aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/LICM.cpp
blob: c60ec9f50f7af007f899db30839a2823e750f04b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs loop invariant code motion, attempting to remove as much
// code from the body of a loop as possible.  It does this by either hoisting
// code into the preheader block, or by sinking code to the exit blocks if it is
// safe.  This pass also promotes must-aliased memory locations in the loop to
// live in registers, thus hoisting and sinking "invariant" loads and stores.
//
// This pass uses alias analysis for two purposes:
//
//  1. Moving loop invariant loads and calls out of loops.  If we can determine
//     that a load or call inside of a loop never aliases anything stored to,
//     we can hoist it or sink it like any other instruction.
//  2. Scalar Promotion of Memory - If there is a store instruction inside of
//     the loop, we try to move the store to happen AFTER the loop instead of
//     inside of the loop.  This can only happen if a few conditions are true:
//       A. The pointer stored through is loop invariant
//       B. There are no stores or loads in the loop which _may_ alias the
//          pointer.  There are no calls in the loop which mod/ref the pointer.
//     If these conditions are true, we can promote the loads and stores in the
//     loop of the pointer to use a temporary alloca'd variable.  We then use
//     the SSAUpdater to construct the appropriate SSA form for the value.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LICM.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PredIteratorCache.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include <algorithm>
#include <utility>
using namespace llvm;

#define DEBUG_TYPE "licm"

STATISTIC(NumSunk, "Number of instructions sunk out of loop");
STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
STATISTIC(NumPromoted, "Number of memory locations promoted to registers");

/// Memory promotion is enabled by default.
static cl::opt<bool>
    DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
                     cl::desc("Disable memory promotion in LICM pass"));

static cl::opt<uint32_t> MaxNumUsesTraversed(
    "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
    cl::desc("Max num uses visited for identifying load "
             "invariance in loop using invariant start (default = 8)"));

static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
static bool isNotUsedInLoop(const Instruction &I, const Loop *CurLoop,
                            const LoopSafetyInfo *SafetyInfo);
static bool hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
                  const LoopSafetyInfo *SafetyInfo,
                  OptimizationRemarkEmitter *ORE);
static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
                 const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
                 OptimizationRemarkEmitter *ORE);
static bool isSafeToExecuteUnconditionally(Instruction &Inst,
                                           const DominatorTree *DT,
                                           const Loop *CurLoop,
                                           const LoopSafetyInfo *SafetyInfo,
                                           OptimizationRemarkEmitter *ORE,
                                           const Instruction *CtxI = nullptr);
static bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
                                     const AAMDNodes &AAInfo,
                                     AliasSetTracker *CurAST);
static Instruction *
CloneInstructionInExitBlock(Instruction &I, BasicBlock &ExitBlock, PHINode &PN,
                            const LoopInfo *LI,
                            const LoopSafetyInfo *SafetyInfo);

namespace {
struct LoopInvariantCodeMotion {
  bool runOnLoop(Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT,
                 TargetLibraryInfo *TLI, ScalarEvolution *SE,
                 OptimizationRemarkEmitter *ORE, bool DeleteAST);

  DenseMap<Loop *, AliasSetTracker *> &getLoopToAliasSetMap() {
    return LoopToAliasSetMap;
  }

private:
  DenseMap<Loop *, AliasSetTracker *> LoopToAliasSetMap;

  AliasSetTracker *collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
                                           AliasAnalysis *AA);
};

struct LegacyLICMPass : public LoopPass {
  static char ID; // Pass identification, replacement for typeid
  LegacyLICMPass() : LoopPass(ID) {
    initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
    if (skipLoop(L)) {
      // If we have run LICM on a previous loop but now we are skipping
      // (because we've hit the opt-bisect limit), we need to clear the
      // loop alias information.
      for (auto &LTAS : LICM.getLoopToAliasSetMap())
        delete LTAS.second;
      LICM.getLoopToAliasSetMap().clear();
      return false;
    }

    auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
    // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
    // pass.  Function analyses need to be preserved across loop transformations
    // but ORE cannot be preserved (see comment before the pass definition).
    OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
    return LICM.runOnLoop(L,
                          &getAnalysis<AAResultsWrapperPass>().getAAResults(),
                          &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
                          &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
                          &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
                          SE ? &SE->getSE() : nullptr, &ORE, false);
  }

  /// This transformation requires natural loop information & requires that
  /// loop preheaders be inserted into the CFG...
  ///
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    getLoopAnalysisUsage(AU);
  }

  using llvm::Pass::doFinalization;

  bool doFinalization() override {
    assert(LICM.getLoopToAliasSetMap().empty() &&
           "Didn't free loop alias sets");
    return false;
  }

private:
  LoopInvariantCodeMotion LICM;

  /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
  void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
                               Loop *L) override;

  /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
  /// set.
  void deleteAnalysisValue(Value *V, Loop *L) override;

  /// Simple Analysis hook. Delete loop L from alias set map.
  void deleteAnalysisLoop(Loop *L) override;
};
} // namespace

PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
                                LoopStandardAnalysisResults &AR, LPMUpdater &) {
  const auto &FAM =
      AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
  Function *F = L.getHeader()->getParent();

  auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
  // FIXME: This should probably be optional rather than required.
  if (!ORE)
    report_fatal_error("LICM: OptimizationRemarkEmitterAnalysis not "
                       "cached at a higher level");

  LoopInvariantCodeMotion LICM;
  if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.TLI, &AR.SE, ORE, true))
    return PreservedAnalyses::all();

  auto PA = getLoopPassPreservedAnalyses();
  PA.preserveSet<CFGAnalyses>();
  return PA;
}

char LegacyLICMPass::ID = 0;
INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
                    false)

Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }

/// Hoist expressions out of the specified loop. Note, alias info for inner
/// loop is not preserved so it is not a good idea to run LICM multiple
/// times on one loop.
/// We should delete AST for inner loops in the new pass manager to avoid
/// memory leak.
///
bool LoopInvariantCodeMotion::runOnLoop(Loop *L, AliasAnalysis *AA,
                                        LoopInfo *LI, DominatorTree *DT,
                                        TargetLibraryInfo *TLI,
                                        ScalarEvolution *SE,
                                        OptimizationRemarkEmitter *ORE,
                                        bool DeleteAST) {
  bool Changed = false;

  assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");

  AliasSetTracker *CurAST = collectAliasInfoForLoop(L, LI, AA);

