aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86InstrInfo.h
blob: e665ec1f14dce53a9b11679586114a3226e3899d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
//===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
#define LLVM_LIB_TARGET_X86_X86INSTRINFO_H

#include "MCTargetDesc/X86BaseInfo.h"
#include "X86InstrFMA3Info.h"
#include "X86RegisterInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Target/TargetInstrInfo.h"

#define GET_INSTRINFO_HEADER
#include "X86GenInstrInfo.inc"

namespace llvm {
class MachineInstrBuilder;
class X86RegisterInfo;
class X86Subtarget;

namespace X86 {
// X86 specific condition code. These correspond to X86_*_COND in
// X86InstrInfo.td. They must be kept in synch.
enum CondCode {
  COND_A = 0,
  COND_AE = 1,
  COND_B = 2,
  COND_BE = 3,
  COND_E = 4,
  COND_G = 5,
  COND_GE = 6,
  COND_L = 7,
  COND_LE = 8,
  COND_NE = 9,
  COND_NO = 10,
  COND_NP = 11,
  COND_NS = 12,
  COND_O = 13,
  COND_P = 14,
  COND_S = 15,
  LAST_VALID_COND = COND_S,

  // Artificial condition codes. These are used by AnalyzeBranch
  // to indicate a block terminated with two conditional branches that together
  // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
  // which can't be represented on x86 with a single condition. These
  // are never used in MachineInstrs and are inverses of one another.
  COND_NE_OR_P,
  COND_E_AND_NP,

  COND_INVALID
};

// Turn condition code into conditional branch opcode.
unsigned GetCondBranchFromCond(CondCode CC);

/// \brief Return a pair of condition code for the given predicate and whether
/// the instruction operands should be swaped to match the condition code.
std::pair<CondCode, bool> getX86ConditionCode(CmpInst::Predicate Predicate);

/// \brief Return a set opcode for the given condition and whether it has
/// a memory operand.
unsigned getSETFromCond(CondCode CC, bool HasMemoryOperand = false);

/// \brief Return a cmov opcode for the given condition, register size in
/// bytes, and operand type.
unsigned getCMovFromCond(CondCode CC, unsigned RegBytes,
                         bool HasMemoryOperand = false);

// Turn CMov opcode into condition code.
CondCode getCondFromCMovOpc(unsigned Opc);

/// GetOppositeBranchCondition - Return the inverse of the specified cond,
/// e.g. turning COND_E to COND_NE.
CondCode GetOppositeBranchCondition(CondCode CC);
} // namespace X86

/// isGlobalStubReference - Return true if the specified TargetFlag operand is
/// a reference to a stub for a global, not the global itself.
inline static bool isGlobalStubReference(unsigned char TargetFlag) {
  switch (TargetFlag) {
  case X86II::MO_DLLIMPORT:               // dllimport stub.
  case X86II::MO_GOTPCREL:                // rip-relative GOT reference.
  case X86II::MO_GOT:                     // normal GOT reference.
  case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
  case X86II::MO_DARWIN_NONLAZY:          // Normal $non_lazy_ptr ref.
    return true;
  default:
    return false;
  }
}

/// isGlobalRelativeToPICBase - Return true if the specified global value
/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg).  If this
/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
  switch (TargetFlag) {
  case X86II::MO_GOTOFF:                  // isPICStyleGOT: local global.
  case X86II::MO_GOT:                     // isPICStyleGOT: other global.
  case X86II::MO_PIC_BASE_OFFSET:         // Darwin local global.
  case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
  case X86II::MO_TLVP:                    // ??? Pretty sure..
    return true;
  default:
    return false;
  }
}

inline static bool isScale(const MachineOperand &MO) {
  return MO.isImm() && (MO.getImm() == 1 || MO.getImm() == 2 ||
                        MO.getImm() == 4 || MO.getImm() == 8);
}

