aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/ADCE.cpp
blob: f04d0f05ffc7eaed675087609ee5ebd6be2f8119 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
//===- ADCE.cpp - Code to perform dead code elimination -------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Aggressive Dead Code Elimination pass.  This pass
// optimistically assumes that all instructions are dead until proven otherwise,
// allowing it to eliminate dead computations that other DCE passes do not
// catch, particularly involving loop computations.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/ADCE.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include <cassert>
#include <cstddef>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "adce"

STATISTIC(NumRemoved, "Number of instructions removed");
STATISTIC(NumBranchesRemoved, "Number of branch instructions removed");

// This is a temporary option until we change the interface to this pass based
// on optimization level.
static cl::opt<bool> RemoveControlFlowFlag("adce-remove-control-flow",
                                           cl::init(true), cl::Hidden);

// This option enables removing of may-be-infinite loops which have no other
// effect.
static cl::opt<bool> RemoveLoops("adce-remove-loops", cl::init(false),
                                 cl::Hidden);

namespace {

/// Information about Instructions
struct InstInfoType {
  /// True if the associated instruction is live.
  bool Live = false;

  /// Quick access to information for block containing associated Instruction.
  struct BlockInfoType *Block = nullptr;
};

/// Information about basic blocks relevant to dead code elimination.
struct BlockInfoType {
  /// True when this block contains a live instructions.
  bool Live = false;

  /// True when this block ends in an unconditional branch.
  bool UnconditionalBranch = false;

  /// True when this block is known to have live PHI nodes.
  bool HasLivePhiNodes = false;

  /// Control dependence sources need to be live for this block.
  bool CFLive = false;

  /// Quick access to the LiveInfo for the terminator,
  /// holds the value &InstInfo[Terminator]
  InstInfoType *TerminatorLiveInfo = nullptr;

  /// Corresponding BasicBlock.
  BasicBlock *BB = nullptr;

  /// Cache of BB->getTerminator().
  TerminatorInst *Terminator = nullptr;

  /// Post-order numbering of reverse control flow graph.
  unsigned PostOrder;

  bool terminatorIsLive() const { return TerminatorLiveInfo->Live; }
};

class AggressiveDeadCodeElimination {
  Function &F;

  // ADCE does not use DominatorTree per se, but it updates it to preserve the
  // analysis.
  DominatorTree &DT;
  PostDominatorTree &PDT;

  /// Mapping of blocks to associated information, an element in BlockInfoVec.
  DenseMap<BasicBlock *, BlockInfoType> BlockInfo;
  bool isLive(BasicBlock *BB) { return BlockInfo[BB].Live; }

  /// Mapping of instructions to associated information.
  DenseMap<Instruction *, InstInfoType> InstInfo;
  bool isLive(Instruction *I) { return InstInfo[I].Live; }

  /// Instructions known to be live where we need to mark
  /// reaching definitions as live.
  SmallVector<Instruction *, 128> Worklist;

  /// Debug info scopes around a live instruction.
  SmallPtrSet<const Metadata *, 32> AliveScopes;

  /// Set of blocks with not known to have live terminators.
  SmallPtrSet<BasicBlock *, 16> BlocksWithDeadTerminators;

  /// The set of blocks which we have determined whose control
  /// dependence sources must be live and which have not had
  /// those dependences analyzed.
  SmallPtrSet<BasicBlock *, 16> NewLiveBlocks;

  /// Set up auxiliary data structures for Instructions and BasicBlocks and
  /// initialize the Worklist to the set of must-be-live Instruscions.
  void initialize();

  /// Return true for operations which are always treated as live.
  bool isAlwaysLive(Instruction &I);

  /// Return true for instrumentation instructions for value profiling.
  bool isInstrumentsConstant(Instruction &I);

  /// Propagate liveness to reaching definitions.
  void markLiveInstructions();

  /// Mark an instruction as live.
  void markLive(Instruction *I);

  /// Mark a block as live.
  void markLive(BlockInfoType &BB);
  void markLive(BasicBlock *BB) { markLive(BlockInfo[BB]); }

  /// Mark terminators of control predecessors of a PHI node live.
  void markPhiLive(PHINode *PN);

  /// Record the Debug Scopes which surround live debug information.
  void collectLiveScopes(const DILocalScope &LS);
  void collectLiveScopes(const DILocation &DL);

  /// Analyze dead branches to find those whose branches are the sources
  /// of control dependences impacting a live block. Those branches are
  /// marked live.
  void markLiveBranchesFromControlDependences();

  /// Remove instructions not marked live, return if any any instruction
  /// was removed.
  bool removeDeadInstructions();

