO: ideally, computeKnownBits ought to have used
    // AllocaInst::getAlignment() in its computation already, making
    // the below max redundant. But, as it turns out,
    // stripPointerCasts recurses through infinite layers of bitcasts,
    // while computeKnownBits is not allowed to traverse more than 6
    // levels.
    Align = std::max(AI->getAlignment(), Align);
    if (PrefAlign <= Align)
      return Align;

    // If the preferred alignment is greater than the natural stack alignment
    // then don't round up. This avoids dynamic stack realignment.
    if (DL.exceedsNaturalStackAlignment(PrefAlign))
      return Align;
    AI->setAlignment(PrefAlign);
    return PrefAlign;
  }

  if (auto *GO = dyn_cast<GlobalObject>(V)) {
    // TODO: as above, this shouldn't be necessary.
    Align = std::max(GO->getAlignment(), Align);
    if (PrefAlign <= Align)
      return Align;

    // If there is a large requested alignment and we can, bump up the alignment
    // of the global.  If the memory we set aside for the global may not be the
    // memory used by the final program then it is impossible for us to reliably
    // enforce the preferred alignment.
    if (!GO->canIncreaseAlignment())
      return Align;

    GO->setAlignment(PrefAlign);
    return PrefAlign;
  }

  return Align;
}

unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
                                          const DataLayout &DL,
                                          const Instruction *CxtI,
                                          AssumptionCache *AC,
                                          const DominatorTree *DT) {
  assert(V->getType()->isPointerTy() &&
         "getOrEnforceKnownAlignment expects a pointer!");

  KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
  unsigned TrailZ = Known.countMinTrailingZeros();

  // Avoid trouble with ridiculously large TrailZ values, such as
  // those computed from a null pointer.
  TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));

  unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);

  // LLVM doesn't support alignments larger than this currently.
  Align = std::min(Align, +Value::MaximumAlignment);

  if (PrefAlign > Align)
    Align = enforceKnownAlignment(V, Align, PrefAlign, DL);

  // We don't need to make any adjustment.
  return Align;
}

///===---------------------------------------------------------------------===//
///  Dbg Intrinsic utilities
///

/// See if there is a dbg.value intrinsic for DIVar before I.
static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
                              Instruction *I) {
  // Since we can't guarantee that the original dbg.declare instrinsic
  // is removed by LowerDbgDeclare(), we need to make sure that we are
  // not inserting the same dbg.value intrinsic over and over.
  BasicBlock::InstListType::iterator PrevI(I);
  if (PrevI != I->getParent()->getInstList().begin()) {
    --PrevI;
    if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
      if (DVI->getValue() == I->getOperand(0) &&
          DVI->getVariable() == DIVar &&
          DVI->getExpression() == DIExpr)
        return true;
  }
  return false;
}

/// See if there is a dbg.value intrinsic for DIVar for the PHI node.
static bool PhiHasDebugValue(DILocalVariable *DIVar,
                             DIExpression *DIExpr,
                             PHINode *APN) {
  // Since we can't guarantee that the original dbg.declare instrinsic
  // is removed by LowerDbgDeclare(), we need to make sure that we are
  // not inserting the same dbg.value intrinsic over and over.
  SmallVector<DbgValueInst *, 1> DbgValues;
  findDbgValues(DbgValues, APN);
  for (auto *DVI : DbgValues) {
    assert(DVI->getValue() == APN);
    if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
      return true;
  }
  return false;
}

/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
/// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
                                           StoreInst *SI, DIBuilder &Builder) {
  assert(DII->isAddressOfVariable());
  auto *DIVar = DII->getVariable();
  assert(DIVar && "Missing variable");
  auto *DIExpr = DII->getExpression();
  Value *DV = SI->getOperand(0);

  // If an argument is zero extended then use argument directly. The ZExt
  // may be zapped by an optimization pass in future.
  Argument *ExtendedArg = nullptr;
  if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
    ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
  if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
    ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
  if (ExtendedArg) {
    // If this DII was already describing only a fragment of a variable, ensure
    // that fragment is appropriately narrowed here.
    // But if a fragment wasn't used, describe the value as the original
    // argument (rather than the zext or sext) so that it remains described even
    // if the sext/zext is optimized away. This widens the variable description,
    // leaving it up to the consumer to know how the smaller value may be
    // represented in a larger register.
    if (auto Fragment = DIExpr->getFragmentInfo()) {
      unsigned FragmentOffset = Fragment->OffsetInBits;
      SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(),
                                   DIExpr->elements_end() - 3);
      Ops.push_back(dwarf::DW_OP_LLVM_fragment);
      Ops.push_back(FragmentOffset);
      const DataLayout &DL = DII->getModule()->getDataLayout();
      Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType()));
      DIExpr = Builder.createExpression(Ops);
    }
    DV = ExtendedArg;
  }
  if (!LdStHasDebugValue(DIVar, DIExpr, SI))
    Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(),
                                    SI);
}