inline static bool isLeaMem(const MachineInstr &MI, unsigned Op) {
  if (MI.getOperand(Op).isFI())
    return true;
  return Op + X86::AddrSegmentReg <= MI.getNumOperands() &&
         MI.getOperand(Op + X86::AddrBaseReg).isReg() &&
         isScale(MI.getOperand(Op + X86::AddrScaleAmt)) &&
         MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
         (MI.getOperand(Op + X86::AddrDisp).isImm() ||
          MI.getOperand(Op + X86::AddrDisp).isGlobal() ||
          MI.getOperand(Op + X86::AddrDisp).isCPI() ||
          MI.getOperand(Op + X86::AddrDisp).isJTI());
}

inline static bool isMem(const MachineInstr &MI, unsigned Op) {
  if (MI.getOperand(Op).isFI())
    return true;
  return Op + X86::AddrNumOperands <= MI.getNumOperands() &&
         MI.getOperand(Op + X86::AddrSegmentReg).isReg() && isLeaMem(MI, Op);
}

class X86InstrInfo final : public X86GenInstrInfo {
  X86Subtarget &Subtarget;
  const X86RegisterInfo RI;

  /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
  /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps.
  ///
  typedef DenseMap<unsigned, std::pair<uint16_t, uint16_t>>
      RegOp2MemOpTableType;
  RegOp2MemOpTableType RegOp2MemOpTable2Addr;
  RegOp2MemOpTableType RegOp2MemOpTable0;
  RegOp2MemOpTableType RegOp2MemOpTable1;
  RegOp2MemOpTableType RegOp2MemOpTable2;
  RegOp2MemOpTableType RegOp2MemOpTable3;
  RegOp2MemOpTableType RegOp2MemOpTable4;

  /// MemOp2RegOpTable - Load / store unfolding opcode map.
  ///
  typedef DenseMap<unsigned, std::pair<uint16_t, uint16_t>>
      MemOp2RegOpTableType;
  MemOp2RegOpTableType MemOp2RegOpTable;

  static void AddTableEntry(RegOp2MemOpTableType &R2MTable,
                            MemOp2RegOpTableType &M2RTable, uint16_t RegOp,
                            uint16_t MemOp, uint16_t Flags);

  virtual void anchor();

  bool AnalyzeBranchImpl(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
                         MachineBasicBlock *&FBB,
                         SmallVectorImpl<MachineOperand> &Cond,
                         SmallVectorImpl<MachineInstr *> &CondBranches,
                         bool AllowModify) const;

public:
  explicit X86InstrInfo(X86Subtarget &STI);

  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
  /// such, whenever a client has an instance of instruction info, it should
  /// always be able to get register info as well (through this method).
  ///
  const X86RegisterInfo &getRegisterInfo() const { return RI; }

  /// Returns the stack pointer adjustment that happens inside the frame
  /// setup..destroy sequence (e.g. by pushes, or inside the callee).
  int64_t getFrameAdjustment(const MachineInstr &I) const {
    assert(isFrameInstr(I));
    if (isFrameSetup(I))
      return I.getOperand(2).getImm();
    return I.getOperand(1).getImm();
  }

  /// Sets the stack pointer adjustment made inside the frame made up by this
  /// instruction.
  void setFrameAdjustment(MachineInstr &I, int64_t V) const {
    assert(isFrameInstr(I));
    if (isFrameSetup(I))
      I.getOperand(2).setImm(V);
    else
      I.getOperand(1).setImm(V);
  }

  /// getSPAdjust - This returns the stack pointer adjustment made by
  /// this instruction. For x86, we need to handle more complex call
  /// sequences involving PUSHes.
  int getSPAdjust(const MachineInstr &MI) const override;

  /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
  /// extension instruction. That is, it's like a copy where it's legal for the
  /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
  /// true, then it's expected the pre-extension value is available as a subreg
  /// of the result register. This also returns the sub-register index in
  /// SubIdx.
  bool isCoalescableExtInstr(const MachineInstr &MI, unsigned &SrcReg,
                             unsigned &DstReg, unsigned &SubIdx) const override;

  unsigned isLoadFromStackSlot(const MachineInstr &MI,
                               int &FrameIndex) const override;
  /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
  /// stack locations as well.  This uses a heuristic so it isn't
  /// reliable for correctness.
  unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
                                     int &FrameIndex) const override;

  unsigned isStoreToStackSlot(const MachineInstr &MI,
                              int &FrameIndex) const override;
  /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
  /// stack locations as well.  This uses a heuristic so it isn't
  /// reliable for correctness.
  unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
                                    int &FrameIndex) const override;

  bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
                                         AliasAnalysis *AA) const override;
  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
                     unsigned DestReg, unsigned SubIdx,
                     const MachineInstr &Orig,
                     const TargetRegisterInfo &TRI) const override;