  /// Identify connected sections of the control flow graph which have
  /// dead terminators and rewrite the control flow graph to remove them.
  void updateDeadRegions();

  /// Set the BlockInfo::PostOrder field based on a post-order
  /// numbering of the reverse control flow graph.
  void computeReversePostOrder();

  /// Make the terminator of this block an unconditional branch to \p Target.
  void makeUnconditional(BasicBlock *BB, BasicBlock *Target);

public:
  AggressiveDeadCodeElimination(Function &F, DominatorTree &DT,
                                PostDominatorTree &PDT)
      : F(F), DT(DT), PDT(PDT) {}

  bool performDeadCodeElimination();
};

} // end anonymous namespace

bool AggressiveDeadCodeElimination::performDeadCodeElimination() {
  initialize();
  markLiveInstructions();
  return removeDeadInstructions();
}

static bool isUnconditionalBranch(TerminatorInst *Term) {
  auto *BR = dyn_cast<BranchInst>(Term);
  return BR && BR->isUnconditional();
}

void AggressiveDeadCodeElimination::initialize() {
  auto NumBlocks = F.size();

  // We will have an entry in the map for each block so we grow the
  // structure to twice that size to keep the load factor low in the hash table.
  BlockInfo.reserve(NumBlocks);
  size_t NumInsts = 0;

  // Iterate over blocks and initialize BlockInfoVec entries, count
  // instructions to size the InstInfo hash table.
  for (auto &BB : F) {
    NumInsts += BB.size();
    auto &Info = BlockInfo[&BB];
    Info.BB = &BB;
    Info.Terminator = BB.getTerminator();
    Info.UnconditionalBranch = isUnconditionalBranch(Info.Terminator);
  }

  // Initialize instruction map and set pointers to block info.
  InstInfo.reserve(NumInsts);
  for (auto &BBInfo : BlockInfo)
    for (Instruction &I : *BBInfo.second.BB)
      InstInfo[&I].Block = &BBInfo.second;

  // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not
  // add any more elements to either after this point.
  for (auto &BBInfo : BlockInfo)
    BBInfo.second.TerminatorLiveInfo = &InstInfo[BBInfo.second.Terminator];

  // Collect the set of "root" instructions that are known live.
  for (Instruction &I : instructions(F))
    if (isAlwaysLive(I))
      markLive(&I);

  if (!RemoveControlFlowFlag)
    return;

  if (!RemoveLoops) {
    // This stores state for the depth-first iterator. In addition
    // to recording which nodes have been visited we also record whether
    // a node is currently on the "stack" of active ancestors of the current
    // node.
    using StatusMap = DenseMap<BasicBlock *, bool>;

    class DFState : public StatusMap {
    public:
      std::pair<StatusMap::iterator, bool> insert(BasicBlock *BB) {
        return StatusMap::insert(std::make_pair(BB, true));
      }

      // Invoked after we have visited all children of a node.
      void completed(BasicBlock *BB) { (*this)[BB] = false; }

      // Return true if \p BB is currently on the active stack
      // of ancestors.
      bool onStack(BasicBlock *BB) {
        auto Iter = find(BB);
        return Iter != end() && Iter->second;
      }
    } State;

    State.reserve(F.size());
    // Iterate over blocks in depth-first pre-order and
    // treat all edges to a block already seen as loop back edges
    // and mark the branch live it if there is a back edge.
    for (auto *BB: depth_first_ext(&F.getEntryBlock(), State)) {
      TerminatorInst *Term = BB->getTerminator();
      if (isLive(Term))
        continue;

      for (auto *Succ : successors(BB))
        if (State.onStack(Succ)) {
          // back edge....
          markLive(Term);
          break;
        }
    }
  }

  // Mark blocks live if there is no path from the block to a
  // return of the function.
  // We do this by seeing which of the postdomtree root children exit the
  // program, and for all others, mark the subtree live.
  for (auto &PDTChild : children<DomTreeNode *>(PDT.getRootNode())) {
    auto *BB = PDTChild->getBlock();
    auto &Info = BlockInfo[BB];
    // Real function return
    if (isa<ReturnInst>(Info.Terminator)) {
      DEBUG(dbgs() << "post-dom root child is a return: " << BB->getName()
                   << '\n';);
      continue;
    }

    // This child is something else, like an infinite loop.
    for (auto DFNode : depth_first(PDTChild))
      markLive(BlockInfo[DFNode->getBlock()].Terminator);
  }

