aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/IPO/LowerTypeTests.cpp
blob: 9fa5ed9ab2b8df61cd17360fc00d6b94d86d5c92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
//===- LowerTypeTests.cpp - type metadata lowering pass -------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass lowers type metadata and calls to the llvm.type.test intrinsic.
// See http://llvm.org/docs/TypeMetadata.html for more information.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/LowerTypeTests.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/ModuleSummaryIndexYAML.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TrailingObjects.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <memory>
#include <set>
#include <string>
#include <system_error>
#include <utility>
#include <vector>

using namespace llvm;
using namespace lowertypetests;

#define DEBUG_TYPE "lowertypetests"

STATISTIC(ByteArraySizeBits, "Byte array size in bits");
STATISTIC(ByteArraySizeBytes, "Byte array size in bytes");
STATISTIC(NumByteArraysCreated, "Number of byte arrays created");
STATISTIC(NumTypeTestCallsLowered, "Number of type test calls lowered");
STATISTIC(NumTypeIdDisjointSets, "Number of disjoint sets of type identifiers");

static cl::opt<bool> AvoidReuse(
    "lowertypetests-avoid-reuse",
    cl::desc("Try to avoid reuse of byte array addresses using aliases"),
    cl::Hidden, cl::init(true));

static cl::opt<PassSummaryAction> ClSummaryAction(
    "lowertypetests-summary-action",
    cl::desc("What to do with the summary when running this pass"),
    cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
               clEnumValN(PassSummaryAction::Import, "import",
                          "Import typeid resolutions from summary and globals"),
               clEnumValN(PassSummaryAction::Export, "export",
                          "Export typeid resolutions to summary and globals")),
    cl::Hidden);

static cl::opt<std::string> ClReadSummary(
    "lowertypetests-read-summary",
    cl::desc("Read summary from given YAML file before running pass"),
    cl::Hidden);

static cl::opt<std::string> ClWriteSummary(
    "lowertypetests-write-summary",
    cl::desc("Write summary to given YAML file after running pass"),
    cl::Hidden);

bool BitSetInfo::containsGlobalOffset(uint64_t Offset) const {
  if (Offset < ByteOffset)
    return false;

  if ((Offset - ByteOffset) % (uint64_t(1) << AlignLog2) != 0)
    return false;

  uint64_t BitOffset = (Offset - ByteOffset) >> AlignLog2;
  if (BitOffset >= BitSize)
    return false;

  return Bits.count(BitOffset);
}

void BitSetInfo::print(raw_ostream &OS) const {
  OS << "offset " << ByteOffset << " size " << BitSize << " align "
     << (1 << AlignLog2);

  if (isAllOnes()) {
    OS << " all-ones\n";
    return;
  }

  OS << " { ";
  for (uint64_t B : Bits)
    OS << B << ' ';
  OS << "}\n";
}

BitSetInfo BitSetBuilder::build() {
  if (Min > Max)
    Min = 0;

  // Normalize each offset against the minimum observed offset, and compute
  // the bitwise OR of each of the offsets. The number of trailing zeros
  // in the mask gives us the log2 of the alignment of all offsets, which
  // allows us to compress the bitset by only storing one bit per aligned
  // address.
  uint64_t Mask = 0;
  for (uint64_t &Offset : Offsets) {
    Offset -= Min;
    Mask |= Offset;
  }

  BitSetInfo BSI;
  BSI.ByteOffset = Min;

  BSI.AlignLog2 = 0;
  if (Mask != 0)
    BSI.AlignLog2 = countTrailingZeros(Mask, ZB_Undefined);

  // Build the compressed bitset while normalizing the offsets against the
  // computed alignment.
  BSI.BitSize = ((Max - Min) >> BSI.AlignLog2) + 1;
  for (uint64_t Offset : Offsets) {
    Offset >>= BSI.AlignLog2;
    BSI.Bits.insert(Offset);
  }

  return BSI;
}

void GlobalLayoutBuilder::addFragment(const std::set<uint64_t> &F) {
  // Create a new fragment to hold the layout for F.
  Fragments.emplace_back();
  std::vector<uint64_t> &Fragment = Fragments.back();
  uint64_t FragmentIndex = Fragments.size() - 1;

  for (auto ObjIndex : F) {
    uint64_t OldFragmentIndex = FragmentMap[ObjIndex];
    if (OldFragmentIndex == 0) {
      // We haven't seen this object index before, so just add it to the current
      // fragment.
      Fragment.push_back(ObjIndex);
    } else {
      // This index belongs to an existing fragment. Copy the elements of the
      // old fragment into this one and clear the old fragment. We don't update
      // the fragment map just yet, this ensures that any further references to
      // indices from the old fragment in this fragment do not insert any more
      // indices.
      std::vector<uint64_t> &OldFragment = Fragments[OldFragmentIndex];
      Fragment.insert(Fragment.end(), OldFragment.begin(), OldFragment.end());
      OldFragment.clear();
    }
  }

  // Update the fragment map to point our object indices to this fragment.
  for (uint64_t ObjIndex : Fragment)
    FragmentMap[ObjIndex] = FragmentIndex;
}

void ByteArrayBuilder::allocate(const std::set<uint64_t> &Bits,
                                uint64_t BitSize, uint64_t &AllocByteOffset,
                                uint8_t &AllocMask) {
  // Find the smallest current allocation.
  unsigned Bit = 0;
  for (unsigned I = 1; I != BitsPerByte; ++I)
    if (BitAllocs[I] < BitAllocs[Bit])
      Bit = I;

  AllocByteOffset = BitAllocs[Bit];

  // Add our size to it.
  unsigned ReqSize = AllocByteOffset + BitSize;
  BitAllocs[Bit] = ReqSize;
  if (Bytes.size() < ReqSize)
    Bytes.resize(ReqSize);

  // Set our bits.
  AllocMask = 1 << Bit;
  for (uint64_t B : Bits)
    Bytes[AllocByteOffset + B] |= AllocMask;
}

namespace {

struct ByteArrayInfo {
  std::set<uint64_t> Bits;
  uint64_t BitSize;
  GlobalVariable *ByteArray;
  GlobalVariable *MaskGlobal;
  uint8_t *MaskPtr = nullptr;
};

/// A POD-like structure that we use to store a global reference together with
/// its metadata types. In this pass we frequently need to query the set of
/// metadata types referenced by a global, which at the IR level is an expensive
/// operation involving a map lookup; this data structure helps to reduce the
/// number of times we need to do this lookup.
class GlobalTypeMember final : TrailingObjects<GlobalTypeMember, MDNode *> {
  friend TrailingObjects;

  GlobalObject *GO;
  size_t NTypes;

  // For functions: true if this is a definition (either in the merged module or
  // in one of the thinlto modules).
  bool IsDefinition;

  // For functions: true if this function is either defined or used in a thinlto
  // module and its jumptable entry needs to be exported to thinlto backends.
  bool IsExported;

  size_t numTrailingObjects(OverloadToken<MDNode *>) const { return NTypes; }

public:
  static GlobalTypeMember *create(BumpPtrAllocator &Alloc, GlobalObject *GO,
                                  bool IsDefinition, bool IsExported,
                                  ArrayRef<MDNode *> Types) {
    auto *GTM = static_cast<GlobalTypeMember *>(Alloc.Allocate(
        totalSizeToAlloc<MDNode *>(Types.size()), alignof(GlobalTypeMember)));
    GTM->GO = GO;
    GTM->NTypes = Types.size();
    GTM->IsDefinition = IsDefinition;
    GTM->IsExported = IsExported;
    std::uninitialized_copy(Types.begin(), Types.end(),
                            GTM->getTrailingObjects<MDNode *>());
    return GTM;
  }

  GlobalObject *getGlobal() const {
    return GO;
  }

  bool isDefinition() const {
    return IsDefinition;
  }

  bool isExported() const {
    return IsExported;
  }

  ArrayRef<MDNode *> types() const {
    return makeArrayRef(getTrailingObjects<MDNode *>(), NTypes);
  }
};

class LowerTypeTestsModule {
  Module &M;

  ModuleSummaryIndex *ExportSummary;
  const ModuleSummaryIndex *ImportSummary;

  Triple::ArchType Arch;
  Triple::OSType OS;
  Triple::ObjectFormatType ObjectFormat;

  IntegerType *Int1Ty = Type::getInt1Ty(M.getContext());
  IntegerType *Int8Ty = Type::getInt8Ty(M.getContext());
  PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
  ArrayType *Int8Arr0Ty = ArrayType::get(Type::getInt8Ty(M.getContext()), 0);
  IntegerType *Int32Ty = Type::getInt32Ty(M.getContext());
  PointerType *Int32PtrTy = PointerType::getUnqual(Int32Ty);
  IntegerType *Int64Ty = Type::getInt64Ty(M.getContext());
  IntegerType *IntPtrTy = M.getDataLayout().getIntPtrType(M.getContext(), 0);

  // Indirect function call index assignment counter for WebAssembly
  uint64_t IndirectIndex = 1;

