aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/InstCombine/InstCombineShifts.cpp
blob: 45541c9adc0e17d6c933697c9bd58954d2983952 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
//===- InstCombineShifts.cpp ----------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the visitShl, visitLShr, and visitAShr functions.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "instcombine"

Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  assert(Op0->getType() == Op1->getType());

  // See if we can fold away this shift.
  if (SimplifyDemandedInstructionBits(I))
    return &I;

  // Try to fold constant and into select arguments.
  if (isa<Constant>(Op0))
    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
      if (Instruction *R = FoldOpIntoSelect(I, SI))
        return R;

  if (Constant *CUI = dyn_cast<Constant>(Op1))
    if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
      return Res;

  // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
  // iff A and C2 are both positive.
  Value *A;
  Constant *C;
  if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C))))
    if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) &&
        isKnownNonNegative(C, DL, 0, &AC, &I, &DT))
      return BinaryOperator::Create(
          I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A);

  // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
  // Because shifts by negative values (which could occur if A were negative)
  // are undefined.
  const APInt *B;
  if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
    // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
    // demand the sign bit (and many others) here??
    Value *Rem = Builder.CreateAnd(A, ConstantInt::get(I.getType(), *B - 1),
                                   Op1->getName());
    I.setOperand(1, Rem);
    return &I;
  }

  return nullptr;
}

/// Return true if we can simplify two logical (either left or right) shifts
/// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
                                    Instruction *InnerShift, InstCombiner &IC,
                                    Instruction *CxtI) {
  assert(InnerShift->isLogicalShift() && "Unexpected instruction type");

  // We need constant scalar or constant splat shifts.
  const APInt *InnerShiftConst;
  if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
    return false;

  // Two logical shifts in the same direction:
  // shl (shl X, C1), C2 -->  shl X, C1 + C2
  // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
  bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
  if (IsInnerShl == IsOuterShl)
    return true;

  // Equal shift amounts in opposite directions become bitwise 'and':
  // lshr (shl X, C), C --> and X, C'
  // shl (lshr X, C), C --> and X, C'
  unsigned InnerShAmt = InnerShiftConst->getZExtValue();
  if (InnerShAmt == OuterShAmt)
    return true;

  // If the 2nd shift is bigger than the 1st, we can fold:
  // lshr (shl X, C1), C2 -->  and (shl X, C1 - C2), C3
  // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
  // but it isn't profitable unless we know the and'd out bits are already zero.
  // Also, check that the inner shift is valid (less than the type width) or
  // we'll crash trying to produce the bit mask for the 'and'.
  unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
  if (InnerShAmt > OuterShAmt && InnerShAmt < TypeWidth) {
    unsigned MaskShift =
        IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
    APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
    if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
      return true;
  }

  return false;
}

/// See if we can compute the specified value, but shifted logically to the left
/// or right by some number of bits. This should return true if the expression
/// can be computed for the same cost as the current expression tree. This is
/// used to eliminate extraneous shifting from things like:
///      %C = shl i128 %A, 64
///      %D = shl i128 %B, 96
///      %E = or i128 %C, %D
///      %F = lshr i128 %E, 64
/// where the client will ask if E can be computed shifted right by 64-bits. If
/// this succeeds, getShiftedValue() will be called to produce the value.
static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
                               InstCombiner &IC, Instruction *CxtI) {
  // We can always evaluate constants shifted.
  if (isa<Constant>(V))
    return true;

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;

  // If this is the opposite shift, we can directly reuse the input of the shift
  // if the needed bits are already zero in the input.  This allows us to reuse
  // the value which means that we don't care if the shift has multiple uses.
  //  TODO:  Handle opposite shift by exact value.
  ConstantInt *CI = nullptr;
  if ((IsLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
      (!IsLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
    if (CI->getZExtValue() == NumBits) {
      // TODO: Check that the input bits are already zero with MaskedValueIsZero
#if 0
      // If this is a truncate of a logical shr, we can truncate it to a smaller
      // lshr iff we know that the bits we would otherwise be shifting in are
      // already zeros.
      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
      uint32_t BitWidth = Ty->getScalarSizeInBits();
      if (MaskedValueIsZero(I->getOperand(0),
            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
          CI->getLimitedValue(BitWidth) < BitWidth) {
        return CanEvaluateTruncated(I->getOperand(0), Ty);
      }
#endif