  // Treat the entry block as always live
  auto *BB = &F.getEntryBlock();
  auto &EntryInfo = BlockInfo[BB];
  EntryInfo.Live = true;
  if (EntryInfo.UnconditionalBranch)
    markLive(EntryInfo.Terminator);

  // Build initial collection of blocks with dead terminators
  for (auto &BBInfo : BlockInfo)
    if (!BBInfo.second.terminatorIsLive())
      BlocksWithDeadTerminators.insert(BBInfo.second.BB);
}

bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction &I) {
  // TODO -- use llvm::isInstructionTriviallyDead
  if (I.isEHPad() || I.mayHaveSideEffects()) {
    // Skip any value profile instrumentation calls if they are
    // instrumenting constants.
    if (isInstrumentsConstant(I))
      return false;
    return true;
  }
  if (!isa<TerminatorInst>(I))
    return false;
  if (RemoveControlFlowFlag && (isa<BranchInst>(I) || isa<SwitchInst>(I)))
    return false;
  return true;
}

// Check if this instruction is a runtime call for value profiling and
// if it's instrumenting a constant.
bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) {
  // TODO -- move this test into llvm::isInstructionTriviallyDead
  if (CallInst *CI = dyn_cast<CallInst>(&I))
    if (Function *Callee = CI->getCalledFunction())
      if (Callee->getName().equals(getInstrProfValueProfFuncName()))
        if (isa<Constant>(CI->getArgOperand(0)))
          return true;
  return false;
}

void AggressiveDeadCodeElimination::markLiveInstructions() {
  // Propagate liveness backwards to operands.
  do {
    // Worklist holds newly discovered live instructions
    // where we need to mark the inputs as live.
    while (!Worklist.empty()) {
      Instruction *LiveInst = Worklist.pop_back_val();
      DEBUG(dbgs() << "work live: "; LiveInst->dump(););

      for (Use &OI : LiveInst->operands())
        if (Instruction *Inst = dyn_cast<Instruction>(OI))
          markLive(Inst);

      if (auto *PN = dyn_cast<PHINode>(LiveInst))
        markPhiLive(PN);
    }

    // After data flow liveness has been identified, examine which branch
    // decisions are required to determine live instructions are executed.
    markLiveBranchesFromControlDependences();

  } while (!Worklist.empty());
}

void AggressiveDeadCodeElimination::markLive(Instruction *I) {
  auto &Info = InstInfo[I];
  if (Info.Live)
    return;

  DEBUG(dbgs() << "mark live: "; I->dump());
  Info.Live = true;
  Worklist.push_back(I);

  // Collect the live debug info scopes attached to this instruction.
  if (const DILocation *DL = I->getDebugLoc())
    collectLiveScopes(*DL);

  // Mark the containing block live
  auto &BBInfo = *Info.Block;
  if (BBInfo.Terminator == I) {
    BlocksWithDeadTerminators.erase(BBInfo.BB);
    // For live terminators, mark destination blocks
    // live to preserve this control flow edges.
    if (!BBInfo.UnconditionalBranch)
      for (auto *BB : successors(I->getParent()))
        markLive(BB);
  }
  markLive(BBInfo);
}

void AggressiveDeadCodeElimination::markLive(BlockInfoType &BBInfo) {
  if (BBInfo.Live)
    return;
  DEBUG(dbgs() << "mark block live: " << BBInfo.BB->getName() << '\n');
  BBInfo.Live = true;
  if (!BBInfo.CFLive) {
    BBInfo.CFLive = true;
    NewLiveBlocks.insert(BBInfo.BB);
  }

  // Mark unconditional branches at the end of live
  // blocks as live since there is no work to do for them later
  if (BBInfo.UnconditionalBranch)
    markLive(BBInfo.Terminator);
}

void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope &LS) {
  if (!AliveScopes.insert(&LS).second)
    return;

  if (isa<DISubprogram>(LS))
    return;

  // Tail-recurse through the scope chain.
  collectLiveScopes(cast<DILocalScope>(*LS.getScope()));
}

void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) {
  // Even though DILocations are not scopes, shove them into AliveScopes so we
  // don't revisit them.
  if (!AliveScopes.insert(&DL).second)
    return;

  // Collect live scopes from the scope chain.
  collectLiveScopes(*DL.getScope());

  // Tail-recurse through the inlined-at chain.
  if (const DILocation *IA = DL.getInlinedAt())
    collectLiveScopes(*IA);
}

void AggressiveDeadCodeElimination::markPhiLive(PHINode *PN) {
  auto &Info = BlockInfo[PN->getParent()];
  // Only need to check this once per block.
  if (Info.HasLivePhiNodes)
    return;
  Info.HasLivePhiNodes = true;