  // Mapping from type identifiers to the call sites that test them, as well as
  // whether the type identifier needs to be exported to ThinLTO backends as
  // part of the regular LTO phase of the ThinLTO pipeline (see exportTypeId).
  struct TypeIdUserInfo {
    std::vector<CallInst *> CallSites;
    bool IsExported = false;
  };
  DenseMap<Metadata *, TypeIdUserInfo> TypeIdUsers;

  /// This structure describes how to lower type tests for a particular type
  /// identifier. It is either built directly from the global analysis (during
  /// regular LTO or the regular LTO phase of ThinLTO), or indirectly using type
  /// identifier summaries and external symbol references (in ThinLTO backends).
  struct TypeIdLowering {
    TypeTestResolution::Kind TheKind = TypeTestResolution::Unsat;

    /// All except Unsat: the start address within the combined global.
    Constant *OffsetedGlobal;

    /// ByteArray, Inline, AllOnes: log2 of the required global alignment
    /// relative to the start address.
    Constant *AlignLog2;

    /// ByteArray, Inline, AllOnes: one less than the size of the memory region
    /// covering members of this type identifier as a multiple of 2^AlignLog2.
    Constant *SizeM1;

    /// ByteArray: the byte array to test the address against.
    Constant *TheByteArray;

    /// ByteArray: the bit mask to apply to bytes loaded from the byte array.
    Constant *BitMask;

    /// Inline: the bit mask to test the address against.
    Constant *InlineBits;
  };

  std::vector<ByteArrayInfo> ByteArrayInfos;

  Function *WeakInitializerFn = nullptr;

  bool shouldExportConstantsAsAbsoluteSymbols();
  uint8_t *exportTypeId(StringRef TypeId, const TypeIdLowering &TIL);
  TypeIdLowering importTypeId(StringRef TypeId);
  void importTypeTest(CallInst *CI);
  void importFunction(Function *F, bool isDefinition);

  BitSetInfo
  buildBitSet(Metadata *TypeId,
              const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout);
  ByteArrayInfo *createByteArray(BitSetInfo &BSI);
  void allocateByteArrays();
  Value *createBitSetTest(IRBuilder<> &B, const TypeIdLowering &TIL,
                          Value *BitOffset);
  void lowerTypeTestCalls(
      ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
      const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout);
  Value *lowerTypeTestCall(Metadata *TypeId, CallInst *CI,
                           const TypeIdLowering &TIL);
  void buildBitSetsFromGlobalVariables(ArrayRef<Metadata *> TypeIds,
                                       ArrayRef<GlobalTypeMember *> Globals);
  unsigned getJumpTableEntrySize();
  Type *getJumpTableEntryType();
  void createJumpTableEntry(raw_ostream &AsmOS, raw_ostream &ConstraintOS,
                            Triple::ArchType JumpTableArch,
                            SmallVectorImpl<Value *> &AsmArgs, Function *Dest);
  void verifyTypeMDNode(GlobalObject *GO, MDNode *Type);
  void buildBitSetsFromFunctions(ArrayRef<Metadata *> TypeIds,
                                 ArrayRef<GlobalTypeMember *> Functions);
  void buildBitSetsFromFunctionsNative(ArrayRef<Metadata *> TypeIds,
                                    ArrayRef<GlobalTypeMember *> Functions);
  void buildBitSetsFromFunctionsWASM(ArrayRef<Metadata *> TypeIds,
                                     ArrayRef<GlobalTypeMember *> Functions);
  void buildBitSetsFromDisjointSet(ArrayRef<Metadata *> TypeIds,
                                   ArrayRef<GlobalTypeMember *> Globals);

  void replaceWeakDeclarationWithJumpTablePtr(Function *F, Constant *JT);
  void moveInitializerToModuleConstructor(GlobalVariable *GV);
  void findGlobalVariableUsersOf(Constant *C,
                                 SmallSetVector<GlobalVariable *, 8> &Out);

  void createJumpTable(Function *F, ArrayRef<GlobalTypeMember *> Functions);

public:
  LowerTypeTestsModule(Module &M, ModuleSummaryIndex *ExportSummary,
                       const ModuleSummaryIndex *ImportSummary);

  bool lower();

  // Lower the module using the action and summary passed as command line
  // arguments. For testing purposes only.
  static bool runForTesting(Module &M);
};

struct LowerTypeTests : public ModulePass {
  static char ID;

  bool UseCommandLine = false;

  ModuleSummaryIndex *ExportSummary;
  const ModuleSummaryIndex *ImportSummary;

  LowerTypeTests() : ModulePass(ID), UseCommandLine(true) {
    initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry());
  }

  LowerTypeTests(ModuleSummaryIndex *ExportSummary,
                 const ModuleSummaryIndex *ImportSummary)
      : ModulePass(ID), ExportSummary(ExportSummary),
        ImportSummary(ImportSummary) {
    initializeLowerTypeTestsPass(*PassRegistry::getPassRegistry());
  }

  bool runOnModule(Module &M) override {
    if (skipModule(M))
      return false;
    if (UseCommandLine)
      return LowerTypeTestsModule::runForTesting(M);
    return LowerTypeTestsModule(M, ExportSummary, ImportSummary).lower();
  }
};

} // end anonymous namespace

char LowerTypeTests::ID = 0;

INITIALIZE_PASS(LowerTypeTests, "lowertypetests", "Lower type metadata", false,
                false)

ModulePass *
llvm::createLowerTypeTestsPass(ModuleSummaryIndex *ExportSummary,
                               const ModuleSummaryIndex *ImportSummary) {
  return new LowerTypeTests(ExportSummary, ImportSummary);
}

/// Build a bit set for TypeId using the object layouts in
/// GlobalLayout.
BitSetInfo LowerTypeTestsModule::buildBitSet(
    Metadata *TypeId,
    const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout) {
  BitSetBuilder BSB;

  // Compute the byte offset of each address associated with this type
  // identifier.
  for (auto &GlobalAndOffset : GlobalLayout) {
    for (MDNode *Type : GlobalAndOffset.first->types()) {
      if (Type->getOperand(1) != TypeId)
        continue;
      uint64_t Offset =
          cast<ConstantInt>(
              cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
              ->getZExtValue();
      BSB.addOffset(GlobalAndOffset.second + Offset);
    }
  }

  return BSB.build();
}

/// Build a test that bit BitOffset mod sizeof(Bits)*8 is set in
/// Bits. This pattern matches to the bt instruction on x86.
static Value *createMaskedBitTest(IRBuilder<> &B, Value *Bits,
                                  Value *BitOffset) {
  auto BitsType = cast<IntegerType>(Bits->getType());
  unsigned BitWidth = BitsType->getBitWidth();

  BitOffset = B.CreateZExtOrTrunc(BitOffset, BitsType);
  Value *BitIndex =
      B.CreateAnd(BitOffset, ConstantInt::get(BitsType, BitWidth - 1));
  Value *BitMask = B.CreateShl(ConstantInt::get(BitsType, 1), BitIndex);
  Value *MaskedBits = B.CreateAnd(Bits, BitMask);
  return B.CreateICmpNE(MaskedBits, ConstantInt::get(BitsType, 0));
}

ByteArrayInfo *LowerTypeTestsModule::createByteArray(BitSetInfo &BSI) {
  // Create globals to stand in for byte arrays and masks. These never actually
  // get initialized, we RAUW and erase them later in allocateByteArrays() once
  // we know the offset and mask to use.
  auto ByteArrayGlobal = new GlobalVariable(
      M, Int8Ty, /*isConstant=*/true, GlobalValue::PrivateLinkage, nullptr);
  auto MaskGlobal = new GlobalVariable(M, Int8Ty, /*isConstant=*/true,
                                       GlobalValue::PrivateLinkage, nullptr);

  ByteArrayInfos.emplace_back();
  ByteArrayInfo *BAI = &ByteArrayInfos.back();

  BAI->Bits = BSI.Bits;
  BAI->BitSize = BSI.BitSize;
  BAI->ByteArray = ByteArrayGlobal;
  BAI->MaskGlobal = MaskGlobal;
  return BAI;
}

void LowerTypeTestsModule::allocateByteArrays() {
  std::stable_sort(ByteArrayInfos.begin(), ByteArrayInfos.end(),
                   [](const ByteArrayInfo &BAI1, const ByteArrayInfo &BAI2) {
                     return BAI1.BitSize > BAI2.BitSize;
                   });

  std::vector<uint64_t> ByteArrayOffsets(ByteArrayInfos.size());

  ByteArrayBuilder BAB;
  for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
    ByteArrayInfo *BAI = &ByteArrayInfos[I];

    uint8_t Mask;
    BAB.allocate(BAI->Bits, BAI->BitSize, ByteArrayOffsets[I], Mask);

    BAI->MaskGlobal->replaceAllUsesWith(
        ConstantExpr::getIntToPtr(ConstantInt::get(Int8Ty, Mask), Int8PtrTy));
    BAI->MaskGlobal->eraseFromParent();
    if (BAI->MaskPtr)
      *BAI->MaskPtr = Mask;
  }

  Constant *ByteArrayConst = ConstantDataArray::get(M.getContext(), BAB.Bytes);
  auto ByteArray =
      new GlobalVariable(M, ByteArrayConst->getType(), /*isConstant=*/true,
                         GlobalValue::PrivateLinkage, ByteArrayConst);

  for (unsigned I = 0; I != ByteArrayInfos.size(); ++I) {
    ByteArrayInfo *BAI = &ByteArrayInfos[I];