/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
/// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
                                           LoadInst *LI, DIBuilder &Builder) {
  auto *DIVar = DII->getVariable();
  auto *DIExpr = DII->getExpression();
  assert(DIVar && "Missing variable");

  if (LdStHasDebugValue(DIVar, DIExpr, LI))
    return;

  // We are now tracking the loaded value instead of the address. In the
  // future if multi-location support is added to the IR, it might be
  // preferable to keep tracking both the loaded value and the original
  // address in case the alloca can not be elided.
  Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
      LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr);
  DbgValue->insertAfter(LI);
}

/// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
/// llvm.dbg.declare or llvm.dbg.addr intrinsic.
void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
                                           PHINode *APN, DIBuilder &Builder) {
  auto *DIVar = DII->getVariable();
  auto *DIExpr = DII->getExpression();
  assert(DIVar && "Missing variable");

  if (PhiHasDebugValue(DIVar, DIExpr, APN))
    return;

  BasicBlock *BB = APN->getParent();
  auto InsertionPt = BB->getFirstInsertionPt();

  // The block may be a catchswitch block, which does not have a valid
  // insertion point.
  // FIXME: Insert dbg.value markers in the successors when appropriate.
  if (InsertionPt != BB->end())
    Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(),
                                    &*InsertionPt);
}

/// Determine whether this alloca is either a VLA or an array.
static bool isArray(AllocaInst *AI) {
  return AI->isArrayAllocation() ||
    AI->getType()->getElementType()->isArrayTy();
}

/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
/// of llvm.dbg.value intrinsics.
bool llvm::LowerDbgDeclare(Function &F) {
  DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
  SmallVector<DbgDeclareInst *, 4> Dbgs;
  for (auto &FI : F)
    for (Instruction &BI : FI)
      if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
        Dbgs.push_back(DDI);

  if (Dbgs.empty())
    return false;

  for (auto &I : Dbgs) {
    DbgDeclareInst *DDI = I;
    AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
    // If this is an alloca for a scalar variable, insert a dbg.value
    // at each load and store to the alloca and erase the dbg.declare.
    // The dbg.values allow tracking a variable even if it is not
    // stored on the stack, while the dbg.declare can only describe
    // the stack slot (and at a lexical-scope granularity). Later
    // passes will attempt to elide the stack slot.
    if (AI && !isArray(AI)) {
      for (auto &AIUse : AI->uses()) {
        User *U = AIUse.getUser();
        if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
          if (AIUse.getOperandNo() == 1)
            ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
        } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
          ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
        } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
          // This is a call by-value or some other instruction that
          // takes a pointer to the variable. Insert a *value*
          // intrinsic that describes the alloca.
          DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(),
                                      DDI->getExpression(), DDI->getDebugLoc(),
                                      CI);
        }
      }
      DDI->eraseFromParent();
    }
  }
  return true;
}

/// Finds all intrinsics declaring local variables as living in the memory that
/// 'V' points to. This may include a mix of dbg.declare and
/// dbg.addr intrinsics.
TinyPtrVector<DbgInfoIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
  auto *L = LocalAsMetadata::getIfExists(V);
  if (!L)
    return {};
  auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
  if (!MDV)
    return {};

  TinyPtrVector<DbgInfoIntrinsic *> Declares;
  for (User *U : MDV->users()) {
    if (auto *DII = dyn_cast<DbgInfoIntrinsic>(U))
      if (DII->isAddressOfVariable())
        Declares.push_back(DII);
  }

  return Declares;
}

void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
  if (auto *L = LocalAsMetadata::getIfExists(V))
    if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
      for (User *U : MDV->users())
        if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
          DbgValues.push_back(DVI);
}

bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
                             Instruction *InsertBefore, DIBuilder &Builder,
                             bool Deref, int Offset) {
  auto DbgAddrs = FindDbgAddrUses(Address);
  for (DbgInfoIntrinsic *DII : DbgAddrs) {
    DebugLoc Loc = DII->getDebugLoc();
    auto *DIVar = DII->getVariable();
    auto *DIExpr = DII->getExpression();
    assert(DIVar && "Missing variable");
    DIExpr = DIExpression::prepend(DIExpr, Deref, Offset);
    // Insert llvm.dbg.declare immediately after InsertBefore, and remove old
    // llvm.dbg.declare.
    Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
    if (DII == InsertBefore)
      InsertBefore = &*std::next(InsertBefore->getIterator());
    DII->eraseFromParent();
  }
  return !DbgAddrs.empty();
}

bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
                                      DIBuilder &Builder, bool Deref, int Offset) {
  return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
                           Deref, Offset);
}

static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
                                        DIBuilder &Builder, int Offset) {
  DebugLoc Loc = DVI->getDebugLoc();
  auto *DIVar = DVI->getVariable();
  auto *DIExpr = DVI->getExpression();
  assert(DIVar && "Missing variable");

