aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/Hexagon/HexagonInstrInfo.cpp
blob: 9b8970258a2c441f54d3ea00aeca4c8359f17d21 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
//===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the Hexagon implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "HexagonInstrInfo.h"
#include "Hexagon.h"
#include "HexagonFrameLowering.h"
#include "HexagonHazardRecognizer.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/DFAPacketizer.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineValueType.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOpcodes.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstring>
#include <iterator>
#include <string>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "hexagon-instrinfo"

#define GET_INSTRINFO_CTOR_DTOR
#define GET_INSTRMAP_INFO
#include "HexagonDepTimingClasses.h"
#include "HexagonGenDFAPacketizer.inc"
#include "HexagonGenInstrInfo.inc"

cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
  cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
                            "packetization boundary."));

static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
  cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));

static cl::opt<bool> DisableNVSchedule("disable-hexagon-nv-schedule",
  cl::Hidden, cl::ZeroOrMore, cl::init(false),
  cl::desc("Disable schedule adjustment for new value stores."));

static cl::opt<bool> EnableTimingClassLatency(
  "enable-timing-class-latency", cl::Hidden, cl::init(false),
  cl::desc("Enable timing class latency"));

static cl::opt<bool> EnableALUForwarding(
  "enable-alu-forwarding", cl::Hidden, cl::init(true),
  cl::desc("Enable vec alu forwarding"));

static cl::opt<bool> EnableACCForwarding(
  "enable-acc-forwarding", cl::Hidden, cl::init(true),
  cl::desc("Enable vec acc forwarding"));

static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
  cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm"));

static cl::opt<bool> UseDFAHazardRec("dfa-hazard-rec",
  cl::init(true), cl::Hidden, cl::ZeroOrMore,
  cl::desc("Use the DFA based hazard recognizer."));

/// Constants for Hexagon instructions.
const int Hexagon_MEMW_OFFSET_MAX = 4095;
const int Hexagon_MEMW_OFFSET_MIN = -4096;
const int Hexagon_MEMD_OFFSET_MAX = 8191;
const int Hexagon_MEMD_OFFSET_MIN = -8192;
const int Hexagon_MEMH_OFFSET_MAX = 2047;
const int Hexagon_MEMH_OFFSET_MIN = -2048;
const int Hexagon_MEMB_OFFSET_MAX = 1023;
const int Hexagon_MEMB_OFFSET_MIN = -1024;
const int Hexagon_ADDI_OFFSET_MAX = 32767;
const int Hexagon_ADDI_OFFSET_MIN = -32768;

// Pin the vtable to this file.
void HexagonInstrInfo::anchor() {}

HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
  : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
    Subtarget(ST) {}

static bool isIntRegForSubInst(unsigned Reg) {
  return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
         (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
}

static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) {
  return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_lo)) &&
         isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_hi));
}

/// Calculate number of instructions excluding the debug instructions.
static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,
                              MachineBasicBlock::const_instr_iterator MIE) {
  unsigned Count = 0;
  for (; MIB != MIE; ++MIB) {
    if (!MIB->isDebugValue())
      ++Count;
  }
  return Count;
}

/// Find the hardware loop instruction used to set-up the specified loop.
/// On Hexagon, we have two instructions used to set-up the hardware loop
/// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
/// to indicate the end of a loop.
static MachineInstr *findLoopInstr(MachineBasicBlock *BB, unsigned EndLoopOp,
      MachineBasicBlock *TargetBB,
      SmallPtrSet<MachineBasicBlock *, 8> &Visited) {
  unsigned LOOPi;
  unsigned LOOPr;
  if (EndLoopOp == Hexagon::ENDLOOP0) {
    LOOPi = Hexagon::J2_loop0i;
    LOOPr = Hexagon::J2_loop0r;
  } else { // EndLoopOp == Hexagon::EndLOOP1
    LOOPi = Hexagon::J2_loop1i;
    LOOPr = Hexagon::J2_loop1r;
  }

  // The loop set-up instruction will be in a predecessor block
  for (MachineBasicBlock *PB : BB->predecessors()) {
    // If this has been visited, already skip it.
    if (!Visited.insert(PB).second)
      continue;
    if (PB == BB)
      continue;
    for (auto I = PB->instr_rbegin(), E = PB->instr_rend(); I != E; ++I) {
      unsigned Opc = I->getOpcode();
      if (Opc == LOOPi || Opc == LOOPr)
        return &*I;
      // We've reached a different loop, which means the loop01 has been
      // removed.
      if (Opc == EndLoopOp && I->getOperand(0).getMBB() != TargetBB)
        return nullptr;
    }
    // Check the predecessors for the LOOP instruction.
    if (MachineInstr *Loop = findLoopInstr(PB, EndLoopOp, TargetBB, Visited))
      return Loop;
  }
  return nullptr;
}

/// Gather register def/uses from MI.
/// This treats possible (predicated) defs as actually happening ones
/// (conservatively).
static inline void parseOperands(const MachineInstr &MI,
      SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) {
  Defs.clear();
  Uses.clear();

  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);

    if (!MO.isReg())
      continue;

    unsigned Reg = MO.getReg();
    if (!Reg)
      continue;

    if (MO.isUse())
      Uses.push_back(MO.getReg());

    if (MO.isDef())
      Defs.push_back(MO.getReg());
  }
}

// Position dependent, so check twice for swap.
static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
  switch (Ga) {
  case HexagonII::HSIG_None:
  default:
    return false;
  case HexagonII::HSIG_L1:
    return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
  case HexagonII::HSIG_L2:
    return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
            Gb == HexagonII::HSIG_A);
  case HexagonII::HSIG_S1:
    return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
            Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
  case HexagonII::HSIG_S2:
    return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
            Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
            Gb == HexagonII::HSIG_A);
  case HexagonII::HSIG_A:
    return (Gb == HexagonII::HSIG_A);
  case HexagonII::HSIG_Compound:
    return (Gb == HexagonII::HSIG_Compound);
  }
  return false;
}

