aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/Hexagon/HexagonPatterns.td
blob: 1cb38e78fd6f14cc74e3bfa4f75427ec51421183 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
//==- HexagonPatterns.td - Target Description for Hexagon -*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

// Pattern fragment that combines the value type and the register class
// into a single parameter.

// Pattern fragments to extract the low and high subregisters from a
// 64-bit value.
def LoReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_lo)>;
def HiReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_hi)>;

def IsOrAdd: PatFrag<(ops node:$Addr, node:$off),
    (or node:$Addr, node:$off), [{ return isOrEquivalentToAdd(N); }]>;

def Iss4_6 : PatLeaf<(i32 imm), [{
  int32_t V = N->getSExtValue();
  return isShiftedInt<4,6>(V);
}]>;

def Iss4_7 : PatLeaf<(i32 imm), [{
  int32_t V = N->getSExtValue();
  return isShiftedInt<4,7>(V);
}]>;

def IsPow2_32 : PatLeaf<(i32 imm), [{
  uint32_t V = N->getZExtValue();
  return isPowerOf2_32(V);
}]>;

def IsPow2_64 : PatLeaf<(i64 imm), [{
  uint64_t V = N->getZExtValue();
  return isPowerOf2_64(V);
}]>;

def IsNPow2_32 : PatLeaf<(i32 imm), [{
  uint32_t NV = ~N->getZExtValue();
  return isPowerOf2_32(NV);
}]>;

def IsPow2_64L : PatLeaf<(i64 imm), [{
  uint64_t V = N->getZExtValue();
  return isPowerOf2_64(V) && Log2_64(V) < 32;
}]>;

def IsPow2_64H : PatLeaf<(i64 imm), [{
  uint64_t V = N->getZExtValue();
  return isPowerOf2_64(V) && Log2_64(V) >= 32;
}]>;

def IsNPow2_64L : PatLeaf<(i64 imm), [{
  uint64_t NV = ~N->getZExtValue();
  return isPowerOf2_64(NV) && Log2_64(NV) < 32;
}]>;

def IsNPow2_64H : PatLeaf<(i64 imm), [{
  uint64_t NV = ~N->getZExtValue();
  return isPowerOf2_64(NV) && Log2_64(NV) >= 32;
}]>;

def SDEC1 : SDNodeXForm<imm, [{
  int32_t V = N->getSExtValue();
  return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
}]>;

def UDEC1 : SDNodeXForm<imm, [{
  uint32_t V = N->getZExtValue();
  assert(V >= 1);
  return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
}]>;

def UDEC32 : SDNodeXForm<imm, [{
  uint32_t V = N->getZExtValue();
  assert(V >= 32);
  return CurDAG->getTargetConstant(V-32, SDLoc(N), MVT::i32);
}]>;

def Log2_32 : SDNodeXForm<imm, [{
  uint32_t V = N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
}]>;

def Log2_64 : SDNodeXForm<imm, [{
  uint64_t V = N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_64(V), SDLoc(N), MVT::i32);
}]>;

def LogN2_32 : SDNodeXForm<imm, [{
  uint32_t NV = ~N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
}]>;

def LogN2_64 : SDNodeXForm<imm, [{
  uint64_t NV = ~N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_64(NV), SDLoc(N), MVT::i32);
}]>;

def ToZext64: OutPatFrag<(ops node:$Rs),
  (i64 (A4_combineir 0, (i32 $Rs)))>;
def ToSext64: OutPatFrag<(ops node:$Rs),
  (i64 (A2_sxtw (i32 $Rs)))>;


class T_CMP_pat <InstHexagon MI, PatFrag OpNode, PatLeaf ImmPred>
  : Pat<(i1 (OpNode I32:$src1, ImmPred:$src2)),
        (MI IntRegs:$src1, ImmPred:$src2)>;

def : T_CMP_pat <C2_cmpeqi,  seteq,  s10_0ImmPred>;
def : T_CMP_pat <C2_cmpgti,  setgt,  s10_0ImmPred>;
def : T_CMP_pat <C2_cmpgtui, setugt, u9_0ImmPred>;

def SDTHexagonI64I32I32 : SDTypeProfile<1, 2,
  [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;

def HexagonCOMBINE : SDNode<"HexagonISD::COMBINE", SDTHexagonI64I32I32>;
def HexagonPACKHL  : SDNode<"HexagonISD::PACKHL",  SDTHexagonI64I32I32>;

// Pats for instruction selection.
class BinOp32_pat<SDNode Op, InstHexagon MI, ValueType ResT>
  : Pat<(ResT (Op I32:$Rs, I32:$Rt)),
        (ResT (MI IntRegs:$Rs, IntRegs:$Rt))>;

def: BinOp32_pat<add, A2_add, i32>;
def: BinOp32_pat<and, A2_and, i32>;
def: BinOp32_pat<or,  A2_or,  i32>;
def: BinOp32_pat<sub, A2_sub, i32>;
def: BinOp32_pat<xor, A2_xor, i32>;

def: BinOp32_pat<HexagonCOMBINE, A2_combinew, i64>;
def: BinOp32_pat<HexagonPACKHL,  S2_packhl,   i64>;

// Patfrag to convert the usual comparison patfrags (e.g. setlt) to ones
// that reverse the order of the operands.
class RevCmp<PatFrag F> : PatFrag<(ops node:$rhs, node:$lhs), F.Fragment>;

// Pats for compares. They use PatFrags as operands, not SDNodes,
// since seteq/setgt/etc. are defined as ParFrags.
class T_cmp32_rr_pat<InstHexagon MI, PatFrag Op, ValueType VT>
  : Pat<(VT (Op I32:$Rs, I32:$Rt)),
        (MI IntRegs:$Rs, IntRegs:$Rt)>;

def: T_cmp32_rr_pat<C2_cmpeq,  seteq,  i1>;
def: T_cmp32_rr_pat<C2_cmpgt,  setgt,  i1>;
def: T_cmp32_rr_pat<C2_cmpgtu, setugt, i1>;

def: T_cmp32_rr_pat<C2_cmpgt,  RevCmp<setlt>,  i1>;
def: T_cmp32_rr_pat<C2_cmpgtu, RevCmp<setult>, i1>;

def: Pat<(select I1:$Pu, I32:$Rs, I32:$Rt),
         (C2_mux PredRegs:$Pu, IntRegs:$Rs, IntRegs:$Rt)>;

def: Pat<(add I32:$Rs, s32_0ImmPred:$s16),
         (A2_addi I32:$Rs, imm:$s16)>;

def: Pat<(or I32:$Rs, s32_0ImmPred:$s10),
         (A2_orir IntRegs:$Rs, imm:$s10)>;
def: Pat<(and I32:$Rs, s32_0ImmPred:$s10),
         (A2_andir IntRegs:$Rs, imm:$s10)>;

def: Pat<(sub s32_0ImmPred:$s10, IntRegs:$Rs),
         (A2_subri imm:$s10, IntRegs:$Rs)>;

// Rd = not(Rs) gets mapped to Rd=sub(#-1, Rs).
def: Pat<(not I32:$src1),
         (A2_subri -1, IntRegs:$src1)>;

def TruncI64ToI32: SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32);
}]>;

def: Pat<(s32_0ImmPred:$s16), (A2_tfrsi imm:$s16)>;
def: Pat<(s8_0Imm64Pred:$s8), (A2_tfrpi (TruncI64ToI32 $s8))>;

def : Pat<(select I1:$Pu, s32_0ImmPred:$s8, I32:$Rs),
          (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>;

def : Pat<(select I1:$Pu, I32:$Rs, s32_0ImmPred:$s8),
          (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>;

def : Pat<(select I1:$Pu, s32_0ImmPred:$s8, s8_0ImmPred:$S8),
          (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>;

def: Pat<(shl I32:$src1, (i32 16)),   (A2_aslh I32:$src1)>;
def: Pat<(sra I32:$src1, (i32 16)),   (A2_asrh I32:$src1)>;
def: Pat<(sext_inreg I32:$src1, i8),  (A2_sxtb I32:$src1)>;
def: Pat<(sext_inreg I32:$src1, i16), (A2_sxth I32:$src1)>;

class T_vcmp_pat<InstHexagon MI, PatFrag Op, ValueType T>
  : Pat<(i1 (Op (T DoubleRegs:$Rss), (T DoubleRegs:$Rtt))),
        (i1 (MI DoubleRegs:$Rss, DoubleRegs:$Rtt))>;

def: T_vcmp_pat<A2_vcmpbeq,  seteq,  v8i8>;
def: T_vcmp_pat<A2_vcmpbgtu, setugt, v8i8>;
def: T_vcmp_pat<A2_vcmpheq,  seteq,  v4i16>;
def: T_vcmp_pat<A2_vcmphgt,  setgt,  v4i16>;
def: T_vcmp_pat<A2_vcmphgtu, setugt, v4i16>;
def: T_vcmp_pat<A2_vcmpweq,  seteq,  v2i32>;
def: T_vcmp_pat<A2_vcmpwgt,  setgt,  v2i32>;
def: T_vcmp_pat<A2_vcmpwgtu, setugt, v2i32>;

// Add halfword.
def: Pat<(sext_inreg (add I32:$src1, I32:$src2), i16),
         (A2_addh_l16_ll I32:$src1, I32:$src2)>;

def: Pat<(sra (add (shl I32:$src1, (i32 16)), I32:$src2), (i32 16)),
         (A2_addh_l16_hl I32:$src1, I32:$src2)>;

def: Pat<(shl (add I32:$src1, I32:$src2), (i32 16)),
         (A2_addh_h16_ll I32:$src1, I32:$src2)>;

// Subtract halfword.
def: Pat<(sext_inreg (sub I32:$src1, I32:$src2), i16),
         (A2_subh_l16_ll I32:$src1, I32:$src2)>;

def: Pat<(shl (sub I32:$src1, I32:$src2), (i32 16)),
         (A2_subh_h16_ll I32:$src1, I32:$src2)>;

// Here, depending on  the operand being selected, we'll either generate a
// min or max instruction.
// Ex:
// (a>b)?a:b --> max(a,b) => Here check performed is '>' and the value selected
// is the larger of two. So, the corresponding HexagonInst is passed in 'Inst'.
// (a>b)?b:a --> min(a,b) => Here check performed is '>' but the smaller value
// is selected and the corresponding HexagonInst is passed in 'SwapInst'.

multiclass T_MinMax_pats <PatFrag Op, PatLeaf Val,
                          InstHexagon Inst, InstHexagon SwapInst> {
  def: Pat<(select (i1 (Op Val:$src1, Val:$src2)), Val:$src1, Val:$src2),
           (Inst Val:$src1, Val:$src2)>;
  def: Pat<(select (i1 (Op Val:$src1, Val:$src2)), Val:$src2, Val:$src1),
           (SwapInst Val:$src1, Val:$src2)>;
}

def IsPosHalf : PatLeaf<(i32 IntRegs:$a), [{
  return isPositiveHalfWord(N);
}]>;

multiclass MinMax_pats <PatFrag Op, InstHexagon Inst, InstHexagon SwapInst> {
  defm: T_MinMax_pats<Op, I32, Inst, SwapInst>;

  def: Pat<(sext_inreg (select (i1 (Op IsPosHalf:$src1, IsPosHalf:$src2)),
                               IsPosHalf:$src1, IsPosHalf:$src2),
                       i16),
           (Inst IntRegs:$src1, IntRegs:$src2)>;

  def: Pat<(sext_inreg (select (i1 (Op IsPosHalf:$src1, IsPosHalf:$src2)),
                               IsPosHalf:$src2, IsPosHalf:$src1),
                       i16),
           (SwapInst IntRegs:$src1, IntRegs:$src2)>;
}

let AddedComplexity = 200 in {
  defm: MinMax_pats<setge,  A2_max,  A2_min>;
  defm: MinMax_pats<setgt,  A2_max,  A2_min>;
  defm: MinMax_pats<setle,  A2_min,  A2_max>;
  defm: MinMax_pats<setlt,  A2_min,  A2_max>;
  defm: MinMax_pats<setuge, A2_maxu, A2_minu>;
  defm: MinMax_pats<setugt, A2_maxu, A2_minu>;
  defm: MinMax_pats<setule, A2_minu, A2_maxu>;
  defm: MinMax_pats<setult, A2_minu, A2_maxu>;
}

class T_cmp64_rr_pat<InstHexagon MI, PatFrag CmpOp>
  : Pat<(i1 (CmpOp I64:$Rs, I64:$Rt)),
        (i1 (MI DoubleRegs:$Rs, DoubleRegs:$Rt))>;

def: T_cmp64_rr_pat<C2_cmpeqp,  seteq>;
def: T_cmp64_rr_pat<C2_cmpgtp,  setgt>;
def: T_cmp64_rr_pat<C2_cmpgtup, setugt>;
def: T_cmp64_rr_pat<C2_cmpgtp,  RevCmp<setlt>>;
def: T_cmp64_rr_pat<C2_cmpgtup, RevCmp<setult>>;

def: Pat<(i64 (add I64:$Rs, I64:$Rt)), (A2_addp I64:$Rs, I64:$Rt)>;
def: Pat<(i64 (sub I64:$Rs, I64:$Rt)), (A2_subp I64:$Rs, I64:$Rt)>;

def: Pat<(i64 (and I64:$Rs, I64:$Rt)), (A2_andp I64:$Rs, I64:$Rt)>;
def: Pat<(i64 (or  I64:$Rs, I64:$Rt)), (A2_orp  I64:$Rs, I64:$Rt)>;
def: Pat<(i64 (xor I64:$Rs, I64:$Rt)), (A2_xorp I64:$Rs, I64:$Rt)>;

def: Pat<(i1 (not I1:$Ps)), (C2_not PredRegs:$Ps)>;

def: Pat<(i1 (and I1:$Ps, I1:$Pt)),       (C2_and  I1:$Ps, I1:$Pt)>;
def: Pat<(i1 (or  I1:$Ps, I1:$Pt)),       (C2_or   I1:$Ps, I1:$Pt)>;
def: Pat<(i1 (xor I1:$Ps, I1:$Pt)),       (C2_xor  I1:$Ps, I1:$Pt)>;
def: Pat<(i1 (and I1:$Ps, (not I1:$Pt))), (C2_andn I1:$Ps, I1:$Pt)>;
def: Pat<(i1 (or  I1:$Ps, (not I1:$Pt))), (C2_orn  I1:$Ps, I1:$Pt)>;

def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone,
                     [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, [SDNPHasChain]>;

def: Pat<(br bb:$dst),                  (J2_jump b30_2Imm:$dst)>;
def: Pat<(brcond I1:$src1, bb:$block),  (J2_jumpt PredRegs:$src1, bb:$block)>;
def: Pat<(brind I32:$dst),              (J2_jumpr IntRegs:$dst)>;

def: Pat<(retflag),   (PS_jmpret (i32 R31))>;
def: Pat<(eh_return), (EH_RETURN_JMPR (i32 R31))>;

// Patterns to select load-indexed (i.e. load from base+offset).
multiclass Loadx_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
                     InstHexagon MI> {
  def: Pat<(VT (Load AddrFI:$fi)), (VT (MI AddrFI:$fi, 0))>;
  def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
           (VT (MI AddrFI:$fi, imm:$Off))>;
  def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))),
           (VT (MI AddrFI:$fi, imm:$Off))>;
  def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))),
           (VT (MI IntRegs:$Rs, imm:$Off))>;
  def: Pat<(VT (Load I32:$Rs)), (VT (MI IntRegs:$Rs, 0))>;
}

let AddedComplexity = 20 in {
  defm: Loadx_pat<load,           i32, s30_2ImmPred, L2_loadri_io>;
  defm: Loadx_pat<load,           i64, s29_3ImmPred, L2_loadrd_io>;
  defm: Loadx_pat<atomic_load_8 , i32, s32_0ImmPred, L2_loadrub_io>;
  defm: Loadx_pat<atomic_load_16, i32, s31_1ImmPred, L2_loadruh_io>;
  defm: Loadx_pat<atomic_load_32, i32, s30_2ImmPred, L2_loadri_io>;
  defm: Loadx_pat<atomic_load_64, i64, s29_3ImmPred, L2_loadrd_io>;

  defm: Loadx_pat<extloadi1,      i32, s32_0ImmPred, L2_loadrub_io>;
  defm: Loadx_pat<extloadi8,      i32, s32_0ImmPred, L2_loadrub_io>;
  defm: Loadx_pat<extloadi16,     i32, s31_1ImmPred, L2_loadruh_io>;
  defm: Loadx_pat<sextloadi8,     i32, s32_0ImmPred, L2_loadrb_io>;
  defm: Loadx_pat<sextloadi16,    i32, s31_1ImmPred, L2_loadrh_io>;
  defm: Loadx_pat<zextloadi1,     i32, s32_0ImmPred, L2_loadrub_io>;
  defm: Loadx_pat<zextloadi8,     i32, s32_0ImmPred, L2_loadrub_io>;
  defm: Loadx_pat<zextloadi16,    i32, s31_1ImmPred, L2_loadruh_io>;
  // No sextloadi1.
}

// Sign-extending loads of i1 need to replicate the lowest bit throughout
// the 32-bit value. Since the loaded value can only be 0 or 1, 0-v should
// do the trick.
let AddedComplexity = 20 in
def: Pat<(i32 (sextloadi1 I32:$Rs)),
         (A2_subri 0, (L2_loadrub_io IntRegs:$Rs, 0))>;

def: Pat<(i32 (mul   I32:$src1, I32:$src2)), (M2_mpyi    I32:$src1, I32:$src2)>;
def: Pat<(i32 (mulhs I32:$src1, I32:$src2)), (M2_mpy_up  I32:$src1, I32:$src2)>;
def: Pat<(i32 (mulhu I32:$src1, I32:$src2)), (M2_mpyu_up I32:$src1, I32:$src2)>;

def: Pat<(mul IntRegs:$Rs, u32_0ImmPred:$u8),
         (M2_mpysip IntRegs:$Rs, imm:$u8)>;
def: Pat<(ineg (mul IntRegs:$Rs, u8_0ImmPred:$u8)),
         (M2_mpysin IntRegs:$Rs, imm:$u8)>;
def: Pat<(mul IntRegs:$src1, s32_0ImmPred:$src2),
         (M2_mpysmi IntRegs:$src1, imm:$src2)>;
def: Pat<(add (mul IntRegs:$src2, u32_0ImmPred:$src3), IntRegs:$src1),
         (M2_macsip IntRegs:$src1, IntRegs:$src2, imm:$src3)>;
def: Pat<(add (mul I32:$src2, I32:$src3), I32:$src1),
         (M2_maci IntRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
def: Pat<(add (add IntRegs:$src2, s32_0ImmPred:$src3), IntRegs:$src1),
         (M2_accii IntRegs:$src1, IntRegs:$src2, imm:$src3)>;
def: Pat<(add (add I32:$src2, I32:$src3), I32:$src1),
         (M2_acci IntRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;

class T_MType_acc_pat1 <InstHexagon MI, SDNode firstOp, SDNode secOp,
                        PatLeaf ImmPred>
  : Pat <(secOp IntRegs:$src1, (firstOp IntRegs:$src2, ImmPred:$src3)),
         (MI IntRegs:$src1, IntRegs:$src2, ImmPred:$src3)>;

class T_MType_acc_pat2 <InstHexagon MI, SDNode firstOp, SDNode secOp>
  : Pat <(i32 (secOp IntRegs:$src1, (firstOp IntRegs:$src2, IntRegs:$src3))),
         (MI IntRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;

def : T_MType_acc_pat2 <M2_xor_xacc, xor, xor>;
def : T_MType_acc_pat1 <M2_macsin, mul, sub, u32_0ImmPred>;

def : T_MType_acc_pat1 <M2_naccii, add, sub, s32_0ImmPred>;
def : T_MType_acc_pat2 <M2_nacci, add, sub>;

def: T_MType_acc_pat2 <M4_or_xor, xor, or>;
def: T_MType_acc_pat2 <M4_and_xor, xor, and>;
def: T_MType_acc_pat2 <M4_or_and, and, or>;
def: T_MType_acc_pat2 <M4_and_and, and, and>;
def: T_MType_acc_pat2 <M4_xor_and, and, xor>;
def: T_MType_acc_pat2 <M4_or_or, or, or>;
def: T_MType_acc_pat2 <M4_and_or, or, and>;
def: T_MType_acc_pat2 <M4_xor_or, or, xor>;

class T_MType_acc_pat3 <InstHexagon MI, SDNode firstOp, SDNode secOp>
  : Pat <(secOp I32:$src1, (firstOp I32:$src2, (not I32:$src3))),
         (MI IntRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;

def: T_MType_acc_pat3 <M4_or_andn, and, or>;
def: T_MType_acc_pat3 <M4_and_andn, and, and>;
def: T_MType_acc_pat3 <M4_xor_andn, and, xor>;

// This complex pattern is really only to detect various forms of
// sign-extension i32->i64. The selected value will be of type i64
// whose low word is the value being extended. The high word is
// unspecified.
def Usxtw : ComplexPattern<i64, 1, "DetectUseSxtw", [], []>;

def Aext64: PatFrag<(ops node:$Rs), (i64 (anyext node:$Rs))>;
def Zext64: PatFrag<(ops node:$Rs), (i64 (zext node:$Rs))>;
def Sext64: PatLeaf<(i64 Usxtw:$Rs)>;

def: Pat<(i32 (trunc (sra (mul Sext64:$Rs, Sext64:$Rt), (i32 32)))),
         (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
def: Pat<(i32 (trunc (srl (mul Sext64:$Rs, Sext64:$Rt), (i32 32)))),
         (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;

def: Pat<(mul (Aext64 I32:$Rs), (Aext64 I32:$Rt)),
         (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>;

def: Pat<(mul Sext64:$Rs, Sext64:$Rt),
         (M2_dpmpyss_s0 (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;

// Multiply and accumulate, use full result.
// Rxx[+-]=mpy(Rs,Rt)

def: Pat<(add I64:$Rx, (mul Sext64:$Rs, Sext64:$Rt)),
         (M2_dpmpyss_acc_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;

def: Pat<(sub I64:$Rx, (mul Sext64:$Rs, Sext64:$Rt)),
         (M2_dpmpyss_nac_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;

def: Pat<(add I64:$Rx, (mul (Aext64 I32:$Rs), (Aext64 I32:$Rt))),
         (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;

def: Pat<(add I64:$Rx, (mul (Zext64 I32:$Rs), (Zext64 I32:$Rt))),
         (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;

def: Pat<(sub I64:$Rx, (mul (Aext64 I32:$Rs), (Aext64 I32:$Rt))),
         (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;

def: Pat<(sub I64:$Rx, (mul (Zext64 I32:$Rs), (Zext64 I32:$Rt))),
         (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;

class Storepi_pat<PatFrag Store, PatFrag Value, PatFrag Offset,
                  InstHexagon MI>
  : Pat<(Store Value:$src1, I32:$src2, Offset:$offset),
        (MI I32:$src2, imm:$offset, Value:$src1)>;

def: Storepi_pat<post_truncsti8,  I32, s4_0ImmPred, S2_storerb_pi>;
def: Storepi_pat<post_truncsti16, I32, s4_1ImmPred, S2_storerh_pi>;
def: Storepi_pat<post_store,      I32, s4_2ImmPred, S2_storeri_pi>;
def: Storepi_pat<post_store,      I64, s4_3ImmPred, S2_storerd_pi>;

// Patterns for generating stores, where the address takes different forms:
// - frameindex,
// - frameindex + offset,
// - base + offset,
// - simple (base address without offset).
// These would usually be used together (via Storex_pat defined below), but
// in some cases one may want to apply different properties (such as
// AddedComplexity) to the individual patterns.
class Storex_fi_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
  : Pat<(Store Value:$Rs, AddrFI:$fi), (MI AddrFI:$fi, 0, Value:$Rs)>;
multiclass Storex_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
                             InstHexagon MI> {
  def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
           (MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
  def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)),
           (MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
}
multiclass Storex_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
                          InstHexagon MI> {
  def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)),
           (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
  def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)),
           (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
}
class Storex_simple_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
  : Pat<(Store Value:$Rt, I32:$Rs),
        (MI IntRegs:$Rs, 0, Value:$Rt)>;