  // This is an alloca-based llvm.dbg.value. The first thing it should do with
  // the alloca pointer is dereference it. Otherwise we don't know how to handle
  // it and give up.
  if (!DIExpr || DIExpr->getNumElements() < 1 ||
      DIExpr->getElement(0) != dwarf::DW_OP_deref)
    return;

  // Insert the offset immediately after the first deref.
  // We could just change the offset argument of dbg.value, but it's unsigned...
  if (Offset) {
    SmallVector<uint64_t, 4> Ops;
    Ops.push_back(dwarf::DW_OP_deref);
    DIExpression::appendOffset(Ops, Offset);
    Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
    DIExpr = Builder.createExpression(Ops);
  }

  Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
  DVI->eraseFromParent();
}

void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
                                    DIBuilder &Builder, int Offset) {
  if (auto *L = LocalAsMetadata::getIfExists(AI))
    if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
      for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
        Use &U = *UI++;
        if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
          replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
      }
}

void llvm::salvageDebugInfo(Instruction &I) {
  SmallVector<DbgValueInst *, 1> DbgValues;
  auto &M = *I.getModule();

  auto MDWrap = [&](Value *V) {
    return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V));
  };

  if (isa<BitCastInst>(&I)) {
    findDbgValues(DbgValues, &I);
    for (auto *DVI : DbgValues) {
      // Bitcasts are entirely irrelevant for debug info. Rewrite the dbg.value
      // to use the cast's source.
      DVI->setOperand(0, MDWrap(I.getOperand(0)));
      DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
    }
  } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
    findDbgValues(DbgValues, &I);
    for (auto *DVI : DbgValues) {
      unsigned BitWidth =
          M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace());
      APInt Offset(BitWidth, 0);
      // Rewrite a constant GEP into a DIExpression.  Since we are performing
      // arithmetic to compute the variable's *value* in the DIExpression, we
      // need to mark the expression with a DW_OP_stack_value.
      if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
        auto *DIExpr = DVI->getExpression();
        // GEP offsets are i32 and thus always fit into an int64_t.
        DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref,
                                       Offset.getSExtValue(),
                                       DIExpression::WithStackValue);
        DVI->setOperand(0, MDWrap(I.getOperand(0)));
        DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
        DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
      }
    }
  } else if (isa<LoadInst>(&I)) {
    findDbgValues(DbgValues, &I);
    for (auto *DVI : DbgValues) {
      // Rewrite the load into DW_OP_deref.
      auto *DIExpr = DVI->getExpression();
      DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
      DVI->setOperand(0, MDWrap(I.getOperand(0)));
      DVI->setOperand(2, MetadataAsValue::get(I.getContext(), DIExpr));
      DEBUG(dbgs() << "SALVAGE:  " << *DVI << '\n');
    }
  }
}

unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
  unsigned NumDeadInst = 0;
  // Delete the instructions backwards, as it has a reduced likelihood of
  // having to update as many def-use and use-def chains.
  Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
  while (EndInst != &BB->front()) {
    // Delete the next to last instruction.
    Instruction *Inst = &*--EndInst->getIterator();
    if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
      Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
    if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
      EndInst = Inst;
      continue;
    }
    if (!isa<DbgInfoIntrinsic>(Inst))
      ++NumDeadInst;
    Inst->eraseFromParent();
  }
  return NumDeadInst;
}

unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
                                   bool PreserveLCSSA) {
  BasicBlock *BB = I->getParent();
  // Loop over all of the successors, removing BB's entry from any PHI
  // nodes.
  for (BasicBlock *Successor : successors(BB))
    Successor->removePredecessor(BB, PreserveLCSSA);

  // Insert a call to llvm.trap right before this.  This turns the undefined
  // behavior into a hard fail instead of falling through into random code.
  if (UseLLVMTrap) {
    Function *TrapFn =
      Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
    CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
    CallTrap->setDebugLoc(I->getDebugLoc());
  }
  new UnreachableInst(I->getContext(), I);

  // All instructions after this are dead.
  unsigned NumInstrsRemoved = 0;
  BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
  while (BBI != BBE) {
    if (!BBI->use_empty())
      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
    BB->getInstList().erase(BBI++);
    ++NumInstrsRemoved;
  }
  return NumInstrsRemoved;
}

/// changeToCall - Convert the specified invoke into a normal call.
static void changeToCall(InvokeInst *II) {
  SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
  SmallVector<OperandBundleDef, 1> OpBundles;
  II->getOperandBundlesAsDefs(OpBundles);
  CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
                                       "", II);
  NewCall->takeName(II);
  NewCall->setCallingConv(II->getCallingConv());
  NewCall->setAttributes(II->getAttributes());
  NewCall->setDebugLoc(II->getDebugLoc());
  II->replaceAllUsesWith(NewCall);