/// isLoadFromStackSlot - If the specified machine instruction is a direct
/// load from a stack slot, return the virtual or physical register number of
/// the destination along with the FrameIndex of the loaded stack slot.  If
/// not, return 0.  This predicate must return 0 if the instruction has
/// any side effects other than loading from the stack slot.
unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
                                               int &FrameIndex) const {
  switch (MI.getOpcode()) {
  default:
    break;
  case Hexagon::L2_loadri_io:
  case Hexagon::L2_loadrd_io:
  case Hexagon::V6_vL32b_ai:
  case Hexagon::V6_vL32b_nt_ai:
  case Hexagon::V6_vL32Ub_ai:
  case Hexagon::LDriw_pred:
  case Hexagon::LDriw_mod:
  case Hexagon::PS_vloadrq_ai:
  case Hexagon::PS_vloadrw_ai:
  case Hexagon::PS_vloadrw_nt_ai: {
    const MachineOperand OpFI = MI.getOperand(1);
    if (!OpFI.isFI())
      return 0;
    const MachineOperand OpOff = MI.getOperand(2);
    if (!OpOff.isImm() || OpOff.getImm() != 0)
      return 0;
    FrameIndex = OpFI.getIndex();
    return MI.getOperand(0).getReg();
  }

  case Hexagon::L2_ploadrit_io:
  case Hexagon::L2_ploadrif_io:
  case Hexagon::L2_ploadrdt_io:
  case Hexagon::L2_ploadrdf_io: {
    const MachineOperand OpFI = MI.getOperand(2);
    if (!OpFI.isFI())
      return 0;
    const MachineOperand OpOff = MI.getOperand(3);
    if (!OpOff.isImm() || OpOff.getImm() != 0)
      return 0;
    FrameIndex = OpFI.getIndex();
    return MI.getOperand(0).getReg();
  }
  }

  return 0;
}

/// isStoreToStackSlot - If the specified machine instruction is a direct
/// store to a stack slot, return the virtual or physical register number of
/// the source reg along with the FrameIndex of the loaded stack slot.  If
/// not, return 0.  This predicate must return 0 if the instruction has
/// any side effects other than storing to the stack slot.
unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
                                              int &FrameIndex) const {
  switch (MI.getOpcode()) {
  default:
    break;
  case Hexagon::S2_storerb_io:
  case Hexagon::S2_storerh_io:
  case Hexagon::S2_storeri_io:
  case Hexagon::S2_storerd_io:
  case Hexagon::V6_vS32b_ai:
  case Hexagon::V6_vS32Ub_ai:
  case Hexagon::STriw_pred:
  case Hexagon::STriw_mod:
  case Hexagon::PS_vstorerq_ai:
  case Hexagon::PS_vstorerw_ai: {
    const MachineOperand &OpFI = MI.getOperand(0);
    if (!OpFI.isFI())
      return 0;
    const MachineOperand &OpOff = MI.getOperand(1);
    if (!OpOff.isImm() || OpOff.getImm() != 0)
      return 0;
    FrameIndex = OpFI.getIndex();
    return MI.getOperand(2).getReg();
  }

  case Hexagon::S2_pstorerbt_io:
  case Hexagon::S2_pstorerbf_io:
  case Hexagon::S2_pstorerht_io:
  case Hexagon::S2_pstorerhf_io:
  case Hexagon::S2_pstorerit_io:
  case Hexagon::S2_pstorerif_io:
  case Hexagon::S2_pstorerdt_io:
  case Hexagon::S2_pstorerdf_io: {
    const MachineOperand &OpFI = MI.getOperand(1);
    if (!OpFI.isFI())
      return 0;
    const MachineOperand &OpOff = MI.getOperand(2);
    if (!OpOff.isImm() || OpOff.getImm() != 0)
      return 0;
    FrameIndex = OpFI.getIndex();
    return MI.getOperand(3).getReg();
  }
  }

  return 0;
}

/// This function can analyze one/two way branching only and should (mostly) be
/// called by target independent side.
/// First entry is always the opcode of the branching instruction, except when
/// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a
/// BB with only unconditional jump. Subsequent entries depend upon the opcode,
/// e.g. Jump_c p will have
/// Cond[0] = Jump_c
/// Cond[1] = p
/// HW-loop ENDLOOP:
/// Cond[0] = ENDLOOP
/// Cond[1] = MBB
/// New value jump:
/// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
/// Cond[1] = R
/// Cond[2] = Imm
bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
                                     MachineBasicBlock *&TBB,
                                     MachineBasicBlock *&FBB,
                                     SmallVectorImpl<MachineOperand> &Cond,
                                     bool AllowModify) const {
  TBB = nullptr;
  FBB = nullptr;
  Cond.clear();

  // If the block has no terminators, it just falls into the block after it.
  MachineBasicBlock::instr_iterator I = MBB.instr_end();
  if (I == MBB.instr_begin())
    return false;

  // A basic block may looks like this:
  //
  //  [   insn
  //     EH_LABEL
  //      insn
  //      insn
  //      insn
  //     EH_LABEL
  //      insn     ]
  //
  // It has two succs but does not have a terminator
  // Don't know how to handle it.
  do {
    --I;
    if (I->isEHLabel())
      // Don't analyze EH branches.
      return true;
  } while (I != MBB.instr_begin());

  I = MBB.instr_end();
  --I;

  while (I->isDebugValue()) {
    if (I == MBB.instr_begin())
      return false;
    --I;
  }

  bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
                     I->getOperand(0).isMBB();
  // Delete the J2_jump if it's equivalent to a fall-through.
  if (AllowModify && JumpToBlock &&
      MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
    DEBUG(dbgs() << "\nErasing the jump to successor block\n";);
    I->eraseFromParent();
    I = MBB.instr_end();
    if (I == MBB.instr_begin())
      return false;
    --I;
  }
  if (!isUnpredicatedTerminator(*I))
    return false;

  // Get the last instruction in the block.
  MachineInstr *LastInst = &*I;
  MachineInstr *SecondLastInst = nullptr;
  // Find one more terminator if present.
  while (true) {
    if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
      if (!SecondLastInst)
        SecondLastInst = &*I;
      else
        // This is a third branch.
        return true;
    }
    if (I == MBB.instr_begin())
      break;
    --I;
  }

  int LastOpcode = LastInst->getOpcode();
  int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
  // If the branch target is not a basic block, it could be a tail call.
  // (It is, if the target is a function.)
  if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
    return true;
  if (SecLastOpcode == Hexagon::J2_jump &&
      !SecondLastInst->getOperand(0).isMBB())
    return true;

  bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
  bool LastOpcodeHasNVJump = isNewValueJump(*LastInst);

  if (LastOpcodeHasJMP_c && !LastInst->getOperand(1).isMBB())
    return true;