    }
  }

  // We can't mutate something that has multiple uses: doing so would
  // require duplicating the instruction in general, which isn't profitable.
  if (!I->hasOneUse()) return false;

  switch (I->getOpcode()) {
  default: return false;
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
    return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
           canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);

  case Instruction::Shl:
  case Instruction::LShr:
    return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);

  case Instruction::Select: {
    SelectInst *SI = cast<SelectInst>(I);
    Value *TrueVal = SI->getTrueValue();
    Value *FalseVal = SI->getFalseValue();
    return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
           canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
  }
  case Instruction::PHI: {
    // We can change a phi if we can change all operands.  Note that we never
    // get into trouble with cyclic PHIs here because we only consider
    // instructions with a single use.
    PHINode *PN = cast<PHINode>(I);
    for (Value *IncValue : PN->incoming_values())
      if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
        return false;
    return true;
  }
  }
}

/// Fold OuterShift (InnerShift X, C1), C2.
/// See canEvaluateShiftedShift() for the constraints on these instructions.
static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
                               bool IsOuterShl,
                               InstCombiner::BuilderTy &Builder) {
  bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
  Type *ShType = InnerShift->getType();
  unsigned TypeWidth = ShType->getScalarSizeInBits();

  // We only accept shifts-by-a-constant in canEvaluateShifted().
  const APInt *C1;
  match(InnerShift->getOperand(1), m_APInt(C1));
  unsigned InnerShAmt = C1->getZExtValue();

  // Change the shift amount and clear the appropriate IR flags.
  auto NewInnerShift = [&](unsigned ShAmt) {
    InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
    if (IsInnerShl) {
      InnerShift->setHasNoUnsignedWrap(false);
      InnerShift->setHasNoSignedWrap(false);
    } else {
      InnerShift->setIsExact(false);
    }
    return InnerShift;
  };

  // Two logical shifts in the same direction:
  // shl (shl X, C1), C2 -->  shl X, C1 + C2
  // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
  if (IsInnerShl == IsOuterShl) {
    // If this is an oversized composite shift, then unsigned shifts get 0.
    if (InnerShAmt + OuterShAmt >= TypeWidth)
      return Constant::getNullValue(ShType);

    return NewInnerShift(InnerShAmt + OuterShAmt);
  }

  // Equal shift amounts in opposite directions become bitwise 'and':
  // lshr (shl X, C), C --> and X, C'
  // shl (lshr X, C), C --> and X, C'
  if (InnerShAmt == OuterShAmt) {
    APInt Mask = IsInnerShl
                     ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
                     : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
    Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
                                   ConstantInt::get(ShType, Mask));
    if (auto *AndI = dyn_cast<Instruction>(And)) {
      AndI->moveBefore(InnerShift);
      AndI->takeName(InnerShift);
    }
    return And;
  }

  assert(InnerShAmt > OuterShAmt &&
         "Unexpected opposite direction logical shift pair");

  // In general, we would need an 'and' for this transform, but
  // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
  // lshr (shl X, C1), C2 -->  shl X, C1 - C2
  // shl (lshr X, C1), C2 --> lshr X, C1 - C2
  return NewInnerShift(InnerShAmt - OuterShAmt);
}

/// When canEvaluateShifted() returns true for an expression, this function
/// inserts the new computation that produces the shifted value.
static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
                              InstCombiner &IC, const DataLayout &DL) {
  // We can always evaluate constants shifted.
  if (Constant *C = dyn_cast<Constant>(V)) {
    if (isLeftShift)
      V = IC.Builder.CreateShl(C, NumBits);
    else
      V = IC.Builder.CreateLShr(C, NumBits);
    // If we got a constantexpr back, try to simplify it with TD info.
    if (auto *C = dyn_cast<Constant>(V))
      if (auto *FoldedC =
              ConstantFoldConstant(C, DL, &IC.getTargetLibraryInfo()))
        V = FoldedC;
    return V;
  }