  // Get the preheader block to move instructions into...
  BasicBlock *Preheader = L->getLoopPreheader();

  // Compute loop safety information.
  LoopSafetyInfo SafetyInfo;
  computeLoopSafetyInfo(&SafetyInfo, L);

  // We want to visit all of the instructions in this loop... that are not parts
  // of our subloops (they have already had their invariants hoisted out of
  // their loop, into this loop, so there is no need to process the BODIES of
  // the subloops).
  //
  // Traverse the body of the loop in depth first order on the dominator tree so
  // that we are guaranteed to see definitions before we see uses.  This allows
  // us to sink instructions in one pass, without iteration.  After sinking
  // instructions, we perform another pass to hoist them out of the loop.
  //
  if (L->hasDedicatedExits())
    Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, L,
                          CurAST, &SafetyInfo, ORE);
  if (Preheader)
    Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, L,
                           CurAST, &SafetyInfo, ORE);

  // Now that all loop invariants have been removed from the loop, promote any
  // memory references to scalars that we can.
  // Don't sink stores from loops without dedicated block exits. Exits
  // containing indirect branches are not transformed by loop simplify,
  // make sure we catch that. An additional load may be generated in the
  // preheader for SSA updater, so also avoid sinking when no preheader
  // is available.
  if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
    // Figure out the loop exits and their insertion points
    SmallVector<BasicBlock *, 8> ExitBlocks;
    L->getUniqueExitBlocks(ExitBlocks);

    // We can't insert into a catchswitch.
    bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
      return isa<CatchSwitchInst>(Exit->getTerminator());
    });

    if (!HasCatchSwitch) {
      SmallVector<Instruction *, 8> InsertPts;
      InsertPts.reserve(ExitBlocks.size());
      for (BasicBlock *ExitBlock : ExitBlocks)
        InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());

      PredIteratorCache PIC;

      bool Promoted = false;

      // Loop over all of the alias sets in the tracker object.
      for (AliasSet &AS : *CurAST) {
        // We can promote this alias set if it has a store, if it is a "Must"
        // alias set, if the pointer is loop invariant, and if we are not
        // eliminating any volatile loads or stores.
        if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
            AS.isVolatile() || !L->isLoopInvariant(AS.begin()->getValue()))
          continue;

        assert(
            !AS.empty() &&
            "Must alias set should have at least one pointer element in it!");

        SmallSetVector<Value *, 8> PointerMustAliases;
        for (const auto &ASI : AS)
          PointerMustAliases.insert(ASI.getValue());

        Promoted |= promoteLoopAccessesToScalars(PointerMustAliases, ExitBlocks,
                                                 InsertPts, PIC, LI, DT, TLI, L,
                                                 CurAST, &SafetyInfo, ORE);
      }

      // Once we have promoted values across the loop body we have to
      // recursively reform LCSSA as any nested loop may now have values defined
      // within the loop used in the outer loop.
      // FIXME: This is really heavy handed. It would be a bit better to use an
      // SSAUpdater strategy during promotion that was LCSSA aware and reformed
      // it as it went.
      if (Promoted)
        formLCSSARecursively(*L, *DT, LI, SE);

      Changed |= Promoted;
    }
  }

  // Check that neither this loop nor its parent have had LCSSA broken. LICM is
  // specifically moving instructions across the loop boundary and so it is
  // especially in need of sanity checking here.
  assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
  assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) &&
         "Parent loop not left in LCSSA form after LICM!");

  // If this loop is nested inside of another one, save the alias information
  // for when we process the outer loop.
  if (L->getParentLoop() && !DeleteAST)
    LoopToAliasSetMap[L] = CurAST;
  else
    delete CurAST;

  if (Changed && SE)
    SE->forgetLoopDispositions(L);
  return Changed;
}

/// Walk the specified region of the CFG (defined by all blocks dominated by
/// the specified block, and that are in the current loop) in reverse depth
/// first order w.r.t the DominatorTree.  This allows us to visit uses before
/// definitions, allowing us to sink a loop body in one pass without iteration.
///
bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
                      DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop,
                      AliasSetTracker *CurAST, LoopSafetyInfo *SafetyInfo,
                      OptimizationRemarkEmitter *ORE) {

  // Verify inputs.
  assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
         CurLoop != nullptr && CurAST != nullptr && SafetyInfo != nullptr &&
         "Unexpected input to sinkRegion");

  // We want to visit children before parents. We will enque all the parents
  // before their children in the worklist and process the worklist in reverse
  // order.
  SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);

  bool Changed = false;
  for (DomTreeNode *DTN : reverse(Worklist)) {
    BasicBlock *BB = DTN->getBlock();
    // Only need to process the contents of this block if it is not part of a
    // subloop (which would already have been processed).
    if (inSubLoop(BB, CurLoop, LI))
      continue;

    for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
      Instruction &I = *--II;

      // If the instruction is dead, we would try to sink it because it isn't
      // used in the loop, instead, just delete it.
      if (isInstructionTriviallyDead(&I, TLI)) {
        DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
        ++II;
        CurAST->deleteValue(&I);
        I.eraseFromParent();
        Changed = true;
        continue;
      }

      // Check to see if we can sink this instruction to the exit blocks
      // of the loop.  We can do this if the all users of the instruction are
      // outside of the loop.  In this case, it doesn't even matter if the
      // operands of the instruction are loop invariant.
      //
      if (isNotUsedInLoop(I, CurLoop, SafetyInfo) &&
          canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, SafetyInfo, ORE)) {
        if (sink(I, LI, DT, CurLoop, SafetyInfo, ORE)) {
          ++II;
          CurAST->deleteValue(&I);
          I.eraseFromParent();
          Changed = true;
        }
      }
    }
  }
  return Changed;
}

/// Walk the specified region of the CFG (defined by all blocks dominated by
/// the specified block, and that are in the current loop) in depth first
/// order w.r.t the DominatorTree.  This allows us to visit definitions before
/// uses, allowing us to hoist a loop body in one pass without iteration.
///
bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
                       DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop,
                       AliasSetTracker *CurAST, LoopSafetyInfo *SafetyInfo,
                       OptimizationRemarkEmitter *ORE) {
  // Verify inputs.
  assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
         CurLoop != nullptr && CurAST != nullptr && SafetyInfo != nullptr &&
         "Unexpected input to hoistRegion");