  // If there is only one terminator instruction, process it.
  if (LastInst && !SecondLastInst) {
    if (LastOpcode == Hexagon::J2_jump) {
      TBB = LastInst->getOperand(0).getMBB();
      return false;
    }
    if (isEndLoopN(LastOpcode)) {
      TBB = LastInst->getOperand(0).getMBB();
      Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
      Cond.push_back(LastInst->getOperand(0));
      return false;
    }
    if (LastOpcodeHasJMP_c) {
      TBB = LastInst->getOperand(1).getMBB();
      Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
      Cond.push_back(LastInst->getOperand(0));
      return false;
    }
    // Only supporting rr/ri versions of new-value jumps.
    if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
      TBB = LastInst->getOperand(2).getMBB();
      Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
      Cond.push_back(LastInst->getOperand(0));
      Cond.push_back(LastInst->getOperand(1));
      return false;
    }
    DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
                 << " with one jump\n";);
    // Otherwise, don't know what this is.
    return true;
  }

  bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
  bool SecLastOpcodeHasNVJump = isNewValueJump(*SecondLastInst);
  if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
    if (!SecondLastInst->getOperand(1).isMBB())
      return true;
    TBB =  SecondLastInst->getOperand(1).getMBB();
    Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
    Cond.push_back(SecondLastInst->getOperand(0));
    FBB = LastInst->getOperand(0).getMBB();
    return false;
  }

  // Only supporting rr/ri versions of new-value jumps.
  if (SecLastOpcodeHasNVJump &&
      (SecondLastInst->getNumExplicitOperands() == 3) &&
      (LastOpcode == Hexagon::J2_jump)) {
    TBB = SecondLastInst->getOperand(2).getMBB();
    Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
    Cond.push_back(SecondLastInst->getOperand(0));
    Cond.push_back(SecondLastInst->getOperand(1));
    FBB = LastInst->getOperand(0).getMBB();
    return false;
  }

  // If the block ends with two Hexagon:JMPs, handle it.  The second one is not
  // executed, so remove it.
  if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
    TBB = SecondLastInst->getOperand(0).getMBB();
    I = LastInst->getIterator();
    if (AllowModify)
      I->eraseFromParent();
    return false;
  }

  // If the block ends with an ENDLOOP, and J2_jump, handle it.
  if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
    TBB = SecondLastInst->getOperand(0).getMBB();
    Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
    Cond.push_back(SecondLastInst->getOperand(0));
    FBB = LastInst->getOperand(0).getMBB();
    return false;
  }
  DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
               << " with two jumps";);
  // Otherwise, can't handle this.
  return true;
}

unsigned HexagonInstrInfo::removeBranch(MachineBasicBlock &MBB,
                                        int *BytesRemoved) const {
  assert(!BytesRemoved && "code size not handled");

  DEBUG(dbgs() << "\nRemoving branches out of BB#" << MBB.getNumber());
  MachineBasicBlock::iterator I = MBB.end();
  unsigned Count = 0;
  while (I != MBB.begin()) {
    --I;
    if (I->isDebugValue())
      continue;
    // Only removing branches from end of MBB.
    if (!I->isBranch())
      return Count;
    if (Count && (I->getOpcode() == Hexagon::J2_jump))
      llvm_unreachable("Malformed basic block: unconditional branch not last");
    MBB.erase(&MBB.back());
    I = MBB.end();
    ++Count;
  }
  return Count;
}

unsigned HexagonInstrInfo::insertBranch(MachineBasicBlock &MBB,
                                        MachineBasicBlock *TBB,
                                        MachineBasicBlock *FBB,
                                        ArrayRef<MachineOperand> Cond,
                                        const DebugLoc &DL,
                                        int *BytesAdded) const {
  unsigned BOpc   = Hexagon::J2_jump;
  unsigned BccOpc = Hexagon::J2_jumpt;
  assert(validateBranchCond(Cond) && "Invalid branching condition");
  assert(TBB && "insertBranch must not be told to insert a fallthrough");
  assert(!BytesAdded && "code size not handled");

  // Check if reverseBranchCondition has asked to reverse this branch
  // If we want to reverse the branch an odd number of times, we want
  // J2_jumpf.
  if (!Cond.empty() && Cond[0].isImm())
    BccOpc = Cond[0].getImm();

  if (!FBB) {
    if (Cond.empty()) {
      // Due to a bug in TailMerging/CFG Optimization, we need to add a
      // special case handling of a predicated jump followed by an
      // unconditional jump. If not, Tail Merging and CFG Optimization go
      // into an infinite loop.
      MachineBasicBlock *NewTBB, *NewFBB;
      SmallVector<MachineOperand, 4> Cond;
      auto Term = MBB.getFirstTerminator();
      if (Term != MBB.end() && isPredicated(*Term) &&
          !analyzeBranch(MBB, NewTBB, NewFBB, Cond, false) &&
          MachineFunction::iterator(NewTBB) == ++MBB.getIterator()) {
        reverseBranchCondition(Cond);
        removeBranch(MBB);
        return insertBranch(MBB, TBB, nullptr, Cond, DL);
      }
      BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
    } else if (isEndLoopN(Cond[0].getImm())) {
      int EndLoopOp = Cond[0].getImm();
      assert(Cond[1].isMBB());
      // Since we're adding an ENDLOOP, there better be a LOOP instruction.
      // Check for it, and change the BB target if needed.
      SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
      MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
                                         VisitedBBs);
      assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
      Loop->getOperand(0).setMBB(TBB);
      // Add the ENDLOOP after the finding the LOOP0.
      BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
    } else if (isNewValueJump(Cond[0].getImm())) {
      assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
      // New value jump
      // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
      // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
      unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
      DEBUG(dbgs() << "\nInserting NVJump for BB#" << MBB.getNumber(););
      if (Cond[2].isReg()) {
        unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
        BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
          addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
      } else if(Cond[2].isImm()) {
        BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
          addImm(Cond[2].getImm()).addMBB(TBB);
      } else
        llvm_unreachable("Invalid condition for branching");
    } else {
      assert((Cond.size() == 2) && "Malformed cond vector");
      const MachineOperand &RO = Cond[1];
      unsigned Flags = getUndefRegState(RO.isUndef());
      BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
    }
    return 1;
  }
  assert((!Cond.empty()) &&
         "Cond. cannot be empty when multiple branchings are required");
  assert((!isNewValueJump(Cond[0].getImm())) &&
         "NV-jump cannot be inserted with another branch");
  // Special case for hardware loops.  The condition is a basic block.
  if (isEndLoopN(Cond[0].getImm())) {
    int EndLoopOp = Cond[0].getImm();
    assert(Cond[1].isMBB());
    // Since we're adding an ENDLOOP, there better be a LOOP instruction.
    // Check for it, and change the BB target if needed.
    SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
    MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
                                       VisitedBBs);
    assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
    Loop->getOperand(0).setMBB(TBB);
    // Add the ENDLOOP after the finding the LOOP0.
    BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
  } else {
    const MachineOperand &RO = Cond[1];
    unsigned Flags = getUndefRegState(RO.isUndef());
    BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
  }
  BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);