  /// Given an operand within a MachineInstr, insert preceding code to put it
  /// into the right format for a particular kind of LEA instruction. This may
  /// involve using an appropriate super-register instead (with an implicit use
  /// of the original) or creating a new virtual register and inserting COPY
  /// instructions to get the data into the right class.
  ///
  /// Reference parameters are set to indicate how caller should add this
  /// operand to the LEA instruction.
  bool classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
                      unsigned LEAOpcode, bool AllowSP, unsigned &NewSrc,
                      bool &isKill, bool &isUndef, MachineOperand &ImplicitOp,
                      LiveVariables *LV) const;

  /// convertToThreeAddress - This method must be implemented by targets that
  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
  /// may be able to convert a two-address instruction into a true
  /// three-address instruction on demand.  This allows the X86 target (for
  /// example) to convert ADD and SHL instructions into LEA instructions if they
  /// would require register copies due to two-addressness.
  ///
  /// This method returns a null pointer if the transformation cannot be
  /// performed, otherwise it returns the new instruction.
  ///
  MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
                                      MachineInstr &MI,
                                      LiveVariables *LV) const override;

  /// Returns true iff the routine could find two commutable operands in the
  /// given machine instruction.
  /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
  /// input values can be re-defined in this method only if the input values
  /// are not pre-defined, which is designated by the special value
  /// 'CommuteAnyOperandIndex' assigned to it.
  /// If both of indices are pre-defined and refer to some operands, then the
  /// method simply returns true if the corresponding operands are commutable
  /// and returns false otherwise.
  ///
  /// For example, calling this method this way:
  ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
  ///     findCommutedOpIndices(MI, Op1, Op2);
  /// can be interpreted as a query asking to find an operand that would be
  /// commutable with the operand#1.
  bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
                             unsigned &SrcOpIdx2) const override;

  /// Returns true if the routine could find two commutable operands
  /// in the given FMA instruction \p MI. Otherwise, returns false.
  ///
  /// \p SrcOpIdx1 and \p SrcOpIdx2 are INPUT and OUTPUT arguments.
  /// The output indices of the commuted operands are returned in these
  /// arguments. Also, the input values of these arguments may be preset either
  /// to indices of operands that must be commuted or be equal to a special
  /// value 'CommuteAnyOperandIndex' which means that the corresponding
  /// operand index is not set and this method is free to pick any of
  /// available commutable operands.
  /// The parameter \p FMA3Group keeps the reference to the group of relative
  /// FMA3 opcodes including register/memory forms of 132/213/231 opcodes.
  ///
  /// For example, calling this method this way:
  ///     unsigned Idx1 = 1, Idx2 = CommuteAnyOperandIndex;
  ///     findFMA3CommutedOpIndices(MI, Idx1, Idx2, FMA3Group);
  /// can be interpreted as a query asking if the operand #1 can be swapped
  /// with any other available operand (e.g. operand #2, operand #3, etc.).
  ///
  /// The returned FMA opcode may differ from the opcode in the given MI.
  /// For example, commuting the operands #1 and #3 in the following FMA
  ///     FMA213 #1, #2, #3
  /// results into instruction with adjusted opcode:
  ///     FMA231 #3, #2, #1
  bool findFMA3CommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
                                 unsigned &SrcOpIdx2,
                                 const X86InstrFMA3Group &FMA3Group) const;