  // We want to visit parents before children. We will enque all the parents
  // before their children in the worklist and process the worklist in order.
  SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);

  bool Changed = false;
  for (DomTreeNode *DTN : Worklist) {
    BasicBlock *BB = DTN->getBlock();
    // Only need to process the contents of this block if it is not part of a
    // subloop (which would already have been processed).
    if (!inSubLoop(BB, CurLoop, LI))
      for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
        Instruction &I = *II++;
        // Try constant folding this instruction.  If all the operands are
        // constants, it is technically hoistable, but it would be better to
        // just fold it.
        if (Constant *C = ConstantFoldInstruction(
                &I, I.getModule()->getDataLayout(), TLI)) {
          DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C << '\n');
          CurAST->copyValue(&I, C);
          I.replaceAllUsesWith(C);
          if (isInstructionTriviallyDead(&I, TLI)) {
            CurAST->deleteValue(&I);
            I.eraseFromParent();
          }
          Changed = true;
          continue;
        }

        // Attempt to remove floating point division out of the loop by
        // converting it to a reciprocal multiplication.
        if (I.getOpcode() == Instruction::FDiv &&
            CurLoop->isLoopInvariant(I.getOperand(1)) &&
            I.hasAllowReciprocal()) {
          auto Divisor = I.getOperand(1);
          auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
          auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
          ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
          ReciprocalDivisor->insertBefore(&I);

          auto Product =
              BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
          Product->setFastMathFlags(I.getFastMathFlags());
          Product->insertAfter(&I);
          I.replaceAllUsesWith(Product);
          I.eraseFromParent();

          hoist(*ReciprocalDivisor, DT, CurLoop, SafetyInfo, ORE);
          Changed = true;
          continue;
        }

        // Try hoisting the instruction out to the preheader.  We can only do
        // this if all of the operands of the instruction are loop invariant and
        // if it is safe to hoist the instruction.
        //
        if (CurLoop->hasLoopInvariantOperands(&I) &&
            canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, SafetyInfo, ORE) &&
            isSafeToExecuteUnconditionally(
                I, DT, CurLoop, SafetyInfo, ORE,
                CurLoop->getLoopPreheader()->getTerminator()))
          Changed |= hoist(I, DT, CurLoop, SafetyInfo, ORE);
      }
  }

  return Changed;
}

/// Computes loop safety information, checks loop body & header
/// for the possibility of may throw exception.
///
void llvm::computeLoopSafetyInfo(LoopSafetyInfo *SafetyInfo, Loop *CurLoop) {
  assert(CurLoop != nullptr && "CurLoop cant be null");
  BasicBlock *Header = CurLoop->getHeader();
  // Setting default safety values.
  SafetyInfo->MayThrow = false;
  SafetyInfo->HeaderMayThrow = false;
  // Iterate over header and compute safety info.
  for (BasicBlock::iterator I = Header->begin(), E = Header->end();
       (I != E) && !SafetyInfo->HeaderMayThrow; ++I)
    SafetyInfo->HeaderMayThrow |=
        !isGuaranteedToTransferExecutionToSuccessor(&*I);

  SafetyInfo->MayThrow = SafetyInfo->HeaderMayThrow;
  // Iterate over loop instructions and compute safety info.
  // Skip header as it has been computed and stored in HeaderMayThrow.
  // The first block in loopinfo.Blocks is guaranteed to be the header.
  assert(Header == *CurLoop->getBlocks().begin() &&
         "First block must be header");
  for (Loop::block_iterator BB = std::next(CurLoop->block_begin()),
                            BBE = CurLoop->block_end();
       (BB != BBE) && !SafetyInfo->MayThrow; ++BB)
    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end();
         (I != E) && !SafetyInfo->MayThrow; ++I)
      SafetyInfo->MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(&*I);

  // Compute funclet colors if we might sink/hoist in a function with a funclet
  // personality routine.
  Function *Fn = CurLoop->getHeader()->getParent();
  if (Fn->hasPersonalityFn())
    if (Constant *PersonalityFn = Fn->getPersonalityFn())
      if (isFuncletEHPersonality(classifyEHPersonality(PersonalityFn)))
        SafetyInfo->BlockColors = colorEHFunclets(*Fn);
}

// Return true if LI is invariant within scope of the loop. LI is invariant if
// CurLoop is dominated by an invariant.start representing the same memory
// location and size as the memory location LI loads from, and also the
// invariant.start has no uses.
static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
                                  Loop *CurLoop) {
  Value *Addr = LI->getOperand(0);
  const DataLayout &DL = LI->getModule()->getDataLayout();
  const uint32_t LocSizeInBits = DL.getTypeSizeInBits(
      cast<PointerType>(Addr->getType())->getElementType());

  // if the type is i8 addrspace(x)*, we know this is the type of
  // llvm.invariant.start operand
  auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
                                     LI->getPointerAddressSpace());
  unsigned BitcastsVisited = 0;
  // Look through bitcasts until we reach the i8* type (this is invariant.start
  // operand type).
  while (Addr->getType() != PtrInt8Ty) {
    auto *BC = dyn_cast<BitCastInst>(Addr);
    // Avoid traversing high number of bitcast uses.
    if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
      return false;
    Addr = BC->getOperand(0);
  }

  unsigned UsesVisited = 0;
  // Traverse all uses of the load operand value, to see if invariant.start is
  // one of the uses, and whether it dominates the load instruction.
  for (auto *U : Addr->users()) {
    // Avoid traversing for Load operand with high number of users.
    if (++UsesVisited > MaxNumUsesTraversed)
      return false;
    IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
    // If there are escaping uses of invariant.start instruction, the load maybe
    // non-invariant.
    if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
        !II->use_empty())
      continue;
    unsigned InvariantSizeInBits =
        cast<ConstantInt>(II->getArgOperand(0))->getSExtValue() * 8;
    // Confirm the invariant.start location size contains the load operand size
    // in bits. Also, the invariant.start should dominate the load, and we
    // should not hoist the load out of a loop that contains this dominating
    // invariant.start.
    if (LocSizeInBits <= InvariantSizeInBits &&
        DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
      return true;
  }

  return false;
}

bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
                              Loop *CurLoop, AliasSetTracker *CurAST,
                              LoopSafetyInfo *SafetyInfo,
                              OptimizationRemarkEmitter *ORE) {
  // SafetyInfo is nullptr if we are checking for sinking from preheader to
  // loop body.
  const bool SinkingToLoopBody = !SafetyInfo;
  // Loads have extra constraints we have to verify before we can hoist them.
  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
    if (!LI->isUnordered())
      return false; // Don't sink/hoist volatile or ordered atomic loads!