    Constant *Idxs[] = {ConstantInt::get(IntPtrTy, 0),
                        ConstantInt::get(IntPtrTy, ByteArrayOffsets[I])};
    Constant *GEP = ConstantExpr::getInBoundsGetElementPtr(
        ByteArrayConst->getType(), ByteArray, Idxs);

    // Create an alias instead of RAUW'ing the gep directly. On x86 this ensures
    // that the pc-relative displacement is folded into the lea instead of the
    // test instruction getting another displacement.
    GlobalAlias *Alias = GlobalAlias::create(
        Int8Ty, 0, GlobalValue::PrivateLinkage, "bits", GEP, &M);
    BAI->ByteArray->replaceAllUsesWith(Alias);
    BAI->ByteArray->eraseFromParent();
  }

  ByteArraySizeBits = BAB.BitAllocs[0] + BAB.BitAllocs[1] + BAB.BitAllocs[2] +
                      BAB.BitAllocs[3] + BAB.BitAllocs[4] + BAB.BitAllocs[5] +
                      BAB.BitAllocs[6] + BAB.BitAllocs[7];
  ByteArraySizeBytes = BAB.Bytes.size();
}

/// Build a test that bit BitOffset is set in the type identifier that was
/// lowered to TIL, which must be either an Inline or a ByteArray.
Value *LowerTypeTestsModule::createBitSetTest(IRBuilder<> &B,
                                              const TypeIdLowering &TIL,
                                              Value *BitOffset) {
  if (TIL.TheKind == TypeTestResolution::Inline) {
    // If the bit set is sufficiently small, we can avoid a load by bit testing
    // a constant.
    return createMaskedBitTest(B, TIL.InlineBits, BitOffset);
  } else {
    Constant *ByteArray = TIL.TheByteArray;
    if (AvoidReuse && !ImportSummary) {
      // Each use of the byte array uses a different alias. This makes the
      // backend less likely to reuse previously computed byte array addresses,
      // improving the security of the CFI mechanism based on this pass.
      // This won't work when importing because TheByteArray is external.
      ByteArray = GlobalAlias::create(Int8Ty, 0, GlobalValue::PrivateLinkage,
                                      "bits_use", ByteArray, &M);
    }

    Value *ByteAddr = B.CreateGEP(Int8Ty, ByteArray, BitOffset);
    Value *Byte = B.CreateLoad(ByteAddr);

    Value *ByteAndMask =
        B.CreateAnd(Byte, ConstantExpr::getPtrToInt(TIL.BitMask, Int8Ty));
    return B.CreateICmpNE(ByteAndMask, ConstantInt::get(Int8Ty, 0));
  }
}

static bool isKnownTypeIdMember(Metadata *TypeId, const DataLayout &DL,
                                Value *V, uint64_t COffset) {
  if (auto GV = dyn_cast<GlobalObject>(V)) {
    SmallVector<MDNode *, 2> Types;
    GV->getMetadata(LLVMContext::MD_type, Types);
    for (MDNode *Type : Types) {
      if (Type->getOperand(1) != TypeId)
        continue;
      uint64_t Offset =
          cast<ConstantInt>(
              cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
              ->getZExtValue();
      if (COffset == Offset)
        return true;
    }
    return false;
  }

  if (auto GEP = dyn_cast<GEPOperator>(V)) {
    APInt APOffset(DL.getPointerSizeInBits(0), 0);
    bool Result = GEP->accumulateConstantOffset(DL, APOffset);
    if (!Result)
      return false;
    COffset += APOffset.getZExtValue();
    return isKnownTypeIdMember(TypeId, DL, GEP->getPointerOperand(), COffset);
  }

  if (auto Op = dyn_cast<Operator>(V)) {
    if (Op->getOpcode() == Instruction::BitCast)
      return isKnownTypeIdMember(TypeId, DL, Op->getOperand(0), COffset);

    if (Op->getOpcode() == Instruction::Select)
      return isKnownTypeIdMember(TypeId, DL, Op->getOperand(1), COffset) &&
             isKnownTypeIdMember(TypeId, DL, Op->getOperand(2), COffset);
  }

  return false;
}

/// Lower a llvm.type.test call to its implementation. Returns the value to
/// replace the call with.
Value *LowerTypeTestsModule::lowerTypeTestCall(Metadata *TypeId, CallInst *CI,
                                               const TypeIdLowering &TIL) {
  if (TIL.TheKind == TypeTestResolution::Unsat)
    return ConstantInt::getFalse(M.getContext());

  Value *Ptr = CI->getArgOperand(0);
  const DataLayout &DL = M.getDataLayout();
  if (isKnownTypeIdMember(TypeId, DL, Ptr, 0))
    return ConstantInt::getTrue(M.getContext());

  BasicBlock *InitialBB = CI->getParent();

  IRBuilder<> B(CI);

  Value *PtrAsInt = B.CreatePtrToInt(Ptr, IntPtrTy);

  Constant *OffsetedGlobalAsInt =
      ConstantExpr::getPtrToInt(TIL.OffsetedGlobal, IntPtrTy);
  if (TIL.TheKind == TypeTestResolution::Single)
    return B.CreateICmpEQ(PtrAsInt, OffsetedGlobalAsInt);

  Value *PtrOffset = B.CreateSub(PtrAsInt, OffsetedGlobalAsInt);

  // We need to check that the offset both falls within our range and is
  // suitably aligned. We can check both properties at the same time by
  // performing a right rotate by log2(alignment) followed by an integer
  // comparison against the bitset size. The rotate will move the lower
  // order bits that need to be zero into the higher order bits of the
  // result, causing the comparison to fail if they are nonzero. The rotate
  // also conveniently gives us a bit offset to use during the load from
  // the bitset.
  Value *OffsetSHR =
      B.CreateLShr(PtrOffset, ConstantExpr::getZExt(TIL.AlignLog2, IntPtrTy));
  Value *OffsetSHL = B.CreateShl(
      PtrOffset, ConstantExpr::getZExt(
                     ConstantExpr::getSub(
                         ConstantInt::get(Int8Ty, DL.getPointerSizeInBits(0)),
                         TIL.AlignLog2),
                     IntPtrTy));
  Value *BitOffset = B.CreateOr(OffsetSHR, OffsetSHL);

  Value *OffsetInRange = B.CreateICmpULE(BitOffset, TIL.SizeM1);

  // If the bit set is all ones, testing against it is unnecessary.
  if (TIL.TheKind == TypeTestResolution::AllOnes)
    return OffsetInRange;

  // See if the intrinsic is used in the following common pattern:
  //   br(llvm.type.test(...), thenbb, elsebb)
  // where nothing happens between the type test and the br.
  // If so, create slightly simpler IR.
  if (CI->hasOneUse())
    if (auto *Br = dyn_cast<BranchInst>(*CI->user_begin()))
      if (CI->getNextNode() == Br) {
        BasicBlock *Then = InitialBB->splitBasicBlock(CI->getIterator());
        BasicBlock *Else = Br->getSuccessor(1);
        BranchInst *NewBr = BranchInst::Create(Then, Else, OffsetInRange);
        NewBr->setMetadata(LLVMContext::MD_prof,
                           Br->getMetadata(LLVMContext::MD_prof));
        ReplaceInstWithInst(InitialBB->getTerminator(), NewBr);

        // Update phis in Else resulting from InitialBB being split
        for (auto &Phi : Else->phis())
          Phi.addIncoming(Phi.getIncomingValueForBlock(Then), InitialBB);

        IRBuilder<> ThenB(CI);
        return createBitSetTest(ThenB, TIL, BitOffset);
      }

  IRBuilder<> ThenB(SplitBlockAndInsertIfThen(OffsetInRange, CI, false));

  // Now that we know that the offset is in range and aligned, load the
  // appropriate bit from the bitset.
  Value *Bit = createBitSetTest(ThenB, TIL, BitOffset);

  // The value we want is 0 if we came directly from the initial block
  // (having failed the range or alignment checks), or the loaded bit if
  // we came from the block in which we loaded it.
  B.SetInsertPoint(CI);
  PHINode *P = B.CreatePHI(Int1Ty, 2);
  P->addIncoming(ConstantInt::get(Int1Ty, 0), InitialBB);
  P->addIncoming(Bit, ThenB.GetInsertBlock());
  return P;
}

/// Given a disjoint set of type identifiers and globals, lay out the globals,
/// build the bit sets and lower the llvm.type.test calls.
void LowerTypeTestsModule::buildBitSetsFromGlobalVariables(
    ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Globals) {
  // Build a new global with the combined contents of the referenced globals.
  // This global is a struct whose even-indexed elements contain the original
  // contents of the referenced globals and whose odd-indexed elements contain
  // any padding required to align the next element to the next power of 2.
  std::vector<Constant *> GlobalInits;
  const DataLayout &DL = M.getDataLayout();
  for (GlobalTypeMember *G : Globals) {
    GlobalVariable *GV = cast<GlobalVariable>(G->getGlobal());
    GlobalInits.push_back(GV->getInitializer());
    uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());