  /// Returns an adjusted FMA opcode that must be used in FMA instruction that
  /// performs the same computations as the given \p MI but which has the
  /// operands \p SrcOpIdx1 and \p SrcOpIdx2 commuted.
  /// It may return 0 if it is unsafe to commute the operands.
  /// Note that a machine instruction (instead of its opcode) is passed as the
  /// first parameter to make it possible to analyze the instruction's uses and
  /// commute the first operand of FMA even when it seems unsafe when you look
  /// at the opcode. For example, it is Ok to commute the first operand of
  /// VFMADD*SD_Int, if ONLY the lowest 64-bit element of the result is used.
  ///
  /// The returned FMA opcode may differ from the opcode in the given \p MI.
  /// For example, commuting the operands #1 and #3 in the following FMA
  ///     FMA213 #1, #2, #3
  /// results into instruction with adjusted opcode:
  ///     FMA231 #3, #2, #1
  unsigned
  getFMA3OpcodeToCommuteOperands(const MachineInstr &MI, unsigned SrcOpIdx1,
                                 unsigned SrcOpIdx2,
                                 const X86InstrFMA3Group &FMA3Group) const;

  // Branch analysis.
  bool isUnpredicatedTerminator(const MachineInstr &MI) const override;
  bool isUnconditionalTailCall(const MachineInstr &MI) const override;
  bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
                                  const MachineInstr &TailCall) const override;
  void replaceBranchWithTailCall(MachineBasicBlock &MBB,
                                 SmallVectorImpl<MachineOperand> &Cond,
                                 const MachineInstr &TailCall) const override;

  bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
                     MachineBasicBlock *&FBB,
                     SmallVectorImpl<MachineOperand> &Cond,
                     bool AllowModify) const override;

  bool getMemOpBaseRegImmOfs(MachineInstr &LdSt, unsigned &BaseReg,
                             int64_t &Offset,
                             const TargetRegisterInfo *TRI) const override;
  bool analyzeBranchPredicate(MachineBasicBlock &MBB,
                              TargetInstrInfo::MachineBranchPredicate &MBP,
                              bool AllowModify = false) const override;

  unsigned removeBranch(MachineBasicBlock &MBB,
                        int *BytesRemoved = nullptr) const override;
  unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                        MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
                        const DebugLoc &DL,
                        int *BytesAdded = nullptr) const override;
  bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
                       unsigned, unsigned, int &, int &, int &) const override;
  void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
                    const DebugLoc &DL, unsigned DstReg,
                    ArrayRef<MachineOperand> Cond, unsigned TrueReg,
                    unsigned FalseReg) const override;
  void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
                   const DebugLoc &DL, unsigned DestReg, unsigned SrcReg,
                   bool KillSrc) const override;
  void storeRegToStackSlot(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator MI, unsigned SrcReg,
                           bool isKill, int FrameIndex,
                           const TargetRegisterClass *RC,
                           const TargetRegisterInfo *TRI) const override;

  void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
                      SmallVectorImpl<MachineOperand> &Addr,
                      const TargetRegisterClass *RC,
                      MachineInstr::mmo_iterator MMOBegin,
                      MachineInstr::mmo_iterator MMOEnd,
                      SmallVectorImpl<MachineInstr *> &NewMIs) const;

  void loadRegFromStackSlot(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MI, unsigned DestReg,
                            int FrameIndex, const TargetRegisterClass *RC,
                            const TargetRegisterInfo *TRI) const override;

  void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
                       SmallVectorImpl<MachineOperand> &Addr,
                       const TargetRegisterClass *RC,
                       MachineInstr::mmo_iterator MMOBegin,
                       MachineInstr::mmo_iterator MMOEnd,
                       SmallVectorImpl<MachineInstr *> &NewMIs) const;

  bool expandPostRAPseudo(MachineInstr &MI) const override;

  /// Check whether the target can fold a load that feeds a subreg operand
  /// (or a subreg operand that feeds a store).
  bool isSubregFoldable() const override { return true; }

  /// foldMemoryOperand - If this target supports it, fold a load or store of
  /// the specified stack slot into the specified machine instruction for the
  /// specified operand(s).  If this is possible, the target should perform the
  /// folding and return true, otherwise it should return false.  If it folds
  /// the instruction, it is likely that the MachineInstruction the iterator
  /// references has been changed.
  MachineInstr *
  foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
                        ArrayRef<unsigned> Ops,
                        MachineBasicBlock::iterator InsertPt, int FrameIndex,
                        LiveIntervals *LIS = nullptr) const override;