  // Follow the call by a branch to the normal destination.
  BranchInst::Create(II->getNormalDest(), II);

  // Update PHI nodes in the unwind destination
  II->getUnwindDest()->removePredecessor(II->getParent());
  II->eraseFromParent();
}

BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
                                                   BasicBlock *UnwindEdge) {
  BasicBlock *BB = CI->getParent();

  // Convert this function call into an invoke instruction.  First, split the
  // basic block.
  BasicBlock *Split =
      BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");

  // Delete the unconditional branch inserted by splitBasicBlock
  BB->getInstList().pop_back();

  // Create the new invoke instruction.
  SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
  SmallVector<OperandBundleDef, 1> OpBundles;

  CI->getOperandBundlesAsDefs(OpBundles);

  // Note: we're round tripping operand bundles through memory here, and that
  // can potentially be avoided with a cleverer API design that we do not have
  // as of this time.

  InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
                                      InvokeArgs, OpBundles, CI->getName(), BB);
  II->setDebugLoc(CI->getDebugLoc());
  II->setCallingConv(CI->getCallingConv());
  II->setAttributes(CI->getAttributes());

  // Make sure that anything using the call now uses the invoke!  This also
  // updates the CallGraph if present, because it uses a WeakTrackingVH.
  CI->replaceAllUsesWith(II);

  // Delete the original call
  Split->getInstList().pop_front();
  return Split;
}

static bool markAliveBlocks(Function &F,
                            SmallPtrSetImpl<BasicBlock*> &Reachable) {
  SmallVector<BasicBlock*, 128> Worklist;
  BasicBlock *BB = &F.front();
  Worklist.push_back(BB);
  Reachable.insert(BB);
  bool Changed = false;
  do {
    BB = Worklist.pop_back_val();

    // Do a quick scan of the basic block, turning any obviously unreachable
    // instructions into LLVM unreachable insts.  The instruction combining pass
    // canonicalizes unreachable insts into stores to null or undef.
    for (Instruction &I : *BB) {
      // Assumptions that are known to be false are equivalent to unreachable.
      // Also, if the condition is undefined, then we make the choice most
      // beneficial to the optimizer, and choose that to also be unreachable.
      if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
        if (II->getIntrinsicID() == Intrinsic::assume) {
          if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
            // Don't insert a call to llvm.trap right before the unreachable.
            changeToUnreachable(II, false);
            Changed = true;
            break;
          }
        }

        if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
          // A call to the guard intrinsic bails out of the current compilation
          // unit if the predicate passed to it is false.  If the predicate is a
          // constant false, then we know the guard will bail out of the current
          // compile unconditionally, so all code following it is dead.
          //
          // Note: unlike in llvm.assume, it is not "obviously profitable" for
          // guards to treat `undef` as `false` since a guard on `undef` can
          // still be useful for widening.
          if (match(II->getArgOperand(0), m_Zero()))
            if (!isa<UnreachableInst>(II->getNextNode())) {
              changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false);
              Changed = true;
              break;
            }
        }
      }

      if (auto *CI = dyn_cast<CallInst>(&I)) {
        Value *Callee = CI->getCalledValue();
        if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
          changeToUnreachable(CI, /*UseLLVMTrap=*/false);
          Changed = true;
          break;
        }
        if (CI->doesNotReturn()) {
          // If we found a call to a no-return function, insert an unreachable
          // instruction after it.  Make sure there isn't *already* one there
          // though.
          if (!isa<UnreachableInst>(CI->getNextNode())) {
            // Don't insert a call to llvm.trap right before the unreachable.
            changeToUnreachable(CI->getNextNode(), false);
            Changed = true;
          }
          break;
        }
      }

      // Store to undef and store to null are undefined and used to signal that
      // they should be changed to unreachable by passes that can't modify the
      // CFG.
      if (auto *SI = dyn_cast<StoreInst>(&I)) {
        // Don't touch volatile stores.
        if (SI->isVolatile()) continue;

        Value *Ptr = SI->getOperand(1);

        if (isa<UndefValue>(Ptr) ||
            (isa<ConstantPointerNull>(Ptr) &&
             SI->getPointerAddressSpace() == 0)) {
          changeToUnreachable(SI, true);
          Changed = true;
          break;
        }
      }
    }

    TerminatorInst *Terminator = BB->getTerminator();
    if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
      // Turn invokes that call 'nounwind' functions into ordinary calls.
      Value *Callee = II->getCalledValue();
      if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
        changeToUnreachable(II, true);
        Changed = true;
      } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
        if (II->use_empty() && II->onlyReadsMemory()) {
          // jump to the normal destination branch.
          BranchInst::Create(II->getNormalDest(), II);
          II->getUnwindDest()->removePredecessor(II->getParent());
          II->eraseFromParent();
        } else
          changeToCall(II);
        Changed = true;
      }
    } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
      // Remove catchpads which cannot be reached.
      struct CatchPadDenseMapInfo {
        static CatchPadInst *getEmptyKey() {
          return DenseMapInfo<CatchPadInst *>::getEmptyKey();
        }

        static CatchPadInst *getTombstoneKey() {
          return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
        }

        static unsigned getHashValue(CatchPadInst *CatchPad) {
          return static_cast<unsigned>(hash_combine_range(
              CatchPad->value_op_begin(), CatchPad->value_op_end()));
        }

        static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
          if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
              RHS == getEmptyKey() || RHS == getTombstoneKey())
            return LHS == RHS;
          return LHS->isIdenticalTo(RHS);
        }
      };