  return 2;
}

/// Analyze the loop code to find the loop induction variable and compare used
/// to compute the number of iterations. Currently, we analyze loop that are
/// controlled using hardware loops.  In this case, the induction variable
/// instruction is null.  For all other cases, this function returns true, which
/// means we're unable to analyze it.
bool HexagonInstrInfo::analyzeLoop(MachineLoop &L,
                                   MachineInstr *&IndVarInst,
                                   MachineInstr *&CmpInst) const {

  MachineBasicBlock *LoopEnd = L.getBottomBlock();
  MachineBasicBlock::iterator I = LoopEnd->getFirstTerminator();
  // We really "analyze" only hardware loops right now.
  if (I != LoopEnd->end() && isEndLoopN(I->getOpcode())) {
    IndVarInst = nullptr;
    CmpInst = &*I;
    return false;
  }
  return true;
}

/// Generate code to reduce the loop iteration by one and check if the loop is
/// finished. Return the value/register of the new loop count. this function
/// assumes the nth iteration is peeled first.
unsigned HexagonInstrInfo::reduceLoopCount(MachineBasicBlock &MBB,
      MachineInstr *IndVar, MachineInstr &Cmp,
      SmallVectorImpl<MachineOperand> &Cond,
      SmallVectorImpl<MachineInstr *> &PrevInsts,
      unsigned Iter, unsigned MaxIter) const {
  // We expect a hardware loop currently. This means that IndVar is set
  // to null, and the compare is the ENDLOOP instruction.
  assert((!IndVar) && isEndLoopN(Cmp.getOpcode())
                   && "Expecting a hardware loop");
  MachineFunction *MF = MBB.getParent();
  DebugLoc DL = Cmp.getDebugLoc();
  SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
  MachineInstr *Loop = findLoopInstr(&MBB, Cmp.getOpcode(),
                                     Cmp.getOperand(0).getMBB(), VisitedBBs);
  if (!Loop)
    return 0;
  // If the loop trip count is a compile-time value, then just change the
  // value.
  if (Loop->getOpcode() == Hexagon::J2_loop0i ||
      Loop->getOpcode() == Hexagon::J2_loop1i) {
    int64_t Offset = Loop->getOperand(1).getImm();
    if (Offset <= 1)
      Loop->eraseFromParent();
    else
      Loop->getOperand(1).setImm(Offset - 1);
    return Offset - 1;
  }
  // The loop trip count is a run-time value. We generate code to subtract
  // one from the trip count, and update the loop instruction.
  assert(Loop->getOpcode() == Hexagon::J2_loop0r && "Unexpected instruction");
  unsigned LoopCount = Loop->getOperand(1).getReg();
  // Check if we're done with the loop.
  unsigned LoopEnd = createVR(MF, MVT::i1);
  MachineInstr *NewCmp = BuildMI(&MBB, DL, get(Hexagon::C2_cmpgtui), LoopEnd).
    addReg(LoopCount).addImm(1);
  unsigned NewLoopCount = createVR(MF, MVT::i32);
  MachineInstr *NewAdd = BuildMI(&MBB, DL, get(Hexagon::A2_addi), NewLoopCount).
    addReg(LoopCount).addImm(-1);
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
  // Update the previously generated instructions with the new loop counter.
  for (SmallVectorImpl<MachineInstr *>::iterator I = PrevInsts.begin(),
         E = PrevInsts.end(); I != E; ++I)
    (*I)->substituteRegister(LoopCount, NewLoopCount, 0, HRI);
  PrevInsts.clear();
  PrevInsts.push_back(NewCmp);
  PrevInsts.push_back(NewAdd);
  // Insert the new loop instruction if this is the last time the loop is
  // decremented.
  if (Iter == MaxIter)
    BuildMI(&MBB, DL, get(Hexagon::J2_loop0r)).
      addMBB(Loop->getOperand(0).getMBB()).addReg(NewLoopCount);
  // Delete the old loop instruction.
  if (Iter == 0)
    Loop->eraseFromParent();
  Cond.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf));
  Cond.push_back(NewCmp->getOperand(0));
  return NewLoopCount;
}

bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
      unsigned NumCycles, unsigned ExtraPredCycles,
      BranchProbability Probability) const {
  return nonDbgBBSize(&MBB) <= 3;
}

bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
      unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
      unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
      const {
  return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
}

bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
      unsigned NumInstrs, BranchProbability Probability) const {
  return NumInstrs <= 4;
}

void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
                                   MachineBasicBlock::iterator I,
                                   const DebugLoc &DL, unsigned DestReg,
                                   unsigned SrcReg, bool KillSrc) const {
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
  unsigned KillFlag = getKillRegState(KillSrc);