// Patterns for generating stores, where the address takes different forms,
// and where the value being stored is transformed through the value modifier
// ValueMod.  The address forms are same as above.
class Storexm_fi_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
                     InstHexagon MI>
  : Pat<(Store Value:$Rs, AddrFI:$fi),
        (MI AddrFI:$fi, 0, (ValueMod Value:$Rs))>;
multiclass Storexm_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
                              PatFrag ValueMod, InstHexagon MI> {
  def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
           (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
  def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)),
           (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
}
multiclass Storexm_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
                           PatFrag ValueMod, InstHexagon MI> {
  def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)),
           (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
  def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)),
           (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
}
class Storexm_simple_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
                         InstHexagon MI>
  : Pat<(Store Value:$Rt, I32:$Rs),
        (MI IntRegs:$Rs, 0, (ValueMod Value:$Rt))>;

multiclass Storex_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
                      InstHexagon MI> {
  def:  Storex_fi_pat     <Store, Value,          MI>;
  defm: Storex_fi_add_pat <Store, Value, ImmPred, MI>;
  defm: Storex_add_pat    <Store, Value, ImmPred, MI>;
}

multiclass Storexm_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
                       PatFrag ValueMod, InstHexagon MI> {
  def:  Storexm_fi_pat     <Store, Value,          ValueMod, MI>;
  defm: Storexm_fi_add_pat <Store, Value, ImmPred, ValueMod, MI>;
  defm: Storexm_add_pat    <Store, Value, ImmPred, ValueMod, MI>;
}

// Regular stores in the DAG have two operands: value and address.
// Atomic stores also have two, but they are reversed: address, value.
// To use atomic stores with the patterns, they need to have their operands
// swapped. This relies on the knowledge that the F.Fragment uses names
// "ptr" and "val".
class SwapSt<PatFrag F>
  : PatFrag<(ops node:$val, node:$ptr), F.Fragment, F.PredicateCode,
            F.OperandTransform>;

let AddedComplexity = 20 in {
  defm: Storex_pat<truncstorei8,    I32, s32_0ImmPred, S2_storerb_io>;
  defm: Storex_pat<truncstorei16,   I32, s31_1ImmPred, S2_storerh_io>;
  defm: Storex_pat<store,           I32, s30_2ImmPred, S2_storeri_io>;
  defm: Storex_pat<store,           I64, s29_3ImmPred, S2_storerd_io>;

  defm: Storex_pat<SwapSt<atomic_store_8>,  I32, s32_0ImmPred, S2_storerb_io>;
  defm: Storex_pat<SwapSt<atomic_store_16>, I32, s31_1ImmPred, S2_storerh_io>;
  defm: Storex_pat<SwapSt<atomic_store_32>, I32, s30_2ImmPred, S2_storeri_io>;
  defm: Storex_pat<SwapSt<atomic_store_64>, I64, s29_3ImmPred, S2_storerd_io>;
}

// Simple patterns should be tried with the least priority.
def: Storex_simple_pat<truncstorei8,    I32, S2_storerb_io>;
def: Storex_simple_pat<truncstorei16,   I32, S2_storerh_io>;
def: Storex_simple_pat<store,           I32, S2_storeri_io>;
def: Storex_simple_pat<store,           I64, S2_storerd_io>;

def: Storex_simple_pat<SwapSt<atomic_store_8>,  I32, S2_storerb_io>;
def: Storex_simple_pat<SwapSt<atomic_store_16>, I32, S2_storerh_io>;
def: Storex_simple_pat<SwapSt<atomic_store_32>, I32, S2_storeri_io>;
def: Storex_simple_pat<SwapSt<atomic_store_64>, I64, S2_storerd_io>;

let AddedComplexity = 20 in {
  defm: Storexm_pat<truncstorei8,  I64, s32_0ImmPred, LoReg, S2_storerb_io>;
  defm: Storexm_pat<truncstorei16, I64, s31_1ImmPred, LoReg, S2_storerh_io>;
  defm: Storexm_pat<truncstorei32, I64, s30_2ImmPred, LoReg, S2_storeri_io>;
}

def: Storexm_simple_pat<truncstorei8,  I64, LoReg, S2_storerb_io>;
def: Storexm_simple_pat<truncstorei16, I64, LoReg, S2_storerh_io>;
def: Storexm_simple_pat<truncstorei32, I64, LoReg, S2_storeri_io>;

def: Pat <(i64 (sext I32:$src)),            (A2_sxtw I32:$src)>;
def: Pat <(i64 (sext_inreg I64:$src, i32)), (A2_sxtw (LoReg I64:$src))>;

def: Pat<(select (i1 (setlt I32:$src, 0)), (sub 0, I32:$src), I32:$src),
         (A2_abs IntRegs:$src)>;

let AddedComplexity = 50 in
def: Pat<(xor (add (sra I32:$src, (i32 31)),
                   I32:$src),
              (sra I32:$src, (i32 31))),
         (A2_abs IntRegs:$src)>;

def: Pat<(sra I32:$src, u5_0ImmPred:$u5),
         (S2_asr_i_r IntRegs:$src, imm:$u5)>;
def: Pat<(srl I32:$src, u5_0ImmPred:$u5),
         (S2_lsr_i_r IntRegs:$src, imm:$u5)>;
def: Pat<(shl I32:$src, u5_0ImmPred:$u5),
         (S2_asl_i_r IntRegs:$src, imm:$u5)>;

def: Pat<(sra (add (sra I32:$src1, u5_0ImmPred:$src2), 1), (i32 1)),
         (S2_asr_i_r_rnd IntRegs:$src1, u5_0ImmPred:$src2)>;

def : Pat<(not I64:$src1),
          (A2_notp DoubleRegs:$src1)>;

// Count leading zeros.
def: Pat<(ctlz I32:$Rs), (S2_cl0 I32:$Rs)>;
def: Pat<(i32 (trunc (ctlz I64:$Rss))), (S2_cl0p I64:$Rss)>;

// Count trailing zeros: 32-bit.
def: Pat<(cttz I32:$Rs), (S2_ct0 I32:$Rs)>;

// Count leading ones.
def: Pat<(ctlz (not I32:$Rs)), (S2_cl1 I32:$Rs)>;
def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>;

// Count trailing ones: 32-bit.
def: Pat<(cttz (not I32:$Rs)), (S2_ct1 I32:$Rs)>;

let AddedComplexity = 20 in { // Complexity greater than and/or/xor
  def: Pat<(and I32:$Rs, IsNPow2_32:$V),
           (S2_clrbit_i IntRegs:$Rs, (LogN2_32 $V))>;
  def: Pat<(or I32:$Rs, IsPow2_32:$V),
           (S2_setbit_i IntRegs:$Rs, (Log2_32 $V))>;
  def: Pat<(xor I32:$Rs, IsPow2_32:$V),
           (S2_togglebit_i IntRegs:$Rs, (Log2_32 $V))>;

  def: Pat<(and I32:$Rs, (not (shl 1, I32:$Rt))),
           (S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>;
  def: Pat<(or I32:$Rs, (shl 1, I32:$Rt)),
           (S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>;
  def: Pat<(xor I32:$Rs, (shl 1, I32:$Rt)),
           (S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>;
}

// Clr/set/toggle bit for 64-bit values with immediate bit index.
let AddedComplexity = 20 in { // Complexity greater than and/or/xor
  def: Pat<(and I64:$Rss, IsNPow2_64L:$V),
           (REG_SEQUENCE DoubleRegs,
                (i32 (HiReg $Rss)), isub_hi,
                (S2_clrbit_i (LoReg $Rss), (LogN2_64 $V)), isub_lo)>;
  def: Pat<(and I64:$Rss, IsNPow2_64H:$V),
           (REG_SEQUENCE DoubleRegs,
                (S2_clrbit_i (HiReg $Rss), (UDEC32 (i32 (LogN2_64 $V)))),
                isub_hi,
                (i32 (LoReg $Rss)), isub_lo)>;

  def: Pat<(or I64:$Rss, IsPow2_64L:$V),
           (REG_SEQUENCE DoubleRegs,
                (i32 (HiReg $Rss)), isub_hi,
                (S2_setbit_i (LoReg $Rss), (Log2_64 $V)), isub_lo)>;
  def: Pat<(or I64:$Rss, IsPow2_64H:$V),
           (REG_SEQUENCE DoubleRegs,
                (S2_setbit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
                isub_hi,
                (i32 (LoReg $Rss)), isub_lo)>;

  def: Pat<(xor I64:$Rss, IsPow2_64L:$V),
           (REG_SEQUENCE DoubleRegs,
                (i32 (HiReg $Rss)), isub_hi,
                (S2_togglebit_i (LoReg $Rss), (Log2_64 $V)), isub_lo)>;
  def: Pat<(xor I64:$Rss, IsPow2_64H:$V),
           (REG_SEQUENCE DoubleRegs,
                (S2_togglebit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
                isub_hi,
                (i32 (LoReg $Rss)), isub_lo)>;
}

let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm.
  def: Pat<(i1 (setne (and (shl 1, u5_0ImmPred:$u5), I32:$Rs), 0)),
           (S2_tstbit_i IntRegs:$Rs, u5_0ImmPred:$u5)>;
  def: Pat<(i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)),
           (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt)>;
  def: Pat<(i1 (trunc I32:$Rs)),
           (S2_tstbit_i IntRegs:$Rs, 0)>;
  def: Pat<(i1 (trunc I64:$Rs)),
           (S2_tstbit_i (LoReg DoubleRegs:$Rs), 0)>;
}

let AddedComplexity = 20 in { // Complexity greater than compare reg-imm.
  def: Pat<(i1 (seteq (and I32:$Rs, u6_0ImmPred:$u6), 0)),
           (C2_bitsclri IntRegs:$Rs, u6_0ImmPred:$u6)>;
  def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), 0)),
           (C2_bitsclr IntRegs:$Rs, IntRegs:$Rt)>;
}

let AddedComplexity = 10 in   // Complexity greater than compare reg-reg.
def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), IntRegs:$Rt)),
         (C2_bitsset IntRegs:$Rs, IntRegs:$Rt)>;

def: Pat<(or (or (shl (or (shl (i32 (extloadi8 (add I32:$b, 3))),
                               (i32 8)),
                          (i32 (zextloadi8 (add I32:$b, 2)))),
                      (i32 16)),
                 (shl (i32 (zextloadi8 (add I32:$b, 1))), (i32 8))),
             (zextloadi8 I32:$b)),
         (A2_swiz (L2_loadri_io IntRegs:$b, 0))>;

// Patterns for loads of i1:
def: Pat<(i1 (load AddrFI:$fi)),
         (C2_tfrrp (L2_loadrub_io AddrFI:$fi, 0))>;
def: Pat<(i1 (load (add I32:$Rs, s32_0ImmPred:$Off))),
         (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, imm:$Off))>;
def: Pat<(i1 (load I32:$Rs)),
         (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, 0))>;

def I1toI32: OutPatFrag<(ops node:$Rs),
                        (C2_muxii (i1 $Rs), 1, 0)>;

def I32toI1: OutPatFrag<(ops node:$Rs),
                        (i1 (C2_tfrrp (i32 $Rs)))>;

defm: Storexm_pat<store, I1, s32_0ImmPred, I1toI32, S2_storerb_io>;
def: Storexm_simple_pat<store, I1, I1toI32, S2_storerb_io>;

def: Pat<(sra (add (sra I64:$src, u6_0ImmPred:$u6), 1), (i32 1)),
         (S2_asr_i_p_rnd DoubleRegs:$src, imm:$u6)>, Requires<[HasV5T]>;
def: Pat<(sra I64:$src, u6_0ImmPred:$u6),
         (S2_asr_i_p DoubleRegs:$src, imm:$u6)>;
def: Pat<(srl I64:$src, u6_0ImmPred:$u6),
         (S2_lsr_i_p DoubleRegs:$src, imm:$u6)>;
def: Pat<(shl I64:$src, u6_0ImmPred:$u6),
         (S2_asl_i_p DoubleRegs:$src, imm:$u6)>;

let AddedComplexity = 100 in
def: Pat<(add I32:$Rt, (shl I32:$Rs, u3_0ImmPred:$u3)),
         (S2_addasl_rrri IntRegs:$Rt, IntRegs:$Rs, imm:$u3)>;

def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDTNone, [SDNPHasChain]>;
def: Pat<(HexagonBARRIER), (Y2_barrier)>;

def: Pat<(IsOrAdd (i32 AddrFI:$Rs), s32_0ImmPred:$off),
         (PS_fi (i32 AddrFI:$Rs), s32_0ImmPred:$off)>;


// Support for generating global address.
// Taken from X86InstrInfo.td.
def SDTHexagonCONST32 : SDTypeProfile<1, 1, [SDTCisVT<0, i32>,
                                             SDTCisVT<1, i32>,
                                             SDTCisPtrTy<0>]>;
def HexagonCONST32    : SDNode<"HexagonISD::CONST32",    SDTHexagonCONST32>;
def HexagonCONST32_GP : SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>;

// Map TLS addressses to A2_tfrsi.
def: Pat<(HexagonCONST32 tglobaltlsaddr:$addr), (A2_tfrsi s32_0Imm:$addr)>;
def: Pat<(HexagonCONST32 bbl:$label),           (A2_tfrsi s32_0Imm:$label)>;

def: Pat<(i64 imm:$v), (CONST64 imm:$v)>;
def: Pat<(i1 0), (PS_false)>;
def: Pat<(i1 1), (PS_true)>;

// Pseudo instructions.
def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>,
                                          SDTCisVT<1, i32> ]>;
def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
                                        SDTCisVT<1, i32> ]>;

def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
                    [SDNPHasChain, SDNPOutGlue]>;
def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
                    [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;

def SDT_SPCall  : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;

// For tailcalls a HexagonTCRet SDNode has 3 SDNode Properties - a chain,
// Optional Flag and Variable Arguments.
// Its 1 Operand has pointer type.
def HexagonTCRet : SDNode<"HexagonISD::TC_RETURN", SDT_SPCall,
                          [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;


def: Pat<(callseq_start timm:$amt, timm:$amt2),
          (ADJCALLSTACKDOWN imm:$amt, imm:$amt2)>;
def: Pat<(callseq_end timm:$amt1, timm:$amt2),
         (ADJCALLSTACKUP imm:$amt1, imm:$amt2)>;

//Tail calls.
def: Pat<(HexagonTCRet tglobaladdr:$dst),
         (PS_tailcall_i tglobaladdr:$dst)>;
def: Pat<(HexagonTCRet texternalsym:$dst),
         (PS_tailcall_i texternalsym:$dst)>;
def: Pat<(HexagonTCRet I32:$dst),
         (PS_tailcall_r I32:$dst)>;

// Map from r0 = and(r1, 65535) to r0 = zxth(r1)
def: Pat<(and I32:$src1, 65535),
         (A2_zxth IntRegs:$src1)>;

// Map from r0 = and(r1, 255) to r0 = zxtb(r1).
def: Pat<(and I32:$src1, 255),
         (A2_zxtb IntRegs:$src1)>;

// Map Add(p1, true) to p1 = not(p1).
//     Add(p1, false) should never be produced,
//     if it does, it got to be mapped to NOOP.
def: Pat<(add I1:$src1, -1),
         (C2_not PredRegs:$src1)>;

// Map from p0 = pnot(p0); r0 = mux(p0, #i, #j) => r0 = mux(p0, #j, #i).
def: Pat<(select (not I1:$src1), s8_0ImmPred:$src2, s32_0ImmPred:$src3),
         (C2_muxii PredRegs:$src1, s32_0ImmPred:$src3, s8_0ImmPred:$src2)>;

// Map from p0 = pnot(p0); r0 = select(p0, #i, r1)
// => r0 = C2_muxir(p0, r1, #i)
def: Pat<(select (not I1:$src1), s32_0ImmPred:$src2,
                 I32:$src3),
         (C2_muxir PredRegs:$src1, IntRegs:$src3, s32_0ImmPred:$src2)>;

// Map from p0 = pnot(p0); r0 = mux(p0, r1, #i)
// => r0 = C2_muxri (p0, #i, r1)
def: Pat<(select (not I1:$src1), IntRegs:$src2, s32_0ImmPred:$src3),
         (C2_muxri PredRegs:$src1, s32_0ImmPred:$src3, IntRegs:$src2)>;

// Map from p0 = pnot(p0); if (p0) jump => if (!p0) jump.
def: Pat<(brcond (not I1:$src1), bb:$offset),
         (J2_jumpf PredRegs:$src1, bb:$offset)>;

// Map from Rdd = sign_extend_inreg(Rss, i32) -> Rdd = A2_sxtw(Rss.lo).
def: Pat<(i64 (sext_inreg I64:$src1, i32)),
         (A2_sxtw (LoReg DoubleRegs:$src1))>;

// Map from Rdd = sign_extend_inreg(Rss, i16) -> Rdd = A2_sxtw(A2_sxth(Rss.lo)).
def: Pat<(i64 (sext_inreg I64:$src1, i16)),
         (A2_sxtw (A2_sxth (LoReg DoubleRegs:$src1)))>;

// Map from Rdd = sign_extend_inreg(Rss, i8) -> Rdd = A2_sxtw(A2_sxtb(Rss.lo)).
def: Pat<(i64 (sext_inreg I64:$src1, i8)),
         (A2_sxtw (A2_sxtb (LoReg DoubleRegs:$src1)))>;

def: Pat<(brcond (i1 (setne I32:$Rs, I32:$Rt)), bb:$offset),
         (J2_jumpf (C2_cmpeq I32:$Rs, I32:$Rt), bb:$offset)>;
def: Pat<(brcond (i1 (setne I32:$Rs, s10_0ImmPred:$s10)), bb:$offset),
         (J2_jumpf (C2_cmpeqi I32:$Rs, imm:$s10), bb:$offset)>;
def: Pat<(brcond (i1 (setne I1:$Pu, (i1 -1))), bb:$offset),
         (J2_jumpf PredRegs:$Pu, bb:$offset)>;
def: Pat<(brcond (i1 (setne I1:$Pu, (i1 0))), bb:$offset),
         (J2_jumpt PredRegs:$Pu, bb:$offset)>;

// cmp.lt(Rs, Imm) -> !cmp.ge(Rs, Imm) -> !cmp.gt(Rs, Imm-1)
def: Pat<(brcond (i1 (setlt I32:$Rs, s8_0ImmPred:$s8)), bb:$offset),
         (J2_jumpf (C2_cmpgti IntRegs:$Rs, (SDEC1 imm:$s8)), bb:$offset)>;


// Map from a 64-bit select to an emulated 64-bit mux.
// Hexagon does not support 64-bit MUXes; so emulate with combines.
def: Pat<(select I1:$src1, I64:$src2,
                 I64:$src3),
         (A2_combinew (C2_mux PredRegs:$src1, (HiReg DoubleRegs:$src2),
                                              (HiReg DoubleRegs:$src3)),
                      (C2_mux PredRegs:$src1, (LoReg DoubleRegs:$src2),
                                              (LoReg DoubleRegs:$src3)))>;

// Map from a 1-bit select to logical ops.
// From LegalizeDAG.cpp: (B1 ? B2 : B3) <=> (B1 & B2)|(!B1&B3).
def: Pat<(select I1:$src1, I1:$src2, I1:$src3),
         (C2_or (C2_and PredRegs:$src1, PredRegs:$src2),
                (C2_and (C2_not PredRegs:$src1), PredRegs:$src3))>;

// Map for truncating from 64 immediates to 32 bit immediates.
def: Pat<(i32 (trunc I64:$src)),
         (LoReg DoubleRegs:$src)>;

// Map for truncating from i64 immediates to i1 bit immediates.
def: Pat<(i1 (trunc I64:$src)),
         (C2_tfrrp (LoReg DoubleRegs:$src))>;

// rs <= rt -> !(rs > rt).
let AddedComplexity = 30 in
def: Pat<(i1 (setle I32:$src1, s32_0ImmPred:$src2)),
         (C2_not (C2_cmpgti IntRegs:$src1, s32_0ImmPred:$src2))>;

// rs <= rt -> !(rs > rt).
def : Pat<(i1 (setle I32:$src1, I32:$src2)),
      (i1 (C2_not (C2_cmpgt I32:$src1, I32:$src2)))>;

// Rss <= Rtt -> !(Rss > Rtt).
def: Pat<(i1 (setle I64:$src1, I64:$src2)),
         (C2_not (C2_cmpgtp DoubleRegs:$src1, DoubleRegs:$src2))>;

// Map cmpne -> cmpeq.
// Hexagon_TODO: We should improve on this.
// rs != rt -> !(rs == rt).
let AddedComplexity = 30 in
def: Pat<(i1 (setne I32:$src1, s32_0ImmPred:$src2)),
         (C2_not (C2_cmpeqi IntRegs:$src1, s32_0ImmPred:$src2))>;

// Convert setne back to xor for hexagon since we compute w/ pred registers.
def: Pat<(i1 (setne I1:$src1, I1:$src2)),
         (C2_xor PredRegs:$src1, PredRegs:$src2)>;

// Map cmpne(Rss) -> !cmpew(Rss).
// rs != rt -> !(rs == rt).
def: Pat<(i1 (setne I64:$src1, I64:$src2)),
         (C2_not (C2_cmpeqp DoubleRegs:$src1, DoubleRegs:$src2))>;

// rs >= rt -> rt <= rs
def: Pat<(i1 (setge I32:$Rs, I32:$Rt)),
         (C4_cmplte I32:$Rt, I32:$Rs)>;

let AddedComplexity = 30 in
def: Pat<(i1 (setge I32:$Rs, s32_0ImmPred:$s10)),
         (C2_cmpgti IntRegs:$Rs, (SDEC1 imm:$s10))>;

// Map cmpge(Rss, Rtt) -> !cmpgt(Rtt, Rss).
// rss >= rtt -> !(rtt > rss).
def: Pat<(i1 (setge I64:$src1, I64:$src2)),
         (C2_not (C2_cmpgtp DoubleRegs:$src2, DoubleRegs:$src1))>;

// Map cmplt(Rs, Imm) -> !cmpge(Rs, Imm).
// !cmpge(Rs, Imm) -> !cmpgt(Rs, Imm-1).
// rs < rt -> !(rs >= rt).
let AddedComplexity = 30 in
def: Pat<(i1 (setlt I32:$src1, s32_0ImmPred:$src2)),
         (C2_not (C2_cmpgti IntRegs:$src1, (SDEC1 s32_0ImmPred:$src2)))>;

// Generate cmpgeu(Rs, #0) -> cmpeq(Rs, Rs)
def: Pat<(i1 (setuge I32:$src1, 0)),
         (C2_cmpeq IntRegs:$src1, IntRegs:$src1)>;

// Generate cmpgeu(Rs, #u8) -> cmpgtu(Rs, #u8 -1)
def: Pat<(i1 (setuge I32:$src1, u32_0ImmPred:$src2)),
         (C2_cmpgtui IntRegs:$src1, (UDEC1 u32_0ImmPred:$src2))>;

// Generate cmpgtu(Rs, #u9)
def: Pat<(i1 (setugt I32:$src1, u32_0ImmPred:$src2)),
         (C2_cmpgtui IntRegs:$src1, u32_0ImmPred:$src2)>;

// Map from Rs >= Rt -> !(Rt > Rs).
// rs >= rt -> !(rt > rs).
def: Pat<(i1 (setuge I64:$src1, I64:$src2)),
         (C2_not (C2_cmpgtup DoubleRegs:$src2, DoubleRegs:$src1))>;