    // Loads from constant memory are always safe to move, even if they end up
    // in the same alias set as something that ends up being modified.
    if (AA->pointsToConstantMemory(LI->getOperand(0)))
      return true;
    if (LI->getMetadata(LLVMContext::MD_invariant_load))
      return true;

    if (LI->isAtomic() && SinkingToLoopBody)
      return false; // Don't sink unordered atomic loads to loop body.

    // This checks for an invariant.start dominating the load.
    if (isLoadInvariantInLoop(LI, DT, CurLoop))
      return true;

    // Don't hoist loads which have may-aliased stores in loop.
    uint64_t Size = 0;
    if (LI->getType()->isSized())
      Size = I.getModule()->getDataLayout().getTypeStoreSize(LI->getType());

    AAMDNodes AAInfo;
    LI->getAAMetadata(AAInfo);

    bool Invalidated =
        pointerInvalidatedByLoop(LI->getOperand(0), Size, AAInfo, CurAST);
    // Check loop-invariant address because this may also be a sinkable load
    // whose address is not necessarily loop-invariant.
    if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
      ORE->emit([&]() {
        return OptimizationRemarkMissed(
                   DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
               << "failed to move load with loop-invariant address "
                  "because the loop may invalidate its value";
      });

    return !Invalidated;
  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
    // Don't sink or hoist dbg info; it's legal, but not useful.
    if (isa<DbgInfoIntrinsic>(I))
      return false;

    // Don't sink calls which can throw.
    if (CI->mayThrow())
      return false;

    // Handle simple cases by querying alias analysis.
    FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
    if (Behavior == FMRB_DoesNotAccessMemory)
      return true;
    if (AliasAnalysis::onlyReadsMemory(Behavior)) {
      // A readonly argmemonly function only reads from memory pointed to by
      // it's arguments with arbitrary offsets.  If we can prove there are no
      // writes to this memory in the loop, we can hoist or sink.
      if (AliasAnalysis::onlyAccessesArgPointees(Behavior)) {
        for (Value *Op : CI->arg_operands())
          if (Op->getType()->isPointerTy() &&
              pointerInvalidatedByLoop(Op, MemoryLocation::UnknownSize,
                                       AAMDNodes(), CurAST))
            return false;
        return true;
      }
      // If this call only reads from memory and there are no writes to memory
      // in the loop, we can hoist or sink the call as appropriate.
      bool FoundMod = false;
      for (AliasSet &AS : *CurAST) {
        if (!AS.isForwardingAliasSet() && AS.isMod()) {
          FoundMod = true;
          break;
        }
      }
      if (!FoundMod)
        return true;
    }

    // FIXME: This should use mod/ref information to see if we can hoist or
    // sink the call.

    return false;
  }

  // Only these instructions are hoistable/sinkable.
  if (!isa<BinaryOperator>(I) && !isa<CastInst>(I) && !isa<SelectInst>(I) &&
      !isa<GetElementPtrInst>(I) && !isa<CmpInst>(I) &&
      !isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) &&
      !isa<ShuffleVectorInst>(I) && !isa<ExtractValueInst>(I) &&
      !isa<InsertValueInst>(I))
    return false;

  // If we are checking for sinking from preheader to loop body it will be
  // always safe as there is no speculative execution.
  if (SinkingToLoopBody)
    return true;

  // TODO: Plumb the context instruction through to make hoisting and sinking
  // more powerful. Hoisting of loads already works due to the special casing
  // above.
  return isSafeToExecuteUnconditionally(I, DT, CurLoop, SafetyInfo, nullptr);
}

/// Returns true if a PHINode is a trivially replaceable with an
/// Instruction.
/// This is true when all incoming values are that instruction.
/// This pattern occurs most often with LCSSA PHI nodes.
///
static bool isTriviallyReplacablePHI(const PHINode &PN, const Instruction &I) {
  for (const Value *IncValue : PN.incoming_values())
    if (IncValue != &I)
      return false;

  return true;
}

/// Return true if the only users of this instruction are outside of
/// the loop. If this is true, we can sink the instruction to the exit
/// blocks of the loop.
///
static bool isNotUsedInLoop(const Instruction &I, const Loop *CurLoop,
                            const LoopSafetyInfo *SafetyInfo) {
  const auto &BlockColors = SafetyInfo->BlockColors;
  for (const User *U : I.users()) {
    const Instruction *UI = cast<Instruction>(U);
    if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
      const BasicBlock *BB = PN->getParent();
      // We cannot sink uses in catchswitches.
      if (isa<CatchSwitchInst>(BB->getTerminator()))
        return false;

      // We need to sink a callsite to a unique funclet.  Avoid sinking if the
      // phi use is too muddled.
      if (isa<CallInst>(I))
        if (!BlockColors.empty() &&
            BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
          return false;
    }

    if (CurLoop->contains(UI))
      return false;
  }
  return true;
}

static Instruction *
CloneInstructionInExitBlock(Instruction &I, BasicBlock &ExitBlock, PHINode &PN,
                            const LoopInfo *LI,
                            const LoopSafetyInfo *SafetyInfo) {
  Instruction *New;
  if (auto *CI = dyn_cast<CallInst>(&I)) {
    const auto &BlockColors = SafetyInfo->BlockColors;

    // Sinking call-sites need to be handled differently from other
    // instructions.  The cloned call-site needs a funclet bundle operand
    // appropriate for it's location in the CFG.
    SmallVector<OperandBundleDef, 1> OpBundles;
    for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
         BundleIdx != BundleEnd; ++BundleIdx) {
      OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
      if (Bundle.getTagID() == LLVMContext::OB_funclet)
        continue;

      OpBundles.emplace_back(Bundle);
    }

    if (!BlockColors.empty()) {
      const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
      assert(CV.size() == 1 && "non-unique color for exit block!");
      BasicBlock *BBColor = CV.front();
      Instruction *EHPad = BBColor->getFirstNonPHI();
      if (EHPad->isEHPad())
        OpBundles.emplace_back("funclet", EHPad);
    }

    New = CallInst::Create(CI, OpBundles);
  } else {
    New = I.clone();
  }

  ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
  if (!I.getName().empty())
    New->setName(I.getName() + ".le");