  /// foldMemoryOperand - Same as the previous version except it allows folding
  /// of any load and store from / to any address, not just from a specific
  /// stack slot.
  MachineInstr *foldMemoryOperandImpl(
      MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
      MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
      LiveIntervals *LIS = nullptr) const override;

  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
  /// a store or a load and a store into two or more instruction. If this is
  /// possible, returns true as well as the new instructions by reference.
  bool
  unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
                      bool UnfoldLoad, bool UnfoldStore,
                      SmallVectorImpl<MachineInstr *> &NewMIs) const override;

  bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
                           SmallVectorImpl<SDNode *> &NewNodes) const override;

  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
  /// instruction after load / store are unfolded from an instruction of the
  /// specified opcode. It returns zero if the specified unfolding is not
  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
  /// index of the operand which will hold the register holding the loaded
  /// value.
  unsigned
  getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
                             unsigned *LoadRegIndex = nullptr) const override;

  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
  /// to determine if two loads are loading from the same base address. It
  /// should only return true if the base pointers are the same and the
  /// only differences between the two addresses are the offset. It also returns
  /// the offsets by reference.
  bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
                               int64_t &Offset2) const override;

  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
  /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads
  /// should be scheduled togther. On some targets if two loads are loading from
  /// addresses in the same cache line, it's better if they are scheduled
  /// together. This function takes two integers that represent the load offsets
  /// from the common base address. It returns true if it decides it's desirable
  /// to schedule the two loads together. "NumLoads" is the number of loads that
  /// have already been scheduled after Load1.
  bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1,
                               int64_t Offset2,
                               unsigned NumLoads) const override;

  void getNoop(MCInst &NopInst) const override;

  bool
  reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;

  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
  /// instruction that defines the specified register class.
  bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;

  /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction tha
  /// would clobber the EFLAGS condition register. Note the result may be
  /// conservative. If it cannot definitely determine the safety after visiting
  /// a few instructions in each direction it assumes it's not safe.
  bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
                             MachineBasicBlock::iterator I) const;

  /// True if MI has a condition code def, e.g. EFLAGS, that is
  /// not marked dead.
  bool hasLiveCondCodeDef(MachineInstr &MI) const;

  /// getGlobalBaseReg - Return a virtual register initialized with the
  /// the global base register value. Output instructions required to
  /// initialize the register in the function entry block, if necessary.
  ///
  unsigned getGlobalBaseReg(MachineFunction *MF) const;

  std::pair<uint16_t, uint16_t>
  getExecutionDomain(const MachineInstr &MI) const override;

  void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override;

  unsigned
  getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
                               const TargetRegisterInfo *TRI) const override;
  unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
                                const TargetRegisterInfo *TRI) const override;
  void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
                                 const TargetRegisterInfo *TRI) const override;

  MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
                                      unsigned OpNum,
                                      ArrayRef<MachineOperand> MOs,
                                      MachineBasicBlock::iterator InsertPt,
                                      unsigned Size, unsigned Alignment,
                                      bool AllowCommute) const;

  bool isHighLatencyDef(int opc) const override;

  bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
                             const MachineRegisterInfo *MRI,
                             const MachineInstr &DefMI, unsigned DefIdx,
                             const MachineInstr &UseMI,
                             unsigned UseIdx) const override;

  bool useMachineCombiner() const override { return true; }

  bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;

  bool hasReassociableOperands(const MachineInstr &Inst,
                               const MachineBasicBlock *MBB) const override;

  void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
                             MachineInstr &NewMI1,
                             MachineInstr &NewMI2) const override;

  /// analyzeCompare - For a comparison instruction, return the source registers
  /// in SrcReg and SrcReg2 if having two register operands, and the value it
  /// compares against in CmpValue. Return true if the comparison instruction
  /// can be analyzed.
  bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
                      unsigned &SrcReg2, int &CmpMask,
                      int &CmpValue) const override;

  /// optimizeCompareInstr - Check if there exists an earlier instruction that
  /// operates on the same source operands and sets flags in the same way as
  /// Compare; remove Compare if possible.
  bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
                            unsigned SrcReg2, int CmpMask, int CmpValue,
                            const MachineRegisterInfo *MRI) const override;