  if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
    BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg)
      .addReg(SrcReg, KillFlag);
    return;
  }
  if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
    BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg)
      .addReg(SrcReg, KillFlag);
    return;
  }
  if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
    // Map Pd = Ps to Pd = or(Ps, Ps).
    BuildMI(MBB, I, DL, get(Hexagon::C2_or), DestReg)
      .addReg(SrcReg).addReg(SrcReg, KillFlag);
    return;
  }
  if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
      Hexagon::IntRegsRegClass.contains(SrcReg)) {
    BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
      .addReg(SrcReg, KillFlag);
    return;
  }
  if (Hexagon::IntRegsRegClass.contains(DestReg) &&
      Hexagon::CtrRegsRegClass.contains(SrcReg)) {
    BuildMI(MBB, I, DL, get(Hexagon::A2_tfrcrr), DestReg)
      .addReg(SrcReg, KillFlag);
    return;
  }
  if (Hexagon::ModRegsRegClass.contains(DestReg) &&
      Hexagon::IntRegsRegClass.contains(SrcReg)) {
    BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
      .addReg(SrcReg, KillFlag);
    return;
  }
  if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
      Hexagon::IntRegsRegClass.contains(DestReg)) {
    BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
      .addReg(SrcReg, KillFlag);
    return;
  }
  if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
      Hexagon::PredRegsRegClass.contains(DestReg)) {
    BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg)
      .addReg(SrcReg, KillFlag);
    return;
  }
  if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
      Hexagon::IntRegsRegClass.contains(DestReg)) {
    BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
      .addReg(SrcReg, KillFlag);
    return;
  }
  if (Hexagon::HvxVRRegClass.contains(SrcReg, DestReg)) {
    BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
      addReg(SrcReg, KillFlag);
    return;
  }
  if (Hexagon::HvxWRRegClass.contains(SrcReg, DestReg)) {
    unsigned LoSrc = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
    unsigned HiSrc = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
    BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg)
      .addReg(HiSrc, KillFlag)
      .addReg(LoSrc, KillFlag);
    return;
  }
  if (Hexagon::HvxQRRegClass.contains(SrcReg, DestReg)) {
    BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg)
      .addReg(SrcReg)
      .addReg(SrcReg, KillFlag);
    return;
  }
  if (Hexagon::HvxQRRegClass.contains(SrcReg) &&
      Hexagon::HvxVRRegClass.contains(DestReg)) {
    llvm_unreachable("Unimplemented pred to vec");
    return;
  }
  if (Hexagon::HvxQRRegClass.contains(DestReg) &&
      Hexagon::HvxVRRegClass.contains(SrcReg)) {
    llvm_unreachable("Unimplemented vec to pred");
    return;
  }

#ifndef NDEBUG
  // Show the invalid registers to ease debugging.
  dbgs() << "Invalid registers for copy in BB#" << MBB.getNumber()
         << ": " << PrintReg(DestReg, &HRI)
         << " = " << PrintReg(SrcReg, &HRI) << '\n';
#endif
  llvm_unreachable("Unimplemented");
}

void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
      MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI,
      const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
  DebugLoc DL = MBB.findDebugLoc(I);
  MachineFunction &MF = *MBB.getParent();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  unsigned SlotAlign = MFI.getObjectAlignment(FI);
  unsigned RegAlign = TRI->getSpillAlignment(*RC);
  unsigned KillFlag = getKillRegState(isKill);
  bool HasAlloca = MFI.hasVarSizedObjects();
  const HexagonFrameLowering &HFI = *Subtarget.getFrameLowering();

  MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
      MFI.getObjectSize(FI), SlotAlign);

  if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
    BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
      .addFrameIndex(FI).addImm(0)
      .addReg(SrcReg, KillFlag).addMemOperand(MMO);
  } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
    BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
      .addFrameIndex(FI).addImm(0)
      .addReg(SrcReg, KillFlag).addMemOperand(MMO);
  } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
    BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
      .addFrameIndex(FI).addImm(0)
      .addReg(SrcReg, KillFlag).addMemOperand(MMO);
  } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
    BuildMI(MBB, I, DL, get(Hexagon::STriw_mod))
      .addFrameIndex(FI).addImm(0)
      .addReg(SrcReg, KillFlag).addMemOperand(MMO);
  } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
    BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerq_ai))
      .addFrameIndex(FI).addImm(0)
      .addReg(SrcReg, KillFlag).addMemOperand(MMO);
  } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
    // If there are variable-sized objects, spills will not be aligned.
    if (HasAlloca)
      SlotAlign = HFI.getStackAlignment();
    unsigned Opc = SlotAlign < RegAlign ? Hexagon::V6_vS32Ub_ai
                                        : Hexagon::V6_vS32b_ai;
    MachineMemOperand *MMOA = MF.getMachineMemOperand(
        MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
        MFI.getObjectSize(FI), SlotAlign);
    BuildMI(MBB, I, DL, get(Opc))
      .addFrameIndex(FI).addImm(0)
      .addReg(SrcReg, KillFlag).addMemOperand(MMOA);
  } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
    // If there are variable-sized objects, spills will not be aligned.
    if (HasAlloca)
      SlotAlign = HFI.getStackAlignment();
    unsigned Opc = SlotAlign < RegAlign ? Hexagon::PS_vstorerwu_ai
                                        : Hexagon::PS_vstorerw_ai;
    MachineMemOperand *MMOA = MF.getMachineMemOperand(
        MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
        MFI.getObjectSize(FI), SlotAlign);
    BuildMI(MBB, I, DL, get(Opc))
      .addFrameIndex(FI).addImm(0)
      .addReg(SrcReg, KillFlag).addMemOperand(MMOA);
  } else {
    llvm_unreachable("Unimplemented");
  }
}

void HexagonInstrInfo::loadRegFromStackSlot(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg,
    int FI, const TargetRegisterClass *RC,
    const TargetRegisterInfo *TRI) const {
  DebugLoc DL = MBB.findDebugLoc(I);
  MachineFunction &MF = *MBB.getParent();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  unsigned SlotAlign = MFI.getObjectAlignment(FI);
  unsigned RegAlign = TRI->getSpillAlignment(*RC);
  bool HasAlloca = MFI.hasVarSizedObjects();
  const HexagonFrameLowering &HFI = *Subtarget.getFrameLowering();

  MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
      MFI.getObjectSize(FI), SlotAlign);

  if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
    BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
      .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
  } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
    BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
      .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
  } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
    BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
      .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
  } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
    BuildMI(MBB, I, DL, get(Hexagon::LDriw_mod), DestReg)
      .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
  } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
    BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrq_ai), DestReg)
      .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
  } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
    // If there are variable-sized objects, spills will not be aligned.
    if (HasAlloca)
      SlotAlign = HFI.getStackAlignment();
    unsigned Opc = SlotAlign < RegAlign ? Hexagon::V6_vL32Ub_ai
                                        : Hexagon::V6_vL32b_ai;
    MachineMemOperand *MMOA = MF.getMachineMemOperand(
        MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
        MFI.getObjectSize(FI), SlotAlign);
    BuildMI(MBB, I, DL, get(Opc), DestReg)
      .addFrameIndex(FI).addImm(0).addMemOperand(MMOA);
  } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
    // If there are variable-sized objects, spills will not be aligned.
    if (HasAlloca)
      SlotAlign = HFI.getStackAlignment();
    unsigned Opc = SlotAlign < RegAlign ? Hexagon::PS_vloadrwu_ai
                                        : Hexagon::PS_vloadrw_ai;
    MachineMemOperand *MMOA = MF.getMachineMemOperand(
        MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
        MFI.getObjectSize(FI), SlotAlign);
    BuildMI(MBB, I, DL, get(Opc), DestReg)
      .addFrameIndex(FI).addImm(0).addMemOperand(MMOA);
  } else {
    llvm_unreachable("Can't store this register to stack slot");
  }
}

static void getLiveRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) {
  const MachineBasicBlock &B = *MI.getParent();
  Regs.addLiveOuts(B);
  auto E = ++MachineBasicBlock::const_iterator(MI.getIterator()).getReverse();
  for (auto I = B.rbegin(); I != E; ++I)
    Regs.stepBackward(*I);
}