      // Set of unique CatchPads.
      SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
                    CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
          HandlerSet;
      detail::DenseSetEmpty Empty;
      for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
                                             E = CatchSwitch->handler_end();
           I != E; ++I) {
        BasicBlock *HandlerBB = *I;
        auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
        if (!HandlerSet.insert({CatchPad, Empty}).second) {
          CatchSwitch->removeHandler(I);
          --I;
          --E;
          Changed = true;
        }
      }
    }

    Changed |= ConstantFoldTerminator(BB, true);
    for (BasicBlock *Successor : successors(BB))
      if (Reachable.insert(Successor).second)
        Worklist.push_back(Successor);
  } while (!Worklist.empty());
  return Changed;
}

void llvm::removeUnwindEdge(BasicBlock *BB) {
  TerminatorInst *TI = BB->getTerminator();

  if (auto *II = dyn_cast<InvokeInst>(TI)) {
    changeToCall(II);
    return;
  }

  TerminatorInst *NewTI;
  BasicBlock *UnwindDest;

  if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
    NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
    UnwindDest = CRI->getUnwindDest();
  } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
    auto *NewCatchSwitch = CatchSwitchInst::Create(
        CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
        CatchSwitch->getName(), CatchSwitch);
    for (BasicBlock *PadBB : CatchSwitch->handlers())
      NewCatchSwitch->addHandler(PadBB);

    NewTI = NewCatchSwitch;
    UnwindDest = CatchSwitch->getUnwindDest();
  } else {
    llvm_unreachable("Could not find unwind successor");
  }

  NewTI->takeName(TI);
  NewTI->setDebugLoc(TI->getDebugLoc());
  UnwindDest->removePredecessor(BB);
  TI->replaceAllUsesWith(NewTI);
  TI->eraseFromParent();
}

/// removeUnreachableBlocks - Remove blocks that are not reachable, even
/// if they are in a dead cycle.  Return true if a change was made, false
/// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
/// after modifying the CFG.
bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) {
  SmallPtrSet<BasicBlock*, 16> Reachable;
  bool Changed = markAliveBlocks(F, Reachable);

  // If there are unreachable blocks in the CFG...
  if (Reachable.size() == F.size())
    return Changed;

  assert(Reachable.size() < F.size());
  NumRemoved += F.size()-Reachable.size();

  // Loop over all of the basic blocks that are not reachable, dropping all of
  // their internal references...
  for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
    if (Reachable.count(&*BB))
      continue;

    for (BasicBlock *Successor : successors(&*BB))
      if (Reachable.count(Successor))
        Successor->removePredecessor(&*BB);
    if (LVI)
      LVI->eraseBlock(&*BB);
    BB->dropAllReferences();
  }

  for (Function::iterator I = ++F.begin(); I != F.end();)
    if (!Reachable.count(&*I))
      I = F.getBasicBlockList().erase(I);
    else
      ++I;

  return true;
}

void llvm::combineMetadata(Instruction *K, const Instruction *J,
                           ArrayRef<unsigned> KnownIDs) {
  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
  K->dropUnknownNonDebugMetadata(KnownIDs);
  K->getAllMetadataOtherThanDebugLoc(Metadata);
  for (const auto &MD : Metadata) {
    unsigned Kind = MD.first;
    MDNode *JMD = J->getMetadata(Kind);
    MDNode *KMD = MD.second;

    switch (Kind) {
      default:
        K->setMetadata(Kind, nullptr); // Remove unknown metadata
        break;
      case LLVMContext::MD_dbg:
        llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
      case LLVMContext::MD_tbaa:
        K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
        break;
      case LLVMContext::MD_alias_scope:
        K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
        break;
      case LLVMContext::MD_noalias:
      case LLVMContext::MD_mem_parallel_loop_access:
        K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
        break;
      case LLVMContext::MD_range:
        K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
        break;
      case LLVMContext::MD_fpmath:
        K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
        break;
      case LLVMContext::MD_invariant_load:
        // Only set the !invariant.load if it is present in both instructions.
        K->setMetadata(Kind, JMD);
        break;
      case LLVMContext::MD_nonnull:
        // Only set the !nonnull if it is present in both instructions.
        K->setMetadata(Kind, JMD);
        break;
      case LLVMContext::MD_invariant_group:
        // Preserve !invariant.group in K.
        break;
      case LLVMContext::MD_align:
        K->setMetadata(Kind,
          MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
        break;
      case LLVMContext::MD_dereferenceable:
      case LLVMContext::MD_dereferenceable_or_null:
        K->setMetadata(Kind,
          MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
        break;
    }
  }
  // Set !invariant.group from J if J has it. If both instructions have it
  // then we will just pick it from J - even when they are different.
  // Also make sure that K is load or store - f.e. combining bitcast with load
  // could produce bitcast with invariant.group metadata, which is invalid.
  // FIXME: we should try to preserve both invariant.group md if they are
  // different, but right now instruction can only have one invariant.group.
  if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
    if (isa<LoadInst>(K) || isa<StoreInst>(K))
      K->setMetadata(LLVMContext::MD_invariant_group, JMD);
}