  /// optimizeLoadInstr - Try to remove the load by folding it to a register
  /// operand at the use. We fold the load instructions if and only if the
  /// def and use are in the same BB. We only look at one load and see
  /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
  /// defined by the load we are trying to fold. DefMI returns the machine
  /// instruction that defines FoldAsLoadDefReg, and the function returns
  /// the machine instruction generated due to folding.
  MachineInstr *optimizeLoadInstr(MachineInstr &MI,
                                  const MachineRegisterInfo *MRI,
                                  unsigned &FoldAsLoadDefReg,
                                  MachineInstr *&DefMI) const override;

  std::pair<unsigned, unsigned>
  decomposeMachineOperandsTargetFlags(unsigned TF) const override;

  ArrayRef<std::pair<unsigned, const char *>>
  getSerializableDirectMachineOperandTargetFlags() const override;

  virtual MachineOutlinerInfo getOutlininingCandidateInfo(
      std::vector<
          std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>>
          &RepeatedSequenceLocs) const override;

  bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
                                   bool OutlineFromLinkOnceODRs) const override;

  llvm::X86GenInstrInfo::MachineOutlinerInstrType
  getOutliningType(MachineInstr &MI) const override;

  void insertOutlinerEpilogue(MachineBasicBlock &MBB, MachineFunction &MF,
                              const MachineOutlinerInfo &MInfo) const override;

  void insertOutlinerPrologue(MachineBasicBlock &MBB, MachineFunction &MF,
                              const MachineOutlinerInfo &MInfo) const override;

  MachineBasicBlock::iterator
  insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
                     MachineBasicBlock::iterator &It, MachineFunction &MF,
                     const MachineOutlinerInfo &MInfo) const override;

protected:
  /// Commutes the operands in the given instruction by changing the operands
  /// order and/or changing the instruction's opcode and/or the immediate value
  /// operand.
  ///
  /// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands
  /// to be commuted.
  ///
  /// Do not call this method for a non-commutable instruction or
  /// non-commutable operands.
  /// Even though the instruction is commutable, the method may still
  /// fail to commute the operands, null pointer is returned in such cases.
  MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
                                       unsigned CommuteOpIdx1,
                                       unsigned CommuteOpIdx2) const override;

private:
  MachineInstr *convertToThreeAddressWithLEA(unsigned MIOpc,
                                             MachineFunction::iterator &MFI,
                                             MachineInstr &MI,
                                             LiveVariables *LV) const;

  /// Handles memory folding for special case instructions, for instance those
  /// requiring custom manipulation of the address.
  MachineInstr *foldMemoryOperandCustom(MachineFunction &MF, MachineInstr &MI,
                                        unsigned OpNum,
                                        ArrayRef<MachineOperand> MOs,
                                        MachineBasicBlock::iterator InsertPt,
                                        unsigned Size, unsigned Align) const;

  /// isFrameOperand - Return true and the FrameIndex if the specified
  /// operand and follow operands form a reference to the stack frame.
  bool isFrameOperand(const MachineInstr &MI, unsigned int Op,
                      int &FrameIndex) const;

  /// Returns true iff the routine could find two commutable operands in the
  /// given machine instruction with 3 vector inputs.
  /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
  /// input values can be re-defined in this method only if the input values
  /// are not pre-defined, which is designated by the special value
  /// 'CommuteAnyOperandIndex' assigned to it.
  /// If both of indices are pre-defined and refer to some operands, then the
  /// method simply returns true if the corresponding operands are commutable
  /// and returns false otherwise.
  ///
  /// For example, calling this method this way:
  ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
  ///     findThreeSrcCommutedOpIndices(MI, Op1, Op2);
  /// can be interpreted as a query asking to find an operand that would be
  /// commutable with the operand#1.
  bool findThreeSrcCommutedOpIndices(const MachineInstr &MI,
                                     unsigned &SrcOpIdx1,
                                     unsigned &SrcOpIdx2) const;
};

} // namespace llvm

#endif