// Map from cmpleu(Rss, Rtt) -> !cmpgtu(Rss, Rtt-1).
// Map from (Rs <= Rt) -> !(Rs > Rt).
def: Pat<(i1 (setule I64:$src1, I64:$src2)),
         (C2_not (C2_cmpgtup DoubleRegs:$src1, DoubleRegs:$src2))>;

// Sign extends.
// sext i1->i32
def: Pat<(i32 (sext I1:$Pu)),
         (C2_muxii I1:$Pu, -1, 0)>;

// sext i1->i64
def: Pat<(i64 (sext I1:$Pu)),
         (A2_combinew (C2_muxii PredRegs:$Pu, -1, 0),
                      (C2_muxii PredRegs:$Pu, -1, 0))>;

// Zero extends.
// zext i1->i32
def: Pat<(i32 (zext I1:$Pu)),
         (C2_muxii PredRegs:$Pu, 1, 0)>;

// zext i1->i64
def: Pat<(i64 (zext I1:$Pu)),
         (ToZext64 (C2_muxii PredRegs:$Pu, 1, 0))>;

// zext i32->i64
def: Pat<(Zext64 I32:$Rs),
         (ToZext64 IntRegs:$Rs)>;

// Map from Rs = Pd to Pd = mux(Pd, #1, #0)
def: Pat<(i32 (anyext I1:$Pu)),
         (C2_muxii PredRegs:$Pu, 1, 0)>;

// Map from Rss = Pd to Rdd = combine(#0, (mux(Pd, #1, #0)))
def: Pat<(i64 (anyext I1:$Pu)),
         (ToZext64 (C2_muxii PredRegs:$Pu, 1, 0))>;

// Clear the sign bit in a 64-bit register.
def ClearSign : OutPatFrag<(ops node:$Rss),
  (A2_combinew (S2_clrbit_i (HiReg $Rss), 31), (LoReg $Rss))>;

def MulHU : OutPatFrag<(ops node:$Rss, node:$Rtt),
  (A2_addp
    (M2_dpmpyuu_acc_s0
      (S2_lsr_i_p
        (A2_addp
          (M2_dpmpyuu_acc_s0
            (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)), 32),
            (HiReg $Rss),
            (LoReg $Rtt)),
          (A2_combinew (A2_tfrsi 0),
                       (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt))))),
        32),
      (HiReg $Rss),
      (HiReg $Rtt)),
    (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt)), 32))>;

// Multiply 64-bit unsigned and use upper result.
def : Pat <(mulhu I64:$Rss, I64:$Rtt), (MulHU $Rss, $Rtt)>;

// Multiply 64-bit signed and use upper result.
//
// For two signed 64-bit integers A and B, let A' and B' denote A and B
// with the sign bit cleared. Then A = -2^63*s(A) + A', where s(A) is the
// sign bit of A (and identically for B). With this notation, the signed
// product A*B can be written as:
//   AB = (-2^63 s(A) + A') * (-2^63 s(B) + B')
//      = 2^126 s(A)s(B) - 2^63 [s(A)B'+s(B)A'] + A'B'
//      = 2^126 s(A)s(B) + 2^63 [s(A)B'+s(B)A'] + A'B' - 2*2^63 [s(A)B'+s(B)A']
//      = (unsigned product AB) - 2^64 [s(A)B'+s(B)A']

def : Pat <(mulhs I64:$Rss, I64:$Rtt),
  (A2_subp
    (MulHU $Rss, $Rtt),
    (A2_addp
      (A2_andp (S2_asr_i_p $Rss, 63), (ClearSign $Rtt)),
      (A2_andp (S2_asr_i_p $Rtt, 63), (ClearSign $Rss))))>;

// Hexagon specific ISD nodes.
def SDTHexagonALLOCA : SDTypeProfile<1, 2,
      [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def HexagonALLOCA : SDNode<"HexagonISD::ALLOCA", SDTHexagonALLOCA,
      [SDNPHasChain]>;


def: Pat<(HexagonALLOCA I32:$Rs, (i32 imm:$A)),
         (PS_alloca IntRegs:$Rs, imm:$A)>;

def HexagonJT:     SDNode<"HexagonISD::JT", SDTIntUnaryOp>;
def HexagonCP:     SDNode<"HexagonISD::CP", SDTIntUnaryOp>;

def: Pat<(HexagonJT tjumptable:$dst), (A2_tfrsi imm:$dst)>;
def: Pat<(HexagonCP tconstpool:$dst), (A2_tfrsi imm:$dst)>;

let AddedComplexity = 100 in
def: Pat<(add I32:$src1, (sra I32:$Rs, u5_0ImmPred:$u5)), (S2_asr_i_r_acc IntRegs:$src1, IntRegs:$Rs, u5_0ImmPred:$u5)>;
def: Pat<(sub I32:$src1, (sra I32:$Rs, u5_0ImmPred:$u5)), (S2_asr_i_r_nac IntRegs:$src1, IntRegs:$Rs, u5_0ImmPred:$u5)>;
def: Pat<(and I32:$src1, (sra I32:$Rs, u5_0ImmPred:$u5)), (S2_asr_i_r_and IntRegs:$src1, IntRegs:$Rs, u5_0ImmPred:$u5)>;
def: Pat<(or I32:$src1, (sra I32:$Rs, u5_0ImmPred:$u5)), (S2_asr_i_r_or IntRegs:$src1, IntRegs:$Rs, u5_0ImmPred:$u5)>;

let AddedComplexity = 100 in
def: Pat<(add I64:$src1, (sra I64:$Rs, u6_0ImmPred:$u5)), (S2_asr_i_p_acc DoubleRegs:$src1, DoubleRegs:$Rs, u6_0ImmPred:$u5)>;
def: Pat<(sub I64:$src1, (sra I64:$Rs, u6_0ImmPred:$u5)), (S2_asr_i_p_nac DoubleRegs:$src1, DoubleRegs:$Rs, u6_0ImmPred:$u5)>;
def: Pat<(and I64:$src1, (sra I64:$Rs, u6_0ImmPred:$u5)), (S2_asr_i_p_and DoubleRegs:$src1, DoubleRegs:$Rs, u6_0ImmPred:$u5)>;
def: Pat<(or I64:$src1, (sra I64:$Rs, u6_0ImmPred:$u5)), (S2_asr_i_p_or DoubleRegs:$src1, DoubleRegs:$Rs, u6_0ImmPred:$u5)>;

let AddedComplexity = 100 in
def: Pat<(add I32:$src1, (srl I32:$Rs, u5_0ImmPred:$u5)), (S2_lsr_i_r_acc IntRegs:$src1, IntRegs:$Rs, u5_0ImmPred:$u5)>;
def: Pat<(sub I32:$src1, (srl I32:$Rs, u5_0ImmPred:$u5)), (S2_lsr_i_r_nac IntRegs:$src1, IntRegs:$Rs, u5_0ImmPred:$u5)>;
def: Pat<(and I32:$src1, (srl I32:$Rs, u5_0ImmPred:$u5)), (S2_lsr_i_r_and IntRegs:$src1, IntRegs:$Rs, u5_0ImmPred:$u5)>;
def: Pat<(or I32:$src1, (srl I32:$Rs, u5_0ImmPred:$u5)), (S2_lsr_i_r_or IntRegs:$src1, IntRegs:$Rs, u5_0ImmPred:$u5)>;
let AddedComplexity = 100 in
def: Pat<(xor I32:$src1, (srl I32:$Rs, u5_0ImmPred:$u5)), (S2_lsr_i_r_xacc IntRegs:$src1, IntRegs:$Rs, u5_0ImmPred:$u5)>;

let AddedComplexity = 100 in
def: Pat<(add I64:$src1, (srl I64:$Rs, u6_0ImmPred:$u5)), (S2_lsr_i_p_acc DoubleRegs:$src1, DoubleRegs:$Rs, u6_0ImmPred:$u5)>;
def: Pat<(sub I64:$src1, (srl I64:$Rs, u6_0ImmPred:$u5)), (S2_lsr_i_p_nac DoubleRegs:$src1, DoubleRegs:$Rs, u6_0ImmPred:$u5)>;
def: Pat<(and I64:$src1, (srl I64:$Rs, u6_0ImmPred:$u5)), (S2_lsr_i_p_and DoubleRegs:$src1, DoubleRegs:$Rs, u6_0ImmPred:$u5)>;
def: Pat<(or I64:$src1, (srl I64:$Rs, u6_0ImmPred:$u5)), (S2_lsr_i_p_or DoubleRegs:$src1, DoubleRegs:$Rs, u6_0ImmPred:$u5)>;
let AddedComplexity = 100 in
def: Pat<(xor I64:$src1, (srl I64:$Rs, u6_0ImmPred:$u5)), (S2_lsr_i_p_xacc DoubleRegs:$src1, DoubleRegs:$Rs, u6_0ImmPred:$u5)>;

let AddedComplexity = 100 in
def: Pat<(add I32:$src1, (shl I32:$Rs, u5_0ImmPred:$u5)), (S2_asl_i_r_acc IntRegs:$src1, IntRegs:$Rs, u5_0ImmPred:$u5)>;
def: Pat<(sub I32:$src1, (shl I32:$Rs, u5_0ImmPred:$u5)), (S2_asl_i_r_nac IntRegs:$src1, IntRegs:$Rs, u5_0ImmPred:$u5)>;
def: Pat<(and I32:$src1, (shl I32:$Rs, u5_0ImmPred:$u5)), (S2_asl_i_r_and IntRegs:$src1, IntRegs:$Rs, u5_0ImmPred:$u5)>;
def: Pat<(or I32:$src1, (shl I32:$Rs, u5_0ImmPred:$u5)), (S2_asl_i_r_or IntRegs:$src1, IntRegs:$Rs, u5_0ImmPred:$u5)>;
let AddedComplexity = 100 in
def: Pat<(xor I32:$src1, (shl I32:$Rs, u5_0ImmPred:$u5)), (S2_asl_i_r_xacc IntRegs:$src1, IntRegs:$Rs, u5_0ImmPred:$u5)>;

let AddedComplexity = 100 in
def: Pat<(add I64:$src1, (shl I64:$Rs, u6_0ImmPred:$u5)), (S2_asl_i_p_acc DoubleRegs:$src1, DoubleRegs:$Rs, u6_0ImmPred:$u5)>;
def: Pat<(sub I64:$src1, (shl I64:$Rs, u6_0ImmPred:$u5)), (S2_asl_i_p_nac DoubleRegs:$src1, DoubleRegs:$Rs, u6_0ImmPred:$u5)>;
def: Pat<(and I64:$src1, (shl I64:$Rs, u6_0ImmPred:$u5)), (S2_asl_i_p_and DoubleRegs:$src1, DoubleRegs:$Rs, u6_0ImmPred:$u5)>;
def: Pat<(or I64:$src1, (shl I64:$Rs, u6_0ImmPred:$u5)), (S2_asl_i_p_or DoubleRegs:$src1, DoubleRegs:$Rs, u6_0ImmPred:$u5)>;
let AddedComplexity = 100 in
def: Pat<(xor I64:$src1, (shl I64:$Rs, u6_0ImmPred:$u5)), (S2_asl_i_p_xacc DoubleRegs:$src1, DoubleRegs:$Rs, u6_0ImmPred:$u5)>;

let AddedComplexity = 100 in
def: Pat<(add I32:$src1, (shl I32:$Rs, I32:$Rt)), (S2_asl_r_r_acc IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(sub I32:$src1, (shl I32:$Rs, I32:$Rt)), (S2_asl_r_r_nac IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(and I32:$src1, (shl I32:$Rs, I32:$Rt)), (S2_asl_r_r_and IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(or I32:$src1, (shl I32:$Rs, I32:$Rt)), (S2_asl_r_r_or IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt)>;
let AddedComplexity = 100 in
def: Pat<(add I64:$src1, (shl I64:$Rs, I32:$Rt)), (S2_asl_r_p_acc DoubleRegs:$src1, DoubleRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(sub I64:$src1, (shl I64:$Rs, I32:$Rt)), (S2_asl_r_p_nac DoubleRegs:$src1, DoubleRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(and I64:$src1, (shl I64:$Rs, I32:$Rt)), (S2_asl_r_p_and DoubleRegs:$src1, DoubleRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(or I64:$src1, (shl I64:$Rs, I32:$Rt)), (S2_asl_r_p_or DoubleRegs:$src1, DoubleRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(xor I64:$src1, (shl I64:$Rs, I32:$Rt)), (S2_asl_r_p_xor DoubleRegs:$src1, DoubleRegs:$Rs, IntRegs:$Rt)>;

let AddedComplexity = 100 in
def: Pat<(add I32:$src1, (sra I32:$Rs, I32:$Rt)), (S2_asr_r_r_acc IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(sub I32:$src1, (sra I32:$Rs, I32:$Rt)), (S2_asr_r_r_nac IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(and I32:$src1, (sra I32:$Rs, I32:$Rt)), (S2_asr_r_r_and IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(or I32:$src1, (sra I32:$Rs, I32:$Rt)), (S2_asr_r_r_or IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt)>;
let AddedComplexity = 100 in
def: Pat<(add I64:$src1, (sra I64:$Rs, I32:$Rt)), (S2_asr_r_p_acc DoubleRegs:$src1, DoubleRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(sub I64:$src1, (sra I64:$Rs, I32:$Rt)), (S2_asr_r_p_nac DoubleRegs:$src1, DoubleRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(and I64:$src1, (sra I64:$Rs, I32:$Rt)), (S2_asr_r_p_and DoubleRegs:$src1, DoubleRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(or I64:$src1, (sra I64:$Rs, I32:$Rt)), (S2_asr_r_p_or DoubleRegs:$src1, DoubleRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(xor I64:$src1, (sra I64:$Rs, I32:$Rt)), (S2_asr_r_p_xor DoubleRegs:$src1, DoubleRegs:$Rs, IntRegs:$Rt)>;

let AddedComplexity = 100 in
def: Pat<(add I32:$src1, (srl I32:$Rs, I32:$Rt)), (S2_lsr_r_r_acc IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(sub I32:$src1, (srl I32:$Rs, I32:$Rt)), (S2_lsr_r_r_nac IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(and I32:$src1, (srl I32:$Rs, I32:$Rt)), (S2_lsr_r_r_and IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(or I32:$src1, (srl I32:$Rs, I32:$Rt)), (S2_lsr_r_r_or IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt)>;
let AddedComplexity = 100 in
def: Pat<(add I64:$src1, (srl I64:$Rs, I32:$Rt)), (S2_lsr_r_p_acc DoubleRegs:$src1, DoubleRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(sub I64:$src1, (srl I64:$Rs, I32:$Rt)), (S2_lsr_r_p_nac DoubleRegs:$src1, DoubleRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(and I64:$src1, (srl I64:$Rs, I32:$Rt)), (S2_lsr_r_p_and DoubleRegs:$src1, DoubleRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(or I64:$src1, (srl I64:$Rs, I32:$Rt)), (S2_lsr_r_p_or DoubleRegs:$src1, DoubleRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(xor I64:$src1, (srl I64:$Rs, I32:$Rt)), (S2_lsr_r_p_xor DoubleRegs:$src1, DoubleRegs:$Rs, IntRegs:$Rt)>;

let AddedComplexity = 100 in
def: Pat<(add I32:$src1, (shl I32:$Rs, I32:$Rt)), (S2_lsl_r_r_acc IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(sub I32:$src1, (shl I32:$Rs, I32:$Rt)), (S2_lsl_r_r_nac IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(and I32:$src1, (shl I32:$Rs, I32:$Rt)), (S2_lsl_r_r_and IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(or I32:$src1, (shl I32:$Rs, I32:$Rt)), (S2_lsl_r_r_or IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt)>;
let AddedComplexity = 100 in
def: Pat<(add I64:$src1, (shl I64:$Rs, I32:$Rt)), (S2_lsl_r_p_acc DoubleRegs:$src1, DoubleRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(sub I64:$src1, (shl I64:$Rs, I32:$Rt)), (S2_lsl_r_p_nac DoubleRegs:$src1, DoubleRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(and I64:$src1, (shl I64:$Rs, I32:$Rt)), (S2_lsl_r_p_and DoubleRegs:$src1, DoubleRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(or I64:$src1, (shl I64:$Rs, I32:$Rt)), (S2_lsl_r_p_or DoubleRegs:$src1, DoubleRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(xor I64:$src1, (shl I64:$Rs, I32:$Rt)), (S2_lsl_r_p_xor DoubleRegs:$src1, DoubleRegs:$Rs, IntRegs:$Rt)>;

def: Pat<(sra I64:$src1, I32:$src2), (S2_asr_r_p DoubleRegs:$src1, IntRegs:$src2)>;
def: Pat<(srl I64:$src1, I32:$src2), (S2_lsr_r_p DoubleRegs:$src1, IntRegs:$src2)>;
def: Pat<(shl I64:$src1, I32:$src2), (S2_asl_r_p DoubleRegs:$src1, IntRegs:$src2)>;
def: Pat<(shl I64:$src1, I32:$src2), (S2_lsl_r_p DoubleRegs:$src1, IntRegs:$src2)>;

def: Pat<(sra I32:$src1, I32:$src2), (S2_asr_r_r IntRegs:$src1, IntRegs:$src2)>;
def: Pat<(srl I32:$src1, I32:$src2), (S2_lsr_r_r IntRegs:$src1, IntRegs:$src2)>;
def: Pat<(shl I32:$src1, I32:$src2), (S2_asl_r_r IntRegs:$src1, IntRegs:$src2)>;
def: Pat<(shl I32:$src1, I32:$src2), (S2_lsl_r_r IntRegs:$src1, IntRegs:$src2)>;

def SDTHexagonINSERT:
  SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
                       SDTCisInt<0>, SDTCisVT<3, i32>, SDTCisVT<4, i32>]>;
def SDTHexagonINSERTRP:
  SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
                       SDTCisInt<0>, SDTCisVT<3, i64>]>;

def HexagonINSERT   : SDNode<"HexagonISD::INSERT",   SDTHexagonINSERT>;
def HexagonINSERTRP : SDNode<"HexagonISD::INSERTRP", SDTHexagonINSERTRP>;

def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, u5_0ImmPred:$u1, u5_0ImmPred:$u2),
         (S2_insert I32:$Rs, I32:$Rt, u5_0ImmPred:$u1, u5_0ImmPred:$u2)>;
def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, u6_0ImmPred:$u1, u6_0ImmPred:$u2),
         (S2_insertp I64:$Rs, I64:$Rt, u6_0ImmPred:$u1, u6_0ImmPred:$u2)>;
def: Pat<(HexagonINSERTRP I32:$Rs, I32:$Rt, I64:$Ru),
         (S2_insert_rp I32:$Rs, I32:$Rt, I64:$Ru)>;
def: Pat<(HexagonINSERTRP I64:$Rs, I64:$Rt, I64:$Ru),
         (S2_insertp_rp I64:$Rs, I64:$Rt, I64:$Ru)>;

let AddedComplexity = 100 in
def: Pat<(or (or (shl (HexagonINSERT (i32 (zextloadi8 (add I32:$b, 2))),
                                     (i32 (extloadi8  (add I32:$b, 3))),
                                     24, 8),
                      (i32 16)),
                 (shl (i32 (zextloadi8 (add I32:$b, 1))), (i32 8))),
             (zextloadi8 I32:$b)),
         (A2_swiz (L2_loadri_io I32:$b, 0))>;

def SDTHexagonEXTRACTU:
  SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<1>,
                       SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
def SDTHexagonEXTRACTURP:
  SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<1>,
                       SDTCisVT<2, i64>]>;

def HexagonEXTRACTU   : SDNode<"HexagonISD::EXTRACTU",   SDTHexagonEXTRACTU>;
def HexagonEXTRACTURP : SDNode<"HexagonISD::EXTRACTURP", SDTHexagonEXTRACTURP>;

def: Pat<(HexagonEXTRACTU I32:$src1, u5_0ImmPred:$src2, u5_0ImmPred:$src3),
         (S2_extractu I32:$src1, u5_0ImmPred:$src2, u5_0ImmPred:$src3)>;
def: Pat<(HexagonEXTRACTU I64:$src1, u6_0ImmPred:$src2, u6_0ImmPred:$src3),
         (S2_extractup I64:$src1, u6_0ImmPred:$src2, u6_0ImmPred:$src3)>;
def: Pat<(HexagonEXTRACTURP I32:$src1, I64:$src2),
         (S2_extractu_rp I32:$src1, I64:$src2)>;
def: Pat<(HexagonEXTRACTURP I64:$src1, I64:$src2),
         (S2_extractup_rp I64:$src1, I64:$src2)>;

def n8_0ImmPred: PatLeaf<(i32 imm), [{
  int64_t V = N->getSExtValue();
  return -255 <= V && V <= 0;
}]>;

// Change the sign of the immediate for Rd=-mpyi(Rs,#u8)
def: Pat<(mul I32:$src1, (ineg n8_0ImmPred:$src2)),
         (M2_mpysin IntRegs:$src1, u8_0ImmPred:$src2)>;

multiclass MinMax_pats_p<PatFrag Op, InstHexagon Inst, InstHexagon SwapInst> {
  defm: T_MinMax_pats<Op, I64, Inst, SwapInst>;
}

def: Pat<(add Sext64:$Rs, I64:$Rt),
         (A2_addsp (LoReg Sext64:$Rs), DoubleRegs:$Rt)>;

let AddedComplexity = 200 in {
  defm: MinMax_pats_p<setge,  A2_maxp,  A2_minp>;
  defm: MinMax_pats_p<setgt,  A2_maxp,  A2_minp>;
  defm: MinMax_pats_p<setle,  A2_minp,  A2_maxp>;
  defm: MinMax_pats_p<setlt,  A2_minp,  A2_maxp>;
  defm: MinMax_pats_p<setuge, A2_maxup, A2_minup>;
  defm: MinMax_pats_p<setugt, A2_maxup, A2_minup>;
  defm: MinMax_pats_p<setule, A2_minup, A2_maxup>;
  defm: MinMax_pats_p<setult, A2_minup, A2_maxup>;
}

def callv3 : SDNode<"HexagonISD::CALL", SDT_SPCall,
           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;

def callv3nr : SDNode<"HexagonISD::CALLnr", SDT_SPCall,
           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;


// Map call instruction
def : Pat<(callv3 I32:$dst),
          (J2_callr I32:$dst)>;
def : Pat<(callv3 tglobaladdr:$dst),
          (J2_call tglobaladdr:$dst)>;
def : Pat<(callv3 texternalsym:$dst),
          (J2_call texternalsym:$dst)>;
def : Pat<(callv3 tglobaltlsaddr:$dst),
          (J2_call tglobaltlsaddr:$dst)>;

def : Pat<(callv3nr I32:$dst),
          (PS_callr_nr I32:$dst)>;
def : Pat<(callv3nr tglobaladdr:$dst),
          (PS_call_nr tglobaladdr:$dst)>;
def : Pat<(callv3nr texternalsym:$dst),
          (PS_call_nr texternalsym:$dst)>;


def addrga: PatLeaf<(i32 AddrGA:$Addr)>;
def addrgp: PatLeaf<(i32 AddrGP:$Addr)>;


// Pats for instruction selection.