/// expandPostRAPseudo - This function is called for all pseudo instructions
/// that remain after register allocation. Many pseudo instructions are
/// created to help register allocation. This is the place to convert them
/// into real instructions. The target can edit MI in place, or it can insert
/// new instructions and erase MI. The function should return true if
/// anything was changed.
bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
  DebugLoc DL = MI.getDebugLoc();
  unsigned Opc = MI.getOpcode();

  switch (Opc) {
    case TargetOpcode::COPY: {
      MachineOperand &MD = MI.getOperand(0);
      MachineOperand &MS = MI.getOperand(1);
      MachineBasicBlock::iterator MBBI = MI.getIterator();
      if (MD.getReg() != MS.getReg() && !MS.isUndef()) {
        copyPhysReg(MBB, MI, DL, MD.getReg(), MS.getReg(), MS.isKill());
        std::prev(MBBI)->copyImplicitOps(*MBB.getParent(), MI);
      }
      MBB.erase(MBBI);
      return true;
    }
    case Hexagon::PS_aligna:
      BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI.getOperand(0).getReg())
          .addReg(HRI.getFrameRegister())
          .addImm(-MI.getOperand(1).getImm());
      MBB.erase(MI);
      return true;
    case Hexagon::V6_vassignp: {
      unsigned SrcReg = MI.getOperand(1).getReg();
      unsigned DstReg = MI.getOperand(0).getReg();
      unsigned Kill = getKillRegState(MI.getOperand(1).isKill());
      BuildMI(MBB, MI, DL, get(Hexagon::V6_vcombine), DstReg)
        .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_hi), Kill)
        .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_lo), Kill);
      MBB.erase(MI);
      return true;
    }
    case Hexagon::V6_lo: {
      unsigned SrcReg = MI.getOperand(1).getReg();
      unsigned DstReg = MI.getOperand(0).getReg();
      unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
      copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI.getOperand(1).isKill());
      MBB.erase(MI);
      MRI.clearKillFlags(SrcSubLo);
      return true;
    }
    case Hexagon::V6_hi: {
      unsigned SrcReg = MI.getOperand(1).getReg();
      unsigned DstReg = MI.getOperand(0).getReg();
      unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
      copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI.getOperand(1).isKill());
      MBB.erase(MI);
      MRI.clearKillFlags(SrcSubHi);
      return true;
    }
    case Hexagon::PS_vstorerw_ai:
    case Hexagon::PS_vstorerwu_ai: {
      bool Aligned = Opc == Hexagon::PS_vstorerw_ai;
      unsigned SrcReg = MI.getOperand(2).getReg();
      unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
      unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
      unsigned NewOpc = Aligned ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32Ub_ai;
      unsigned Offset = HRI.getSpillSize(Hexagon::HvxVRRegClass);

      MachineInstr *MI1New =
          BuildMI(MBB, MI, DL, get(NewOpc))
              .add(MI.getOperand(0))
              .addImm(MI.getOperand(1).getImm())
              .addReg(SrcSubLo)
              .setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
      MI1New->getOperand(0).setIsKill(false);
      BuildMI(MBB, MI, DL, get(NewOpc))
          .add(MI.getOperand(0))
          // The Vectors are indexed in multiples of vector size.
          .addImm(MI.getOperand(1).getImm() + Offset)
          .addReg(SrcSubHi)
          .setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
      MBB.erase(MI);
      return true;
    }
    case Hexagon::PS_vloadrw_ai:
    case Hexagon::PS_vloadrwu_ai: {
      bool Aligned = Opc == Hexagon::PS_vloadrw_ai;
      unsigned DstReg = MI.getOperand(0).getReg();
      unsigned NewOpc = Aligned ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32Ub_ai;
      unsigned Offset = HRI.getSpillSize(Hexagon::HvxVRRegClass);