void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) {
  unsigned KnownIDs[] = {
      LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
      LLVMContext::MD_noalias,         LLVMContext::MD_range,
      LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
      LLVMContext::MD_invariant_group, LLVMContext::MD_align,
      LLVMContext::MD_dereferenceable,
      LLVMContext::MD_dereferenceable_or_null};
  combineMetadata(K, J, KnownIDs);
}

template <typename RootType, typename DominatesFn>
static unsigned replaceDominatedUsesWith(Value *From, Value *To,
                                         const RootType &Root,
                                         const DominatesFn &Dominates) {
  assert(From->getType() == To->getType());

  unsigned Count = 0;
  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
       UI != UE;) {
    Use &U = *UI++;
    if (!Dominates(Root, U))
      continue;
    U.set(To);
    DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
                 << *To << " in " << *U << "\n");
    ++Count;
  }
  return Count;
}

unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
   assert(From->getType() == To->getType());
   auto *BB = From->getParent();
   unsigned Count = 0;

  for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
       UI != UE;) {
    Use &U = *UI++;
    auto *I = cast<Instruction>(U.getUser());
    if (I->getParent() == BB)
      continue;
    U.set(To);
    ++Count;
  }
  return Count;
}

unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
                                        DominatorTree &DT,
                                        const BasicBlockEdge &Root) {
  auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
    return DT.dominates(Root, U);
  };
  return ::replaceDominatedUsesWith(From, To, Root, Dominates);
}

unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
                                        DominatorTree &DT,
                                        const BasicBlock *BB) {
  auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
    auto *I = cast<Instruction>(U.getUser())->getParent();
    return DT.properlyDominates(BB, I);
  };
  return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
}

bool llvm::callsGCLeafFunction(ImmutableCallSite CS,
                               const TargetLibraryInfo &TLI) {
  // Check if the function is specifically marked as a gc leaf function.
  if (CS.hasFnAttr("gc-leaf-function"))
    return true;
  if (const Function *F = CS.getCalledFunction()) {
    if (F->hasFnAttribute("gc-leaf-function"))
      return true;

    if (auto IID = F->getIntrinsicID())
      // Most LLVM intrinsics do not take safepoints.
      return IID != Intrinsic::experimental_gc_statepoint &&
             IID != Intrinsic::experimental_deoptimize;
  }

  // Lib calls can be materialized by some passes, and won't be
  // marked as 'gc-leaf-function.' All available Libcalls are
  // GC-leaf.
  LibFunc LF;
  if (TLI.getLibFunc(CS, LF)) {
    return TLI.has(LF);
  }

  return false;
}

void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
                               LoadInst &NewLI) {
  auto *NewTy = NewLI.getType();

  // This only directly applies if the new type is also a pointer.
  if (NewTy->isPointerTy()) {
    NewLI.setMetadata(LLVMContext::MD_nonnull, N);
    return;
  }

  // The only other translation we can do is to integral loads with !range
  // metadata.
  if (!NewTy->isIntegerTy())
    return;

  MDBuilder MDB(NewLI.getContext());
  const Value *Ptr = OldLI.getPointerOperand();
  auto *ITy = cast<IntegerType>(NewTy);
  auto *NullInt = ConstantExpr::getPtrToInt(
      ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
  auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
  NewLI.setMetadata(LLVMContext::MD_range,
                    MDB.createRange(NonNullInt, NullInt));
}

void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
                             MDNode *N, LoadInst &NewLI) {
  auto *NewTy = NewLI.getType();

  // Give up unless it is converted to a pointer where there is a single very
  // valuable mapping we can do reliably.
  // FIXME: It would be nice to propagate this in more ways, but the type
  // conversions make it hard.
  if (!NewTy->isPointerTy())
    return;

  unsigned BitWidth = DL.getTypeSizeInBits(NewTy);
  if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
    MDNode *NN = MDNode::get(OldLI.getContext(), None);
    NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
  }
}

namespace {

/// A potential constituent of a bitreverse or bswap expression. See
/// collectBitParts for a fuller explanation.
struct BitPart {
  BitPart(Value *P, unsigned BW) : Provider(P) {
    Provenance.resize(BW);
  }