// A class to embed the usual comparison patfrags within a zext to i32.
// The seteq/setne frags use "lhs" and "rhs" as operands, so use the same
// names, or else the frag's "body" won't match the operands.
class CmpInReg<PatFrag Op>
  : PatFrag<(ops node:$lhs, node:$rhs),(i32 (zext (i1 Op.Fragment)))>;

def: T_cmp32_rr_pat<A4_rcmpeq,  CmpInReg<seteq>, i32>;
def: T_cmp32_rr_pat<A4_rcmpneq, CmpInReg<setne>, i32>;

def: T_cmp32_rr_pat<C4_cmpneq,  setne,  i1>;
def: T_cmp32_rr_pat<C4_cmplte,  setle,  i1>;
def: T_cmp32_rr_pat<C4_cmplteu, setule, i1>;

def: T_cmp32_rr_pat<C4_cmplte,  RevCmp<setge>,  i1>;
def: T_cmp32_rr_pat<C4_cmplteu, RevCmp<setuge>, i1>;

let AddedComplexity = 100 in {
  def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt),
                       255), 0)),
           (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt)>;
  def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt),
                       255), 0)),
           (C2_not (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt))>;
  def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt),
                           65535), 0)),
           (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt)>;
  def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt),
                           65535), 0)),
           (C2_not (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt))>;
}

def: Pat<(i32 (zext (i1 (seteq I32:$Rs, s32_0ImmPred:$s8)))),
         (A4_rcmpeqi IntRegs:$Rs, s32_0ImmPred:$s8)>;
def: Pat<(i32 (zext (i1 (setne I32:$Rs, s32_0ImmPred:$s8)))),
         (A4_rcmpneqi IntRegs:$Rs, s32_0ImmPred:$s8)>;

// Preserve the S2_tstbit_r generation
def: Pat<(i32 (zext (i1 (setne (i32 (and (i32 (shl 1, I32:$src2)),
                                         I32:$src1)), 0)))),
         (C2_muxii (S2_tstbit_r IntRegs:$src1, IntRegs:$src2), 1, 0)>;

// The complexity of the combines involving immediates should be greater
// than the complexity of the combine with two registers.
let AddedComplexity = 50 in {
def: Pat<(HexagonCOMBINE IntRegs:$r, s32_0ImmPred:$i),
         (A4_combineri IntRegs:$r, s32_0ImmPred:$i)>;

def: Pat<(HexagonCOMBINE s32_0ImmPred:$i, IntRegs:$r),
         (A4_combineir s32_0ImmPred:$i, IntRegs:$r)>;
}

// The complexity of the combine with two immediates should be greater than
// the complexity of a combine involving a register.
let AddedComplexity = 75 in {
def: Pat<(HexagonCOMBINE s8_0ImmPred:$s8, u32_0ImmPred:$u6),
         (A4_combineii imm:$s8, imm:$u6)>;
def: Pat<(HexagonCOMBINE s32_0ImmPred:$s8, s8_0ImmPred:$S8),
         (A2_combineii imm:$s8, imm:$S8)>;
}


// Patterns to generate indexed loads with different forms of the address:
// - frameindex,
// - base + offset,
// - base (without offset).
multiclass Loadxm_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
                      PatLeaf ImmPred, InstHexagon MI> {
  def: Pat<(VT (Load AddrFI:$fi)),
           (VT (ValueMod (MI AddrFI:$fi, 0)))>;
  def: Pat<(VT (Load (add AddrFI:$fi, ImmPred:$Off))),
           (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
  def: Pat<(VT (Load (add IntRegs:$Rs, ImmPred:$Off))),
           (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
  def: Pat<(VT (Load I32:$Rs)),
           (VT (ValueMod (MI IntRegs:$Rs, 0)))>;
}

defm: Loadxm_pat<extloadi1,   i64, ToZext64, s32_0ImmPred, L2_loadrub_io>;
defm: Loadxm_pat<extloadi8,   i64, ToZext64, s32_0ImmPred, L2_loadrub_io>;
defm: Loadxm_pat<extloadi16,  i64, ToZext64, s31_1ImmPred, L2_loadruh_io>;
defm: Loadxm_pat<zextloadi1,  i64, ToZext64, s32_0ImmPred, L2_loadrub_io>;
defm: Loadxm_pat<zextloadi8,  i64, ToZext64, s32_0ImmPred, L2_loadrub_io>;
defm: Loadxm_pat<zextloadi16, i64, ToZext64, s31_1ImmPred, L2_loadruh_io>;
defm: Loadxm_pat<sextloadi8,  i64, ToSext64, s32_0ImmPred, L2_loadrb_io>;
defm: Loadxm_pat<sextloadi16, i64, ToSext64, s31_1ImmPred, L2_loadrh_io>;

// Map Rdd = anyext(Rs) -> Rdd = combine(#0, Rs).
def: Pat<(Aext64 I32:$src1), (ToZext64 IntRegs:$src1)>;

multiclass T_LoadAbsReg_Pat <PatFrag ldOp, InstHexagon MI, ValueType VT = i32> {
  def  : Pat <(VT (ldOp (add (shl IntRegs:$src1, u2_0ImmPred:$src2),
                             (HexagonCONST32 tglobaladdr:$src3)))),
              (MI IntRegs:$src1, u2_0ImmPred:$src2, tglobaladdr:$src3)>;
  def  : Pat <(VT (ldOp (add IntRegs:$src1,
                             (HexagonCONST32 tglobaladdr:$src2)))),
              (MI IntRegs:$src1, 0, tglobaladdr:$src2)>;

  def  : Pat <(VT (ldOp (add (shl IntRegs:$src1, u2_0ImmPred:$src2),
                             (HexagonCONST32 tconstpool:$src3)))),
              (MI IntRegs:$src1, u2_0ImmPred:$src2, tconstpool:$src3)>;
  def  : Pat <(VT (ldOp (add IntRegs:$src1,
                             (HexagonCONST32 tconstpool:$src2)))),
              (MI IntRegs:$src1, 0, tconstpool:$src2)>;

  def  : Pat <(VT (ldOp (add (shl IntRegs:$src1, u2_0ImmPred:$src2),
                             (HexagonCONST32 tjumptable:$src3)))),
              (MI IntRegs:$src1, u2_0ImmPred:$src2, tjumptable:$src3)>;
  def  : Pat <(VT (ldOp (add IntRegs:$src1,
                             (HexagonCONST32 tjumptable:$src2)))),
              (MI IntRegs:$src1, 0, tjumptable:$src2)>;
}

let AddedComplexity  = 60 in {
defm : T_LoadAbsReg_Pat <sextloadi8, L4_loadrb_ur>;
defm : T_LoadAbsReg_Pat <zextloadi8, L4_loadrub_ur>;
defm : T_LoadAbsReg_Pat <extloadi8,  L4_loadrub_ur>;

defm : T_LoadAbsReg_Pat <sextloadi16, L4_loadrh_ur>;
defm : T_LoadAbsReg_Pat <zextloadi16, L4_loadruh_ur>;
defm : T_LoadAbsReg_Pat <extloadi16,  L4_loadruh_ur>;

defm : T_LoadAbsReg_Pat <load, L4_loadri_ur>;
defm : T_LoadAbsReg_Pat <load, L4_loadrd_ur, i64>;
}

// 'def pats' for load instructions with base + register offset and non-zero
// immediate value. Immediate value is used to left-shift the second
// register operand.
class Loadxs_pat<PatFrag Load, ValueType VT, InstHexagon MI>
  : Pat<(VT (Load (add I32:$Rs,
                       (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))),
        (VT (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2))>;

let AddedComplexity = 40 in {
  def: Loadxs_pat<extloadi8,   i32, L4_loadrub_rr>;
  def: Loadxs_pat<zextloadi8,  i32, L4_loadrub_rr>;
  def: Loadxs_pat<sextloadi8,  i32, L4_loadrb_rr>;
  def: Loadxs_pat<extloadi16,  i32, L4_loadruh_rr>;
  def: Loadxs_pat<zextloadi16, i32, L4_loadruh_rr>;
  def: Loadxs_pat<sextloadi16, i32, L4_loadrh_rr>;
  def: Loadxs_pat<load,        i32, L4_loadri_rr>;
  def: Loadxs_pat<load,        i64, L4_loadrd_rr>;
}

// 'def pats' for load instruction base + register offset and
// zero immediate value.
class Loadxs_simple_pat<PatFrag Load, ValueType VT, InstHexagon MI>
  : Pat<(VT (Load (add I32:$Rs, I32:$Rt))),
        (VT (MI IntRegs:$Rs, IntRegs:$Rt, 0))>;

let AddedComplexity = 20 in {
  def: Loadxs_simple_pat<extloadi8,   i32, L4_loadrub_rr>;
  def: Loadxs_simple_pat<zextloadi8,  i32, L4_loadrub_rr>;
  def: Loadxs_simple_pat<sextloadi8,  i32, L4_loadrb_rr>;
  def: Loadxs_simple_pat<extloadi16,  i32, L4_loadruh_rr>;
  def: Loadxs_simple_pat<zextloadi16, i32, L4_loadruh_rr>;
  def: Loadxs_simple_pat<sextloadi16, i32, L4_loadrh_rr>;
  def: Loadxs_simple_pat<load,        i32, L4_loadri_rr>;
  def: Loadxs_simple_pat<load,        i64, L4_loadrd_rr>;
}

let AddedComplexity = 40 in
multiclass T_StoreAbsReg_Pats <InstHexagon MI, RegisterClass RC, ValueType VT,
                           PatFrag stOp> {
 def : Pat<(stOp (VT RC:$src4),
                 (add (shl I32:$src1, u2_0ImmPred:$src2),
                      u32_0ImmPred:$src3)),
          (MI IntRegs:$src1, u2_0ImmPred:$src2, u32_0ImmPred:$src3, RC:$src4)>;

 def : Pat<(stOp (VT RC:$src4),
                 (add (shl IntRegs:$src1, u2_0ImmPred:$src2),
                      (HexagonCONST32 tglobaladdr:$src3))),
           (MI IntRegs:$src1, u2_0ImmPred:$src2, tglobaladdr:$src3, RC:$src4)>;

 def : Pat<(stOp (VT RC:$src4),
                 (add IntRegs:$src1, (HexagonCONST32 tglobaladdr:$src3))),
           (MI IntRegs:$src1, 0, tglobaladdr:$src3, RC:$src4)>;
}

defm : T_StoreAbsReg_Pats <S4_storerd_ur, DoubleRegs, i64, store>;
defm : T_StoreAbsReg_Pats <S4_storeri_ur, IntRegs, i32, store>;
defm : T_StoreAbsReg_Pats <S4_storerb_ur, IntRegs, i32, truncstorei8>;
defm : T_StoreAbsReg_Pats <S4_storerh_ur, IntRegs, i32, truncstorei16>;

class Storexs_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
  : Pat<(Store Value:$Ru, (add I32:$Rs,
                               (i32 (shl I32:$Rt, u2_0ImmPred:$u2)))),
        (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2, Value:$Ru)>;

let AddedComplexity = 40 in {
  def: Storexs_pat<truncstorei8,  I32, S4_storerb_rr>;
  def: Storexs_pat<truncstorei16, I32, S4_storerh_rr>;
  def: Storexs_pat<store,         I32, S4_storeri_rr>;
  def: Storexs_pat<store,         I64, S4_storerd_rr>;
}

def s30_2ProperPred  : PatLeaf<(i32 imm), [{
  int64_t v = (int64_t)N->getSExtValue();
  return isShiftedInt<30,2>(v) && !isShiftedInt<29,3>(v);
}]>;
def RoundTo8 : SDNodeXForm<imm, [{
  int32_t Imm = N->getSExtValue();
  return CurDAG->getTargetConstant(Imm & -8, SDLoc(N), MVT::i32);
}]>;

let AddedComplexity = 40 in
def: Pat<(store I64:$Ru, (add I32:$Rs, s30_2ProperPred:$Off)),
         (S2_storerd_io (A2_addi I32:$Rs, 4), (RoundTo8 $Off), I64:$Ru)>;

class Store_rr_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
  : Pat<(Store Value:$Ru, (add I32:$Rs, I32:$Rt)),
        (MI IntRegs:$Rs, IntRegs:$Rt, 0, Value:$Ru)>;

let AddedComplexity = 20 in {
  def: Store_rr_pat<truncstorei8,  I32, S4_storerb_rr>;
  def: Store_rr_pat<truncstorei16, I32, S4_storerh_rr>;
  def: Store_rr_pat<store,         I32, S4_storeri_rr>;
  def: Store_rr_pat<store,         I64, S4_storerd_rr>;
}


def IMM_BYTE : SDNodeXForm<imm, [{
  // -1 etc is  represented as 255 etc
  // assigning to a byte restores our desired signed value.
  int8_t imm = N->getSExtValue();
  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
}]>;

def IMM_HALF : SDNodeXForm<imm, [{
  // -1 etc is  represented as 65535 etc
  // assigning to a short restores our desired signed value.
  int16_t imm = N->getSExtValue();
  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
}]>;

def IMM_WORD : SDNodeXForm<imm, [{
  // -1 etc can be represented as 4294967295 etc
  // Currently, it's not doing this. But some optimization
  // might convert -1 to a large +ve number.
  // assigning to a word restores our desired signed value.
  int32_t imm = N->getSExtValue();
  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
}]>;

def ToImmByte : OutPatFrag<(ops node:$R), (IMM_BYTE $R)>;
def ToImmHalf : OutPatFrag<(ops node:$R), (IMM_HALF $R)>;
def ToImmWord : OutPatFrag<(ops node:$R), (IMM_WORD $R)>;

// Emit store-immediate, but only when the stored value will not be constant-
// extended. The reason for that is that there is no pass that can optimize
// constant extenders in store-immediate instructions. In some cases we can
// end up will a number of such stores, all of which store the same extended
// value (e.g. after unrolling a loop that initializes floating point array).

// Predicates to determine if the 16-bit immediate is expressible as a sign-
// extended 8-bit immediate. Store-immediate-halfword will ignore any bits
// beyond 0..15, so we don't care what is in there.

def i16in8ImmPred: PatLeaf<(i32 imm), [{
  int64_t v = (int16_t)N->getSExtValue();
  return v == (int64_t)(int8_t)v;
}]>;

// Predicates to determine if the 32-bit immediate is expressible as a sign-
// extended 8-bit immediate.
def i32in8ImmPred: PatLeaf<(i32 imm), [{
  int64_t v = (int32_t)N->getSExtValue();
  return v == (int64_t)(int8_t)v;
}]>;

class SmallStackStore<PatFrag Store>
  : PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{
  return isSmallStackStore(cast<StoreSDNode>(N));
}]>;

let AddedComplexity = 40 in {
  // Even though the offset is not extendable in the store-immediate, we
  // can still generate the fi# in the base address. If the final offset
  // is not valid for the instruction, we will replace it with a scratch
  // register.
  def: Storexm_fi_pat <SmallStackStore<truncstorei8>, s32_0ImmPred,
                       ToImmByte, S4_storeirb_io>;
  def: Storexm_fi_pat <SmallStackStore<truncstorei16>, i16in8ImmPred,
                       ToImmHalf, S4_storeirh_io>;
  def: Storexm_fi_pat <SmallStackStore<store>, i32in8ImmPred,
                       ToImmWord, S4_storeiri_io>;

//  defm: Storexm_fi_add_pat <truncstorei8, s32_0ImmPred, u6_0ImmPred, ToImmByte,
//                            S4_storeirb_io>;
//  defm: Storexm_fi_add_pat <truncstorei16, i16in8ImmPred, u6_1ImmPred,
//                            ToImmHalf, S4_storeirh_io>;
//  defm: Storexm_fi_add_pat <store, i32in8ImmPred, u6_2ImmPred, ToImmWord,
//                            S4_storeiri_io>;

  defm: Storexm_add_pat<truncstorei8, s32_0ImmPred, u6_0ImmPred, ToImmByte,
                        S4_storeirb_io>;
  defm: Storexm_add_pat<truncstorei16, i16in8ImmPred, u6_1ImmPred, ToImmHalf,
                        S4_storeirh_io>;
  defm: Storexm_add_pat<store, i32in8ImmPred, u6_2ImmPred, ToImmWord,
                        S4_storeiri_io>;
}

def: Storexm_simple_pat<truncstorei8,  s32_0ImmPred, ToImmByte, S4_storeirb_io>;
def: Storexm_simple_pat<truncstorei16, s32_0ImmPred, ToImmHalf, S4_storeirh_io>;
def: Storexm_simple_pat<store,         s32_0ImmPred, ToImmWord, S4_storeiri_io>;

// op(Ps, op(Pt, Pu))
class LogLog_pat<SDNode Op1, SDNode Op2, InstHexagon MI>
  : Pat<(i1 (Op1 I1:$Ps, (Op2 I1:$Pt, I1:$Pu))),
        (MI I1:$Ps, I1:$Pt, I1:$Pu)>;

// op(Ps, op(Pt, ~Pu))
class LogLogNot_pat<SDNode Op1, SDNode Op2, InstHexagon MI>
  : Pat<(i1 (Op1 I1:$Ps, (Op2 I1:$Pt, (not I1:$Pu)))),
        (MI I1:$Ps, I1:$Pt, I1:$Pu)>;

def: LogLog_pat<and, and, C4_and_and>;
def: LogLog_pat<and, or,  C4_and_or>;
def: LogLog_pat<or,  and, C4_or_and>;
def: LogLog_pat<or,  or,  C4_or_or>;

def: LogLogNot_pat<and, and, C4_and_andn>;
def: LogLogNot_pat<and, or,  C4_and_orn>;
def: LogLogNot_pat<or,  and, C4_or_andn>;
def: LogLogNot_pat<or,  or,  C4_or_orn>;

//===----------------------------------------------------------------------===//
// PIC: Support for PIC compilations. The patterns and SD nodes defined
// below are needed to support code generation for PIC
//===----------------------------------------------------------------------===//

def SDT_HexagonAtGot
  : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>;
def SDT_HexagonAtPcrel
  : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;

// AT_GOT address-of-GOT, address-of-global, offset-in-global
def HexagonAtGot       : SDNode<"HexagonISD::AT_GOT", SDT_HexagonAtGot>;
// AT_PCREL address-of-global
def HexagonAtPcrel     : SDNode<"HexagonISD::AT_PCREL", SDT_HexagonAtPcrel>;

def: Pat<(HexagonAtGot I32:$got, I32:$addr, (i32 0)),
         (L2_loadri_io I32:$got, imm:$addr)>;
def: Pat<(HexagonAtGot I32:$got, I32:$addr, s30_2ImmPred:$off),
         (A2_addi (L2_loadri_io I32:$got, imm:$addr), imm:$off)>;
def: Pat<(HexagonAtPcrel I32:$addr),
         (C4_addipc imm:$addr)>;

def: Pat<(i64 (and I64:$Rs, (i64 (not I64:$Rt)))),
         (A4_andnp DoubleRegs:$Rs, DoubleRegs:$Rt)>;
def: Pat<(i64 (or  I64:$Rs, (i64 (not I64:$Rt)))),
         (A4_ornp DoubleRegs:$Rs, DoubleRegs:$Rt)>;

def: Pat<(add I32:$Rs, (add I32:$Ru, s32_0ImmPred:$s6)),
         (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>;

// Rd=add(Rs,sub(#s6,Ru))
def: Pat<(add I32:$src1, (sub s32_0ImmPred:$src2,
                                        I32:$src3)),
         (S4_subaddi IntRegs:$src1, s32_0ImmPred:$src2, IntRegs:$src3)>;

// Rd=sub(add(Rs,#s6),Ru)
def: Pat<(sub (add I32:$src1, s32_0ImmPred:$src2),
                   I32:$src3),
         (S4_subaddi IntRegs:$src1, s32_0ImmPred:$src2, IntRegs:$src3)>;

// Rd=add(sub(Rs,Ru),#s6)
def: Pat<(add (sub I32:$src1, I32:$src3),
                   (s32_0ImmPred:$src2)),
         (S4_subaddi IntRegs:$src1, s32_0ImmPred:$src2, IntRegs:$src3)>;

def: Pat<(xor I64:$dst2,
              (xor I64:$Rss, I64:$Rtt)),
         (M4_xor_xacc DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt)>;
def: Pat<(or I32:$Ru, (and (i32 IntRegs:$_src_), s32_0ImmPred:$s10)),
         (S4_or_andix IntRegs:$Ru, IntRegs:$_src_, imm:$s10)>;

def: Pat<(or I32:$src1, (and I32:$Rs, s32_0ImmPred:$s10)),
         (S4_or_andi IntRegs:$src1, IntRegs:$Rs, imm:$s10)>;

def: Pat<(or I32:$src1, (or I32:$Rs, s32_0ImmPred:$s10)),
         (S4_or_ori IntRegs:$src1, IntRegs:$Rs, imm:$s10)>;



// Count trailing zeros: 64-bit.
def: Pat<(i32 (trunc (cttz I64:$Rss))), (S2_ct0p I64:$Rss)>;

// Count trailing ones: 64-bit.
def: Pat<(i32 (trunc (cttz (not I64:$Rss)))), (S2_ct1p I64:$Rss)>;

// Define leading/trailing patterns that require zero-extensions to 64 bits.
def: Pat<(i64 (ctlz I64:$Rss)), (ToZext64 (S2_cl0p I64:$Rss))>;
def: Pat<(i64 (cttz I64:$Rss)), (ToZext64 (S2_ct0p I64:$Rss))>;
def: Pat<(i64 (ctlz (not I64:$Rss))), (ToZext64 (S2_cl1p I64:$Rss))>;
def: Pat<(i64 (cttz (not I64:$Rss))), (ToZext64 (S2_ct1p I64:$Rss))>;

def: Pat<(i64 (ctpop I64:$Rss)), (ToZext64 (S5_popcountp I64:$Rss))>;
def: Pat<(i32 (ctpop I32:$Rs)), (S5_popcountp (A4_combineir 0, I32:$Rs))>;

def: Pat<(bitreverse I32:$Rs), (S2_brev I32:$Rs)>;
def: Pat<(bitreverse I64:$Rss), (S2_brevp I64:$Rss)>;

def: Pat<(bswap I32:$Rs), (A2_swiz I32:$Rs)>;
def: Pat<(bswap I64:$Rss), (A2_combinew (A2_swiz (LoReg $Rss)),
                                        (A2_swiz (HiReg $Rss)))>;

let AddedComplexity = 20 in {   // Complexity greater than cmp reg-imm.
  def: Pat<(i1 (seteq (and (shl 1, u5_0ImmPred:$u5), I32:$Rs), 0)),
           (S4_ntstbit_i I32:$Rs, u5_0ImmPred:$u5)>;
  def: Pat<(i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)),
           (S4_ntstbit_r I32:$Rs, I32:$Rt)>;
}

// Add extra complexity to prefer these instructions over bitsset/bitsclr.
// The reason is that tstbit/ntstbit can be folded into a compound instruction:
//   if ([!]tstbit(...)) jump ...
let AddedComplexity = 100 in
def: Pat<(i1 (setne (and I32:$Rs, (i32 IsPow2_32:$u5)), (i32 0))),
         (S2_tstbit_i I32:$Rs, (Log2_32 imm:$u5))>;

let AddedComplexity = 100 in
def: Pat<(i1 (seteq (and I32:$Rs, (i32 IsPow2_32:$u5)), (i32 0))),
         (S4_ntstbit_i I32:$Rs, (Log2_32 imm:$u5))>;