      MachineInstr *MI1New = BuildMI(MBB, MI, DL, get(NewOpc),
                                     HRI.getSubReg(DstReg, Hexagon::vsub_lo))
              .add(MI.getOperand(1))
              .addImm(MI.getOperand(2).getImm())
              .setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
      MI1New->getOperand(1).setIsKill(false);
      BuildMI(MBB, MI, DL, get(NewOpc), HRI.getSubReg(DstReg, Hexagon::vsub_hi))
          .add(MI.getOperand(1))
          // The Vectors are indexed in multiples of vector size.
          .addImm(MI.getOperand(2).getImm() + Offset)
          .setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
      MBB.erase(MI);
      return true;
    }
    case Hexagon::PS_true: {
      unsigned Reg = MI.getOperand(0).getReg();
      BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
        .addReg(Reg, RegState::Undef)
        .addReg(Reg, RegState::Undef);
      MBB.erase(MI);
      return true;
    }
    case Hexagon::PS_false: {
      unsigned Reg = MI.getOperand(0).getReg();
      BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
        .addReg(Reg, RegState::Undef)
        .addReg(Reg, RegState::Undef);
      MBB.erase(MI);
      return true;
    }
    case Hexagon::PS_vmulw: {
      // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
      unsigned DstReg = MI.getOperand(0).getReg();
      unsigned Src1Reg = MI.getOperand(1).getReg();
      unsigned Src2Reg = MI.getOperand(2).getReg();
      unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
      unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
      unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
      unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
      BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
              HRI.getSubReg(DstReg, Hexagon::isub_hi))
          .addReg(Src1SubHi)
          .addReg(Src2SubHi);
      BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
              HRI.getSubReg(DstReg, Hexagon::isub_lo))
          .addReg(Src1SubLo)
          .addReg(Src2SubLo);
      MBB.erase(MI);
      MRI.clearKillFlags(Src1SubHi);
      MRI.clearKillFlags(Src1SubLo);
      MRI.clearKillFlags(Src2SubHi);
      MRI.clearKillFlags(Src2SubLo);
      return true;
    }
    case Hexagon::PS_vmulw_acc: {
      // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
      unsigned DstReg = MI.getOperand(0).getReg();
      unsigned Src1Reg = MI.getOperand(1).getReg();
      unsigned Src2Reg = MI.getOperand(2).getReg();
      unsigned Src3Reg = MI.getOperand(3).getReg();
      unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
      unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
      unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
      unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
      unsigned Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::isub_hi);
      unsigned Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::isub_lo);
      BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
              HRI.getSubReg(DstReg, Hexagon::isub_hi))
          .addReg(Src1SubHi)
          .addReg(Src2SubHi)
          .addReg(Src3SubHi);
      BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
              HRI.getSubReg(DstReg, Hexagon::isub_lo))
          .addReg(Src1SubLo)
          .addReg(Src2SubLo)
          .addReg(Src3SubLo);
      MBB.erase(MI);
      MRI.clearKillFlags(Src1SubHi);
      MRI.clearKillFlags(Src1SubLo);
      MRI.clearKillFlags(Src2SubHi);
      MRI.clearKillFlags(Src2SubLo);
      MRI.clearKillFlags(Src3SubHi);
      MRI.clearKillFlags(Src3SubLo);
      return true;
    }
    case Hexagon::PS_pselect: {
      const MachineOperand &Op0 = MI.getOperand(0);
      const MachineOperand &Op1 = MI.getOperand(1);
      const MachineOperand &Op2 = MI.getOperand(2);
      const MachineOperand &Op3 = MI.getOperand(3);
      unsigned Rd = Op0.getReg();
      unsigned Pu = Op1.getReg();
      unsigned Rs = Op2.getReg();
      unsigned Rt = Op3.getReg();
      DebugLoc DL = MI.getDebugLoc();
      unsigned K1 = getKillRegState(Op1.isKill());
      unsigned K2 = getKillRegState(Op2.isKill());
      unsigned K3 = getKillRegState(Op3.isKill());
      if (Rd != Rs)
        BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
          .addReg(Pu, (Rd == Rt) ? K1 : 0)
          .addReg(Rs, K2);
      if (Rd != Rt)
        BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
          .addReg(Pu, K1)
          .addReg(Rt, K3);
      MBB.erase(MI);
      return true;
    }
    case Hexagon::PS_vselect: {
      const MachineOperand &Op0 = MI.getOperand(0);
      const MachineOperand &Op1 = MI.getOperand(1);
      const MachineOperand &Op2 = MI.getOperand(2);
      const MachineOperand &Op3 = MI.getOperand(3);
      LivePhysRegs LiveAtMI(HRI);
      getLiveRegsAt(LiveAtMI, MI);
      bool IsDestLive = !LiveAtMI.available(MRI, Op0.getReg());
      unsigned PReg = Op1.getReg();
      assert(Op1.getSubReg() == 0);
      unsigned PState = getRegState(Op1);

      if (Op0.getReg() != Op2.getReg()) {
        unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
                                                  : PState;
        auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vcmov))
                     .add(Op0)
                     .addReg(PReg, S)
                     .add(Op2);
        if (IsDestLive)
          T.addReg(Op0.getReg(), RegState::Implicit);
        IsDestLive = true;
      }
      if (Op0.getReg() != Op3.getReg()) {
        auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vncmov))
                     .add(Op0)
                     .addReg(PReg, PState)
                     .add(Op3);
        if (IsDestLive)
          T.addReg(Op0.getReg(), RegState::Implicit);
      }
      MBB.erase(MI);
      return true;
    }
    case Hexagon::PS_wselect: {
      MachineOperand &Op0 = MI.getOperand(0);
      MachineOperand &Op1 = MI.getOperand(1);
      MachineOperand &Op2 = MI.getOperand(2);
      MachineOperand &Op3 = MI.getOperand(3);
      LivePhysRegs LiveAtMI(HRI);
      getLiveRegsAt(LiveAtMI, MI);
      bool IsDestLive = !LiveAtMI.available(MRI, Op0.getReg());
      unsigned PReg = Op1.getReg();
      assert(Op1.getSubReg() == 0);
      unsigned PState = getRegState(Op1);

      if (Op0.getReg() != Op2.getReg()) {
        unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
                                                  : PState;
        unsigned SrcLo = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_lo);
        unsigned SrcHi = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_hi);
        auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vccombine))
                     .add(Op0)
                     .addReg(PReg, S)
                     .add(Op1)
                     .addReg(SrcHi)
                     .addReg(SrcLo);
        if (IsDestLive)
          T.addReg(Op0.getReg(), RegState::Implicit);
        IsDestLive = true;
      }
      if (Op0.getReg() != Op3.getReg()) {
        unsigned SrcLo = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_lo);
        unsigned SrcHi = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_hi);
        auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vnccombine))
                     .add(Op0)
                     .addReg(PReg, PState)
                     .addReg(SrcHi)
                     .addReg(SrcLo);
        if (IsDestLive)
          T.addReg(Op0.getReg(), RegState::Implicit);
      }
      MBB.erase(MI);
      return true;
    }
    case Hexagon::PS_tailcall_i:
      MI.setDesc(get(Hexagon::J2_jump));
      return true;
    case Hexagon::PS_tailcall_r:
    case Hexagon::PS_jmpret:
      MI.setDesc(get(Hexagon::J2_jumpr));
      return true;
    case Hexagon::PS_jmprett:
      MI.setDesc(get(Hexagon::J2_jumprt));
      return true;
    case Hexagon::PS_jmpretf:
      MI.setDesc(get(Hexagon::J2_jumprf));
      return true;
    case Hexagon::PS_jmprettnewpt:
      MI.setDesc(get(Hexagon::J2_jumprtnewpt));
      return true;
    case Hexagon::PS_jmpretfnewpt:
      MI.setDesc(get(Hexagon::J2_jumprfnewpt));
      return true;
    case Hexagon::PS_jmprettnew:
      MI.setDesc(get(Hexagon::J2_jumprtnew));
      return true;
    case Hexagon::PS_jmpretfnew:
      MI.setDesc(get(Hexagon::J2_jumprfnew));
      return true;
  }

  return false;
}

// We indicate that we want to reverse the branch by
// inserting the reversed branching opcode.
bool HexagonInstrInfo::reverseBranchCondition(
      SmallVectorImpl<MachineOperand> &Cond) const {
  if (Cond.empty())
    return true;
  assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
  unsigned opcode = Cond[0].getImm();
  //unsigned temp;
  assert(get(opcode).isBranch() && "Should be a branching condition.");
  if (isEndLoopN(opcode))
    return true;
  unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
  Cond[0].setImm(NewOpcode);
  return false;
}

void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB,
      MachineBasicBlock::iterator MI) const {
  DebugLoc DL;
  BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
}

bool HexagonInstrInfo::isPostIncrement(const MachineInstr &MI) const {
  return getAddrMode(MI) == HexagonII::PostInc;
}