  /// The Value that this is a bitreverse/bswap of.
  Value *Provider;

  /// The "provenance" of each bit. Provenance[A] = B means that bit A
  /// in Provider becomes bit B in the result of this expression.
  SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.

  enum { Unset = -1 };
};

} // end anonymous namespace

/// Analyze the specified subexpression and see if it is capable of providing
/// pieces of a bswap or bitreverse. The subexpression provides a potential
/// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
/// the output of the expression came from a corresponding bit in some other
/// value. This function is recursive, and the end result is a mapping of
/// bitnumber to bitnumber. It is the caller's responsibility to validate that
/// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
///
/// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
/// that the expression deposits the low byte of %X into the high byte of the
/// result and that all other bits are zero. This expression is accepted and a
/// BitPart is returned with Provider set to %X and Provenance[24-31] set to
/// [0-7].
///
/// To avoid revisiting values, the BitPart results are memoized into the
/// provided map. To avoid unnecessary copying of BitParts, BitParts are
/// constructed in-place in the \c BPS map. Because of this \c BPS needs to
/// store BitParts objects, not pointers. As we need the concept of a nullptr
/// BitParts (Value has been analyzed and the analysis failed), we an Optional
/// type instead to provide the same functionality.
///
/// Because we pass around references into \c BPS, we must use a container that
/// does not invalidate internal references (std::map instead of DenseMap).
static const Optional<BitPart> &
collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
                std::map<Value *, Optional<BitPart>> &BPS) {
  auto I = BPS.find(V);
  if (I != BPS.end())
    return I->second;

  auto &Result = BPS[V] = None;
  auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();

  if (Instruction *I = dyn_cast<Instruction>(V)) {
    // If this is an or instruction, it may be an inner node of the bswap.
    if (I->getOpcode() == Instruction::Or) {
      auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
                                MatchBitReversals, BPS);
      auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
                                MatchBitReversals, BPS);
      if (!A || !B)
        return Result;

      // Try and merge the two together.
      if (!A->Provider || A->Provider != B->Provider)
        return Result;

      Result = BitPart(A->Provider, BitWidth);
      for (unsigned i = 0; i < A->Provenance.size(); ++i) {
        if (A->Provenance[i] != BitPart::Unset &&
            B->Provenance[i] != BitPart::Unset &&
            A->Provenance[i] != B->Provenance[i])
          return Result = None;

        if (A->Provenance[i] == BitPart::Unset)
          Result->Provenance[i] = B->Provenance[i];
        else
          Result->Provenance[i] = A->Provenance[i];
      }

      return Result;
    }

    // If this is a logical shift by a constant, recurse then shift the result.
    if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
      unsigned BitShift =
          cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
      // Ensure the shift amount is defined.
      if (BitShift > BitWidth)
        return Result;

      auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
                                  MatchBitReversals, BPS);
      if (!Res)
        return Result;
      Result = Res;

      // Perform the "shift" on BitProvenance.
      auto &P = Result->Provenance;
      if (I->getOpcode() == Instruction::Shl) {
        P.erase(std::prev(P.end(), BitShift), P.end());
        P.insert(P.begin(), BitShift, BitPart::Unset);
      } else {
        P.erase(P.begin(), std::next(P.begin(), BitShift));
        P.insert(P.end(), BitShift, BitPart::Unset);
      }

      return Result;
    }

    // If this is a logical 'and' with a mask that clears bits, recurse then
    // unset the appropriate bits.
    if (I->getOpcode() == Instruction::And &&
        isa<ConstantInt>(I->getOperand(1))) {
      APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
      const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();

      // Check that the mask allows a multiple of 8 bits for a bswap, for an
      // early exit.
      unsigned NumMaskedBits = AndMask.countPopulation();
      if (!MatchBitReversals && NumMaskedBits % 8 != 0)
        return Result;

      auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
                                  MatchBitReversals, BPS);
      if (!Res)
        return Result;
      Result = Res;

      for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
        // If the AndMask is zero for this bit, clear the bit.
        if ((AndMask & Bit) == 0)
          Result->Provenance[i] = BitPart::Unset;
      return Result;
    }

    // If this is a zext instruction zero extend the result.
    if (I->getOpcode() == Instruction::ZExt) {
      auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
                                  MatchBitReversals, BPS);
      if (!Res)
        return Result;

      Result = BitPart(Res->Provider, BitWidth);
      auto NarrowBitWidth =
          cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
      for (unsigned i = 0; i < NarrowBitWidth; ++i)
        Result->Provenance[i] = Res->Provenance[i];
      for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
        Result->Provenance[i] = BitPart::Unset;
      return Result;
    }
  }

  // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
  // the input value to the bswap/bitreverse.
  Result = BitPart(V, BitWidth);
  for (unsigned i = 0; i < BitWidth; ++i)
    Result->Provenance[i] = i;
  return Result;
}

static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
                                          unsigned BitWidth) {
  if (From % 8 != To % 8)
    return false;
  // Convert from bit indices to byte indices and check for a byte reversal.
  From >>= 3;
  To >>= 3;
  BitWidth >>= 3;
  return From == BitWidth - To - 1;
}

static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
                                               unsigned BitWidth) {
  return From == BitWidth - To - 1;
}

/// Given an OR instruction, check to see if this is a bitreverse
/// idiom. If so, insert the new intrinsic and return true.
bool llvm::recognizeBSwapOrBitReverseIdiom(
    Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
    SmallVectorImpl<Instruction *> &InsertedInsts) {
  if (Operator::getOpcode(I) != Instruction::Or)
    return false;
  if (!MatchBSwaps && !MatchBitReversals)
    return false;
  IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
  if (!ITy || ITy->getBitWidth() > 128)
    return false;   // Can't do vectors or integers > 128 bits.
  unsigned BW = ITy->getBitWidth();

  unsigned DemandedBW = BW;
  IntegerType *DemandedTy = ITy;
  if (I->hasOneUse()) {
    if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
      DemandedTy = cast<IntegerType>(Trunc->getType());
      DemandedBW = DemandedTy->getBitWidth();
    }
  }

  // Try to find all the pieces corresponding to the bswap.
  std::map<Value *, Optional<BitPart>> BPS;
  auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
  if (!Res)
    return false;
  auto &BitProvenance = Res->Provenance;

  // Now, is the bit permutation correct for a bswap or a bitreverse? We can
  // only byteswap values with an even number of bytes.
  bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
  for (unsigned i = 0; i < DemandedBW; ++i) {
    OKForBSwap &=
        bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
    OKForBitReverse &=
        bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
  }

  Intrinsic::ID Intrin;
  if (OKForBSwap && MatchBSwaps)
    Intrin = Intrinsic::bswap;
  else if (OKForBitReverse && MatchBitReversals)
    Intrin = Intrinsic::bitreverse;
  else
    return false;

  if (ITy != DemandedTy) {
    Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
    Value *Provider = Res->Provider;
    IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
    // We may need to truncate the provider.
    if (DemandedTy != ProviderTy) {
      auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
                                     "trunc", I);
      InsertedInsts.push_back(Trunc);
      Provider = Trunc;
    }
    auto *CI = CallInst::Create(F, Provider, "rev", I);
    InsertedInsts.push_back(CI);
    auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
    InsertedInsts.push_back(ExtInst);
    return true;
  }

  Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
  InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
  return true;
}

// CodeGen has special handling for some string functions that may replace
// them with target-specific intrinsics.  Since that'd skip our interceptors
// in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
// we mark affected calls as NoBuiltin, which will disable optimization
// in CodeGen.
void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
    CallInst *CI, const TargetLibraryInfo *TLI) {
  Function *F = CI->getCalledFunction();
  LibFunc Func;
  if (F && !F->hasLocalLinkage() && F->hasName() &&
      TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
      !F->doesNotAccessMemory())
    CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
}

bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
  // We can't have a PHI with a metadata type.
  if (I->getOperand(OpIdx)->getType()->isMetadataTy())
    return false;

  // Early exit.
  if (!isa<Constant>(I->getOperand(OpIdx)))
    return true;

  switch (I->getOpcode()) {
  default:
    return true;
  case Instruction::Call:
  case Instruction::Invoke:
    // Can't handle inline asm. Skip it.
    if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue()))
      return false;
    // Many arithmetic intrinsics have no issue taking a
    // variable, however it's hard to distingish these from
    // specials such as @llvm.frameaddress that require a constant.
    if (isa<IntrinsicInst>(I))
      return false;

    // Constant bundle operands may need to retain their constant-ness for
    // correctness.
    if (ImmutableCallSite(I).isBundleOperand(OpIdx))
      return false;
    return true;
  case Instruction::ShuffleVector:
    // Shufflevector masks are constant.
    return OpIdx != 2;
  case Instruction::Switch:
  case Instruction::ExtractValue:
    // All operands apart from the first are constant.
    return OpIdx == 0;
  case Instruction::InsertValue:
    // All operands apart from the first and the second are constant.
    return OpIdx < 2;
  case Instruction::Alloca:
    // Static allocas (constant size in the entry block) are handled by
    // prologue/epilogue insertion so they're free anyway. We definitely don't
    // want to make them non-constant.
    return !dyn_cast<AllocaInst>(I)->isStaticAlloca();
  case Instruction::GetElementPtr:
    if (OpIdx == 0)
      return true;
    gep_type_iterator It = gep_type_begin(I);
    for (auto E = std::next(It, OpIdx); It != E; ++It)
      if (It.isStruct())
        return false;
    return true;
  }
}