  Instruction *I = cast<Instruction>(V);
  IC.Worklist.Add(I);

  switch (I->getOpcode()) {
  default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
    I->setOperand(
        0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
    I->setOperand(
        1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
    return I;

  case Instruction::Shl:
  case Instruction::LShr:
    return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
                            IC.Builder);

  case Instruction::Select:
    I->setOperand(
        1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
    I->setOperand(
        2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
    return I;
  case Instruction::PHI: {
    // We can change a phi if we can change all operands.  Note that we never
    // get into trouble with cyclic PHIs here because we only consider
    // instructions with a single use.
    PHINode *PN = cast<PHINode>(I);
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
      PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
                                              isLeftShift, IC, DL));
    return PN;
  }
  }
}

Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
                                               BinaryOperator &I) {
  bool isLeftShift = I.getOpcode() == Instruction::Shl;

  const APInt *Op1C;
  if (!match(Op1, m_APInt(Op1C)))
    return nullptr;

  // See if we can propagate this shift into the input, this covers the trivial
  // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
  if (I.getOpcode() != Instruction::AShr &&
      canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) {
    DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
              " to eliminate shift:\n  IN: " << *Op0 << "\n  SH: " << I <<"\n");

    return replaceInstUsesWith(
        I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL));
  }

  // See if we can simplify any instructions used by the instruction whose sole
  // purpose is to compute bits we don't care about.
  unsigned TypeBits = Op0->getType()->getScalarSizeInBits();

  assert(!Op1C->uge(TypeBits) &&
         "Shift over the type width should have been removed already");

  if (Instruction *FoldedShift = foldOpWithConstantIntoOperand(I))
    return FoldedShift;

  // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
  if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
    Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
    // If 'shift2' is an ashr, we would have to get the sign bit into a funny
    // place.  Don't try to do this transformation in this case.  Also, we
    // require that the input operand is a shift-by-constant so that we have
    // confidence that the shifts will get folded together.  We could do this
    // xform in more cases, but it is unlikely to be profitable.
    if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
        isa<ConstantInt>(TrOp->getOperand(1))) {
      // Okay, we'll do this xform.  Make the shift of shift.
      Constant *ShAmt =
          ConstantExpr::getZExt(cast<Constant>(Op1), TrOp->getType());
      // (shift2 (shift1 & 0x00FF), c2)
      Value *NSh = Builder.CreateBinOp(I.getOpcode(), TrOp, ShAmt, I.getName());

      // For logical shifts, the truncation has the effect of making the high
      // part of the register be zeros.  Emulate this by inserting an AND to
      // clear the top bits as needed.  This 'and' will usually be zapped by
      // other xforms later if dead.
      unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
      unsigned DstSize = TI->getType()->getScalarSizeInBits();
      APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));

      // The mask we constructed says what the trunc would do if occurring
      // between the shifts.  We want to know the effect *after* the second
      // shift.  We know that it is a logical shift by a constant, so adjust the
      // mask as appropriate.
      if (I.getOpcode() == Instruction::Shl)
        MaskV <<= Op1C->getZExtValue();
      else {
        assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
        MaskV.lshrInPlace(Op1C->getZExtValue());
      }

      // shift1 & 0x00FF
      Value *And = Builder.CreateAnd(NSh,
                                     ConstantInt::get(I.getContext(), MaskV),
                                     TI->getName());

      // Return the value truncated to the interesting size.
      return new TruncInst(And, I.getType());
    }
  }

  if (Op0->hasOneUse()) {
    if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
      // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
      Value *V1, *V2;
      ConstantInt *CC;
      switch (Op0BO->getOpcode()) {
      default: break;
      case Instruction::Add:
      case Instruction::And:
      case Instruction::Or:
      case Instruction::Xor: {
        // These operators commute.
        // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
        if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
            match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
                  m_Specific(Op1)))) {
          Value *YS =         // (Y << C)
            Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
          // (X + (Y << C))
          Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), YS, V1,
                                         Op0BO->getOperand(1)->getName());
          unsigned Op1Val = Op1C->getLimitedValue(TypeBits);

          APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
          Constant *Mask = ConstantInt::get(I.getContext(), Bits);
          if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
            Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
          return BinaryOperator::CreateAnd(X, Mask);
        }

        // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
        Value *Op0BOOp1 = Op0BO->getOperand(1);
        if (isLeftShift && Op0BOOp1->hasOneUse() &&
            match(Op0BOOp1,
                  m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
                        m_ConstantInt(CC)))) {
          Value *YS =   // (Y << C)
            Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
          // X & (CC << C)
          Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
                                        V1->getName()+".mask");
          return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
        }
        LLVM_FALLTHROUGH;
      }

      case Instruction::Sub: {
        // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
            match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
                  m_Specific(Op1)))) {
          Value *YS =  // (Y << C)
            Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
          // (X + (Y << C))
          Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), V1, YS,
                                         Op0BO->getOperand(0)->getName());
          unsigned Op1Val = Op1C->getLimitedValue(TypeBits);

          APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
          Constant *Mask = ConstantInt::get(I.getContext(), Bits);
          if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
            Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
          return BinaryOperator::CreateAnd(X, Mask);
        }

        // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
            match(Op0BO->getOperand(0),
                  m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
                        m_ConstantInt(CC))) && V2 == Op1) {
          Value *YS = // (Y << C)
            Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
          // X & (CC << C)
          Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
                                        V1->getName()+".mask");

          return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
        }

        break;
      }
      }


      // If the operand is a bitwise operator with a constant RHS, and the
      // shift is the only use, we can pull it out of the shift.
      const APInt *Op0C;
      if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
        bool isValid = true;     // Valid only for And, Or, Xor
        bool highBitSet = false; // Transform if high bit of constant set?

        switch (Op0BO->getOpcode()) {
        default: isValid = false; break;   // Do not perform transform!
        case Instruction::Add:
          isValid = isLeftShift;
          break;
        case Instruction::Or:
        case Instruction::Xor:
          highBitSet = false;
          break;
        case Instruction::And:
          highBitSet = true;
          break;
        }

        // If this is a signed shift right, and the high bit is modified
        // by the logical operation, do not perform the transformation.
        // The highBitSet boolean indicates the value of the high bit of
        // the constant which would cause it to be modified for this
        // operation.
        //
        if (isValid && I.getOpcode() == Instruction::AShr)
          isValid = Op0C->isNegative() == highBitSet;

        if (isValid) {
          Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
                                     cast<Constant>(Op0BO->getOperand(1)), Op1);

          Value *NewShift =
            Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
          NewShift->takeName(Op0BO);

          return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
                                        NewRHS);
        }
      }

      // If the operand is a subtract with a constant LHS, and the shift
      // is the only use, we can pull it out of the shift.
      // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2))
      if (isLeftShift && Op0BO->getOpcode() == Instruction::Sub &&
          match(Op0BO->getOperand(0), m_APInt(Op0C))) {
        Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
                                   cast<Constant>(Op0BO->getOperand(0)), Op1);

        Value *NewShift = Builder.CreateShl(Op0BO->getOperand(1), Op1);
        NewShift->takeName(Op0BO);

        return BinaryOperator::CreateSub(NewRHS, NewShift);
      }
    }
  }

  return nullptr;
}

Instruction *InstCombiner::visitShl(BinaryOperator &I) {
  if (Value *V = SimplifyVectorOp(I))
    return replaceInstUsesWith(I, V);

  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  if (Value *V =
          SimplifyShlInst(Op0, Op1, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
                          SQ.getWithInstruction(&I)))
    return replaceInstUsesWith(I, V);

  if (Instruction *V = commonShiftTransforms(I))
    return V;

  const APInt *ShAmtAPInt;
  if (match(Op1, m_APInt(ShAmtAPInt))) {
    unsigned ShAmt = ShAmtAPInt->getZExtValue();
    unsigned BitWidth = I.getType()->getScalarSizeInBits();
    Type *Ty = I.getType();