// Do not increase complexity of these patterns. In the DAG, "cmp i8" may be
// represented as a compare against "value & 0xFF", which is an exact match
// for cmpb (same for cmph). The patterns below do not contain any additional
// complexity that would make them preferable, and if they were actually used
// instead of cmpb/cmph, they would result in a compare against register that
// is loaded with the byte/half mask (i.e. 0xFF or 0xFFFF).
def: Pat<(i1 (setne (and I32:$Rs, u6_0ImmPred:$u6), 0)),
         (C4_nbitsclri I32:$Rs, u6_0ImmPred:$u6)>;
def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), 0)),
         (C4_nbitsclr I32:$Rs, I32:$Rt)>;
def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), I32:$Rt)),
         (C4_nbitsset I32:$Rs, I32:$Rt)>;


def: Pat<(add (mul I32:$Rs, u6_0ImmPred:$U6), u32_0ImmPred:$u6),
         (M4_mpyri_addi imm:$u6, IntRegs:$Rs, imm:$U6)>;
def: Pat<(add (mul I32:$Rs, u6_0ImmPred:$U6),
              (HexagonCONST32 tglobaladdr:$global)),
         (M4_mpyri_addi tglobaladdr:$global, IntRegs:$Rs, imm:$U6)>;
def: Pat<(add (mul I32:$Rs, I32:$Rt), u32_0ImmPred:$u6),
         (M4_mpyrr_addi imm:$u6, IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(add (mul I32:$Rs, I32:$Rt),
              (HexagonCONST32 tglobaladdr:$global)),
         (M4_mpyrr_addi tglobaladdr:$global, IntRegs:$Rs, IntRegs:$Rt)>;
def: Pat<(add I32:$src1, (mul I32:$src3, u6_2ImmPred:$src2)),
         (M4_mpyri_addr_u2 IntRegs:$src1, imm:$src2, IntRegs:$src3)>;
def: Pat<(add I32:$src1, (mul I32:$src3, u32_0ImmPred:$src2)),
         (M4_mpyri_addr IntRegs:$src1, IntRegs:$src3, imm:$src2)>;

def: Pat<(add I32:$Ru, (mul (i32 IntRegs:$_src_), I32:$Rs)),
         (M4_mpyrr_addr IntRegs:$Ru, IntRegs:$_src_, IntRegs:$Rs)>;

def: T_vcmp_pat<A4_vcmpbgt, setgt, v8i8>;

class T_Shift_CommOp_pat<InstHexagon MI, SDNode Op, SDNode ShOp>
  : Pat<(Op (ShOp IntRegs:$Rx, u5_0ImmPred:$U5), u32_0ImmPred:$u8),
        (MI u32_0ImmPred:$u8, IntRegs:$Rx, u5_0ImmPred:$U5)>;

let AddedComplexity = 200 in {
  def : T_Shift_CommOp_pat <S4_addi_asl_ri, add, shl>;
  def : T_Shift_CommOp_pat <S4_addi_lsr_ri, add, srl>;
  def : T_Shift_CommOp_pat <S4_andi_asl_ri, and, shl>;
  def : T_Shift_CommOp_pat <S4_andi_lsr_ri, and, srl>;
}

let AddedComplexity = 30 in {
  def : T_Shift_CommOp_pat <S4_ori_asl_ri,  or,  shl>;
  def : T_Shift_CommOp_pat <S4_ori_lsr_ri,  or,  srl>;
}

class T_Shift_Op_pat<InstHexagon MI, SDNode Op, SDNode ShOp>
  : Pat<(Op u32_0ImmPred:$u8, (ShOp IntRegs:$Rx, u5_0ImmPred:$U5)),
        (MI u32_0ImmPred:$u8, IntRegs:$Rx, u5_0ImmPred:$U5)>;

def : T_Shift_Op_pat <S4_subi_asl_ri, sub, shl>;
def : T_Shift_Op_pat <S4_subi_lsr_ri, sub, srl>;

let AddedComplexity = 200 in {
  def: Pat<(add addrga:$addr, (shl I32:$src2, u5_0ImmPred:$src3)),
           (S4_addi_asl_ri addrga:$addr, IntRegs:$src2, u5_0ImmPred:$src3)>;
  def: Pat<(add addrga:$addr, (srl I32:$src2, u5_0ImmPred:$src3)),
           (S4_addi_lsr_ri addrga:$addr, IntRegs:$src2, u5_0ImmPred:$src3)>;
  def: Pat<(sub addrga:$addr, (shl I32:$src2, u5_0ImmPred:$src3)),
           (S4_subi_asl_ri addrga:$addr, IntRegs:$src2, u5_0ImmPred:$src3)>;
  def: Pat<(sub addrga:$addr, (srl I32:$src2, u5_0ImmPred:$src3)),
           (S4_subi_lsr_ri addrga:$addr, IntRegs:$src2, u5_0ImmPred:$src3)>;
}

def: Pat<(shl s6_0ImmPred:$s6, I32:$Rt),
         (S4_lsli imm:$s6, IntRegs:$Rt)>;


//===----------------------------------------------------------------------===//
// MEMOP
//===----------------------------------------------------------------------===//

def m5_0Imm8Pred : PatLeaf<(i32 imm), [{
  int8_t V = N->getSExtValue();
  return -32 < V && V <= -1;
}]>;

def m5_0Imm16Pred : PatLeaf<(i32 imm), [{
  int16_t V = N->getSExtValue();
  return -32 < V && V <= -1;
}]>;

def m5_0ImmPred  : PatLeaf<(i32 imm), [{
  int64_t V = N->getSExtValue();
  return -31 <= V && V <= -1;
}]>;

def IsNPow2_8 : PatLeaf<(i32 imm), [{
  uint8_t NV = ~N->getZExtValue();
  return isPowerOf2_32(NV);
}]>;

def IsNPow2_16 : PatLeaf<(i32 imm), [{
  uint16_t NV = ~N->getZExtValue();
  return isPowerOf2_32(NV);
}]>;

def Log2_8 : SDNodeXForm<imm, [{
  uint8_t V = N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
}]>;

def Log2_16 : SDNodeXForm<imm, [{
  uint16_t V = N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
}]>;

def LogN2_8 : SDNodeXForm<imm, [{
  uint8_t NV = ~N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
}]>;

def LogN2_16 : SDNodeXForm<imm, [{
  uint16_t NV = ~N->getZExtValue();
  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
}]>;

def NegImm8 : SDNodeXForm<imm, [{
  int8_t NV = -N->getSExtValue();
  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
}]>;

def NegImm16 : SDNodeXForm<imm, [{
  int16_t NV = -N->getSExtValue();
  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
}]>;

def NegImm32 : SDNodeXForm<imm, [{
  int32_t NV = -N->getSExtValue();
  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
}]>;

def IdImm : SDNodeXForm<imm, [{ return SDValue(N, 0); }]>;

multiclass Memopxr_simple_pat<PatFrag Load, PatFrag Store, SDNode Oper,
                              InstHexagon MI> {
  // Addr: i32
  def: Pat<(Store (Oper (Load I32:$Rs), I32:$A), I32:$Rs),
           (MI I32:$Rs, 0, I32:$A)>;
  // Addr: fi
  def: Pat<(Store (Oper (Load AddrFI:$Rs), I32:$A), AddrFI:$Rs),
           (MI AddrFI:$Rs, 0, I32:$A)>;
}

multiclass Memopxr_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
                           SDNode Oper, InstHexagon MI> {
  // Addr: i32
  def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), I32:$A),
                  (add I32:$Rs, ImmPred:$Off)),
           (MI I32:$Rs, imm:$Off, I32:$A)>;
  def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), I32:$A),
                  (IsOrAdd I32:$Rs, ImmPred:$Off)),
           (MI I32:$Rs, imm:$Off, I32:$A)>;
  // Addr: fi
  def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), I32:$A),
                  (add AddrFI:$Rs, ImmPred:$Off)),
           (MI AddrFI:$Rs, imm:$Off, I32:$A)>;
  def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), I32:$A),
                  (IsOrAdd AddrFI:$Rs, ImmPred:$Off)),
           (MI AddrFI:$Rs, imm:$Off, I32:$A)>;
}

multiclass Memopxr_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
                       SDNode Oper, InstHexagon MI> {
  defm: Memopxr_simple_pat <Load, Store,          Oper, MI>;
  defm: Memopxr_add_pat    <Load, Store, ImmPred, Oper, MI>;
}

let AddedComplexity = 180 in {
  // add reg
  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, add,
        /*anyext*/  L4_add_memopb_io>;
  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, add,
        /*sext*/    L4_add_memopb_io>;
  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, add,
        /*zext*/    L4_add_memopb_io>;
  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, add,
        /*anyext*/  L4_add_memoph_io>;
  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, add,
        /*sext*/    L4_add_memoph_io>;
  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, add,
        /*zext*/    L4_add_memoph_io>;
  defm: Memopxr_pat<load, store, u6_2ImmPred, add, L4_add_memopw_io>;

  // sub reg
  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, sub,
        /*anyext*/  L4_sub_memopb_io>;
  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub,
        /*sext*/    L4_sub_memopb_io>;
  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub,
        /*zext*/    L4_sub_memopb_io>;
  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, sub,
        /*anyext*/  L4_sub_memoph_io>;
  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub,
        /*sext*/    L4_sub_memoph_io>;
  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub,
        /*zext*/    L4_sub_memoph_io>;
  defm: Memopxr_pat<load, store, u6_2ImmPred, sub, L4_sub_memopw_io>;

  // and reg
  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, and,
        /*anyext*/  L4_and_memopb_io>;
  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, and,
        /*sext*/    L4_and_memopb_io>;
  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, and,
        /*zext*/    L4_and_memopb_io>;
  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, and,
        /*anyext*/  L4_and_memoph_io>;
  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, and,
        /*sext*/    L4_and_memoph_io>;
  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, and,
        /*zext*/    L4_and_memoph_io>;
  defm: Memopxr_pat<load, store, u6_2ImmPred, and, L4_and_memopw_io>;

  // or reg
  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, or,
        /*anyext*/  L4_or_memopb_io>;
  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, or,
        /*sext*/    L4_or_memopb_io>;
  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, or,
        /*zext*/    L4_or_memopb_io>;
  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, or,
        /*anyext*/  L4_or_memoph_io>;
  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, or,
        /*sext*/    L4_or_memoph_io>;
  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, or,
        /*zext*/    L4_or_memoph_io>;
  defm: Memopxr_pat<load, store, u6_2ImmPred, or, L4_or_memopw_io>;
}


multiclass Memopxi_simple_pat<PatFrag Load, PatFrag Store, SDNode Oper,
                              PatFrag Arg, SDNodeXForm ArgMod,
                              InstHexagon MI> {
  // Addr: i32
  def: Pat<(Store (Oper (Load I32:$Rs), Arg:$A), I32:$Rs),
           (MI I32:$Rs, 0, (ArgMod Arg:$A))>;
  // Addr: fi
  def: Pat<(Store (Oper (Load AddrFI:$Rs), Arg:$A), AddrFI:$Rs),
           (MI AddrFI:$Rs, 0, (ArgMod Arg:$A))>;
}

multiclass Memopxi_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
                           SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod,
                           InstHexagon MI> {
  // Addr: i32
  def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), Arg:$A),
                  (add I32:$Rs, ImmPred:$Off)),
           (MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>;
  def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), Arg:$A),
                  (IsOrAdd I32:$Rs, ImmPred:$Off)),
           (MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>;
  // Addr: fi
  def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), Arg:$A),
                  (add AddrFI:$Rs, ImmPred:$Off)),
           (MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>;
  def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), Arg:$A),
                  (IsOrAdd AddrFI:$Rs, ImmPred:$Off)),
           (MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>;
}

multiclass Memopxi_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
                       SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod,
                       InstHexagon MI> {
  defm: Memopxi_simple_pat <Load, Store,          Oper, Arg, ArgMod, MI>;
  defm: Memopxi_add_pat    <Load, Store, ImmPred, Oper, Arg, ArgMod, MI>;
}


let AddedComplexity = 200 in {
  // add imm
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
        /*anyext*/  IdImm, L4_iadd_memopb_io>;
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
        /*sext*/    IdImm, L4_iadd_memopb_io>;
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
        /*zext*/    IdImm, L4_iadd_memopb_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
        /*anyext*/  IdImm, L4_iadd_memoph_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
        /*sext*/    IdImm, L4_iadd_memoph_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
        /*zext*/    IdImm, L4_iadd_memoph_io>;
  defm: Memopxi_pat<load, store, u6_2ImmPred, add, u5_0ImmPred, IdImm,
                    L4_iadd_memopw_io>;
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
        /*anyext*/  NegImm8, L4_iadd_memopb_io>;
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
        /*sext*/    NegImm8, L4_iadd_memopb_io>;
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
        /*zext*/    NegImm8, L4_iadd_memopb_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
        /*anyext*/  NegImm16, L4_iadd_memoph_io>;
  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
        /*sext*/    NegImm16, L4_iadd_memoph_io>;
  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
        /*zext*/    NegImm16, L4_iadd_memoph_io>;
  defm: Memopxi_pat<load, store, u6_2ImmPred, sub, m5_0ImmPred, NegImm32,
                    L4_iadd_memopw_io>;

  // sub imm
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
        /*anyext*/  IdImm, L4_isub_memopb_io>;
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
        /*sext*/    IdImm, L4_isub_memopb_io>;
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
        /*zext*/    IdImm, L4_isub_memopb_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
        /*anyext*/  IdImm, L4_isub_memoph_io>;
  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
        /*sext*/    IdImm, L4_isub_memoph_io>;
  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
        /*zext*/    IdImm, L4_isub_memoph_io>;
  defm: Memopxi_pat<load, store, u6_2ImmPred, sub, u5_0ImmPred, IdImm,
                    L4_isub_memopw_io>;
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
        /*anyext*/  NegImm8, L4_isub_memopb_io>;
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
        /*sext*/    NegImm8, L4_isub_memopb_io>;
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
        /*zext*/    NegImm8, L4_isub_memopb_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
        /*anyext*/  NegImm16, L4_isub_memoph_io>;
  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
        /*sext*/    NegImm16, L4_isub_memoph_io>;
  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
        /*zext*/    NegImm16, L4_isub_memoph_io>;
  defm: Memopxi_pat<load, store, u6_2ImmPred, add, m5_0ImmPred, NegImm32,
                    L4_isub_memopw_io>;

  // clrbit imm
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
        /*anyext*/  LogN2_8, L4_iand_memopb_io>;
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
        /*sext*/    LogN2_8, L4_iand_memopb_io>;
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
        /*zext*/    LogN2_8, L4_iand_memopb_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
        /*anyext*/  LogN2_16, L4_iand_memoph_io>;
  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
        /*sext*/    LogN2_16, L4_iand_memoph_io>;
  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
        /*zext*/    LogN2_16, L4_iand_memoph_io>;
  defm: Memopxi_pat<load, store, u6_2ImmPred, and, IsNPow2_32,
		    LogN2_32, L4_iand_memopw_io>;

  // setbit imm
  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
        /*anyext*/  Log2_8, L4_ior_memopb_io>;
  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
        /*sext*/    Log2_8, L4_ior_memopb_io>;
  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
        /*zext*/    Log2_8, L4_ior_memopb_io>;
  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
        /*anyext*/  Log2_16, L4_ior_memoph_io>;
  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
        /*sext*/    Log2_16, L4_ior_memoph_io>;
  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
        /*zext*/    Log2_16, L4_ior_memoph_io>;
  defm: Memopxi_pat<load, store, u6_2ImmPred, or, IsPow2_32,
		    Log2_32, L4_ior_memopw_io>;
}

def : T_CMP_pat <C4_cmpneqi,  setne,  s32_0ImmPred>;
def : T_CMP_pat <C4_cmpltei,  setle,  s32_0ImmPred>;
def : T_CMP_pat <C4_cmplteui, setule, u9_0ImmPred>;

// Map cmplt(Rs, Imm) -> !cmpgt(Rs, Imm-1).
def: Pat<(i1 (setlt I32:$src1, s32_0ImmPred:$src2)),
         (C4_cmpltei IntRegs:$src1, (SDEC1 s32_0ImmPred:$src2))>;

// rs != rt -> !(rs == rt).
def: Pat<(i1 (setne I32:$src1, s32_0ImmPred:$src2)),
         (C4_cmpneqi IntRegs:$src1, s32_0ImmPred:$src2)>;

// For the sequence
//   zext( setult ( and(Rs, 255), u8))
// Use the isdigit transformation below


def u7_0PosImmPred : ImmLeaf<i32, [{
  // True if the immediate fits in an 7-bit unsigned field and
  // is strictly greater than 0.
  return Imm > 0 && isUInt<7>(Imm);
}]>;


// Generate code of the form 'C2_muxii(cmpbgtui(Rdd, C-1),0,1)'
// for C code of the form r = ((c>='0') & (c<='9')) ? 1 : 0;.
// The isdigit transformation relies on two 'clever' aspects:
// 1) The data type is unsigned which allows us to eliminate a zero test after
//    biasing the expression by 48. We are depending on the representation of
//    the unsigned types, and semantics.
// 2) The front end has converted <= 9 into < 10 on entry to LLVM
//
// For the C code:
//   retval = ((c>='0') & (c<='9')) ? 1 : 0;
// The code is transformed upstream of llvm into
//   retval = (c-48) < 10 ? 1 : 0;

let AddedComplexity = 139 in
def: Pat<(i32 (zext (i1 (setult (and I32:$src1, 255), u7_0PosImmPred:$src2)))),
         (C2_muxii (A4_cmpbgtui IntRegs:$src1, (UDEC1 imm:$src2)), 0, 1)>;

class Loada_pat<PatFrag Load, ValueType VT, PatFrag Addr, InstHexagon MI>
  : Pat<(VT (Load Addr:$addr)), (MI Addr:$addr)>;

class Loadam_pat<PatFrag Load, ValueType VT, PatFrag Addr, PatFrag ValueMod,
                 InstHexagon MI>
  : Pat<(VT (Load Addr:$addr)), (ValueMod (MI Addr:$addr))>;

class Storea_pat<PatFrag Store, PatFrag Value, PatFrag Addr, InstHexagon MI>
  : Pat<(Store Value:$val, Addr:$addr), (MI Addr:$addr, Value:$val)>;

class Stoream_pat<PatFrag Store, PatFrag Value, PatFrag Addr, PatFrag ValueMod,
                  InstHexagon MI>
  : Pat<(Store Value:$val, Addr:$addr),
        (MI Addr:$addr, (ValueMod Value:$val))>;

let AddedComplexity = 30 in {
  def: Storea_pat<truncstorei8,  I32, addrga, PS_storerbabs>;
  def: Storea_pat<truncstorei16, I32, addrga, PS_storerhabs>;
  def: Storea_pat<store,         I32, addrga, PS_storeriabs>;
  def: Storea_pat<store,         I64, addrga, PS_storerdabs>;

  def: Stoream_pat<truncstorei8,  I64, addrga, LoReg, PS_storerbabs>;
  def: Stoream_pat<truncstorei16, I64, addrga, LoReg, PS_storerhabs>;
  def: Stoream_pat<truncstorei32, I64, addrga, LoReg, PS_storeriabs>;
}

def: Storea_pat<SwapSt<atomic_store_8>,  I32, addrgp, S2_storerbgp>;
def: Storea_pat<SwapSt<atomic_store_16>, I32, addrgp, S2_storerhgp>;
def: Storea_pat<SwapSt<atomic_store_32>, I32, addrgp, S2_storerigp>;
def: Storea_pat<SwapSt<atomic_store_64>, I64, addrgp, S2_storerdgp>;

let AddedComplexity = 100 in {
  def: Storea_pat<truncstorei8,  I32, addrgp, S2_storerbgp>;
  def: Storea_pat<truncstorei16, I32, addrgp, S2_storerhgp>;
  def: Storea_pat<store,         I32, addrgp, S2_storerigp>;
  def: Storea_pat<store,         I64, addrgp, S2_storerdgp>;

  // Map from "i1 = constant<-1>; memw(CONST32(#foo)) = i1"
  //       to "r0 = 1; memw(#foo) = r0"
  let AddedComplexity = 100 in
  def: Pat<(store (i1 -1), (HexagonCONST32_GP tglobaladdr:$global)),
           (S2_storerbgp tglobaladdr:$global, (A2_tfrsi 1))>;
}

class LoadAbs_pats <PatFrag ldOp, InstHexagon MI, ValueType VT = i32>
  : Pat <(VT (ldOp (HexagonCONST32 tglobaladdr:$absaddr))),
         (VT (MI tglobaladdr:$absaddr))>;

let AddedComplexity  = 30 in {
  def: LoadAbs_pats <load,        PS_loadriabs>;
  def: LoadAbs_pats <zextloadi1,  PS_loadrubabs>;
  def: LoadAbs_pats <sextloadi8,  PS_loadrbabs>;
  def: LoadAbs_pats <extloadi8,   PS_loadrubabs>;
  def: LoadAbs_pats <zextloadi8,  PS_loadrubabs>;
  def: LoadAbs_pats <sextloadi16, PS_loadrhabs>;
  def: LoadAbs_pats <extloadi16,  PS_loadruhabs>;
  def: LoadAbs_pats <zextloadi16, PS_loadruhabs>;
  def: LoadAbs_pats <load,        PS_loadrdabs, i64>;
}

let AddedComplexity  = 30 in
def: Pat<(i64 (zextloadi1 (HexagonCONST32 tglobaladdr:$absaddr))),
         (ToZext64 (PS_loadrubabs tglobaladdr:$absaddr))>;

def: Loada_pat<atomic_load_8,  i32, addrgp, L2_loadrubgp>;
def: Loada_pat<atomic_load_16, i32, addrgp, L2_loadruhgp>;
def: Loada_pat<atomic_load_32, i32, addrgp, L2_loadrigp>;
def: Loada_pat<atomic_load_64, i64, addrgp, L2_loadrdgp>;

def: Loadam_pat<load, i1, addrga, I32toI1, PS_loadrubabs>;
def: Loadam_pat<load, i1, addrgp, I32toI1, L2_loadrubgp>;

def: Stoream_pat<store, I1, addrga, I1toI32, PS_storerbabs>;
def: Stoream_pat<store, I1, addrgp, I1toI32, S2_storerbgp>;

// Map from load(globaladdress) -> mem[u][bhwd](#foo)
class LoadGP_pats <PatFrag ldOp, InstHexagon MI, ValueType VT = i32>
  : Pat <(VT (ldOp (HexagonCONST32_GP tglobaladdr:$global))),
         (VT (MI tglobaladdr:$global))>;

let AddedComplexity = 100 in {
  def: LoadGP_pats <extloadi8,   L2_loadrubgp>;
  def: LoadGP_pats <sextloadi8,  L2_loadrbgp>;
  def: LoadGP_pats <zextloadi8,  L2_loadrubgp>;
  def: LoadGP_pats <extloadi16,  L2_loadruhgp>;
  def: LoadGP_pats <sextloadi16, L2_loadrhgp>;
  def: LoadGP_pats <zextloadi16, L2_loadruhgp>;
  def: LoadGP_pats <load,        L2_loadrigp>;
  def: LoadGP_pats <load,        L2_loadrdgp, i64>;
}

// When the Interprocedural Global Variable optimizer realizes that a certain
// global variable takes only two constant values, it shrinks the global to
// a boolean. Catch those loads here in the following 3 patterns.
let AddedComplexity = 100 in {
  def: LoadGP_pats <extloadi1, L2_loadrubgp>;
  def: LoadGP_pats <zextloadi1, L2_loadrubgp>;
}