  // If a predecessor block is not live, mark it as control-flow live
  // which will trigger marking live branches upon which
  // that block is control dependent.
  for (auto *PredBB : predecessors(Info.BB)) {
    auto &Info = BlockInfo[PredBB];
    if (!Info.CFLive) {
      Info.CFLive = true;
      NewLiveBlocks.insert(PredBB);
    }
  }
}

void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() {
  if (BlocksWithDeadTerminators.empty())
    return;

  DEBUG({
    dbgs() << "new live blocks:\n";
    for (auto *BB : NewLiveBlocks)
      dbgs() << "\t" << BB->getName() << '\n';
    dbgs() << "dead terminator blocks:\n";
    for (auto *BB : BlocksWithDeadTerminators)
      dbgs() << "\t" << BB->getName() << '\n';
  });

  // The dominance frontier of a live block X in the reverse
  // control graph is the set of blocks upon which X is control
  // dependent. The following sequence computes the set of blocks
  // which currently have dead terminators that are control
  // dependence sources of a block which is in NewLiveBlocks.

  SmallVector<BasicBlock *, 32> IDFBlocks;
  ReverseIDFCalculator IDFs(PDT);
  IDFs.setDefiningBlocks(NewLiveBlocks);
  IDFs.setLiveInBlocks(BlocksWithDeadTerminators);
  IDFs.calculate(IDFBlocks);
  NewLiveBlocks.clear();

  // Dead terminators which control live blocks are now marked live.
  for (auto *BB : IDFBlocks) {
    DEBUG(dbgs() << "live control in: " << BB->getName() << '\n');
    markLive(BB->getTerminator());
  }
}

//===----------------------------------------------------------------------===//
//
//  Routines to update the CFG and SSA information before removing dead code.
//
//===----------------------------------------------------------------------===//
bool AggressiveDeadCodeElimination::removeDeadInstructions() {
  // Updates control and dataflow around dead blocks
  updateDeadRegions();

  DEBUG({
    for (Instruction &I : instructions(F)) {
      // Check if the instruction is alive.
      if (isLive(&I))
        continue;

      if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) {
        // Check if the scope of this variable location is alive.
        if (AliveScopes.count(DII->getDebugLoc()->getScope()))
          continue;

        // If intrinsic is pointing at a live SSA value, there may be an
        // earlier optimization bug: if we know the location of the variable,
        // why isn't the scope of the location alive?
        if (Value *V = DII->getVariableLocation())
          if (Instruction *II = dyn_cast<Instruction>(V))
            if (isLive(II))
              dbgs() << "Dropping debug info for " << *DII << "\n";
      }
    }
  });

  // The inverse of the live set is the dead set.  These are those instructions
  // that have no side effects and do not influence the control flow or return
  // value of the function, and may therefore be deleted safely.
  // NOTE: We reuse the Worklist vector here for memory efficiency.
  for (Instruction &I : instructions(F)) {
    // Check if the instruction is alive.
    if (isLive(&I))
      continue;

    if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) {
      // Check if the scope of this variable location is alive.
      if (AliveScopes.count(DII->getDebugLoc()->getScope()))
        continue;

      // Fallthrough and drop the intrinsic.
    }

    // Prepare to delete.
    Worklist.push_back(&I);
    I.dropAllReferences();
  }

  for (Instruction *&I : Worklist) {
    ++NumRemoved;
    I->eraseFromParent();
  }

  return !Worklist.empty();
}

// A dead region is the set of dead blocks with a common live post-dominator.
void AggressiveDeadCodeElimination::updateDeadRegions() {
  DEBUG({
    dbgs() << "final dead terminator blocks: " << '\n';
    for (auto *BB : BlocksWithDeadTerminators)
      dbgs() << '\t' << BB->getName()
             << (BlockInfo[BB].Live ? " LIVE\n" : "\n");
  });

  // Don't compute the post ordering unless we needed it.
  bool HavePostOrder = false;

  for (auto *BB : BlocksWithDeadTerminators) {
    auto &Info = BlockInfo[BB];
    if (Info.UnconditionalBranch) {
      InstInfo[Info.Terminator].Live = true;
      continue;
    }

    if (!HavePostOrder) {
      computeReversePostOrder();
      HavePostOrder = true;
    }

    // Add an unconditional branch to the successor closest to the
    // end of the function which insures a path to the exit for each
    // live edge.
    BlockInfoType *PreferredSucc = nullptr;
    for (auto *Succ : successors(BB)) {
      auto *Info = &BlockInfo[Succ];
      if (!PreferredSucc || PreferredSucc->PostOrder < Info->PostOrder)
        PreferredSucc = Info;
    }
    assert((PreferredSucc && PreferredSucc->PostOrder > 0) &&
           "Failed to find safe successor for dead branch");