    // shl (zext X), ShAmt --> zext (shl X, ShAmt)
    // This is only valid if X would have zeros shifted out.
    Value *X;
    if (match(Op0, m_ZExt(m_Value(X)))) {
      unsigned SrcWidth = X->getType()->getScalarSizeInBits();
      if (ShAmt < SrcWidth &&
          MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I))
        return new ZExtInst(Builder.CreateShl(X, ShAmt), Ty);
    }

    // (X >> C) << C --> X & (-1 << C)
    if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
      APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt));
      return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
    }

    // Be careful about hiding shl instructions behind bit masks. They are used
    // to represent multiplies by a constant, and it is important that simple
    // arithmetic expressions are still recognizable by scalar evolution.
    // The inexact versions are deferred to DAGCombine, so we don't hide shl
    // behind a bit mask.
    const APInt *ShOp1;
    if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(ShOp1))))) {
      unsigned ShrAmt = ShOp1->getZExtValue();
      if (ShrAmt < ShAmt) {
        // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1)
        Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt);
        auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
        NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
        NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
        return NewShl;
      }
      if (ShrAmt > ShAmt) {
        // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2)
        Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt);
        auto *NewShr = BinaryOperator::Create(
            cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
        NewShr->setIsExact(true);
        return NewShr;
      }
    }

    if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) {
      unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
      // Oversized shifts are simplified to zero in InstSimplify.
      if (AmtSum < BitWidth)
        // (X << C1) << C2 --> X << (C1 + C2)
        return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
    }

    // If the shifted-out value is known-zero, then this is a NUW shift.
    if (!I.hasNoUnsignedWrap() &&
        MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) {
      I.setHasNoUnsignedWrap();
      return &I;
    }

    // If the shifted-out value is all signbits, then this is a NSW shift.
    if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) {
      I.setHasNoSignedWrap();
      return &I;
    }
  }

  Constant *C1;
  if (match(Op1, m_Constant(C1))) {
    Constant *C2;
    Value *X;
    // (C2 << X) << C1 --> (C2 << C1) << X
    if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X)))))
      return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X);

    // (X * C2) << C1 --> X * (C2 << C1)
    if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
      return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
  }

  return nullptr;
}

Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
  if (Value *V = SimplifyVectorOp(I))
    return replaceInstUsesWith(I, V);

  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  if (Value *V =
          SimplifyLShrInst(Op0, Op1, I.isExact(), SQ.getWithInstruction(&I)))
    return replaceInstUsesWith(I, V);

  if (Instruction *R = commonShiftTransforms(I))
    return R;

  Type *Ty = I.getType();
  const APInt *ShAmtAPInt;
  if (match(Op1, m_APInt(ShAmtAPInt))) {
    unsigned ShAmt = ShAmtAPInt->getZExtValue();
    unsigned BitWidth = Ty->getScalarSizeInBits();
    auto *II = dyn_cast<IntrinsicInst>(Op0);
    if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt &&
        (II->getIntrinsicID() == Intrinsic::ctlz ||
         II->getIntrinsicID() == Intrinsic::cttz ||
         II->getIntrinsicID() == Intrinsic::ctpop)) {
      // ctlz.i32(x)>>5  --> zext(x == 0)
      // cttz.i32(x)>>5  --> zext(x == 0)
      // ctpop.i32(x)>>5 --> zext(x == -1)
      bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
      Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
      Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
      return new ZExtInst(Cmp, Ty);
    }