    // Compute the amount of padding required.
    uint64_t Padding = NextPowerOf2(InitSize - 1) - InitSize;

    // Cap at 128 was found experimentally to have a good data/instruction
    // overhead tradeoff.
    if (Padding > 128)
      Padding = alignTo(InitSize, 128) - InitSize;

    GlobalInits.push_back(
        ConstantAggregateZero::get(ArrayType::get(Int8Ty, Padding)));
  }
  if (!GlobalInits.empty())
    GlobalInits.pop_back();
  Constant *NewInit = ConstantStruct::getAnon(M.getContext(), GlobalInits);
  auto *CombinedGlobal =
      new GlobalVariable(M, NewInit->getType(), /*isConstant=*/true,
                         GlobalValue::PrivateLinkage, NewInit);

  StructType *NewTy = cast<StructType>(NewInit->getType());
  const StructLayout *CombinedGlobalLayout = DL.getStructLayout(NewTy);

  // Compute the offsets of the original globals within the new global.
  DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
  for (unsigned I = 0; I != Globals.size(); ++I)
    // Multiply by 2 to account for padding elements.
    GlobalLayout[Globals[I]] = CombinedGlobalLayout->getElementOffset(I * 2);

  lowerTypeTestCalls(TypeIds, CombinedGlobal, GlobalLayout);

  // Build aliases pointing to offsets into the combined global for each
  // global from which we built the combined global, and replace references
  // to the original globals with references to the aliases.
  for (unsigned I = 0; I != Globals.size(); ++I) {
    GlobalVariable *GV = cast<GlobalVariable>(Globals[I]->getGlobal());

    // Multiply by 2 to account for padding elements.
    Constant *CombinedGlobalIdxs[] = {ConstantInt::get(Int32Ty, 0),
                                      ConstantInt::get(Int32Ty, I * 2)};
    Constant *CombinedGlobalElemPtr = ConstantExpr::getGetElementPtr(
        NewInit->getType(), CombinedGlobal, CombinedGlobalIdxs);
    assert(GV->getType()->getAddressSpace() == 0);
    GlobalAlias *GAlias =
        GlobalAlias::create(NewTy->getElementType(I * 2), 0, GV->getLinkage(),
                            "", CombinedGlobalElemPtr, &M);
    GAlias->setVisibility(GV->getVisibility());
    GAlias->takeName(GV);
    GV->replaceAllUsesWith(GAlias);
    GV->eraseFromParent();
  }
}

bool LowerTypeTestsModule::shouldExportConstantsAsAbsoluteSymbols() {
  return (Arch == Triple::x86 || Arch == Triple::x86_64) &&
         ObjectFormat == Triple::ELF;
}

/// Export the given type identifier so that ThinLTO backends may import it.
/// Type identifiers are exported by adding coarse-grained information about how
/// to test the type identifier to the summary, and creating symbols in the
/// object file (aliases and absolute symbols) containing fine-grained
/// information about the type identifier.
///
/// Returns a pointer to the location in which to store the bitmask, if
/// applicable.
uint8_t *LowerTypeTestsModule::exportTypeId(StringRef TypeId,
                                            const TypeIdLowering &TIL) {
  TypeTestResolution &TTRes =
      ExportSummary->getOrInsertTypeIdSummary(TypeId).TTRes;
  TTRes.TheKind = TIL.TheKind;

  auto ExportGlobal = [&](StringRef Name, Constant *C) {
    GlobalAlias *GA =
        GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
                            "__typeid_" + TypeId + "_" + Name, C, &M);
    GA->setVisibility(GlobalValue::HiddenVisibility);
  };

  auto ExportConstant = [&](StringRef Name, uint64_t &Storage, Constant *C) {
    if (shouldExportConstantsAsAbsoluteSymbols())
      ExportGlobal(Name, ConstantExpr::getIntToPtr(C, Int8PtrTy));
    else
      Storage = cast<ConstantInt>(C)->getZExtValue();
  };

  if (TIL.TheKind != TypeTestResolution::Unsat)
    ExportGlobal("global_addr", TIL.OffsetedGlobal);

  if (TIL.TheKind == TypeTestResolution::ByteArray ||
      TIL.TheKind == TypeTestResolution::Inline ||
      TIL.TheKind == TypeTestResolution::AllOnes) {
    ExportConstant("align", TTRes.AlignLog2, TIL.AlignLog2);
    ExportConstant("size_m1", TTRes.SizeM1, TIL.SizeM1);

    uint64_t BitSize = cast<ConstantInt>(TIL.SizeM1)->getZExtValue() + 1;
    if (TIL.TheKind == TypeTestResolution::Inline)
      TTRes.SizeM1BitWidth = (BitSize <= 32) ? 5 : 6;
    else
      TTRes.SizeM1BitWidth = (BitSize <= 128) ? 7 : 32;
  }

  if (TIL.TheKind == TypeTestResolution::ByteArray) {
    ExportGlobal("byte_array", TIL.TheByteArray);
    if (shouldExportConstantsAsAbsoluteSymbols())
      ExportGlobal("bit_mask", TIL.BitMask);
    else
      return &TTRes.BitMask;
  }

  if (TIL.TheKind == TypeTestResolution::Inline)
    ExportConstant("inline_bits", TTRes.InlineBits, TIL.InlineBits);

  return nullptr;
}

LowerTypeTestsModule::TypeIdLowering
LowerTypeTestsModule::importTypeId(StringRef TypeId) {
  const TypeIdSummary *TidSummary = ImportSummary->getTypeIdSummary(TypeId);
  if (!TidSummary)
    return {}; // Unsat: no globals match this type id.
  const TypeTestResolution &TTRes = TidSummary->TTRes;

  TypeIdLowering TIL;
  TIL.TheKind = TTRes.TheKind;

  auto ImportGlobal = [&](StringRef Name) {
    // Give the global a type of length 0 so that it is not assumed not to alias
    // with any other global.
    Constant *C = M.getOrInsertGlobal(("__typeid_" + TypeId + "_" + Name).str(),
                                      Int8Arr0Ty);
    if (auto *GV = dyn_cast<GlobalVariable>(C))
      GV->setVisibility(GlobalValue::HiddenVisibility);
    C = ConstantExpr::getBitCast(C, Int8PtrTy);
    return C;
  };

  auto ImportConstant = [&](StringRef Name, uint64_t Const, unsigned AbsWidth,
                            Type *Ty) {
    if (!shouldExportConstantsAsAbsoluteSymbols()) {
      Constant *C =
          ConstantInt::get(isa<IntegerType>(Ty) ? Ty : Int64Ty, Const);
      if (!isa<IntegerType>(Ty))
        C = ConstantExpr::getIntToPtr(C, Ty);
      return C;
    }

    Constant *C = ImportGlobal(Name);
    auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
    if (isa<IntegerType>(Ty))
      C = ConstantExpr::getPtrToInt(C, Ty);
    if (GV->getMetadata(LLVMContext::MD_absolute_symbol))
      return C;

    auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
      auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
      auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
      GV->setMetadata(LLVMContext::MD_absolute_symbol,
                      MDNode::get(M.getContext(), {MinC, MaxC}));
    };
    if (AbsWidth == IntPtrTy->getBitWidth())
      SetAbsRange(~0ull, ~0ull); // Full set.
    else
      SetAbsRange(0, 1ull << AbsWidth);
    return C;
  };

  if (TIL.TheKind != TypeTestResolution::Unsat)
    TIL.OffsetedGlobal = ImportGlobal("global_addr");

  if (TIL.TheKind == TypeTestResolution::ByteArray ||
      TIL.TheKind == TypeTestResolution::Inline ||
      TIL.TheKind == TypeTestResolution::AllOnes) {
    TIL.AlignLog2 = ImportConstant("align", TTRes.AlignLog2, 8, Int8Ty);
    TIL.SizeM1 =
        ImportConstant("size_m1", TTRes.SizeM1, TTRes.SizeM1BitWidth, IntPtrTy);
  }

  if (TIL.TheKind == TypeTestResolution::ByteArray) {
    TIL.TheByteArray = ImportGlobal("byte_array");
    TIL.BitMask = ImportConstant("bit_mask", TTRes.BitMask, 8, Int8PtrTy);
  }

  if (TIL.TheKind == TypeTestResolution::Inline)
    TIL.InlineBits = ImportConstant(
        "inline_bits", TTRes.InlineBits, 1 << TTRes.SizeM1BitWidth,
        TTRes.SizeM1BitWidth <= 5 ? Int32Ty : Int64Ty);

  return TIL;
}

void LowerTypeTestsModule::importTypeTest(CallInst *CI) {
  auto TypeIdMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
  if (!TypeIdMDVal)
    report_fatal_error("Second argument of llvm.type.test must be metadata");

  auto TypeIdStr = dyn_cast<MDString>(TypeIdMDVal->getMetadata());
  if (!TypeIdStr)
    report_fatal_error(
        "Second argument of llvm.type.test must be a metadata string");

  TypeIdLowering TIL = importTypeId(TypeIdStr->getString());
  Value *Lowered = lowerTypeTestCall(TypeIdStr, CI, TIL);
  CI->replaceAllUsesWith(Lowered);
  CI->eraseFromParent();
}