// Transfer global address into a register
def: Pat<(HexagonCONST32 tglobaladdr:$Rs),      (A2_tfrsi imm:$Rs)>;
def: Pat<(HexagonCONST32_GP tblockaddress:$Rs), (A2_tfrsi imm:$Rs)>;
def: Pat<(HexagonCONST32_GP tglobaladdr:$Rs),   (A2_tfrsi imm:$Rs)>;

let AddedComplexity  = 30 in {
  def: Storea_pat<truncstorei8,  I32, u32_0ImmPred, PS_storerbabs>;
  def: Storea_pat<truncstorei16, I32, u32_0ImmPred, PS_storerhabs>;
  def: Storea_pat<store,         I32, u32_0ImmPred, PS_storeriabs>;
  def: Storea_pat<store,         I64, u32_0ImmPred, PS_storerdabs>;

  def: Stoream_pat<truncstorei8,  I64, u32_0ImmPred, LoReg, PS_storerbabs>;
  def: Stoream_pat<truncstorei16, I64, u32_0ImmPred, LoReg, PS_storerhabs>;
  def: Stoream_pat<truncstorei32, I64, u32_0ImmPred, LoReg, PS_storeriabs>;
}

let AddedComplexity  = 30 in {
  def: Loada_pat<load,        i32, u32_0ImmPred, PS_loadriabs>;
  def: Loada_pat<sextloadi8,  i32, u32_0ImmPred, PS_loadrbabs>;
  def: Loada_pat<zextloadi8,  i32, u32_0ImmPred, PS_loadrubabs>;
  def: Loada_pat<sextloadi16, i32, u32_0ImmPred, PS_loadrhabs>;
  def: Loada_pat<zextloadi16, i32, u32_0ImmPred, PS_loadruhabs>;
  def: Loada_pat<load,        i64, u32_0ImmPred, PS_loadrdabs>;

  def: Loadam_pat<extloadi8,   i64, u32_0ImmPred, ToZext64, PS_loadrubabs>;
  def: Loadam_pat<sextloadi8,  i64, u32_0ImmPred, ToSext64, PS_loadrbabs>;
  def: Loadam_pat<zextloadi8,  i64, u32_0ImmPred, ToZext64, PS_loadrubabs>;

  def: Loadam_pat<extloadi16,  i64, u32_0ImmPred, ToZext64, PS_loadruhabs>;
  def: Loadam_pat<sextloadi16, i64, u32_0ImmPred, ToSext64, PS_loadrhabs>;
  def: Loadam_pat<zextloadi16, i64, u32_0ImmPred, ToZext64, PS_loadruhabs>;

  def: Loadam_pat<extloadi32,  i64, u32_0ImmPred, ToZext64, PS_loadriabs>;
  def: Loadam_pat<sextloadi32, i64, u32_0ImmPred, ToSext64, PS_loadriabs>;
  def: Loadam_pat<zextloadi32, i64, u32_0ImmPred, ToZext64, PS_loadriabs>;
}

// Indexed store word - global address.
// memw(Rs+#u6:2)=#S8
let AddedComplexity = 100 in
defm: Storex_add_pat<store, addrga, u6_2ImmPred, S4_storeiri_io>;

// Load from a global address that has only one use in the current basic block.
let AddedComplexity = 100 in {
  def: Loada_pat<extloadi8,   i32, addrga, PS_loadrubabs>;
  def: Loada_pat<sextloadi8,  i32, addrga, PS_loadrbabs>;
  def: Loada_pat<zextloadi8,  i32, addrga, PS_loadrubabs>;

  def: Loada_pat<extloadi16,  i32, addrga, PS_loadruhabs>;
  def: Loada_pat<sextloadi16, i32, addrga, PS_loadrhabs>;
  def: Loada_pat<zextloadi16, i32, addrga, PS_loadruhabs>;

  def: Loada_pat<load,        i32, addrga, PS_loadriabs>;
  def: Loada_pat<load,        i64, addrga, PS_loadrdabs>;
}

// Store to a global address that has only one use in the current basic block.
let AddedComplexity = 100 in {
  def: Storea_pat<truncstorei8,  I32, addrga, PS_storerbabs>;
  def: Storea_pat<truncstorei16, I32, addrga, PS_storerhabs>;
  def: Storea_pat<store,         I32, addrga, PS_storeriabs>;
  def: Storea_pat<store,         I64, addrga, PS_storerdabs>;

  def: Stoream_pat<truncstorei32, I64, addrga, LoReg, PS_storeriabs>;
}

// i8/i16/i32 -> i64 loads
// We need a complexity of 120 here to override preceding handling of
// zextload.
let AddedComplexity = 120 in {
  def: Loadam_pat<extloadi8,   i64, addrga, ToZext64, PS_loadrubabs>;
  def: Loadam_pat<sextloadi8,  i64, addrga, ToSext64, PS_loadrbabs>;
  def: Loadam_pat<zextloadi8,  i64, addrga, ToZext64, PS_loadrubabs>;

  def: Loadam_pat<extloadi16,  i64, addrga, ToZext64, PS_loadruhabs>;
  def: Loadam_pat<sextloadi16, i64, addrga, ToSext64, PS_loadrhabs>;
  def: Loadam_pat<zextloadi16, i64, addrga, ToZext64, PS_loadruhabs>;

  def: Loadam_pat<extloadi32,  i64, addrga, ToZext64, PS_loadriabs>;
  def: Loadam_pat<sextloadi32, i64, addrga, ToSext64, PS_loadriabs>;
  def: Loadam_pat<zextloadi32, i64, addrga, ToZext64, PS_loadriabs>;
}

let AddedComplexity = 100 in {
  def: Loada_pat<extloadi8,   i32, addrgp, PS_loadrubabs>;
  def: Loada_pat<sextloadi8,  i32, addrgp, PS_loadrbabs>;
  def: Loada_pat<zextloadi8,  i32, addrgp, PS_loadrubabs>;

  def: Loada_pat<extloadi16,  i32, addrgp, PS_loadruhabs>;
  def: Loada_pat<sextloadi16, i32, addrgp, PS_loadrhabs>;
  def: Loada_pat<zextloadi16, i32, addrgp, PS_loadruhabs>;

  def: Loada_pat<load,        i32, addrgp, PS_loadriabs>;
  def: Loada_pat<load,        i64, addrgp, PS_loadrdabs>;
}

let AddedComplexity = 100 in {
  def: Storea_pat<truncstorei8,  I32, addrgp, PS_storerbabs>;
  def: Storea_pat<truncstorei16, I32, addrgp, PS_storerhabs>;
  def: Storea_pat<store,         I32, addrgp, PS_storeriabs>;
  def: Storea_pat<store,         I64, addrgp, PS_storerdabs>;
}

def: Loada_pat<atomic_load_8,  i32, addrgp, PS_loadrubabs>;
def: Loada_pat<atomic_load_16, i32, addrgp, PS_loadruhabs>;
def: Loada_pat<atomic_load_32, i32, addrgp, PS_loadriabs>;
def: Loada_pat<atomic_load_64, i64, addrgp, PS_loadrdabs>;

def: Storea_pat<SwapSt<atomic_store_8>,  I32, addrgp, PS_storerbabs>;
def: Storea_pat<SwapSt<atomic_store_16>, I32, addrgp, PS_storerhabs>;
def: Storea_pat<SwapSt<atomic_store_32>, I32, addrgp, PS_storeriabs>;
def: Storea_pat<SwapSt<atomic_store_64>, I64, addrgp, PS_storerdabs>;

def: Pat<(or (or (or (shl (i64 (zext (and I32:$b, (i32 65535)))), (i32 16)),
                     (i64 (zext (i32 (and I32:$a, (i32 65535)))))),
                 (shl (i64 (anyext (and I32:$c, (i32 65535)))), (i32 32))),
             (shl (Aext64 I32:$d), (i32 48))),
         (A2_combinew (A2_combine_ll I32:$d, I32:$c),
                      (A2_combine_ll I32:$b, I32:$a))>;

// We need custom lowering of ISD::PREFETCH into HexagonISD::DCFETCH
// because the SDNode ISD::PREFETCH has properties MayLoad and MayStore.
// We don't really want either one here.
def SDTHexagonDCFETCH : SDTypeProfile<0, 2, [SDTCisPtrTy<0>,SDTCisInt<1>]>;
def HexagonDCFETCH : SDNode<"HexagonISD::DCFETCH", SDTHexagonDCFETCH,
                            [SDNPHasChain]>;

def: Pat<(HexagonDCFETCH IntRegs:$Rs, u11_3ImmPred:$u11_3),
         (Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>;
def: Pat<(HexagonDCFETCH (i32 (add IntRegs:$Rs, u11_3ImmPred:$u11_3)), (i32 0)),
         (Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>;

def f32ImmPred : PatLeaf<(f32 fpimm:$F)>;
def f64ImmPred : PatLeaf<(f64 fpimm:$F)>;

def ftoi : SDNodeXForm<fpimm, [{
  APInt I = N->getValueAPF().bitcastToAPInt();
  return CurDAG->getTargetConstant(I.getZExtValue(), SDLoc(N),
                                   MVT::getIntegerVT(I.getBitWidth()));
}]>;


def: Pat<(sra (i64 (add (sra I64:$src1, u6_0ImmPred:$src2), 1)), (i32 1)),
         (S2_asr_i_p_rnd I64:$src1, imm:$src2)>;

let AddedComplexity = 20 in {
  defm: Loadx_pat<load, f32, s30_2ImmPred, L2_loadri_io>;
  defm: Loadx_pat<load, f64, s29_3ImmPred, L2_loadrd_io>;
}

let AddedComplexity = 60 in {
  defm : T_LoadAbsReg_Pat <load, L4_loadri_ur, f32>;
  defm : T_LoadAbsReg_Pat <load, L4_loadrd_ur, f64>;
}

let AddedComplexity = 40 in {
  def: Loadxs_pat<load, f32, L4_loadri_rr>;
  def: Loadxs_pat<load, f64, L4_loadrd_rr>;
}

let AddedComplexity = 20 in {
  def: Loadxs_simple_pat<load, f32, L4_loadri_rr>;
  def: Loadxs_simple_pat<load, f64, L4_loadrd_rr>;
}

let AddedComplexity  = 80 in {
  def: Loada_pat<load, f32, u32_0ImmPred, PS_loadriabs>;
  def: Loada_pat<load, f32, addrga, PS_loadriabs>;
  def: Loada_pat<load, f64, addrga, PS_loadrdabs>;
}

let AddedComplexity = 100 in {
  def: LoadGP_pats <load, L2_loadrigp, f32>;
  def: LoadGP_pats <load, L2_loadrdgp, f64>;
}

let AddedComplexity = 20 in {
  defm: Storex_pat<store, F32, s30_2ImmPred, S2_storeri_io>;
  defm: Storex_pat<store, F64, s29_3ImmPred, S2_storerd_io>;
}

// Simple patterns should be tried with the least priority.
def: Storex_simple_pat<store, F32, S2_storeri_io>;
def: Storex_simple_pat<store, F64, S2_storerd_io>;

let AddedComplexity = 60 in {
  defm : T_StoreAbsReg_Pats <S4_storeri_ur, IntRegs, f32, store>;
  defm : T_StoreAbsReg_Pats <S4_storerd_ur, DoubleRegs, f64, store>;
}

let AddedComplexity = 40 in {
  def: Storexs_pat<store, F32, S4_storeri_rr>;
  def: Storexs_pat<store, F64, S4_storerd_rr>;
}

let AddedComplexity = 20 in {
  def: Store_rr_pat<store, F32, S4_storeri_rr>;
  def: Store_rr_pat<store, F64, S4_storerd_rr>;
}

let AddedComplexity = 80 in {
  def: Storea_pat<store, F32, addrga, PS_storeriabs>;
  def: Storea_pat<store, F64, addrga, PS_storerdabs>;
}

let AddedComplexity = 100 in {
  def: Storea_pat<store, F32, addrgp, S2_storerigp>;
  def: Storea_pat<store, F64, addrgp, S2_storerdgp>;
}

defm: Storex_pat<store, F32, s30_2ImmPred, S2_storeri_io>;
defm: Storex_pat<store, F64, s29_3ImmPred, S2_storerd_io>;
def: Storex_simple_pat<store, F32, S2_storeri_io>;
def: Storex_simple_pat<store, F64, S2_storerd_io>;

def: Pat<(fadd F32:$src1, F32:$src2),
         (F2_sfadd F32:$src1, F32:$src2)>;

def: Pat<(fsub F32:$src1, F32:$src2),
         (F2_sfsub F32:$src1, F32:$src2)>;

def: Pat<(fmul F32:$src1, F32:$src2),
         (F2_sfmpy F32:$src1, F32:$src2)>;

let Predicates = [HasV5T] in {
  def: Pat<(f32 (fminnum F32:$Rs, F32:$Rt)), (F2_sfmin F32:$Rs, F32:$Rt)>;
  def: Pat<(f32 (fmaxnum F32:$Rs, F32:$Rt)), (F2_sfmax F32:$Rs, F32:$Rt)>;
}

let AddedComplexity = 100, Predicates = [HasV5T] in {
  class SfSel12<PatFrag Cmp, InstHexagon MI>
    : Pat<(select (i1 (Cmp F32:$Rs, F32:$Rt)), F32:$Rs, F32:$Rt),
          (MI F32:$Rs, F32:$Rt)>;
  class SfSel21<PatFrag Cmp, InstHexagon MI>
    : Pat<(select (i1 (Cmp F32:$Rs, F32:$Rt)), F32:$Rt, F32:$Rs),
          (MI F32:$Rs, F32:$Rt)>;

  def: SfSel12<setolt, F2_sfmin>;
  def: SfSel12<setole, F2_sfmin>;
  def: SfSel12<setogt, F2_sfmax>;
  def: SfSel12<setoge, F2_sfmax>;
  def: SfSel21<setolt, F2_sfmax>;
  def: SfSel21<setole, F2_sfmax>;
  def: SfSel21<setogt, F2_sfmin>;
  def: SfSel21<setoge, F2_sfmin>;
}

class T_fcmp32_pat<PatFrag OpNode, InstHexagon MI>
  : Pat<(i1 (OpNode F32:$src1, F32:$src2)),
        (MI F32:$src1, F32:$src2)>;
class T_fcmp64_pat<PatFrag OpNode, InstHexagon MI>
  : Pat<(i1 (OpNode F64:$src1, F64:$src2)),
        (MI F64:$src1, F64:$src2)>;

def: T_fcmp32_pat<setoge, F2_sfcmpge>;
def: T_fcmp32_pat<setuo,  F2_sfcmpuo>;
def: T_fcmp32_pat<setoeq, F2_sfcmpeq>;
def: T_fcmp32_pat<setogt, F2_sfcmpgt>;

def: T_fcmp64_pat<setoge, F2_dfcmpge>;
def: T_fcmp64_pat<setuo,  F2_dfcmpuo>;
def: T_fcmp64_pat<setoeq, F2_dfcmpeq>;
def: T_fcmp64_pat<setogt, F2_dfcmpgt>;

let Predicates = [HasV5T] in
multiclass T_fcmp_pats<PatFrag cmpOp, InstHexagon IntMI, InstHexagon DoubleMI> {
  // IntRegs
  def: Pat<(i1 (cmpOp F32:$src1, F32:$src2)),
           (IntMI F32:$src1, F32:$src2)>;
  // DoubleRegs
  def: Pat<(i1 (cmpOp F64:$src1, F64:$src2)),
           (DoubleMI F64:$src1, F64:$src2)>;
}

defm : T_fcmp_pats <seteq, F2_sfcmpeq, F2_dfcmpeq>;
defm : T_fcmp_pats <setgt, F2_sfcmpgt, F2_dfcmpgt>;
defm : T_fcmp_pats <setge, F2_sfcmpge, F2_dfcmpge>;

//===----------------------------------------------------------------------===//
// Multiclass to define 'Def Pats' for unordered gt, ge, eq operations.
//===----------------------------------------------------------------------===//
let Predicates = [HasV5T] in
multiclass unord_Pats <PatFrag cmpOp, InstHexagon IntMI, InstHexagon DoubleMI> {
  // IntRegs
  def: Pat<(i1 (cmpOp F32:$src1, F32:$src2)),
           (C2_or (F2_sfcmpuo F32:$src1, F32:$src2),
                  (IntMI F32:$src1, F32:$src2))>;

  // DoubleRegs
  def: Pat<(i1 (cmpOp F64:$src1, F64:$src2)),
           (C2_or (F2_dfcmpuo F64:$src1, F64:$src2),
                  (DoubleMI F64:$src1, F64:$src2))>;
}

defm : unord_Pats <setuge, F2_sfcmpge, F2_dfcmpge>;
defm : unord_Pats <setugt, F2_sfcmpgt, F2_dfcmpgt>;
defm : unord_Pats <setueq, F2_sfcmpeq, F2_dfcmpeq>;

//===----------------------------------------------------------------------===//
// Multiclass to define 'Def Pats' for the following dags:
// seteq(setoeq(op1, op2), 0) -> not(setoeq(op1, op2))
// seteq(setoeq(op1, op2), 1) -> setoeq(op1, op2)
// setne(setoeq(op1, op2), 0) -> setoeq(op1, op2)
// setne(setoeq(op1, op2), 1) -> not(setoeq(op1, op2))
//===----------------------------------------------------------------------===//
let Predicates = [HasV5T] in
multiclass eq_ordgePats <PatFrag cmpOp, InstHexagon IntMI,
                         InstHexagon DoubleMI> {
  // IntRegs
  def: Pat<(i1 (seteq (i1 (cmpOp F32:$src1, F32:$src2)), 0)),
           (C2_not (IntMI F32:$src1, F32:$src2))>;
  def: Pat<(i1 (seteq (i1 (cmpOp F32:$src1, F32:$src2)), 1)),
           (IntMI F32:$src1, F32:$src2)>;
  def: Pat<(i1 (setne (i1 (cmpOp F32:$src1, F32:$src2)), 0)),
           (IntMI F32:$src1, F32:$src2)>;
  def: Pat<(i1 (setne (i1 (cmpOp F32:$src1, F32:$src2)), 1)),
           (C2_not (IntMI F32:$src1, F32:$src2))>;

  // DoubleRegs
  def : Pat<(i1 (seteq (i1 (cmpOp F64:$src1, F64:$src2)), 0)),
            (C2_not (DoubleMI F64:$src1, F64:$src2))>;
  def : Pat<(i1 (seteq (i1 (cmpOp F64:$src1, F64:$src2)), 1)),
            (DoubleMI F64:$src1, F64:$src2)>;
  def : Pat<(i1 (setne (i1 (cmpOp F64:$src1, F64:$src2)), 0)),
            (DoubleMI F64:$src1, F64:$src2)>;
  def : Pat<(i1 (setne (i1 (cmpOp F64:$src1, F64:$src2)), 1)),
            (C2_not (DoubleMI F64:$src1, F64:$src2))>;
}

defm : eq_ordgePats<setoeq, F2_sfcmpeq, F2_dfcmpeq>;
defm : eq_ordgePats<setoge, F2_sfcmpge, F2_dfcmpge>;
defm : eq_ordgePats<setogt, F2_sfcmpgt, F2_dfcmpgt>;

//===----------------------------------------------------------------------===//
// Multiclass to define 'Def Pats' for the following dags:
// seteq(setolt(op1, op2), 0) -> not(setogt(op2, op1))
// seteq(setolt(op1, op2), 1) -> setogt(op2, op1)
// setne(setolt(op1, op2), 0) -> setogt(op2, op1)
// setne(setolt(op1, op2), 1) -> not(setogt(op2, op1))
//===----------------------------------------------------------------------===//
let Predicates = [HasV5T] in
multiclass eq_ordltPats <PatFrag cmpOp, InstHexagon IntMI,
                         InstHexagon DoubleMI> {
  // IntRegs
  def: Pat<(i1 (seteq (i1 (cmpOp F32:$src1, F32:$src2)), 0)),
           (C2_not (IntMI F32:$src2, F32:$src1))>;
  def: Pat<(i1 (seteq (i1 (cmpOp F32:$src1, F32:$src2)), 1)),
           (IntMI F32:$src2, F32:$src1)>;
  def: Pat<(i1 (setne (i1 (cmpOp F32:$src1, F32:$src2)), 0)),
           (IntMI F32:$src2, F32:$src1)>;
  def: Pat<(i1 (setne (i1 (cmpOp F32:$src1, F32:$src2)), 1)),
           (C2_not (IntMI F32:$src2, F32:$src1))>;

  // DoubleRegs
  def: Pat<(i1 (seteq (i1 (cmpOp F64:$src1, F64:$src2)), 0)),
           (C2_not (DoubleMI F64:$src2, F64:$src1))>;
  def: Pat<(i1 (seteq (i1 (cmpOp F64:$src1, F64:$src2)), 1)),
           (DoubleMI F64:$src2, F64:$src1)>;
  def: Pat<(i1 (setne (i1 (cmpOp F64:$src1, F64:$src2)), 0)),
           (DoubleMI F64:$src2, F64:$src1)>;
  def: Pat<(i1 (setne (i1 (cmpOp F64:$src1, F64:$src2)), 0)),
           (C2_not (DoubleMI F64:$src2, F64:$src1))>;
}

defm : eq_ordltPats<setole, F2_sfcmpge, F2_dfcmpge>;
defm : eq_ordltPats<setolt, F2_sfcmpgt, F2_dfcmpgt>;


// o. seto inverse of setuo. http://llvm.org/docs/LangRef.html#i_fcmp
let Predicates = [HasV5T] in {
  def: Pat<(i1 (seto F32:$src1, F32:$src2)),
           (C2_not (F2_sfcmpuo F32:$src2, F32:$src1))>;
  def: Pat<(i1 (seto F32:$src1, f32ImmPred:$src2)),
           (C2_not (F2_sfcmpuo (f32 (A2_tfrsi (ftoi $src2))), F32:$src1))>;
  def: Pat<(i1 (seto F64:$src1, F64:$src2)),
           (C2_not (F2_dfcmpuo F64:$src2, F64:$src1))>;
  def: Pat<(i1 (seto F64:$src1, f64ImmPred:$src2)),
           (C2_not (F2_dfcmpuo (CONST64 (ftoi $src2)), F64:$src1))>;
}

// Ordered lt.
let Predicates = [HasV5T] in {
  def: Pat<(i1 (setolt F32:$src1, F32:$src2)),
           (F2_sfcmpgt F32:$src2, F32:$src1)>;
  def: Pat<(i1 (setolt F32:$src1, f32ImmPred:$src2)),
           (F2_sfcmpgt (f32 (A2_tfrsi (ftoi $src2))), F32:$src1)>;
  def: Pat<(i1 (setolt F64:$src1, F64:$src2)),
           (F2_dfcmpgt F64:$src2, F64:$src1)>;
  def: Pat<(i1 (setolt F64:$src1, f64ImmPred:$src2)),
           (F2_dfcmpgt (CONST64 (ftoi $src2)), F64:$src1)>;
}

// Unordered lt.
let Predicates = [HasV5T] in {
  def: Pat<(i1 (setult F32:$src1, F32:$src2)),
           (C2_or (F2_sfcmpuo F32:$src1, F32:$src2),
                  (F2_sfcmpgt F32:$src2, F32:$src1))>;
  def: Pat<(i1 (setult F32:$src1, f32ImmPred:$src2)),
           (C2_or (F2_sfcmpuo F32:$src1, (f32 (A2_tfrsi (ftoi $src2)))),
                  (F2_sfcmpgt (f32 (A2_tfrsi (ftoi $src2))), F32:$src1))>;
  def: Pat<(i1 (setult F64:$src1, F64:$src2)),
           (C2_or (F2_dfcmpuo F64:$src1, F64:$src2),
                  (F2_dfcmpgt F64:$src2, F64:$src1))>;
  def: Pat<(i1 (setult F64:$src1, f64ImmPred:$src2)),
           (C2_or (F2_dfcmpuo F64:$src1, (CONST64 (ftoi $src2))),
                  (F2_dfcmpgt (CONST64 (ftoi $src2)), F64:$src1))>;
}

// Ordered le.
let Predicates = [HasV5T] in {
  // rs <= rt -> rt >= rs.
  def: Pat<(i1 (setole F32:$src1, F32:$src2)),
           (F2_sfcmpge F32:$src2, F32:$src1)>;
  def: Pat<(i1 (setole F32:$src1, f32ImmPred:$src2)),
           (F2_sfcmpge (f32 (A2_tfrsi (ftoi $src2))), F32:$src1)>;

  // Rss <= Rtt -> Rtt >= Rss.
  def: Pat<(i1 (setole F64:$src1, F64:$src2)),
           (F2_dfcmpge F64:$src2, F64:$src1)>;
  def: Pat<(i1 (setole F64:$src1, f64ImmPred:$src2)),
           (F2_dfcmpge (CONST64 (ftoi $src2)), F64:$src1)>;
}