  // Build LCSSA PHI nodes for any in-loop operands. Note that this is
  // particularly cheap because we can rip off the PHI node that we're
  // replacing for the number and blocks of the predecessors.
  // OPT: If this shows up in a profile, we can instead finish sinking all
  // invariant instructions, and then walk their operands to re-establish
  // LCSSA. That will eliminate creating PHI nodes just to nuke them when
  // sinking bottom-up.
  for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
       ++OI)
    if (Instruction *OInst = dyn_cast<Instruction>(*OI))
      if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
        if (!OLoop->contains(&PN)) {
          PHINode *OpPN =
              PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
                              OInst->getName() + ".lcssa", &ExitBlock.front());
          for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
            OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
          *OI = OpPN;
        }
  return New;
}

static Instruction *sinkThroughTriviallyReplacablePHI(
    PHINode *TPN, Instruction *I, LoopInfo *LI,
    SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
    const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop) {
  assert(isTriviallyReplacablePHI(*TPN, *I) &&
         "Expect only trivially replacalbe PHI");
  BasicBlock *ExitBlock = TPN->getParent();
  Instruction *New;
  auto It = SunkCopies.find(ExitBlock);
  if (It != SunkCopies.end())
    New = It->second;
  else
    New = SunkCopies[ExitBlock] =
        CloneInstructionInExitBlock(*I, *ExitBlock, *TPN, LI, SafetyInfo);
  return New;
}

static bool canSplitPredecessors(PHINode *PN) {
  BasicBlock *BB = PN->getParent();
  if (!BB->canSplitPredecessors())
    return false;
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    BasicBlock *BBPred = *PI;
    if (isa<IndirectBrInst>(BBPred->getTerminator()))
      return false;
  }
  return true;
}

static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
                                        LoopInfo *LI, const Loop *CurLoop) {
#ifndef NDEBUG
  SmallVector<BasicBlock *, 32> ExitBlocks;
  CurLoop->getUniqueExitBlocks(ExitBlocks);
  SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
                                             ExitBlocks.end());
#endif
  BasicBlock *ExitBB = PN->getParent();
  assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");

  // Split predecessors of the loop exit to make instructions in the loop are
  // exposed to exit blocks through trivially replacable PHIs while keeping the
  // loop in the canonical form where each predecessor of each exit block should
  // be contained within the loop. For example, this will convert the loop below
  // from
  //
  // LB1:
  //   %v1 =
  //   br %LE, %LB2
  // LB2:
  //   %v2 =
  //   br %LE, %LB1
  // LE:
  //   %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replacable
  //
  // to
  //
  // LB1:
  //   %v1 =
  //   br %LE.split, %LB2
  // LB2:
  //   %v2 =
  //   br %LE.split2, %LB1
  // LE.split:
  //   %p1 = phi [%v1, %LB1]  <-- trivially replacable
  //   br %LE
  // LE.split2:
  //   %p2 = phi [%v2, %LB2]  <-- trivially replacable
  //   br %LE
  // LE:
  //   %p = phi [%p1, %LE.split], [%p2, %LE.split2]
  //
  SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
  while (!PredBBs.empty()) {
    BasicBlock *PredBB = *PredBBs.begin();
    assert(CurLoop->contains(PredBB) &&
           "Expect all predecessors are in the loop");
    if (PN->getBasicBlockIndex(PredBB) >= 0)
      SplitBlockPredecessors(ExitBB, PredBB, ".split.loop.exit", DT, LI, true);
    PredBBs.remove(PredBB);
  }
}

/// When an instruction is found to only be used outside of the loop, this
/// function moves it to the exit blocks and patches up SSA form as needed.
/// This method is guaranteed to remove the original instruction from its
/// position, and may either delete it or move it to outside of the loop.
///
static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
                 const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
                 OptimizationRemarkEmitter *ORE) {
  DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
  ORE->emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
           << "sinking " << ore::NV("Inst", &I);
  });
  bool Changed = false;
  if (isa<LoadInst>(I))
    ++NumMovedLoads;
  else if (isa<CallInst>(I))
    ++NumMovedCalls;
  ++NumSunk;
  Changed = true;

  // Iterate over users to be ready for actual sinking. Replace users via
  // unrechable blocks with undef and make all user PHIs trivially replcable.
  SmallPtrSet<Instruction *, 8> VisitedUsers;
  for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
    auto *User = cast<Instruction>(*UI);
    Use &U = UI.getUse();
    ++UI;

    if (VisitedUsers.count(User))
      continue;

    if (!DT->isReachableFromEntry(User->getParent())) {
      User->replaceUsesOfWith(&I, UndefValue::get(I.getType()));
      continue;
    }

    // The user must be a PHI node.
    PHINode *PN = cast<PHINode>(User);

    // Surprisingly, instructions can be used outside of loops without any
    // exits.  This can only happen in PHI nodes if the incoming block is
    // unreachable.
    BasicBlock *BB = PN->getIncomingBlock(U);
    if (!DT->isReachableFromEntry(BB)) {
      U = UndefValue::get(I.getType());
      continue;
    }

    VisitedUsers.insert(PN);
    if (isTriviallyReplacablePHI(*PN, I))
      continue;

    if (!canSplitPredecessors(PN))
      return false;

    // Split predecessors of the PHI so that we can make users trivially
    // replacable.
    splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop);

    // Should rebuild the iterators, as they may be invalidated by
    // splitPredecessorsOfLoopExit().
    UI = I.user_begin();
    UE = I.user_end();
  }

#ifndef NDEBUG
  SmallVector<BasicBlock *, 32> ExitBlocks;
  CurLoop->getUniqueExitBlocks(ExitBlocks);
  SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
                                             ExitBlocks.end());
#endif

  // Clones of this instruction. Don't create more than one per exit block!
  SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;

  // If this instruction is only used outside of the loop, then all users are
  // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
  // the instruction.
  while (!I.use_empty()) {
    Value::user_iterator UI = I.user_begin();
    PHINode *PN = cast<PHINode>(*UI);
    assert(ExitBlockSet.count(PN->getParent()) &&
           "The LCSSA PHI is not in an exit block!");
    // The PHI must be trivially replacable.
    Instruction *New = sinkThroughTriviallyReplacablePHI(PN, &I, LI, SunkCopies,
                                                         SafetyInfo, CurLoop);
    PN->replaceAllUsesWith(New);
    PN->eraseFromParent();
  }
  return Changed;
}