// ThinLTO backend: the function F has a jump table entry; update this module
// accordingly. isDefinition describes the type of the jump table entry.
void LowerTypeTestsModule::importFunction(Function *F, bool isDefinition) {
  assert(F->getType()->getAddressSpace() == 0);

  // Declaration of a local function - nothing to do.
  if (F->isDeclarationForLinker() && isDefinition)
    return;

  GlobalValue::VisibilityTypes Visibility = F->getVisibility();
  std::string Name = F->getName();
  Function *FDecl;

  if (F->isDeclarationForLinker() && !isDefinition) {
    // Declaration of an external function.
    FDecl = Function::Create(F->getFunctionType(), GlobalValue::ExternalLinkage,
                             Name + ".cfi_jt", &M);
    FDecl->setVisibility(GlobalValue::HiddenVisibility);
  } else if (isDefinition) {
    F->setName(Name + ".cfi");
    F->setLinkage(GlobalValue::ExternalLinkage);
    F->setVisibility(GlobalValue::HiddenVisibility);
    FDecl = Function::Create(F->getFunctionType(), GlobalValue::ExternalLinkage,
                             Name, &M);
    FDecl->setVisibility(Visibility);
  } else {
    // Function definition without type metadata, where some other translation
    // unit contained a declaration with type metadata. This normally happens
    // during mixed CFI + non-CFI compilation. We do nothing with the function
    // so that it is treated the same way as a function defined outside of the
    // LTO unit.
    return;
  }

  if (F->isWeakForLinker())
    replaceWeakDeclarationWithJumpTablePtr(F, FDecl);
  else
    F->replaceAllUsesWith(FDecl);
}

void LowerTypeTestsModule::lowerTypeTestCalls(
    ArrayRef<Metadata *> TypeIds, Constant *CombinedGlobalAddr,
    const DenseMap<GlobalTypeMember *, uint64_t> &GlobalLayout) {
  CombinedGlobalAddr = ConstantExpr::getBitCast(CombinedGlobalAddr, Int8PtrTy);

  // For each type identifier in this disjoint set...
  for (Metadata *TypeId : TypeIds) {
    // Build the bitset.
    BitSetInfo BSI = buildBitSet(TypeId, GlobalLayout);
    DEBUG({
      if (auto MDS = dyn_cast<MDString>(TypeId))
        dbgs() << MDS->getString() << ": ";
      else
        dbgs() << "<unnamed>: ";
      BSI.print(dbgs());
    });

    ByteArrayInfo *BAI = nullptr;
    TypeIdLowering TIL;
    TIL.OffsetedGlobal = ConstantExpr::getGetElementPtr(
        Int8Ty, CombinedGlobalAddr, ConstantInt::get(IntPtrTy, BSI.ByteOffset)),
    TIL.AlignLog2 = ConstantInt::get(Int8Ty, BSI.AlignLog2);
    TIL.SizeM1 = ConstantInt::get(IntPtrTy, BSI.BitSize - 1);
    if (BSI.isAllOnes()) {
      TIL.TheKind = (BSI.BitSize == 1) ? TypeTestResolution::Single
                                       : TypeTestResolution::AllOnes;
    } else if (BSI.BitSize <= 64) {
      TIL.TheKind = TypeTestResolution::Inline;
      uint64_t InlineBits = 0;
      for (auto Bit : BSI.Bits)
        InlineBits |= uint64_t(1) << Bit;
      if (InlineBits == 0)
        TIL.TheKind = TypeTestResolution::Unsat;
      else
        TIL.InlineBits = ConstantInt::get(
            (BSI.BitSize <= 32) ? Int32Ty : Int64Ty, InlineBits);
    } else {
      TIL.TheKind = TypeTestResolution::ByteArray;
      ++NumByteArraysCreated;
      BAI = createByteArray(BSI);
      TIL.TheByteArray = BAI->ByteArray;
      TIL.BitMask = BAI->MaskGlobal;
    }

    TypeIdUserInfo &TIUI = TypeIdUsers[TypeId];

    if (TIUI.IsExported) {
      uint8_t *MaskPtr = exportTypeId(cast<MDString>(TypeId)->getString(), TIL);
      if (BAI)
        BAI->MaskPtr = MaskPtr;
    }

    // Lower each call to llvm.type.test for this type identifier.
    for (CallInst *CI : TIUI.CallSites) {
      ++NumTypeTestCallsLowered;
      Value *Lowered = lowerTypeTestCall(TypeId, CI, TIL);
      CI->replaceAllUsesWith(Lowered);
      CI->eraseFromParent();
    }
  }
}

void LowerTypeTestsModule::verifyTypeMDNode(GlobalObject *GO, MDNode *Type) {
  if (Type->getNumOperands() != 2)
    report_fatal_error("All operands of type metadata must have 2 elements");

  if (GO->isThreadLocal())
    report_fatal_error("Bit set element may not be thread-local");
  if (isa<GlobalVariable>(GO) && GO->hasSection())
    report_fatal_error(
        "A member of a type identifier may not have an explicit section");

  // FIXME: We previously checked that global var member of a type identifier
  // must be a definition, but the IR linker may leave type metadata on
  // declarations. We should restore this check after fixing PR31759.

  auto OffsetConstMD = dyn_cast<ConstantAsMetadata>(Type->getOperand(0));
  if (!OffsetConstMD)
    report_fatal_error("Type offset must be a constant");
  auto OffsetInt = dyn_cast<ConstantInt>(OffsetConstMD->getValue());
  if (!OffsetInt)
    report_fatal_error("Type offset must be an integer constant");
}

static const unsigned kX86JumpTableEntrySize = 8;
static const unsigned kARMJumpTableEntrySize = 4;

unsigned LowerTypeTestsModule::getJumpTableEntrySize() {
  switch (Arch) {
    case Triple::x86:
    case Triple::x86_64:
      return kX86JumpTableEntrySize;
    case Triple::arm:
    case Triple::thumb:
    case Triple::aarch64:
      return kARMJumpTableEntrySize;
    default:
      report_fatal_error("Unsupported architecture for jump tables");
  }
}

// Create a jump table entry for the target. This consists of an instruction
// sequence containing a relative branch to Dest. Appends inline asm text,
// constraints and arguments to AsmOS, ConstraintOS and AsmArgs.
void LowerTypeTestsModule::createJumpTableEntry(
    raw_ostream &AsmOS, raw_ostream &ConstraintOS,
    Triple::ArchType JumpTableArch, SmallVectorImpl<Value *> &AsmArgs,
    Function *Dest) {
  unsigned ArgIndex = AsmArgs.size();

  if (JumpTableArch == Triple::x86 || JumpTableArch == Triple::x86_64) {
    AsmOS << "jmp ${" << ArgIndex << ":c}@plt\n";
    AsmOS << "int3\nint3\nint3\n";
  } else if (JumpTableArch == Triple::arm || JumpTableArch == Triple::aarch64) {
    AsmOS << "b $" << ArgIndex << "\n";
  } else if (JumpTableArch == Triple::thumb) {
    AsmOS << "b.w $" << ArgIndex << "\n";
  } else {
    report_fatal_error("Unsupported architecture for jump tables");
  }

  ConstraintOS << (ArgIndex > 0 ? ",s" : "s");
  AsmArgs.push_back(Dest);
}

Type *LowerTypeTestsModule::getJumpTableEntryType() {
  return ArrayType::get(Int8Ty, getJumpTableEntrySize());
}

/// Given a disjoint set of type identifiers and functions, build the bit sets
/// and lower the llvm.type.test calls, architecture dependently.
void LowerTypeTestsModule::buildBitSetsFromFunctions(
    ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
  if (Arch == Triple::x86 || Arch == Triple::x86_64 || Arch == Triple::arm ||
      Arch == Triple::thumb || Arch == Triple::aarch64)
    buildBitSetsFromFunctionsNative(TypeIds, Functions);
  else if (Arch == Triple::wasm32 || Arch == Triple::wasm64)
    buildBitSetsFromFunctionsWASM(TypeIds, Functions);
  else
    report_fatal_error("Unsupported architecture for jump tables");
}

void LowerTypeTestsModule::moveInitializerToModuleConstructor(
    GlobalVariable *GV) {
  if (WeakInitializerFn == nullptr) {
    WeakInitializerFn = Function::Create(
        FunctionType::get(Type::getVoidTy(M.getContext()),
                          /* IsVarArg */ false),
        GlobalValue::InternalLinkage, "__cfi_global_var_init", &M);
    BasicBlock *BB =
        BasicBlock::Create(M.getContext(), "entry", WeakInitializerFn);
    ReturnInst::Create(M.getContext(), BB);
    WeakInitializerFn->setSection(
        ObjectFormat == Triple::MachO
            ? "__TEXT,__StaticInit,regular,pure_instructions"
            : ".text.startup");
    // This code is equivalent to relocation application, and should run at the
    // earliest possible time (i.e. with the highest priority).
    appendToGlobalCtors(M, WeakInitializerFn, /* Priority */ 0);
  }