    // Collect removed successors to update the (Post)DominatorTrees.
    SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
    bool First = true;
    for (auto *Succ : successors(BB)) {
      if (!First || Succ != PreferredSucc->BB) {
        Succ->removePredecessor(BB);
        RemovedSuccessors.insert(Succ);
      } else
        First = false;
    }
    makeUnconditional(BB, PreferredSucc->BB);

    // Inform the dominators about the deleted CFG edges.
    SmallVector<DominatorTree::UpdateType, 4> DeletedEdges;
    for (auto *Succ : RemovedSuccessors) {
      // It might have happened that the same successor appeared multiple times
      // and the CFG edge wasn't really removed.
      if (Succ != PreferredSucc->BB) {
        DEBUG(dbgs() << "ADCE: (Post)DomTree edge enqueued for deletion"
                     << BB->getName() << " -> " << Succ->getName() << "\n");
        DeletedEdges.push_back({DominatorTree::Delete, BB, Succ});
      }
    }

    DT.applyUpdates(DeletedEdges);
    PDT.applyUpdates(DeletedEdges);

    NumBranchesRemoved += 1;
  }
}

// reverse top-sort order
void AggressiveDeadCodeElimination::computeReversePostOrder() {
  // This provides a post-order numbering of the reverse control flow graph
  // Note that it is incomplete in the presence of infinite loops but we don't
  // need numbers blocks which don't reach the end of the functions since
  // all branches in those blocks are forced live.

  // For each block without successors, extend the DFS from the block
  // backward through the graph
  SmallPtrSet<BasicBlock*, 16> Visited;
  unsigned PostOrder = 0;
  for (auto &BB : F) {
    if (succ_begin(&BB) != succ_end(&BB))
      continue;
    for (BasicBlock *Block : inverse_post_order_ext(&BB,Visited))
      BlockInfo[Block].PostOrder = PostOrder++;
  }
}

void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock *BB,
                                                      BasicBlock *Target) {
  TerminatorInst *PredTerm = BB->getTerminator();
  // Collect the live debug info scopes attached to this instruction.
  if (const DILocation *DL = PredTerm->getDebugLoc())
    collectLiveScopes(*DL);

  // Just mark live an existing unconditional branch
  if (isUnconditionalBranch(PredTerm)) {
    PredTerm->setSuccessor(0, Target);
    InstInfo[PredTerm].Live = true;
    return;
  }
  DEBUG(dbgs() << "making unconditional " << BB->getName() << '\n');
  NumBranchesRemoved += 1;
  IRBuilder<> Builder(PredTerm);
  auto *NewTerm = Builder.CreateBr(Target);
  InstInfo[NewTerm].Live = true;
  if (const DILocation *DL = PredTerm->getDebugLoc())
    NewTerm->setDebugLoc(DL);

  InstInfo.erase(PredTerm);
  PredTerm->eraseFromParent();
}

//===----------------------------------------------------------------------===//
//
// Pass Manager integration code
//
//===----------------------------------------------------------------------===//
PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &FAM) {
  auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
  auto &PDT = FAM.getResult<PostDominatorTreeAnalysis>(F);
  if (!AggressiveDeadCodeElimination(F, DT, PDT).performDeadCodeElimination())
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<GlobalsAA>();
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<PostDominatorTreeAnalysis>();
  return PA;
}

namespace {

struct ADCELegacyPass : public FunctionPass {
  static char ID; // Pass identification, replacement for typeid

  ADCELegacyPass() : FunctionPass(ID) {
    initializeADCELegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;

    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
    return AggressiveDeadCodeElimination(F, DT, PDT)
        .performDeadCodeElimination();
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    // We require DominatorTree here only to update and thus preserve it.
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<PostDominatorTreeWrapperPass>();
    if (!RemoveControlFlowFlag)
      AU.setPreservesCFG();
    else {
      AU.addPreserved<DominatorTreeWrapperPass>();
      AU.addPreserved<PostDominatorTreeWrapperPass>();
    }
    AU.addPreserved<GlobalsAAWrapperPass>();
  }
};

} // end anonymous namespace

char ADCELegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(ADCELegacyPass, "adce",
                      "Aggressive Dead Code Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_END(ADCELegacyPass, "adce", "Aggressive Dead Code Elimination",
                    false, false)

FunctionPass *llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); }