// Unordered le.
let Predicates = [HasV5T] in {
// rs <= rt -> rt >= rs.
  def: Pat<(i1 (setule F32:$src1, F32:$src2)),
           (C2_or (F2_sfcmpuo F32:$src1, F32:$src2),
                  (F2_sfcmpge F32:$src2, F32:$src1))>;
  def: Pat<(i1 (setule F32:$src1, f32ImmPred:$src2)),
           (C2_or (F2_sfcmpuo F32:$src1, (f32 (A2_tfrsi (ftoi $src2)))),
                  (F2_sfcmpge (f32 (A2_tfrsi (ftoi $src2))), F32:$src1))>;
  def: Pat<(i1 (setule F64:$src1, F64:$src2)),
           (C2_or (F2_dfcmpuo F64:$src1, F64:$src2),
                  (F2_dfcmpge F64:$src2, F64:$src1))>;
  def: Pat<(i1 (setule F64:$src1, f64ImmPred:$src2)),
           (C2_or (F2_dfcmpuo F64:$src1, (CONST64 (ftoi $src2))),
                  (F2_dfcmpge (CONST64 (ftoi $src2)), F64:$src1))>;
}

// Ordered ne.
let Predicates = [HasV5T] in {
  def: Pat<(i1 (setone F32:$src1, F32:$src2)),
           (C2_not (F2_sfcmpeq F32:$src1, F32:$src2))>;
  def: Pat<(i1 (setone F64:$src1, F64:$src2)),
           (C2_not (F2_dfcmpeq F64:$src1, F64:$src2))>;
  def: Pat<(i1 (setone F32:$src1, f32ImmPred:$src2)),
           (C2_not (F2_sfcmpeq F32:$src1, (f32 (A2_tfrsi (ftoi $src2)))))>;
  def: Pat<(i1 (setone F64:$src1, f64ImmPred:$src2)),
           (C2_not (F2_dfcmpeq F64:$src1, (CONST64 (ftoi $src2))))>;
}

// Unordered ne.
let Predicates = [HasV5T] in {
  def: Pat<(i1 (setune F32:$src1, F32:$src2)),
           (C2_or (F2_sfcmpuo F32:$src1, F32:$src2),
                  (C2_not (F2_sfcmpeq F32:$src1, F32:$src2)))>;
  def: Pat<(i1 (setune F64:$src1, F64:$src2)),
           (C2_or (F2_dfcmpuo F64:$src1, F64:$src2),
                  (C2_not (F2_dfcmpeq F64:$src1, F64:$src2)))>;
  def: Pat<(i1 (setune F32:$src1, f32ImmPred:$src2)),
           (C2_or (F2_sfcmpuo F32:$src1, (f32 (A2_tfrsi (ftoi $src2)))),
                  (C2_not (F2_sfcmpeq F32:$src1,
                                      (f32 (A2_tfrsi (ftoi $src2))))))>;
  def: Pat<(i1 (setune F64:$src1, f64ImmPred:$src2)),
           (C2_or (F2_dfcmpuo F64:$src1, (CONST64 (ftoi $src2))),
                  (C2_not (F2_dfcmpeq F64:$src1,
                                      (CONST64 (ftoi $src2)))))>;
}

// Besides set[o|u][comparions], we also need set[comparisons].
let Predicates = [HasV5T] in {
  // lt.
  def: Pat<(i1 (setlt F32:$src1, F32:$src2)),
           (F2_sfcmpgt F32:$src2, F32:$src1)>;
  def: Pat<(i1 (setlt F32:$src1, f32ImmPred:$src2)),
           (F2_sfcmpgt (f32 (A2_tfrsi (ftoi $src2))), F32:$src1)>;
  def: Pat<(i1 (setlt F64:$src1, F64:$src2)),
           (F2_dfcmpgt F64:$src2, F64:$src1)>;
  def: Pat<(i1 (setlt F64:$src1, f64ImmPred:$src2)),
           (F2_dfcmpgt (CONST64 (ftoi $src2)), F64:$src1)>;

  // le.
  // rs <= rt -> rt >= rs.
  def: Pat<(i1 (setle F32:$src1, F32:$src2)),
           (F2_sfcmpge F32:$src2, F32:$src1)>;
  def: Pat<(i1 (setle F32:$src1, f32ImmPred:$src2)),
           (F2_sfcmpge (f32 (A2_tfrsi (ftoi $src2))), F32:$src1)>;

  // Rss <= Rtt -> Rtt >= Rss.
  def: Pat<(i1 (setle F64:$src1, F64:$src2)),
           (F2_dfcmpge F64:$src2, F64:$src1)>;
  def: Pat<(i1 (setle F64:$src1, f64ImmPred:$src2)),
           (F2_dfcmpge (CONST64 (ftoi $src2)), F64:$src1)>;

  // ne.
  def: Pat<(i1 (setne F32:$src1, F32:$src2)),
           (C2_not (F2_sfcmpeq F32:$src1, F32:$src2))>;
  def: Pat<(i1 (setne F64:$src1, F64:$src2)),
           (C2_not (F2_dfcmpeq F64:$src1, F64:$src2))>;
  def: Pat<(i1 (setne F32:$src1, f32ImmPred:$src2)),
           (C2_not (F2_sfcmpeq F32:$src1, (f32 (A2_tfrsi (ftoi $src2)))))>;
  def: Pat<(i1 (setne F64:$src1, f64ImmPred:$src2)),
           (C2_not (F2_dfcmpeq F64:$src1, (CONST64 (ftoi $src2))))>;
}


def: Pat<(f64 (fpextend F32:$Rs)), (F2_conv_sf2df F32:$Rs)>;
def: Pat<(f32 (fpround F64:$Rs)), (F2_conv_df2sf F64:$Rs)>;

def: Pat<(f32 (sint_to_fp I32:$Rs)), (F2_conv_w2sf I32:$Rs)>;
def: Pat<(f32 (sint_to_fp I64:$Rs)), (F2_conv_d2sf I64:$Rs)>;
def: Pat<(f64 (sint_to_fp I32:$Rs)), (F2_conv_w2df I32:$Rs)>;
def: Pat<(f64 (sint_to_fp I64:$Rs)), (F2_conv_d2df I64:$Rs)>;

def: Pat<(f32 (uint_to_fp I32:$Rs)), (F2_conv_uw2sf I32:$Rs)>;
def: Pat<(f32 (uint_to_fp I64:$Rs)), (F2_conv_ud2sf I64:$Rs)>;
def: Pat<(f64 (uint_to_fp I32:$Rs)), (F2_conv_uw2df I32:$Rs)>;
def: Pat<(f64 (uint_to_fp I64:$Rs)), (F2_conv_ud2df I64:$Rs)>;

def: Pat<(i32 (fp_to_sint F32:$Rs)), (F2_conv_sf2w_chop F32:$Rs)>;
def: Pat<(i32 (fp_to_sint F64:$Rs)), (F2_conv_df2w_chop F64:$Rs)>;
def: Pat<(i64 (fp_to_sint F32:$Rs)), (F2_conv_sf2d_chop F32:$Rs)>;
def: Pat<(i64 (fp_to_sint F64:$Rs)), (F2_conv_df2d_chop F64:$Rs)>;

def: Pat<(i32 (fp_to_uint F32:$Rs)), (F2_conv_sf2uw_chop F32:$Rs)>;
def: Pat<(i32 (fp_to_uint F64:$Rs)), (F2_conv_df2uw_chop F64:$Rs)>;
def: Pat<(i64 (fp_to_uint F32:$Rs)), (F2_conv_sf2ud_chop F32:$Rs)>;
def: Pat<(i64 (fp_to_uint F64:$Rs)), (F2_conv_df2ud_chop F64:$Rs)>;

// Bitcast is different than [fp|sint|uint]_to_[sint|uint|fp].
let Predicates = [HasV5T] in {
  def: Pat <(i32 (bitconvert F32:$src)), (I32:$src)>;
  def: Pat <(f32 (bitconvert I32:$src)), (F32:$src)>;
  def: Pat <(i64 (bitconvert F64:$src)), (I64:$src)>;
  def: Pat <(f64 (bitconvert I64:$src)), (F64:$src)>;
}

def : Pat <(fma F32:$src2, F32:$src3, F32:$src1),
           (F2_sffma F32:$src1, F32:$src2, F32:$src3)>;

def : Pat <(fma (fneg F32:$src2), F32:$src3, F32:$src1),
           (F2_sffms F32:$src1, F32:$src2, F32:$src3)>;

def : Pat <(fma F32:$src2, (fneg F32:$src3), F32:$src1),
           (F2_sffms F32:$src1, F32:$src2, F32:$src3)>;

def: Pat<(select I1:$Pu, F32:$Rs, f32ImmPred:$imm),
         (C2_muxir I1:$Pu, F32:$Rs, (ftoi $imm))>,
    Requires<[HasV5T]>;

def: Pat<(select I1:$Pu, f32ImmPred:$imm, F32:$Rt),
         (C2_muxri I1:$Pu, (ftoi $imm), F32:$Rt)>,
    Requires<[HasV5T]>;

def: Pat<(select I1:$src1, F32:$src2, F32:$src3),
         (C2_mux I1:$src1, F32:$src2, F32:$src3)>,
     Requires<[HasV5T]>;

def: Pat<(select (i1 (setult F32:$src1, F32:$src2)), F32:$src3, F32:$src4),
         (C2_mux (F2_sfcmpgt F32:$src2, F32:$src1), F32:$src4, F32:$src3)>,
     Requires<[HasV5T]>;

def: Pat<(select I1:$src1, F64:$src2, F64:$src3),
         (C2_vmux I1:$src1, F64:$src2, F64:$src3)>,
    Requires<[HasV5T]>;

def: Pat<(select (i1 (setult F64:$src1, F64:$src2)), F64:$src3, F64:$src4),
         (C2_vmux (F2_dfcmpgt F64:$src2, F64:$src1), F64:$src3, F64:$src4)>,
     Requires<[HasV5T]>;

// Map from p0 = pnot(p0); r0 = select(p0, #i, r1)
// => r0 = mux(p0, #i, r1)
def: Pat<(select (not I1:$src1), f32ImmPred:$src2, F32:$src3),
         (C2_muxir I1:$src1, F32:$src3, (ftoi $src2))>,
     Requires<[HasV5T]>;

// Map from p0 = pnot(p0); r0 = mux(p0, r1, #i)
// => r0 = mux(p0, r1, #i)
def: Pat<(select (not I1:$src1), F32:$src2, f32ImmPred:$src3),
         (C2_muxri I1:$src1, (ftoi $src3), F32:$src2)>,
     Requires<[HasV5T]>;

def: Pat<(i32 (fp_to_sint F64:$src1)),
         (LoReg (F2_conv_df2d_chop F64:$src1))>,
     Requires<[HasV5T]>;

def : Pat <(fabs F32:$src1),
           (S2_clrbit_i F32:$src1, 31)>,
          Requires<[HasV5T]>;

def : Pat <(fneg F32:$src1),
           (S2_togglebit_i F32:$src1, 31)>,
          Requires<[HasV5T]>;

def: Pat<(fabs F64:$Rs),
         (REG_SEQUENCE DoubleRegs,
              (S2_clrbit_i (HiReg $Rs), 31), isub_hi,
              (i32 (LoReg $Rs)), isub_lo)>;

def: Pat<(fneg F64:$Rs),
         (REG_SEQUENCE DoubleRegs,
              (S2_togglebit_i (HiReg $Rs), 31), isub_hi,
              (i32 (LoReg $Rs)), isub_lo)>;

def: Pat<(mul I64:$Rss, I64:$Rtt),
         (A2_combinew
           (M2_maci (M2_maci (HiReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt))),
                             (LoReg $Rss),
                             (HiReg $Rtt)),
                    (LoReg $Rtt),
                    (HiReg $Rss)),
           (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt))))>;

def alignedload : PatFrag<(ops node:$addr), (load $addr), [{
  return isAlignedMemNode(dyn_cast<MemSDNode>(N));
}]>;

def unalignedload : PatFrag<(ops node:$addr), (load $addr), [{
  return !isAlignedMemNode(dyn_cast<MemSDNode>(N));
}]>;

def alignedstore : PatFrag<(ops node:$val, node:$addr), (store $val, $addr), [{
  return isAlignedMemNode(dyn_cast<MemSDNode>(N));
}]>;

def unalignedstore : PatFrag<(ops node:$val, node:$addr), (store $val, $addr), [{
  return !isAlignedMemNode(dyn_cast<MemSDNode>(N));
}]>;


multiclass vS32b_ai_pats <ValueType VTSgl, ValueType VTDbl> {
  // Aligned stores
  def : Pat<(alignedstore (VTSgl VectorRegs:$src1), IntRegs:$addr),
            (V6_vS32b_ai IntRegs:$addr, 0, (VTSgl VectorRegs:$src1))>,
            Requires<[UseHVXSgl]>;
  def : Pat<(unalignedstore (VTSgl VectorRegs:$src1), IntRegs:$addr),
            (V6_vS32Ub_ai IntRegs:$addr, 0, (VTSgl VectorRegs:$src1))>,
            Requires<[UseHVXSgl]>;

  // 128B Aligned stores
  def : Pat<(alignedstore (VTDbl VectorRegs128B:$src1), IntRegs:$addr),
            (V6_vS32b_ai_128B IntRegs:$addr, 0, (VTDbl VectorRegs128B:$src1))>,
            Requires<[UseHVXDbl]>;
  def : Pat<(unalignedstore (VTDbl VectorRegs128B:$src1), IntRegs:$addr),
            (V6_vS32Ub_ai_128B IntRegs:$addr, 0, (VTDbl VectorRegs128B:$src1))>,
            Requires<[UseHVXDbl]>;

  // Fold Add R+OFF into vector store.
  let AddedComplexity = 10 in {
    def : Pat<(alignedstore (VTSgl VectorRegs:$src1),
                     (add IntRegs:$src2, Iss4_6:$offset)),
              (V6_vS32b_ai IntRegs:$src2, Iss4_6:$offset,
                           (VTSgl VectorRegs:$src1))>,
              Requires<[UseHVXSgl]>;
    def : Pat<(unalignedstore (VTSgl VectorRegs:$src1),
                     (add IntRegs:$src2, Iss4_6:$offset)),
              (V6_vS32Ub_ai IntRegs:$src2, Iss4_6:$offset,
                           (VTSgl VectorRegs:$src1))>,
              Requires<[UseHVXSgl]>;

    // Fold Add R+OFF into vector store 128B.
    def : Pat<(alignedstore (VTDbl VectorRegs128B:$src1),
                     (add IntRegs:$src2, Iss4_7:$offset)),
              (V6_vS32b_ai_128B IntRegs:$src2, Iss4_7:$offset,
                                (VTDbl VectorRegs128B:$src1))>,
              Requires<[UseHVXDbl]>;
    def : Pat<(unalignedstore (VTDbl VectorRegs128B:$src1),
                     (add IntRegs:$src2, Iss4_7:$offset)),
              (V6_vS32Ub_ai_128B IntRegs:$src2, Iss4_7:$offset,
                                (VTDbl VectorRegs128B:$src1))>,
              Requires<[UseHVXDbl]>;
  }
}

defm : vS32b_ai_pats <v64i8,  v128i8>;
defm : vS32b_ai_pats <v32i16, v64i16>;
defm : vS32b_ai_pats <v16i32, v32i32>;
defm : vS32b_ai_pats <v8i64,  v16i64>;


multiclass vL32b_ai_pats <ValueType VTSgl, ValueType VTDbl> {
  // Aligned loads
  def : Pat < (VTSgl (alignedload IntRegs:$addr)),
              (V6_vL32b_ai IntRegs:$addr, 0) >,
              Requires<[UseHVXSgl]>;
  def : Pat < (VTSgl (unalignedload IntRegs:$addr)),
              (V6_vL32Ub_ai IntRegs:$addr, 0) >,
              Requires<[UseHVXSgl]>;

  // 128B Load
  def : Pat < (VTDbl (alignedload IntRegs:$addr)),
              (V6_vL32b_ai_128B IntRegs:$addr, 0) >,
              Requires<[UseHVXDbl]>;
  def : Pat < (VTDbl (unalignedload IntRegs:$addr)),
              (V6_vL32Ub_ai_128B IntRegs:$addr, 0) >,
              Requires<[UseHVXDbl]>;

  // Fold Add R+OFF into vector load.
  let AddedComplexity = 10 in {
    def : Pat<(VTDbl (alignedload (add IntRegs:$src2, Iss4_7:$offset))),
              (V6_vL32b_ai_128B IntRegs:$src2, Iss4_7:$offset)>,
               Requires<[UseHVXDbl]>;
    def : Pat<(VTDbl (unalignedload (add IntRegs:$src2, Iss4_7:$offset))),
              (V6_vL32Ub_ai_128B IntRegs:$src2, Iss4_7:$offset)>,
               Requires<[UseHVXDbl]>;

    def : Pat<(VTSgl (alignedload (add IntRegs:$src2, Iss4_6:$offset))),
              (V6_vL32b_ai IntRegs:$src2, Iss4_6:$offset)>,
              Requires<[UseHVXSgl]>;
    def : Pat<(VTSgl (unalignedload (add IntRegs:$src2, Iss4_6:$offset))),
              (V6_vL32Ub_ai IntRegs:$src2, Iss4_6:$offset)>,
              Requires<[UseHVXSgl]>;
  }
}

defm : vL32b_ai_pats <v64i8,  v128i8>;
defm : vL32b_ai_pats <v32i16, v64i16>;
defm : vL32b_ai_pats <v16i32, v32i32>;
defm : vL32b_ai_pats <v8i64,  v16i64>;

multiclass STrivv_pats <ValueType VTSgl, ValueType VTDbl> {
  def : Pat<(alignedstore (VTSgl VecDblRegs:$src1), IntRegs:$addr),
            (PS_vstorerw_ai IntRegs:$addr, 0, (VTSgl VecDblRegs:$src1))>,
           Requires<[UseHVXSgl]>;
  def : Pat<(unalignedstore (VTSgl VecDblRegs:$src1), IntRegs:$addr),
            (PS_vstorerwu_ai IntRegs:$addr, 0, (VTSgl VecDblRegs:$src1))>,
           Requires<[UseHVXSgl]>;

  def : Pat<(alignedstore (VTDbl VecDblRegs128B:$src1), IntRegs:$addr),
            (PS_vstorerw_ai_128B IntRegs:$addr, 0,
                  (VTDbl VecDblRegs128B:$src1))>,
            Requires<[UseHVXDbl]>;
  def : Pat<(unalignedstore (VTDbl VecDblRegs128B:$src1), IntRegs:$addr),
            (PS_vstorerwu_ai_128B IntRegs:$addr, 0,
                  (VTDbl VecDblRegs128B:$src1))>,
            Requires<[UseHVXDbl]>;
}

defm : STrivv_pats <v128i8, v256i8>;
defm : STrivv_pats <v64i16, v128i16>;
defm : STrivv_pats <v32i32, v64i32>;
defm : STrivv_pats <v16i64, v32i64>;

multiclass LDrivv_pats <ValueType VTSgl, ValueType VTDbl> {
  def : Pat<(VTSgl (alignedload I32:$addr)),
            (PS_vloadrw_ai I32:$addr, 0)>,
           Requires<[UseHVXSgl]>;
  def : Pat<(VTSgl (unalignedload I32:$addr)),
            (PS_vloadrwu_ai I32:$addr, 0)>,
           Requires<[UseHVXSgl]>;

  def : Pat<(VTDbl (alignedload I32:$addr)),
            (PS_vloadrw_ai_128B I32:$addr, 0)>,
           Requires<[UseHVXDbl]>;
  def : Pat<(VTDbl (unalignedload I32:$addr)),
            (PS_vloadrwu_ai_128B I32:$addr, 0)>,
           Requires<[UseHVXDbl]>;
}

defm : LDrivv_pats <v128i8, v256i8>;
defm : LDrivv_pats <v64i16, v128i16>;
defm : LDrivv_pats <v32i32, v64i32>;
defm : LDrivv_pats <v16i64, v32i64>;

let Predicates = [HasV60T,UseHVXSgl] in {
  def: Pat<(select I1:$Pu, (v16i32 VectorRegs:$Vs), VectorRegs:$Vt),
           (PS_vselect I1:$Pu, VectorRegs:$Vs, VectorRegs:$Vt)>;
  def: Pat<(select I1:$Pu, (v32i32 VecDblRegs:$Vs), VecDblRegs:$Vt),
           (PS_wselect I1:$Pu, VecDblRegs:$Vs, VecDblRegs:$Vt)>;
}
let Predicates = [HasV60T,UseHVXDbl] in {
  def: Pat<(select I1:$Pu, (v32i32 VectorRegs128B:$Vs), VectorRegs128B:$Vt),
           (PS_vselect_128B I1:$Pu, VectorRegs128B:$Vs, VectorRegs128B:$Vt)>;
  def: Pat<(select I1:$Pu, (v64i32 VecDblRegs128B:$Vs), VecDblRegs128B:$Vt),
           (PS_wselect_128B I1:$Pu, VecDblRegs128B:$Vs, VecDblRegs128B:$Vt)>;
}


def SDTHexagonVCOMBINE: SDTypeProfile<1, 2, [SDTCisSameAs<1, 2>,
      SDTCisSubVecOfVec<1, 0>]>;

def HexagonVCOMBINE: SDNode<"HexagonISD::VCOMBINE", SDTHexagonVCOMBINE>;

def: Pat<(v32i32 (HexagonVCOMBINE (v16i32 VectorRegs:$Vs),
                                  (v16i32 VectorRegs:$Vt))),
         (V6_vcombine VectorRegs:$Vs, VectorRegs:$Vt)>,
         Requires<[UseHVXSgl]>;
def: Pat<(v64i32 (HexagonVCOMBINE (v32i32 VecDblRegs:$Vs),
                                  (v32i32 VecDblRegs:$Vt))),
         (V6_vcombine_128B VecDblRegs:$Vs, VecDblRegs:$Vt)>,
         Requires<[UseHVXDbl]>;

def SDTHexagonVPACK: SDTypeProfile<1, 3, [SDTCisSameAs<1, 2>,
                                          SDTCisInt<3>]>;

def HexagonVPACK: SDNode<"HexagonISD::VPACK", SDTHexagonVPACK>;