  IRBuilder<> IRB(WeakInitializerFn->getEntryBlock().getTerminator());
  GV->setConstant(false);
  IRB.CreateAlignedStore(GV->getInitializer(), GV, GV->getAlignment());
  GV->setInitializer(Constant::getNullValue(GV->getValueType()));
}

void LowerTypeTestsModule::findGlobalVariableUsersOf(
    Constant *C, SmallSetVector<GlobalVariable *, 8> &Out) {
  for (auto *U : C->users()){
    if (auto *GV = dyn_cast<GlobalVariable>(U))
      Out.insert(GV);
    else if (auto *C2 = dyn_cast<Constant>(U))
      findGlobalVariableUsersOf(C2, Out);
  }
}

// Replace all uses of F with (F ? JT : 0).
void LowerTypeTestsModule::replaceWeakDeclarationWithJumpTablePtr(
    Function *F, Constant *JT) {
  // The target expression can not appear in a constant initializer on most
  // (all?) targets. Switch to a runtime initializer.
  SmallSetVector<GlobalVariable *, 8> GlobalVarUsers;
  findGlobalVariableUsersOf(F, GlobalVarUsers);
  for (auto GV : GlobalVarUsers)
    moveInitializerToModuleConstructor(GV);

  // Can not RAUW F with an expression that uses F. Replace with a temporary
  // placeholder first.
  Function *PlaceholderFn =
      Function::Create(cast<FunctionType>(F->getValueType()),
                       GlobalValue::ExternalWeakLinkage, "", &M);
  F->replaceAllUsesWith(PlaceholderFn);

  Constant *Target = ConstantExpr::getSelect(
      ConstantExpr::getICmp(CmpInst::ICMP_NE, F,
                            Constant::getNullValue(F->getType())),
      JT, Constant::getNullValue(F->getType()));
  PlaceholderFn->replaceAllUsesWith(Target);
  PlaceholderFn->eraseFromParent();
}

static bool isThumbFunction(Function *F, Triple::ArchType ModuleArch) {
  Attribute TFAttr = F->getFnAttribute("target-features");
  if (!TFAttr.hasAttribute(Attribute::None)) {
    SmallVector<StringRef, 6> Features;
    TFAttr.getValueAsString().split(Features, ',');
    for (StringRef Feature : Features) {
      if (Feature == "-thumb-mode")
        return false;
      else if (Feature == "+thumb-mode")
        return true;
    }
  }

  return ModuleArch == Triple::thumb;
}

// Each jump table must be either ARM or Thumb as a whole for the bit-test math
// to work. Pick one that matches the majority of members to minimize interop
// veneers inserted by the linker.
static Triple::ArchType
selectJumpTableArmEncoding(ArrayRef<GlobalTypeMember *> Functions,
                           Triple::ArchType ModuleArch) {
  if (ModuleArch != Triple::arm && ModuleArch != Triple::thumb)
    return ModuleArch;

  unsigned ArmCount = 0, ThumbCount = 0;
  for (const auto GTM : Functions) {
    if (!GTM->isDefinition()) {
      // PLT stubs are always ARM.
      ++ArmCount;
      continue;
    }

    Function *F = cast<Function>(GTM->getGlobal());
    ++(isThumbFunction(F, ModuleArch) ? ThumbCount : ArmCount);
  }

  return ArmCount > ThumbCount ? Triple::arm : Triple::thumb;
}

void LowerTypeTestsModule::createJumpTable(
    Function *F, ArrayRef<GlobalTypeMember *> Functions) {
  std::string AsmStr, ConstraintStr;
  raw_string_ostream AsmOS(AsmStr), ConstraintOS(ConstraintStr);
  SmallVector<Value *, 16> AsmArgs;
  AsmArgs.reserve(Functions.size() * 2);

  Triple::ArchType JumpTableArch = selectJumpTableArmEncoding(Functions, Arch);

  for (unsigned I = 0; I != Functions.size(); ++I)
    createJumpTableEntry(AsmOS, ConstraintOS, JumpTableArch, AsmArgs,
                         cast<Function>(Functions[I]->getGlobal()));

  // Try to emit the jump table at the end of the text segment.
  // Jump table must come after __cfi_check in the cross-dso mode.
  // FIXME: this magic section name seems to do the trick.
  F->setSection(ObjectFormat == Triple::MachO
                    ? "__TEXT,__text,regular,pure_instructions"
                    : ".text.cfi");
  // Align the whole table by entry size.
  F->setAlignment(getJumpTableEntrySize());
  // Skip prologue.
  // Disabled on win32 due to https://llvm.org/bugs/show_bug.cgi?id=28641#c3.
  // Luckily, this function does not get any prologue even without the
  // attribute.
  if (OS != Triple::Win32)
    F->addFnAttr(Attribute::Naked);
  if (JumpTableArch == Triple::arm)
    F->addFnAttr("target-features", "-thumb-mode");
  if (JumpTableArch == Triple::thumb) {
    F->addFnAttr("target-features", "+thumb-mode");
    // Thumb jump table assembly needs Thumb2. The following attribute is added
    // by Clang for -march=armv7.
    F->addFnAttr("target-cpu", "cortex-a8");
  }

  BasicBlock *BB = BasicBlock::Create(M.getContext(), "entry", F);
  IRBuilder<> IRB(BB);

  SmallVector<Type *, 16> ArgTypes;
  ArgTypes.reserve(AsmArgs.size());
  for (const auto &Arg : AsmArgs)
    ArgTypes.push_back(Arg->getType());
  InlineAsm *JumpTableAsm =
      InlineAsm::get(FunctionType::get(IRB.getVoidTy(), ArgTypes, false),
                     AsmOS.str(), ConstraintOS.str(),
                     /*hasSideEffects=*/true);

  IRB.CreateCall(JumpTableAsm, AsmArgs);
  IRB.CreateUnreachable();
}

/// Given a disjoint set of type identifiers and functions, build a jump table
/// for the functions, build the bit sets and lower the llvm.type.test calls.
void LowerTypeTestsModule::buildBitSetsFromFunctionsNative(
    ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
  // Unlike the global bitset builder, the function bitset builder cannot
  // re-arrange functions in a particular order and base its calculations on the
  // layout of the functions' entry points, as we have no idea how large a
  // particular function will end up being (the size could even depend on what
  // this pass does!) Instead, we build a jump table, which is a block of code
  // consisting of one branch instruction for each of the functions in the bit
  // set that branches to the target function, and redirect any taken function
  // addresses to the corresponding jump table entry. In the object file's
  // symbol table, the symbols for the target functions also refer to the jump
  // table entries, so that addresses taken outside the module will pass any
  // verification done inside the module.
  //
  // In more concrete terms, suppose we have three functions f, g, h which are
  // of the same type, and a function foo that returns their addresses:
  //
  // f:
  // mov 0, %eax
  // ret
  //
  // g:
  // mov 1, %eax
  // ret
  //
  // h:
  // mov 2, %eax
  // ret
  //
  // foo:
  // mov f, %eax
  // mov g, %edx
  // mov h, %ecx
  // ret
  //
  // We output the jump table as module-level inline asm string. The end result
  // will (conceptually) look like this:
  //
  // f = .cfi.jumptable
  // g = .cfi.jumptable + 4
  // h = .cfi.jumptable + 8
  // .cfi.jumptable:
  // jmp f.cfi  ; 5 bytes
  // int3       ; 1 byte
  // int3       ; 1 byte
  // int3       ; 1 byte
  // jmp g.cfi  ; 5 bytes
  // int3       ; 1 byte
  // int3       ; 1 byte
  // int3       ; 1 byte
  // jmp h.cfi  ; 5 bytes
  // int3       ; 1 byte
  // int3       ; 1 byte
  // int3       ; 1 byte
  //
  // f.cfi:
  // mov 0, %eax
  // ret
  //
  // g.cfi:
  // mov 1, %eax
  // ret
  //
  // h.cfi:
  // mov 2, %eax
  // ret
  //
  // foo:
  // mov f, %eax
  // mov g, %edx
  // mov h, %ecx
  // ret
  //
  // Because the addresses of f, g, h are evenly spaced at a power of 2, in the
  // normal case the check can be carried out using the same kind of simple
  // arithmetic that we normally use for globals.