    Value *X;
    const APInt *ShOp1;
    if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) {
      unsigned ShlAmt = ShOp1->getZExtValue();
      if (ShlAmt < ShAmt) {
        Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
        if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
          // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1)
          auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
          NewLShr->setIsExact(I.isExact());
          return NewLShr;
        }
        // (X << C1) >>u C2  --> (X >>u (C2 - C1)) & (-1 >> C2)
        Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
        APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
        return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
      }
      if (ShlAmt > ShAmt) {
        Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
        if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
          // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2)
          auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
          NewShl->setHasNoUnsignedWrap(true);
          return NewShl;
        }
        // (X << C1) >>u C2  --> X << (C1 - C2) & (-1 >> C2)
        Value *NewShl = Builder.CreateShl(X, ShiftDiff);
        APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
        return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
      }
      assert(ShlAmt == ShAmt);
      // (X << C) >>u C --> X & (-1 >>u C)
      APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
      return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
    }

    if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
        (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
      assert(ShAmt < X->getType()->getScalarSizeInBits() &&
             "Big shift not simplified to zero?");
      // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
      Value *NewLShr = Builder.CreateLShr(X, ShAmt);
      return new ZExtInst(NewLShr, Ty);
    }

    if (match(Op0, m_SExt(m_Value(X))) &&
        (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
      // Are we moving the sign bit to the low bit and widening with high zeros?
      unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
      if (ShAmt == BitWidth - 1) {
        // lshr (sext i1 X to iN), N-1 --> zext X to iN
        if (SrcTyBitWidth == 1)
          return new ZExtInst(X, Ty);

        // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
        if (Op0->hasOneUse()) {
          Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
          return new ZExtInst(NewLShr, Ty);
        }
      }

      // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
      if (ShAmt == BitWidth - SrcTyBitWidth && Op0->hasOneUse()) {
        // The new shift amount can't be more than the narrow source type.
        unsigned NewShAmt = std::min(ShAmt, SrcTyBitWidth - 1);
        Value *AShr = Builder.CreateAShr(X, NewShAmt);
        return new ZExtInst(AShr, Ty);
      }
    }

    if (match(Op0, m_LShr(m_Value(X), m_APInt(ShOp1)))) {
      unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
      // Oversized shifts are simplified to zero in InstSimplify.
      if (AmtSum < BitWidth)
        // (X >>u C1) >>u C2 --> X >>u (C1 + C2)
        return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
    }

    // If the shifted-out value is known-zero, then this is an exact shift.
    if (!I.isExact() &&
        MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
      I.setIsExact();
      return &I;
    }
  }
  return nullptr;
}

Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
  if (Value *V = SimplifyVectorOp(I))
    return replaceInstUsesWith(I, V);

  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  if (Value *V =
          SimplifyAShrInst(Op0, Op1, I.isExact(), SQ.getWithInstruction(&I)))
    return replaceInstUsesWith(I, V);

  if (Instruction *R = commonShiftTransforms(I))
    return R;

  Type *Ty = I.getType();
  unsigned BitWidth = Ty->getScalarSizeInBits();
  const APInt *ShAmtAPInt;
  if (match(Op1, m_APInt(ShAmtAPInt))) {
    unsigned ShAmt = ShAmtAPInt->getZExtValue();

    // If the shift amount equals the difference in width of the destination
    // and source scalar types:
    // ashr (shl (zext X), C), C --> sext X
    Value *X;
    if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
        ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
      return new SExtInst(X, Ty);

    // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
    // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
    const APInt *ShOp1;
    if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1)))) {
      unsigned ShlAmt = ShOp1->getZExtValue();
      if (ShlAmt < ShAmt) {
        // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
        Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
        auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
        NewAShr->setIsExact(I.isExact());
        return NewAShr;
      }
      if (ShlAmt > ShAmt) {
        // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
        Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
        auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
        NewShl->setHasNoSignedWrap(true);
        return NewShl;
      }
    }

    if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1)))) {
      unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
      // Oversized arithmetic shifts replicate the sign bit.
      AmtSum = std::min(AmtSum, BitWidth - 1);
      // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
      return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
    }

    if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
        (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
      // ashr (sext X), C --> sext (ashr X, C')
      Type *SrcTy = X->getType();
      ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
      Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
      return new SExtInst(NewSh, Ty);
    }

    // If the shifted-out value is known-zero, then this is an exact shift.
    if (!I.isExact() &&
        MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
      I.setIsExact();
      return &I;
    }
  }

  // See if we can turn a signed shr into an unsigned shr.
  if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
    return BinaryOperator::CreateLShr(Op0, Op1);

  return nullptr;
}