/// When an instruction is found to only use loop invariant operands that
/// is safe to hoist, this instruction is called to do the dirty work.
///
static bool hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
                  const LoopSafetyInfo *SafetyInfo,
                  OptimizationRemarkEmitter *ORE) {
  auto *Preheader = CurLoop->getLoopPreheader();
  DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": " << I
               << "\n");
  ORE->emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
                                                         << ore::NV("Inst", &I);
  });

  // Metadata can be dependent on conditions we are hoisting above.
  // Conservatively strip all metadata on the instruction unless we were
  // guaranteed to execute I if we entered the loop, in which case the metadata
  // is valid in the loop preheader.
  if (I.hasMetadataOtherThanDebugLoc() &&
      // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
      // time in isGuaranteedToExecute if we don't actually have anything to
      // drop.  It is a compile time optimization, not required for correctness.
      !isGuaranteedToExecute(I, DT, CurLoop, SafetyInfo))
    I.dropUnknownNonDebugMetadata();

  // Move the new node to the Preheader, before its terminator.
  I.moveBefore(Preheader->getTerminator());

  // Do not retain debug locations when we are moving instructions to different
  // basic blocks, because we want to avoid jumpy line tables. Calls, however,
  // need to retain their debug locs because they may be inlined.
  // FIXME: How do we retain source locations without causing poor debugging
  // behavior?
  if (!isa<CallInst>(I))
    I.setDebugLoc(DebugLoc());

  if (isa<LoadInst>(I))
    ++NumMovedLoads;
  else if (isa<CallInst>(I))
    ++NumMovedCalls;
  ++NumHoisted;
  return true;
}

/// Only sink or hoist an instruction if it is not a trapping instruction,
/// or if the instruction is known not to trap when moved to the preheader.
/// or if it is a trapping instruction and is guaranteed to execute.
static bool isSafeToExecuteUnconditionally(Instruction &Inst,
                                           const DominatorTree *DT,
                                           const Loop *CurLoop,
                                           const LoopSafetyInfo *SafetyInfo,
                                           OptimizationRemarkEmitter *ORE,
                                           const Instruction *CtxI) {
  if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT))
    return true;

  bool GuaranteedToExecute =
      isGuaranteedToExecute(Inst, DT, CurLoop, SafetyInfo);

  if (!GuaranteedToExecute) {
    auto *LI = dyn_cast<LoadInst>(&Inst);
    if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
      ORE->emit([&]() {
        return OptimizationRemarkMissed(
                   DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
               << "failed to hoist load with loop-invariant address "
                  "because load is conditionally executed";
      });
  }

  return GuaranteedToExecute;
}

namespace {
class LoopPromoter : public LoadAndStorePromoter {
  Value *SomePtr; // Designated pointer to store to.
  const SmallSetVector<Value *, 8> &PointerMustAliases;
  SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
  SmallVectorImpl<Instruction *> &LoopInsertPts;
  PredIteratorCache &PredCache;
  AliasSetTracker &AST;
  LoopInfo &LI;
  DebugLoc DL;
  int Alignment;
  bool UnorderedAtomic;
  AAMDNodes AATags;

  Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
    if (Instruction *I = dyn_cast<Instruction>(V))
      if (Loop *L = LI.getLoopFor(I->getParent()))
        if (!L->contains(BB)) {
          // We need to create an LCSSA PHI node for the incoming value and
          // store that.
          PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
                                        I->getName() + ".lcssa", &BB->front());
          for (BasicBlock *Pred : PredCache.get(BB))
            PN->addIncoming(I, Pred);
          return PN;
        }
    return V;
  }

public:
  LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
               const SmallSetVector<Value *, 8> &PMA,
               SmallVectorImpl<BasicBlock *> &LEB,
               SmallVectorImpl<Instruction *> &LIP, PredIteratorCache &PIC,
               AliasSetTracker &ast, LoopInfo &li, DebugLoc dl, int alignment,
               bool UnorderedAtomic, const AAMDNodes &AATags)
      : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
        LoopExitBlocks(LEB), LoopInsertPts(LIP), PredCache(PIC), AST(ast),
        LI(li), DL(std::move(dl)), Alignment(alignment),
        UnorderedAtomic(UnorderedAtomic), AATags(AATags) {}

  bool isInstInList(Instruction *I,
                    const SmallVectorImpl<Instruction *> &) const override {
    Value *Ptr;
    if (LoadInst *LI = dyn_cast<LoadInst>(I))
      Ptr = LI->getOperand(0);
    else
      Ptr = cast<StoreInst>(I)->getPointerOperand();
    return PointerMustAliases.count(Ptr);
  }

  void doExtraRewritesBeforeFinalDeletion() const override {
    // Insert stores after in the loop exit blocks.  Each exit block gets a
    // store of the live-out values that feed them.  Since we've already told
    // the SSA updater about the defs in the loop and the preheader
    // definition, it is all set and we can start using it.
    for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
      BasicBlock *ExitBlock = LoopExitBlocks[i];
      Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
      LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
      Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
      Instruction *InsertPos = LoopInsertPts[i];
      StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
      if (UnorderedAtomic)
        NewSI->setOrdering(AtomicOrdering::Unordered);
      NewSI->setAlignment(Alignment);
      NewSI->setDebugLoc(DL);
      if (AATags)
        NewSI->setAAMetadata(AATags);
    }
  }

  void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
    // Update alias analysis.
    AST.copyValue(LI, V);
  }
  void instructionDeleted(Instruction *I) const override { AST.deleteValue(I); }
};


/// Return true iff we can prove that a caller of this function can not inspect
/// the contents of the provided object in a well defined program.
bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) {
  if (isa<AllocaInst>(Object))
    // Since the alloca goes out of scope, we know the caller can't retain a
    // reference to it and be well defined.  Thus, we don't need to check for
    // capture. 
    return true;
  
  // For all other objects we need to know that the caller can't possibly
  // have gotten a reference to the object.  There are two components of
  // that:
  //   1) Object can't be escaped by this function.  This is what
  //      PointerMayBeCaptured checks.
  //   2) Object can't have been captured at definition site.  For this, we
  //      need to know the return value is noalias.  At the moment, we use a
  //      weaker condition and handle only AllocLikeFunctions (which are
  //      known to be noalias).  TODO
  return isAllocLikeFn(Object, TLI) &&
    !PointerMayBeCaptured(Object, true, true);
}