  // FIXME: find a better way to represent the jumptable in the IR.
  assert(!Functions.empty());

  // Build a simple layout based on the regular layout of jump tables.
  DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;
  unsigned EntrySize = getJumpTableEntrySize();
  for (unsigned I = 0; I != Functions.size(); ++I)
    GlobalLayout[Functions[I]] = I * EntrySize;

  Function *JumpTableFn =
      Function::Create(FunctionType::get(Type::getVoidTy(M.getContext()),
                                         /* IsVarArg */ false),
                       GlobalValue::PrivateLinkage, ".cfi.jumptable", &M);
  ArrayType *JumpTableType =
      ArrayType::get(getJumpTableEntryType(), Functions.size());
  auto JumpTable =
      ConstantExpr::getPointerCast(JumpTableFn, JumpTableType->getPointerTo(0));

  lowerTypeTestCalls(TypeIds, JumpTable, GlobalLayout);

  // Build aliases pointing to offsets into the jump table, and replace
  // references to the original functions with references to the aliases.
  for (unsigned I = 0; I != Functions.size(); ++I) {
    Function *F = cast<Function>(Functions[I]->getGlobal());
    bool IsDefinition = Functions[I]->isDefinition();

    Constant *CombinedGlobalElemPtr = ConstantExpr::getBitCast(
        ConstantExpr::getInBoundsGetElementPtr(
            JumpTableType, JumpTable,
            ArrayRef<Constant *>{ConstantInt::get(IntPtrTy, 0),
                                 ConstantInt::get(IntPtrTy, I)}),
        F->getType());
    if (Functions[I]->isExported()) {
      if (IsDefinition) {
        ExportSummary->cfiFunctionDefs().insert(F->getName());
      } else {
        GlobalAlias *JtAlias = GlobalAlias::create(
            F->getValueType(), 0, GlobalValue::ExternalLinkage,
            F->getName() + ".cfi_jt", CombinedGlobalElemPtr, &M);
        JtAlias->setVisibility(GlobalValue::HiddenVisibility);
        ExportSummary->cfiFunctionDecls().insert(F->getName());
      }
    }
    if (!IsDefinition) {
      if (F->isWeakForLinker())
        replaceWeakDeclarationWithJumpTablePtr(F, CombinedGlobalElemPtr);
      else
        F->replaceAllUsesWith(CombinedGlobalElemPtr);
    } else {
      assert(F->getType()->getAddressSpace() == 0);

      GlobalAlias *FAlias = GlobalAlias::create(
          F->getValueType(), 0, F->getLinkage(), "", CombinedGlobalElemPtr, &M);
      FAlias->setVisibility(F->getVisibility());
      FAlias->takeName(F);
      if (FAlias->hasName())
        F->setName(FAlias->getName() + ".cfi");
      F->replaceAllUsesWith(FAlias);
    }
    if (!F->isDeclarationForLinker())
      F->setLinkage(GlobalValue::InternalLinkage);
  }

  createJumpTable(JumpTableFn, Functions);
}

/// Assign a dummy layout using an incrementing counter, tag each function
/// with its index represented as metadata, and lower each type test to an
/// integer range comparison. During generation of the indirect function call
/// table in the backend, it will assign the given indexes.
/// Note: Dynamic linking is not supported, as the WebAssembly ABI has not yet
/// been finalized.
void LowerTypeTestsModule::buildBitSetsFromFunctionsWASM(
    ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Functions) {
  assert(!Functions.empty());

  // Build consecutive monotonic integer ranges for each call target set
  DenseMap<GlobalTypeMember *, uint64_t> GlobalLayout;

  for (GlobalTypeMember *GTM : Functions) {
    Function *F = cast<Function>(GTM->getGlobal());

    // Skip functions that are not address taken, to avoid bloating the table
    if (!F->hasAddressTaken())
      continue;

    // Store metadata with the index for each function
    MDNode *MD = MDNode::get(F->getContext(),
                             ArrayRef<Metadata *>(ConstantAsMetadata::get(
                                 ConstantInt::get(Int64Ty, IndirectIndex))));
    F->setMetadata("wasm.index", MD);

    // Assign the counter value
    GlobalLayout[GTM] = IndirectIndex++;
  }

  // The indirect function table index space starts at zero, so pass a NULL
  // pointer as the subtracted "jump table" offset.
  lowerTypeTestCalls(TypeIds, ConstantPointerNull::get(Int32PtrTy),
                     GlobalLayout);
}

void LowerTypeTestsModule::buildBitSetsFromDisjointSet(
    ArrayRef<Metadata *> TypeIds, ArrayRef<GlobalTypeMember *> Globals) {
  DenseMap<Metadata *, uint64_t> TypeIdIndices;
  for (unsigned I = 0; I != TypeIds.size(); ++I)
    TypeIdIndices[TypeIds[I]] = I;

  // For each type identifier, build a set of indices that refer to members of
  // the type identifier.
  std::vector<std::set<uint64_t>> TypeMembers(TypeIds.size());
  unsigned GlobalIndex = 0;
  for (GlobalTypeMember *GTM : Globals) {
    for (MDNode *Type : GTM->types()) {
      // Type = { offset, type identifier }
      unsigned TypeIdIndex = TypeIdIndices[Type->getOperand(1)];
      TypeMembers[TypeIdIndex].insert(GlobalIndex);
    }
    GlobalIndex++;
  }

  // Order the sets of indices by size. The GlobalLayoutBuilder works best
  // when given small index sets first.
  std::stable_sort(
      TypeMembers.begin(), TypeMembers.end(),
      [](const std::set<uint64_t> &O1, const std::set<uint64_t> &O2) {
        return O1.size() < O2.size();
      });

  // Create a GlobalLayoutBuilder and provide it with index sets as layout
  // fragments. The GlobalLayoutBuilder tries to lay out members of fragments as
  // close together as possible.
  GlobalLayoutBuilder GLB(Globals.size());
  for (auto &&MemSet : TypeMembers)
    GLB.addFragment(MemSet);

  // Build the bitsets from this disjoint set.
  if (Globals.empty() || isa<GlobalVariable>(Globals[0]->getGlobal())) {
    // Build a vector of global variables with the computed layout.
    std::vector<GlobalTypeMember *> OrderedGVs(Globals.size());
    auto OGI = OrderedGVs.begin();
    for (auto &&F : GLB.Fragments) {
      for (auto &&Offset : F) {
        auto GV = dyn_cast<GlobalVariable>(Globals[Offset]->getGlobal());
        if (!GV)
          report_fatal_error("Type identifier may not contain both global "
                             "variables and functions");
        *OGI++ = Globals[Offset];
      }
    }

    buildBitSetsFromGlobalVariables(TypeIds, OrderedGVs);
  } else {
    // Build a vector of functions with the computed layout.
    std::vector<GlobalTypeMember *> OrderedFns(Globals.size());
    auto OFI = OrderedFns.begin();
    for (auto &&F : GLB.Fragments) {
      for (auto &&Offset : F) {
        auto Fn = dyn_cast<Function>(Globals[Offset]->getGlobal());
        if (!Fn)
          report_fatal_error("Type identifier may not contain both global "
                             "variables and functions");
        *OFI++ = Globals[Offset];
      }
    }

    buildBitSetsFromFunctions(TypeIds, OrderedFns);
  }
}

/// Lower all type tests in this module.
LowerTypeTestsModule::LowerTypeTestsModule(
    Module &M, ModuleSummaryIndex *ExportSummary,
    const ModuleSummaryIndex *ImportSummary)
    : M(M), ExportSummary(ExportSummary), ImportSummary(ImportSummary) {
  assert(!(ExportSummary && ImportSummary));
  Triple TargetTriple(M.getTargetTriple());
  Arch = TargetTriple.getArch();
  OS = TargetTriple.getOS();
  ObjectFormat = TargetTriple.getObjectFormat();
}

bool LowerTypeTestsModule::runForTesting(Module &M) {
  ModuleSummaryIndex Summary;

  // Handle the command-line summary arguments. This code is for testing
  // purposes only, so we handle errors directly.
  if (!ClReadSummary.empty()) {
    ExitOnError ExitOnErr("-lowertypetests-read-summary: " + ClReadSummary +
                          ": ");
    auto ReadSummaryFile =
        ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));

    yaml::Input In(ReadSummaryFile->getBuffer());
    In >> Summary;
    ExitOnErr(errorCodeToError(In.error()));
  }

  bool Changed =
      LowerTypeTestsModule(
          M, ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
          ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
          .lower();

  if (!ClWriteSummary.empty()) {
    ExitOnError ExitOnErr("-lowertypetests-write-summary: " + ClWriteSummary +
                          ": ");
    std::error_code EC;
    raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::F_Text);
    ExitOnErr(errorCodeToError(EC));

    yaml::Output Out(OS);
    Out << Summary;
  }

  return Changed;
}

bool LowerTypeTestsModule::lower() {
  Function *TypeTestFunc =
      M.getFunction(Intrinsic::getName(Intrinsic::type_test));
  if ((!TypeTestFunc || TypeTestFunc->use_empty()) && !ExportSummary &&
      !ImportSummary)
    return false;

  if (ImportSummary) {
    if (TypeTestFunc) {
      for (auto UI = TypeTestFunc->use_begin(), UE = TypeTestFunc->use_end();
           UI != UE;) {
        auto *CI = cast<CallInst>((*UI++).getUser());
        importTypeTest(CI);
      }
    }

    SmallVector<Function *, 8> Defs;
    SmallVector<Function *, 8> Decls;
    for (auto &F : M) {
      // CFI functions are either external, or promoted. A local function may
      // have the same name, but it's not the one we are looking for.
      if (F.hasLocalLinkage())
        continue;
      if (ImportSummary->cfiFunctionDefs().count(F.getName()))
        Defs.push_back(&F);
      else if (ImportSummary->cfiFunctionDecls().count(F.getName()))
        Decls.push_back(&F);
    }

    for (auto F : Defs)
      importFunction(F, /*isDefinition*/ true);
    for (auto F : Decls)
      importFunction(F, /*isDefinition*/ false);

    return true;
  }

  // Equivalence class set containing type identifiers and the globals that
  // reference them. This is used to partition the set of type identifiers in
  // the module into disjoint sets.
  using GlobalClassesTy =
      EquivalenceClasses<PointerUnion<GlobalTypeMember *, Metadata *>>;
  GlobalClassesTy GlobalClasses;