// 0 as the last argument denotes vpacke. 1 denotes vpacko
def: Pat<(v64i8 (HexagonVPACK (v64i8 VectorRegs:$Vs),
                              (v64i8 VectorRegs:$Vt), (i32 0))),
         (V6_vpackeb VectorRegs:$Vs, VectorRegs:$Vt)>,
         Requires<[UseHVXSgl]>;
def: Pat<(v64i8 (HexagonVPACK (v64i8 VectorRegs:$Vs),
                              (v64i8 VectorRegs:$Vt), (i32 1))),
         (V6_vpackob VectorRegs:$Vs, VectorRegs:$Vt)>,
         Requires<[UseHVXSgl]>;
def: Pat<(v32i16 (HexagonVPACK (v32i16 VectorRegs:$Vs),
                               (v32i16 VectorRegs:$Vt), (i32 0))),
         (V6_vpackeh VectorRegs:$Vs, VectorRegs:$Vt)>,
         Requires<[UseHVXSgl]>;
def: Pat<(v32i16 (HexagonVPACK (v32i16 VectorRegs:$Vs),
                             (v32i16 VectorRegs:$Vt), (i32 1))),
         (V6_vpackoh VectorRegs:$Vs, VectorRegs:$Vt)>,
         Requires<[UseHVXSgl]>;

def: Pat<(v128i8 (HexagonVPACK (v128i8 VecDblRegs:$Vs),
                             (v128i8 VecDblRegs:$Vt), (i32 0))),
         (V6_vpackeb_128B VecDblRegs:$Vs, VecDblRegs:$Vt)>,
         Requires<[UseHVXDbl]>;
def: Pat<(v128i8 (HexagonVPACK (v128i8 VecDblRegs:$Vs),
                             (v128i8 VecDblRegs:$Vt), (i32 1))),
         (V6_vpackob_128B VecDblRegs:$Vs, VecDblRegs:$Vt)>,
         Requires<[UseHVXDbl]>;
def: Pat<(v64i16 (HexagonVPACK (v64i16 VecDblRegs:$Vs),
                             (v64i16 VecDblRegs:$Vt), (i32 0))),
         (V6_vpackeh_128B VecDblRegs:$Vs, VecDblRegs:$Vt)>,
         Requires<[UseHVXDbl]>;
def: Pat<(v64i16 (HexagonVPACK (v64i16 VecDblRegs:$Vs),
                            (v64i16 VecDblRegs:$Vt), (i32 1))),
        (V6_vpackoh_128B VecDblRegs:$Vs, VecDblRegs:$Vt)>,
        Requires<[UseHVXDbl]>;

def V2I1:  PatLeaf<(v2i1  PredRegs:$R)>;
def V4I1:  PatLeaf<(v4i1  PredRegs:$R)>;
def V8I1:  PatLeaf<(v8i1  PredRegs:$R)>;
def V4I8:  PatLeaf<(v4i8  IntRegs:$R)>;
def V2I16: PatLeaf<(v2i16 IntRegs:$R)>;
def V8I8:  PatLeaf<(v8i8  DoubleRegs:$R)>;
def V4I16: PatLeaf<(v4i16 DoubleRegs:$R)>;
def V2I32: PatLeaf<(v2i32 DoubleRegs:$R)>;


multiclass bitconvert_32<ValueType a, ValueType b> {
  def : Pat <(b (bitconvert (a IntRegs:$src))),
             (b IntRegs:$src)>;
  def : Pat <(a (bitconvert (b IntRegs:$src))),
             (a IntRegs:$src)>;
}

multiclass bitconvert_64<ValueType a, ValueType b> {
  def : Pat <(b (bitconvert (a DoubleRegs:$src))),
             (b DoubleRegs:$src)>;
  def : Pat <(a (bitconvert (b DoubleRegs:$src))),
             (a DoubleRegs:$src)>;
}

// Bit convert vector types to integers.
defm : bitconvert_32<v4i8,  i32>;
defm : bitconvert_32<v2i16, i32>;
defm : bitconvert_64<v8i8,  i64>;
defm : bitconvert_64<v4i16, i64>;
defm : bitconvert_64<v2i32, i64>;

def: Pat<(sra (v4i16 DoubleRegs:$src1), u4_0ImmPred:$src2),
         (S2_asr_i_vh DoubleRegs:$src1, imm:$src2)>;
def: Pat<(srl (v4i16 DoubleRegs:$src1), u4_0ImmPred:$src2),
         (S2_lsr_i_vh DoubleRegs:$src1, imm:$src2)>;
def: Pat<(shl (v4i16 DoubleRegs:$src1), u4_0ImmPred:$src2),
         (S2_asl_i_vh DoubleRegs:$src1, imm:$src2)>;

def: Pat<(sra (v2i32 DoubleRegs:$src1), u5_0ImmPred:$src2),
         (S2_asr_i_vw DoubleRegs:$src1, imm:$src2)>;
def: Pat<(srl (v2i32 DoubleRegs:$src1), u5_0ImmPred:$src2),
         (S2_lsr_i_vw DoubleRegs:$src1, imm:$src2)>;
def: Pat<(shl (v2i32 DoubleRegs:$src1), u5_0ImmPred:$src2),
         (S2_asl_i_vw DoubleRegs:$src1, imm:$src2)>;

def : Pat<(v2i16 (add (v2i16 IntRegs:$src1), (v2i16 IntRegs:$src2))),
          (A2_svaddh IntRegs:$src1, IntRegs:$src2)>;

def : Pat<(v2i16 (sub (v2i16 IntRegs:$src1), (v2i16 IntRegs:$src2))),
          (A2_svsubh IntRegs:$src1, IntRegs:$src2)>;

def HexagonVSPLATB: SDNode<"HexagonISD::VSPLATB", SDTUnaryOp>;
def HexagonVSPLATH: SDNode<"HexagonISD::VSPLATH", SDTUnaryOp>;

// Replicate the low 8-bits from 32-bits input register into each of the
// four bytes of 32-bits destination register.
def: Pat<(v4i8  (HexagonVSPLATB I32:$Rs)), (S2_vsplatrb I32:$Rs)>;

// Replicate the low 16-bits from 32-bits input register into each of the
// four halfwords of 64-bits destination register.
def: Pat<(v4i16 (HexagonVSPLATH I32:$Rs)), (S2_vsplatrh I32:$Rs)>;


class VArith_pat <InstHexagon MI, SDNode Op, PatFrag Type>
  : Pat <(Op Type:$Rss, Type:$Rtt),
         (MI Type:$Rss, Type:$Rtt)>;

def: VArith_pat <A2_vaddub, add, V8I8>;
def: VArith_pat <A2_vaddh,  add, V4I16>;
def: VArith_pat <A2_vaddw,  add, V2I32>;
def: VArith_pat <A2_vsubub, sub, V8I8>;
def: VArith_pat <A2_vsubh,  sub, V4I16>;
def: VArith_pat <A2_vsubw,  sub, V2I32>;

def: VArith_pat <A2_and,    and, V2I16>;
def: VArith_pat <A2_xor,    xor, V2I16>;
def: VArith_pat <A2_or,     or,  V2I16>;

def: VArith_pat <A2_andp,   and, V8I8>;
def: VArith_pat <A2_andp,   and, V4I16>;
def: VArith_pat <A2_andp,   and, V2I32>;
def: VArith_pat <A2_orp,    or,  V8I8>;
def: VArith_pat <A2_orp,    or,  V4I16>;
def: VArith_pat <A2_orp,    or,  V2I32>;
def: VArith_pat <A2_xorp,   xor, V8I8>;
def: VArith_pat <A2_xorp,   xor, V4I16>;
def: VArith_pat <A2_xorp,   xor, V2I32>;

def: Pat<(v2i32 (sra V2I32:$b, (i64 (HexagonCOMBINE (i32 u5_0ImmPred:$c),
                                                    (i32 u5_0ImmPred:$c))))),
         (S2_asr_i_vw V2I32:$b, imm:$c)>;
def: Pat<(v2i32 (srl V2I32:$b, (i64 (HexagonCOMBINE (i32 u5_0ImmPred:$c),
                                                    (i32 u5_0ImmPred:$c))))),
         (S2_lsr_i_vw V2I32:$b, imm:$c)>;
def: Pat<(v2i32 (shl V2I32:$b, (i64 (HexagonCOMBINE (i32 u5_0ImmPred:$c),
                                                    (i32 u5_0ImmPred:$c))))),
         (S2_asl_i_vw V2I32:$b, imm:$c)>;

def: Pat<(v4i16 (sra V4I16:$b, (v4i16 (HexagonVSPLATH (i32 (u4_0ImmPred:$c)))))),
         (S2_asr_i_vh V4I16:$b, imm:$c)>;
def: Pat<(v4i16 (srl V4I16:$b, (v4i16 (HexagonVSPLATH (i32 (u4_0ImmPred:$c)))))),
         (S2_lsr_i_vh V4I16:$b, imm:$c)>;
def: Pat<(v4i16 (shl V4I16:$b, (v4i16 (HexagonVSPLATH (i32 (u4_0ImmPred:$c)))))),
         (S2_asl_i_vh V4I16:$b, imm:$c)>;


def SDTHexagon_v2i32_v2i32_i32 : SDTypeProfile<1, 2,
  [SDTCisSameAs<0, 1>, SDTCisVT<0, v2i32>, SDTCisInt<2>]>;
def SDTHexagon_v4i16_v4i16_i32 : SDTypeProfile<1, 2,
  [SDTCisSameAs<0, 1>, SDTCisVT<0, v4i16>, SDTCisInt<2>]>;

def HexagonVSRAW: SDNode<"HexagonISD::VSRAW", SDTHexagon_v2i32_v2i32_i32>;
def HexagonVSRAH: SDNode<"HexagonISD::VSRAH", SDTHexagon_v4i16_v4i16_i32>;
def HexagonVSRLW: SDNode<"HexagonISD::VSRLW", SDTHexagon_v2i32_v2i32_i32>;
def HexagonVSRLH: SDNode<"HexagonISD::VSRLH", SDTHexagon_v4i16_v4i16_i32>;
def HexagonVSHLW: SDNode<"HexagonISD::VSHLW", SDTHexagon_v2i32_v2i32_i32>;
def HexagonVSHLH: SDNode<"HexagonISD::VSHLH", SDTHexagon_v4i16_v4i16_i32>;

def: Pat<(v2i32 (HexagonVSRAW V2I32:$Rs, u5_0ImmPred:$u5)),
         (S2_asr_i_vw V2I32:$Rs, imm:$u5)>;
def: Pat<(v4i16 (HexagonVSRAH V4I16:$Rs, u4_0ImmPred:$u4)),
         (S2_asr_i_vh V4I16:$Rs, imm:$u4)>;
def: Pat<(v2i32 (HexagonVSRLW V2I32:$Rs, u5_0ImmPred:$u5)),
         (S2_lsr_i_vw V2I32:$Rs, imm:$u5)>;
def: Pat<(v4i16 (HexagonVSRLH V4I16:$Rs, u4_0ImmPred:$u4)),
         (S2_lsr_i_vh V4I16:$Rs, imm:$u4)>;
def: Pat<(v2i32 (HexagonVSHLW V2I32:$Rs, u5_0ImmPred:$u5)),
         (S2_asl_i_vw V2I32:$Rs, imm:$u5)>;
def: Pat<(v4i16 (HexagonVSHLH V4I16:$Rs, u4_0ImmPred:$u4)),
         (S2_asl_i_vh V4I16:$Rs, imm:$u4)>;

class vshift_rr_pat<InstHexagon MI, SDNode Op, PatFrag Value>
  : Pat <(Op Value:$Rs, I32:$Rt),
         (MI Value:$Rs, I32:$Rt)>;

def: vshift_rr_pat <S2_asr_r_vw, HexagonVSRAW, V2I32>;
def: vshift_rr_pat <S2_asr_r_vh, HexagonVSRAH, V4I16>;
def: vshift_rr_pat <S2_lsr_r_vw, HexagonVSRLW, V2I32>;
def: vshift_rr_pat <S2_lsr_r_vh, HexagonVSRLH, V4I16>;
def: vshift_rr_pat <S2_asl_r_vw, HexagonVSHLW, V2I32>;
def: vshift_rr_pat <S2_asl_r_vh, HexagonVSHLH, V4I16>;


class vcmp_vi1_pat<InstHexagon MI, PatFrag Op, PatFrag InVal, ValueType OutTy>
  : Pat <(OutTy (Op InVal:$Rs, InVal:$Rt)),
         (MI InVal:$Rs, InVal:$Rt)>;

def: vcmp_vi1_pat<A2_vcmpweq,  seteq,  V2I32, v2i1>;
def: vcmp_vi1_pat<A2_vcmpwgt,  setgt,  V2I32, v2i1>;
def: vcmp_vi1_pat<A2_vcmpwgtu, setugt, V2I32, v2i1>;

def: vcmp_vi1_pat<A2_vcmpheq,  seteq,  V4I16, v4i1>;
def: vcmp_vi1_pat<A2_vcmphgt,  setgt,  V4I16, v4i1>;
def: vcmp_vi1_pat<A2_vcmphgtu, setugt, V4I16, v4i1>;

def: Pat<(mul V2I32:$Rs, V2I32:$Rt),
         (PS_vmulw DoubleRegs:$Rs, DoubleRegs:$Rt)>;
def: Pat<(add V2I32:$Rx, (mul V2I32:$Rs, V2I32:$Rt)),
         (PS_vmulw_acc DoubleRegs:$Rx, DoubleRegs:$Rs, DoubleRegs:$Rt)>;


// Adds two v4i8: Hexagon does not have an insn for this one, so we
// use the double add v8i8, and use only the low part of the result.
def: Pat<(v4i8 (add (v4i8 IntRegs:$Rs), (v4i8 IntRegs:$Rt))),
         (LoReg (A2_vaddub (ToZext64 $Rs), (ToZext64 $Rt)))>;

// Subtract two v4i8: Hexagon does not have an insn for this one, so we
// use the double sub v8i8, and use only the low part of the result.
def: Pat<(v4i8 (sub (v4i8 IntRegs:$Rs), (v4i8 IntRegs:$Rt))),
         (LoReg (A2_vsubub (ToZext64 $Rs), (ToZext64 $Rt)))>;

//
// No 32 bit vector mux.
//
def: Pat<(v4i8 (select I1:$Pu, V4I8:$Rs, V4I8:$Rt)),
         (LoReg (C2_vmux I1:$Pu, (ToZext64 $Rs), (ToZext64 $Rt)))>;
def: Pat<(v2i16 (select I1:$Pu, V2I16:$Rs, V2I16:$Rt)),
         (LoReg (C2_vmux I1:$Pu, (ToZext64 $Rs), (ToZext64 $Rt)))>;

//
// 64-bit vector mux.
//
def: Pat<(v8i8 (vselect V8I1:$Pu, V8I8:$Rs, V8I8:$Rt)),
         (C2_vmux V8I1:$Pu, V8I8:$Rs, V8I8:$Rt)>;
def: Pat<(v4i16 (vselect V4I1:$Pu, V4I16:$Rs, V4I16:$Rt)),
         (C2_vmux V4I1:$Pu, V4I16:$Rs, V4I16:$Rt)>;
def: Pat<(v2i32 (vselect V2I1:$Pu, V2I32:$Rs, V2I32:$Rt)),
         (C2_vmux V2I1:$Pu, V2I32:$Rs, V2I32:$Rt)>;

//
// No 32 bit vector compare.
//
def: Pat<(i1 (seteq V4I8:$Rs, V4I8:$Rt)),
         (A2_vcmpbeq (ToZext64 $Rs), (ToZext64 $Rt))>;
def: Pat<(i1 (setgt V4I8:$Rs, V4I8:$Rt)),
         (A4_vcmpbgt (ToZext64 $Rs), (ToZext64 $Rt))>;
def: Pat<(i1 (setugt V4I8:$Rs, V4I8:$Rt)),
         (A2_vcmpbgtu (ToZext64 $Rs), (ToZext64 $Rt))>;

def: Pat<(i1 (seteq V2I16:$Rs, V2I16:$Rt)),
         (A2_vcmpheq (ToZext64 $Rs), (ToZext64 $Rt))>;
def: Pat<(i1 (setgt V2I16:$Rs, V2I16:$Rt)),
         (A2_vcmphgt (ToZext64 $Rs), (ToZext64 $Rt))>;
def: Pat<(i1 (setugt V2I16:$Rs, V2I16:$Rt)),
         (A2_vcmphgtu (ToZext64 $Rs), (ToZext64 $Rt))>;


class InvertCmp_pat<InstHexagon InvMI, PatFrag CmpOp, PatFrag Value,
                    ValueType CmpTy>
  : Pat<(CmpTy (CmpOp Value:$Rs, Value:$Rt)),
        (InvMI Value:$Rt, Value:$Rs)>;

// Map from a compare operation to the corresponding instruction with the
// order of operands reversed, e.g.  x > y --> cmp.lt(y,x).
def: InvertCmp_pat<A4_vcmpbgt,  setlt,  V8I8,  i1>;
def: InvertCmp_pat<A4_vcmpbgt,  setlt,  V8I8,  v8i1>;
def: InvertCmp_pat<A2_vcmphgt,  setlt,  V4I16, i1>;
def: InvertCmp_pat<A2_vcmphgt,  setlt,  V4I16, v4i1>;
def: InvertCmp_pat<A2_vcmpwgt,  setlt,  V2I32, i1>;
def: InvertCmp_pat<A2_vcmpwgt,  setlt,  V2I32, v2i1>;

def: InvertCmp_pat<A2_vcmpbgtu, setult, V8I8,  i1>;
def: InvertCmp_pat<A2_vcmpbgtu, setult, V8I8,  v8i1>;
def: InvertCmp_pat<A2_vcmphgtu, setult, V4I16, i1>;
def: InvertCmp_pat<A2_vcmphgtu, setult, V4I16, v4i1>;
def: InvertCmp_pat<A2_vcmpwgtu, setult, V2I32, i1>;
def: InvertCmp_pat<A2_vcmpwgtu, setult, V2I32, v2i1>;

// Map from vcmpne(Rss) -> !vcmpew(Rss).
// rs != rt -> !(rs == rt).
def: Pat<(v2i1 (setne V2I32:$Rs, V2I32:$Rt)),
         (C2_not (v2i1 (A2_vcmpbeq V2I32:$Rs, V2I32:$Rt)))>;


// Truncate: from vector B copy all 'E'ven 'B'yte elements:
// A[0] = B[0];  A[1] = B[2];  A[2] = B[4];  A[3] = B[6];
def: Pat<(v4i8 (trunc V4I16:$Rs)),
         (S2_vtrunehb V4I16:$Rs)>;

// Truncate: from vector B copy all 'O'dd 'B'yte elements:
// A[0] = B[1];  A[1] = B[3];  A[2] = B[5];  A[3] = B[7];
// S2_vtrunohb

// Truncate: from vectors B and C copy all 'E'ven 'H'alf-word elements:
// A[0] = B[0];  A[1] = B[2];  A[2] = C[0];  A[3] = C[2];
// S2_vtruneh

def: Pat<(v2i16 (trunc V2I32:$Rs)),
         (LoReg (S2_packhl (HiReg $Rs), (LoReg $Rs)))>;

def: Pat<(v4i16 (zext   V4I8:$Rs)),  (S2_vzxtbh V4I8:$Rs)>;
def: Pat<(v2i32 (zext   V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>;
def: Pat<(v4i16 (anyext V4I8:$Rs)),  (S2_vzxtbh V4I8:$Rs)>;
def: Pat<(v2i32 (anyext V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>;
def: Pat<(v4i16 (sext   V4I8:$Rs)),  (S2_vsxtbh V4I8:$Rs)>;
def: Pat<(v2i32 (sext   V2I16:$Rs)), (S2_vsxthw V2I16:$Rs)>;

// Sign extends a v2i8 into a v2i32.
def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i8)),
         (A2_combinew (A2_sxtb (HiReg $Rs)), (A2_sxtb (LoReg $Rs)))>;

// Sign extends a v2i16 into a v2i32.
def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i16)),
         (A2_combinew (A2_sxth (HiReg $Rs)), (A2_sxth (LoReg $Rs)))>;


// Multiplies two v2i16 and returns a v2i32.  We are using here the
// saturating multiply, as hexagon does not provide a non saturating
// vector multiply, and saturation does not impact the result that is
// in double precision of the operands.

// Multiplies two v2i16 vectors: as Hexagon does not have a multiply
// with the C semantics for this one, this pattern uses the half word
// multiply vmpyh that takes two v2i16 and returns a v2i32.  This is
// then truncated to fit this back into a v2i16 and to simulate the
// wrap around semantics for unsigned in C.
def vmpyh: OutPatFrag<(ops node:$Rs, node:$Rt),
                      (M2_vmpy2s_s0 (i32 $Rs), (i32 $Rt))>;

def: Pat<(v2i16 (mul V2I16:$Rs, V2I16:$Rt)),
         (LoReg (S2_vtrunewh (A2_combineii 0, 0),
                             (vmpyh V2I16:$Rs, V2I16:$Rt)))>;

// Multiplies two v4i16 vectors.
def: Pat<(v4i16 (mul V4I16:$Rs, V4I16:$Rt)),
         (S2_vtrunewh (vmpyh (HiReg $Rs), (HiReg $Rt)),
                      (vmpyh (LoReg $Rs), (LoReg $Rt)))>;

def VMPYB_no_V5: OutPatFrag<(ops node:$Rs, node:$Rt),
  (S2_vtrunewh (vmpyh (HiReg (S2_vsxtbh $Rs)), (HiReg (S2_vsxtbh $Rt))),
               (vmpyh (LoReg (S2_vsxtbh $Rs)), (LoReg (S2_vsxtbh $Rt))))>;

// Multiplies two v4i8 vectors.
def: Pat<(v4i8 (mul V4I8:$Rs, V4I8:$Rt)),
         (S2_vtrunehb (M5_vmpybsu V4I8:$Rs, V4I8:$Rt))>,
     Requires<[HasV5T]>;

def: Pat<(v4i8 (mul V4I8:$Rs, V4I8:$Rt)),
         (S2_vtrunehb (VMPYB_no_V5 V4I8:$Rs, V4I8:$Rt))>;

// Multiplies two v8i8 vectors.
def: Pat<(v8i8 (mul V8I8:$Rs, V8I8:$Rt)),
         (A2_combinew (S2_vtrunehb (M5_vmpybsu (HiReg $Rs), (HiReg $Rt))),
                      (S2_vtrunehb (M5_vmpybsu (LoReg $Rs), (LoReg $Rt))))>,
     Requires<[HasV5T]>;

def: Pat<(v8i8 (mul V8I8:$Rs, V8I8:$Rt)),
         (A2_combinew (S2_vtrunehb (VMPYB_no_V5 (HiReg $Rs), (HiReg $Rt))),
                      (S2_vtrunehb (VMPYB_no_V5 (LoReg $Rs), (LoReg $Rt))))>;

// Truncated store from v4i16 to v4i8.
def truncstorev4i8: PatFrag<(ops node:$val, node:$ptr),
                            (truncstore node:$val, node:$ptr),
    [{ return cast<StoreSDNode>(N)->getMemoryVT() == MVT::v4i8; }]>;

// Truncated store from v2i32 to v2i16.
def truncstorev2i16: PatFrag<(ops node:$val, node:$ptr),
                             (truncstore node:$val, node:$ptr),
    [{ return cast<StoreSDNode>(N)->getMemoryVT() == MVT::v2i16; }]>;

def: Pat<(truncstorev2i16 V2I32:$Rs, I32:$Rt),
         (S2_storeri_io I32:$Rt, 0, (LoReg (S2_packhl (HiReg $Rs),
                                                      (LoReg $Rs))))>;

def: Pat<(truncstorev4i8 V4I16:$Rs, I32:$Rt),
         (S2_storeri_io I32:$Rt, 0, (S2_vtrunehb V4I16:$Rs))>;


// Zero and sign extended load from v2i8 into v2i16.
def zextloadv2i8: PatFrag<(ops node:$ptr), (zextload node:$ptr),
    [{ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8; }]>;

def sextloadv2i8: PatFrag<(ops node:$ptr), (sextload node:$ptr),
    [{ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8; }]>;

def: Pat<(v2i16 (zextloadv2i8 I32:$Rs)),
         (LoReg (v4i16 (S2_vzxtbh (L2_loadruh_io I32:$Rs, 0))))>;

def: Pat<(v2i16 (sextloadv2i8 I32:$Rs)),
         (LoReg (v4i16 (S2_vsxtbh (L2_loadrh_io I32:$Rs, 0))))>;

def: Pat<(v2i32 (zextloadv2i8 I32:$Rs)),
         (S2_vzxthw (LoReg (v4i16 (S2_vzxtbh (L2_loadruh_io I32:$Rs, 0)))))>;

def: Pat<(v2i32 (sextloadv2i8 I32:$Rs)),
         (S2_vsxthw (LoReg (v4i16 (S2_vsxtbh (L2_loadrh_io I32:$Rs, 0)))))>;


// Read cycle counter.
//
def SDTInt64Leaf: SDTypeProfile<1, 0, [SDTCisVT<0, i64>]>;
def HexagonREADCYCLE: SDNode<"HexagonISD::READCYCLE", SDTInt64Leaf,
  [SDNPHasChain]>;

def: Pat<(HexagonREADCYCLE), (A4_tfrcpp UPCYCLE)>;