} // namespace

/// Try to promote memory values to scalars by sinking stores out of the
/// loop and moving loads to before the loop.  We do this by looping over
/// the stores in the loop, looking for stores to Must pointers which are
/// loop invariant.
///
bool llvm::promoteLoopAccessesToScalars(
    const SmallSetVector<Value *, 8> &PointerMustAliases,
    SmallVectorImpl<BasicBlock *> &ExitBlocks,
    SmallVectorImpl<Instruction *> &InsertPts, PredIteratorCache &PIC,
    LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
    Loop *CurLoop, AliasSetTracker *CurAST, LoopSafetyInfo *SafetyInfo,
    OptimizationRemarkEmitter *ORE) {
  // Verify inputs.
  assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
         CurAST != nullptr && SafetyInfo != nullptr &&
         "Unexpected Input to promoteLoopAccessesToScalars");

  Value *SomePtr = *PointerMustAliases.begin();
  BasicBlock *Preheader = CurLoop->getLoopPreheader();

  // It isn't safe to promote a load/store from the loop if the load/store is
  // conditional.  For example, turning:
  //
  //    for () { if (c) *P += 1; }
  //
  // into:
  //
  //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
  //
  // is not safe, because *P may only be valid to access if 'c' is true.
  //
  // The safety property divides into two parts:
  // p1) The memory may not be dereferenceable on entry to the loop.  In this
  //    case, we can't insert the required load in the preheader.
  // p2) The memory model does not allow us to insert a store along any dynamic
  //    path which did not originally have one.
  //
  // If at least one store is guaranteed to execute, both properties are
  // satisfied, and promotion is legal.
  //
  // This, however, is not a necessary condition. Even if no store/load is
  // guaranteed to execute, we can still establish these properties.
  // We can establish (p1) by proving that hoisting the load into the preheader
  // is safe (i.e. proving dereferenceability on all paths through the loop). We
  // can use any access within the alias set to prove dereferenceability,
  // since they're all must alias.
  //
  // There are two ways establish (p2):
  // a) Prove the location is thread-local. In this case the memory model
  // requirement does not apply, and stores are safe to insert.
  // b) Prove a store dominates every exit block. In this case, if an exit
  // blocks is reached, the original dynamic path would have taken us through
  // the store, so inserting a store into the exit block is safe. Note that this
  // is different from the store being guaranteed to execute. For instance,
  // if an exception is thrown on the first iteration of the loop, the original
  // store is never executed, but the exit blocks are not executed either.

  bool DereferenceableInPH = false;
  bool SafeToInsertStore = false;

  SmallVector<Instruction *, 64> LoopUses;

  // We start with an alignment of one and try to find instructions that allow
  // us to prove better alignment.
  unsigned Alignment = 1;
  // Keep track of which types of access we see
  bool SawUnorderedAtomic = false;
  bool SawNotAtomic = false;
  AAMDNodes AATags;

  const DataLayout &MDL = Preheader->getModule()->getDataLayout();

  bool IsKnownThreadLocalObject = false;
  if (SafetyInfo->MayThrow) {
    // If a loop can throw, we have to insert a store along each unwind edge.
    // That said, we can't actually make the unwind edge explicit. Therefore,
    // we have to prove that the store is dead along the unwind edge.  We do
    // this by proving that the caller can't have a reference to the object
    // after return and thus can't possibly load from the object.  
    Value *Object = GetUnderlyingObject(SomePtr, MDL);
    if (!isKnownNonEscaping(Object, TLI))
      return false;
    // Subtlety: Alloca's aren't visible to callers, but *are* potentially
    // visible to other threads if captured and used during their lifetimes.
    IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
  }

  // Check that all of the pointers in the alias set have the same type.  We
  // cannot (yet) promote a memory location that is loaded and stored in
  // different sizes.  While we are at it, collect alignment and AA info.
  for (Value *ASIV : PointerMustAliases) {
    // Check that all of the pointers in the alias set have the same type.  We
    // cannot (yet) promote a memory location that is loaded and stored in
    // different sizes.
    if (SomePtr->getType() != ASIV->getType())
      return false;

    for (User *U : ASIV->users()) {
      // Ignore instructions that are outside the loop.
      Instruction *UI = dyn_cast<Instruction>(U);
      if (!UI || !CurLoop->contains(UI))
        continue;

      // If there is an non-load/store instruction in the loop, we can't promote
      // it.
      if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
        assert(!Load->isVolatile() && "AST broken");
        if (!Load->isUnordered())
          return false;

        SawUnorderedAtomic |= Load->isAtomic();
        SawNotAtomic |= !Load->isAtomic();

        if (!DereferenceableInPH)
          DereferenceableInPH = isSafeToExecuteUnconditionally(
              *Load, DT, CurLoop, SafetyInfo, ORE, Preheader->getTerminator());
      } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
        // Stores *of* the pointer are not interesting, only stores *to* the
        // pointer.
        if (UI->getOperand(1) != ASIV)
          continue;
        assert(!Store->isVolatile() && "AST broken");
        if (!Store->isUnordered())
          return false;

        SawUnorderedAtomic |= Store->isAtomic();
        SawNotAtomic |= !Store->isAtomic();

        // If the store is guaranteed to execute, both properties are satisfied.
        // We may want to check if a store is guaranteed to execute even if we
        // already know that promotion is safe, since it may have higher
        // alignment than any other guaranteed stores, in which case we can
        // raise the alignment on the promoted store.
        unsigned InstAlignment = Store->getAlignment();
        if (!InstAlignment)
          InstAlignment =
              MDL.getABITypeAlignment(Store->getValueOperand()->getType());

        if (!DereferenceableInPH || !SafeToInsertStore ||
            (InstAlignment > Alignment)) {
          if (isGuaranteedToExecute(*UI, DT, CurLoop, SafetyInfo)) {
            DereferenceableInPH = true;
            SafeToInsertStore = true;
            Alignment = std::max(Alignment, InstAlignment);
          }
        }

        // If a store dominates all exit blocks, it is safe to sink.
        // As explained above, if an exit block was executed, a dominating
        // store must have been been executed at least once, so we are not
        // introducing stores on paths that did not have them.
        // Note that this only looks at explicit exit blocks. If we ever
        // start sinking stores into unwind edges (see above), this will break.
        if (!SafeToInsertStore)
          SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
            return DT->dominates(Store->getParent(), Exit);
          });

        // If the store is not guaranteed to execute, we may still get
        // deref info through it.
        if (!DereferenceableInPH) {
          DereferenceableInPH = isDereferenceableAndAlignedPointer(
              Store->getPointerOperand(), Store->getAlignment(), MDL,
              Preheader->getTerminator(), DT);
        }
      } else
        return false; // Not a load or store.