  // Verify the type metadata and build a few data structures to let us
  // efficiently enumerate the type identifiers associated with a global:
  // a list of GlobalTypeMembers (a GlobalObject stored alongside a vector
  // of associated type metadata) and a mapping from type identifiers to their
  // list of GlobalTypeMembers and last observed index in the list of globals.
  // The indices will be used later to deterministically order the list of type
  // identifiers.
  BumpPtrAllocator Alloc;
  struct TIInfo {
    unsigned Index;
    std::vector<GlobalTypeMember *> RefGlobals;
  };
  DenseMap<Metadata *, TIInfo> TypeIdInfo;
  unsigned I = 0;
  SmallVector<MDNode *, 2> Types;

  struct ExportedFunctionInfo {
    CfiFunctionLinkage Linkage;
    MDNode *FuncMD; // {name, linkage, type[, type...]}
  };
  DenseMap<StringRef, ExportedFunctionInfo> ExportedFunctions;
  if (ExportSummary) {
    NamedMDNode *CfiFunctionsMD = M.getNamedMetadata("cfi.functions");
    if (CfiFunctionsMD) {
      for (auto FuncMD : CfiFunctionsMD->operands()) {
        assert(FuncMD->getNumOperands() >= 2);
        StringRef FunctionName =
            cast<MDString>(FuncMD->getOperand(0))->getString();
        if (!ExportSummary->isGUIDLive(GlobalValue::getGUID(
                GlobalValue::dropLLVMManglingEscape(FunctionName))))
          continue;
        CfiFunctionLinkage Linkage = static_cast<CfiFunctionLinkage>(
            cast<ConstantAsMetadata>(FuncMD->getOperand(1))
                ->getValue()
                ->getUniqueInteger()
                .getZExtValue());
        auto P = ExportedFunctions.insert({FunctionName, {Linkage, FuncMD}});
        if (!P.second && P.first->second.Linkage != CFL_Definition)
          P.first->second = {Linkage, FuncMD};
      }

      for (const auto &P : ExportedFunctions) {
        StringRef FunctionName = P.first;
        CfiFunctionLinkage Linkage = P.second.Linkage;
        MDNode *FuncMD = P.second.FuncMD;
        Function *F = M.getFunction(FunctionName);
        if (!F)
          F = Function::Create(
              FunctionType::get(Type::getVoidTy(M.getContext()), false),
              GlobalVariable::ExternalLinkage, FunctionName, &M);

        // If the function is available_externally, remove its definition so
        // that it is handled the same way as a declaration. Later we will try
        // to create an alias using this function's linkage, which will fail if
        // the linkage is available_externally. This will also result in us
        // following the code path below to replace the type metadata.
        if (F->hasAvailableExternallyLinkage()) {
          F->setLinkage(GlobalValue::ExternalLinkage);
          F->deleteBody();
          F->setComdat(nullptr);
          F->clearMetadata();
        }

        // If the function in the full LTO module is a declaration, replace its
        // type metadata with the type metadata we found in cfi.functions. That
        // metadata is presumed to be more accurate than the metadata attached
        // to the declaration.
        if (F->isDeclaration()) {
          if (Linkage == CFL_WeakDeclaration)
            F->setLinkage(GlobalValue::ExternalWeakLinkage);

          F->eraseMetadata(LLVMContext::MD_type);
          for (unsigned I = 2; I < FuncMD->getNumOperands(); ++I)
            F->addMetadata(LLVMContext::MD_type,
                           *cast<MDNode>(FuncMD->getOperand(I).get()));
        }
      }
    }
  }

  for (GlobalObject &GO : M.global_objects()) {
    if (isa<GlobalVariable>(GO) && GO.isDeclarationForLinker())
      continue;

    Types.clear();
    GO.getMetadata(LLVMContext::MD_type, Types);
    if (Types.empty())
      continue;

    bool IsDefinition = !GO.isDeclarationForLinker();
    bool IsExported = false;
    if (isa<Function>(GO) && ExportedFunctions.count(GO.getName())) {
      IsDefinition |= ExportedFunctions[GO.getName()].Linkage == CFL_Definition;
      IsExported = true;
    }

    auto *GTM =
        GlobalTypeMember::create(Alloc, &GO, IsDefinition, IsExported, Types);
    for (MDNode *Type : Types) {
      verifyTypeMDNode(&GO, Type);
      auto &Info = TypeIdInfo[cast<MDNode>(Type)->getOperand(1)];
      Info.Index = ++I;
      Info.RefGlobals.push_back(GTM);
    }
  }

  auto AddTypeIdUse = [&](Metadata *TypeId) -> TypeIdUserInfo & {
    // Add the call site to the list of call sites for this type identifier. We
    // also use TypeIdUsers to keep track of whether we have seen this type
    // identifier before. If we have, we don't need to re-add the referenced
    // globals to the equivalence class.
    auto Ins = TypeIdUsers.insert({TypeId, {}});
    if (Ins.second) {
      // Add the type identifier to the equivalence class.
      GlobalClassesTy::iterator GCI = GlobalClasses.insert(TypeId);
      GlobalClassesTy::member_iterator CurSet = GlobalClasses.findLeader(GCI);

      // Add the referenced globals to the type identifier's equivalence class.
      for (GlobalTypeMember *GTM : TypeIdInfo[TypeId].RefGlobals)
        CurSet = GlobalClasses.unionSets(
            CurSet, GlobalClasses.findLeader(GlobalClasses.insert(GTM)));
    }

    return Ins.first->second;
  };

  if (TypeTestFunc) {
    for (const Use &U : TypeTestFunc->uses()) {
      auto CI = cast<CallInst>(U.getUser());

      auto TypeIdMDVal = dyn_cast<MetadataAsValue>(CI->getArgOperand(1));
      if (!TypeIdMDVal)
        report_fatal_error("Second argument of llvm.type.test must be metadata");
      auto TypeId = TypeIdMDVal->getMetadata();
      AddTypeIdUse(TypeId).CallSites.push_back(CI);
    }
  }

  if (ExportSummary) {
    DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
    for (auto &P : TypeIdInfo) {
      if (auto *TypeId = dyn_cast<MDString>(P.first))
        MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
            TypeId);
    }

    for (auto &P : *ExportSummary) {
      for (auto &S : P.second.SummaryList) {
        if (!ExportSummary->isGlobalValueLive(S.get()))
          continue;
        if (auto *FS = dyn_cast<FunctionSummary>(S->getBaseObject()))
          for (GlobalValue::GUID G : FS->type_tests())
            for (Metadata *MD : MetadataByGUID[G])
              AddTypeIdUse(MD).IsExported = true;
      }
    }
  }

  if (GlobalClasses.empty())
    return false;

  // Build a list of disjoint sets ordered by their maximum global index for
  // determinism.
  std::vector<std::pair<GlobalClassesTy::iterator, unsigned>> Sets;
  for (GlobalClassesTy::iterator I = GlobalClasses.begin(),
                                 E = GlobalClasses.end();
       I != E; ++I) {
    if (!I->isLeader())
      continue;
    ++NumTypeIdDisjointSets;

    unsigned MaxIndex = 0;
    for (GlobalClassesTy::member_iterator MI = GlobalClasses.member_begin(I);
         MI != GlobalClasses.member_end(); ++MI) {
      if ((*MI).is<Metadata *>())
        MaxIndex = std::max(MaxIndex, TypeIdInfo[MI->get<Metadata *>()].Index);
    }
    Sets.emplace_back(I, MaxIndex);
  }
  std::sort(Sets.begin(), Sets.end(),
            [](const std::pair<GlobalClassesTy::iterator, unsigned> &S1,
               const std::pair<GlobalClassesTy::iterator, unsigned> &S2) {
              return S1.second < S2.second;
            });

  // For each disjoint set we found...
  for (const auto &S : Sets) {
    // Build the list of type identifiers in this disjoint set.
    std::vector<Metadata *> TypeIds;
    std::vector<GlobalTypeMember *> Globals;
    for (GlobalClassesTy::member_iterator MI =
             GlobalClasses.member_begin(S.first);
         MI != GlobalClasses.member_end(); ++MI) {
      if ((*MI).is<Metadata *>())
        TypeIds.push_back(MI->get<Metadata *>());
      else
        Globals.push_back(MI->get<GlobalTypeMember *>());
    }

    // Order type identifiers by global index for determinism. This ordering is
    // stable as there is a one-to-one mapping between metadata and indices.
    std::sort(TypeIds.begin(), TypeIds.end(), [&](Metadata *M1, Metadata *M2) {
      return TypeIdInfo[M1].Index < TypeIdInfo[M2].Index;
    });

    // Build bitsets for this disjoint set.
    buildBitSetsFromDisjointSet(TypeIds, Globals);
  }

  allocateByteArrays();

  return true;
}

PreservedAnalyses LowerTypeTestsPass::run(Module &M,
                                          ModuleAnalysisManager &AM) {
  bool Changed = LowerTypeTestsModule(M, /*ExportSummary=*/nullptr,
                                      /*ImportSummary=*/nullptr)
                     .lower();
  if (!Changed)
    return PreservedAnalyses::all();
  return PreservedAnalyses::none();
}