      // Merge the AA tags.
      if (LoopUses.empty()) {
        // On the first load/store, just take its AA tags.
        UI->getAAMetadata(AATags);
      } else if (AATags) {
        UI->getAAMetadata(AATags, /* Merge = */ true);
      }

      LoopUses.push_back(UI);
    }
  }

  // If we found both an unordered atomic instruction and a non-atomic memory
  // access, bail.  We can't blindly promote non-atomic to atomic since we
  // might not be able to lower the result.  We can't downgrade since that
  // would violate memory model.  Also, align 0 is an error for atomics.
  if (SawUnorderedAtomic && SawNotAtomic)
    return false;

  // If we couldn't prove we can hoist the load, bail.
  if (!DereferenceableInPH)
    return false;

  // We know we can hoist the load, but don't have a guaranteed store.
  // Check whether the location is thread-local. If it is, then we can insert
  // stores along paths which originally didn't have them without violating the
  // memory model.
  if (!SafeToInsertStore) {
    if (IsKnownThreadLocalObject)
      SafeToInsertStore = true;
    else {
      Value *Object = GetUnderlyingObject(SomePtr, MDL);
      SafeToInsertStore =
          (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
          !PointerMayBeCaptured(Object, true, true);
    }
  }

  // If we've still failed to prove we can sink the store, give up.
  if (!SafeToInsertStore)
    return false;

  // Otherwise, this is safe to promote, lets do it!
  DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr
               << '\n');
  ORE->emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
                              LoopUses[0])
           << "Moving accesses to memory location out of the loop";
  });
  ++NumPromoted;

  // Grab a debug location for the inserted loads/stores; given that the
  // inserted loads/stores have little relation to the original loads/stores,
  // this code just arbitrarily picks a location from one, since any debug
  // location is better than none.
  DebugLoc DL = LoopUses[0]->getDebugLoc();

  // We use the SSAUpdater interface to insert phi nodes as required.
  SmallVector<PHINode *, 16> NewPHIs;
  SSAUpdater SSA(&NewPHIs);
  LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
                        InsertPts, PIC, *CurAST, *LI, DL, Alignment,
                        SawUnorderedAtomic, AATags);

  // Set up the preheader to have a definition of the value.  It is the live-out
  // value from the preheader that uses in the loop will use.
  LoadInst *PreheaderLoad = new LoadInst(
      SomePtr, SomePtr->getName() + ".promoted", Preheader->getTerminator());
  if (SawUnorderedAtomic)
    PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
  PreheaderLoad->setAlignment(Alignment);
  PreheaderLoad->setDebugLoc(DL);
  if (AATags)
    PreheaderLoad->setAAMetadata(AATags);
  SSA.AddAvailableValue(Preheader, PreheaderLoad);

  // Rewrite all the loads in the loop and remember all the definitions from
  // stores in the loop.
  Promoter.run(LoopUses);

  // If the SSAUpdater didn't use the load in the preheader, just zap it now.
  if (PreheaderLoad->use_empty())
    PreheaderLoad->eraseFromParent();

  return true;
}

/// Returns an owning pointer to an alias set which incorporates aliasing info
/// from L and all subloops of L.
/// FIXME: In new pass manager, there is no helper function to handle loop
/// analysis such as cloneBasicBlockAnalysis, so the AST needs to be recomputed
/// from scratch for every loop. Hook up with the helper functions when
/// available in the new pass manager to avoid redundant computation.
AliasSetTracker *
LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
                                                 AliasAnalysis *AA) {
  AliasSetTracker *CurAST = nullptr;
  SmallVector<Loop *, 4> RecomputeLoops;
  for (Loop *InnerL : L->getSubLoops()) {
    auto MapI = LoopToAliasSetMap.find(InnerL);
    // If the AST for this inner loop is missing it may have been merged into
    // some other loop's AST and then that loop unrolled, and so we need to
    // recompute it.
    if (MapI == LoopToAliasSetMap.end()) {
      RecomputeLoops.push_back(InnerL);
      continue;
    }
    AliasSetTracker *InnerAST = MapI->second;

    if (CurAST != nullptr) {
      // What if InnerLoop was modified by other passes ?
      CurAST->add(*InnerAST);

      // Once we've incorporated the inner loop's AST into ours, we don't need
      // the subloop's anymore.
      delete InnerAST;
    } else {
      CurAST = InnerAST;
    }
    LoopToAliasSetMap.erase(MapI);
  }
  if (CurAST == nullptr)
    CurAST = new AliasSetTracker(*AA);

  auto mergeLoop = [&](Loop *L) {
    // Loop over the body of this loop, looking for calls, invokes, and stores.
    for (BasicBlock *BB : L->blocks())
      CurAST->add(*BB); // Incorporate the specified basic block
  };

  // Add everything from the sub loops that are no longer directly available.
  for (Loop *InnerL : RecomputeLoops)
    mergeLoop(InnerL);

  // And merge in this loop.
  mergeLoop(L);

  return CurAST;
}

/// Simple analysis hook. Clone alias set info.
///
void LegacyLICMPass::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
                                             Loop *L) {
  AliasSetTracker *AST = LICM.getLoopToAliasSetMap().lookup(L);
  if (!AST)
    return;

  AST->copyValue(From, To);
}

/// Simple Analysis hook. Delete value V from alias set
///
void LegacyLICMPass::deleteAnalysisValue(Value *V, Loop *L) {
  AliasSetTracker *AST = LICM.getLoopToAliasSetMap().lookup(L);
  if (!AST)
    return;

  AST->deleteValue(V);
}

/// Simple Analysis hook. Delete value L from alias set map.
///
void LegacyLICMPass::deleteAnalysisLoop(Loop *L) {
  AliasSetTracker *AST = LICM.getLoopToAliasSetMap().lookup(L);
  if (!AST)
    return;

  delete AST;
  LICM.getLoopToAliasSetMap().erase(L);
}

/// Return true if the body of this loop may store into the memory
/// location pointed to by V.
///
static bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
                                     const AAMDNodes &AAInfo,
                                     AliasSetTracker *CurAST) {
  // Check to see if any of the basic blocks in CurLoop invalidate *V.
  return CurAST->getAliasSetForPointer(V, Size, AAInfo).isMod();
}

/// Little predicate that returns true if the specified basic block is in
/// a subloop of the current one, not the current one itself.
///
static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
  assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
  return LI->getLoopFor(BB) != CurLoop;
}