// Returns true if an instruction is predicated irrespective of the predicate
// sense. For example, all of the following will return true.
// if (p0) R1 = add(R2, R3)
// if (!p0) R1 = add(R2, R3)
// if (p0.new) R1 = add(R2, R3)
// if (!p0.new) R1 = add(R2, R3)
// Note: New-value stores are not included here as in the current
// implementation, we don't need to check their predicate sense.
bool HexagonInstrInfo::isPredicated(const MachineInstr &MI) const {
  const uint64_t F = MI.getDesc().TSFlags;
  return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
}

bool HexagonInstrInfo::PredicateInstruction(
    MachineInstr &MI, ArrayRef<MachineOperand> Cond) const {
  if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
      isEndLoopN(Cond[0].getImm())) {
    DEBUG(dbgs() << "\nCannot predicate:"; MI.dump(););
    return false;
  }
  int Opc = MI.getOpcode();
  assert (isPredicable(MI) && "Expected predicable instruction");
  bool invertJump = predOpcodeHasNot(Cond);

  // We have to predicate MI "in place", i.e. after this function returns,
  // MI will need to be transformed into a predicated form. To avoid com-
  // plicated manipulations with the operands (handling tied operands,
  // etc.), build a new temporary instruction, then overwrite MI with it.

  MachineBasicBlock &B = *MI.getParent();
  DebugLoc DL = MI.getDebugLoc();
  unsigned PredOpc = getCondOpcode(Opc, invertJump);
  MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
  unsigned NOp = 0, NumOps = MI.getNumOperands();
  while (NOp < NumOps) {
    MachineOperand &Op = MI.getOperand(NOp);
    if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
      break;
    T.add(Op);
    NOp++;
  }

  unsigned PredReg, PredRegPos, PredRegFlags;
  bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
  (void)GotPredReg;
  assert(GotPredReg);
  T.addReg(PredReg, PredRegFlags);
  while (NOp < NumOps)
    T.add(MI.getOperand(NOp++));

  MI.setDesc(get(PredOpc));
  while (unsigned n = MI.getNumOperands())
    MI.RemoveOperand(n-1);
  for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
    MI.addOperand(T->getOperand(i));

  MachineBasicBlock::instr_iterator TI = T->getIterator();
  B.erase(TI);

  MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
  MRI.clearKillFlags(PredReg);
  return true;
}

bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
      ArrayRef<MachineOperand> Pred2) const {
  // TODO: Fix this
  return false;
}

bool HexagonInstrInfo::DefinesPredicate(MachineInstr &MI,
      std::vector<MachineOperand> &Pred) const {
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();

  for (unsigned oper = 0; oper < MI.getNumOperands(); ++oper) {
    MachineOperand MO = MI.getOperand(oper);
    if (MO.isReg()) {
      if (!MO.isDef())
        continue;
      const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
      if (RC == &Hexagon::PredRegsRegClass) {
        Pred.push_back(MO);
        return true;
      }
      continue;
    } else if (MO.isRegMask()) {
      for (unsigned PR : Hexagon::PredRegsRegClass) {
        if (!MI.modifiesRegister(PR, &HRI))
          continue;
        Pred.push_back(MO);
        return true;
      }
    }
  }
  return false;
}

bool HexagonInstrInfo::isPredicable(const MachineInstr &MI) const {
  if (!MI.getDesc().isPredicable())
    return false;

  if (MI.isCall() || isTailCall(MI)) {
    if (!Subtarget.usePredicatedCalls())
      return false;
  }

  // HVX loads are not predicable on v60, but are on v62.
  if (!Subtarget.hasV62TOps()) {
    switch (MI.getOpcode()) {
      case Hexagon::V6_vL32b_ai:
      case Hexagon::V6_vL32b_pi:
      case Hexagon::V6_vL32b_ppu:
      case Hexagon::V6_vL32b_cur_ai:
      case Hexagon::V6_vL32b_cur_pi:
      case Hexagon::V6_vL32b_cur_ppu:
      case Hexagon::V6_vL32b_nt_ai:
      case Hexagon::V6_vL32b_nt_pi:
      case Hexagon::V6_vL32b_nt_ppu:
      case Hexagon::V6_vL32b_tmp_ai:
      case Hexagon::V6_vL32b_tmp_pi:
      case Hexagon::V6_vL32b_tmp_ppu:
      case Hexagon::V6_vL32b_nt_cur_ai:
      case Hexagon::V6_vL32b_nt_cur_pi:
      case Hexagon::V6_vL32b_nt_cur_ppu:
      case Hexagon::V6_vL32b_nt_tmp_ai:
      case Hexagon::V6_vL32b_nt_tmp_pi:
      case Hexagon::V6_vL32b_nt_tmp_ppu:
        return false;
    }
  }
  return true;
}

bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
                                            const MachineBasicBlock *MBB,
                                            const MachineFunction &MF) const {
  // Debug info is never a scheduling boundary. It's necessary to be explicit
  // due to the special treatment of IT instructions below, otherwise a
  // dbg_value followed by an IT will result in the IT instruction being
  // considered a scheduling hazard, which is wrong. It should be the actual
  // instruction preceding the dbg_value instruction(s), just like it is
  // when debug info is not present.
  if (MI.isDebugValue())
    return false;

  // Throwing call is a boundary.
  if (MI.isCall()) {
    // Don't mess around with no return calls.
    if (doesNotReturn(MI))
      return true;
    // If any of the block's successors is a landing pad, this could be a
    // throwing call.
    for (auto I : MBB->successors())
      if (I->isEHPad())
        return true;
  }

  // Terminators and labels can't be scheduled around.
  if (MI.getDesc().isTerminator() || MI.isPosition())
    return true;

  if (MI.isInlineAsm() && !ScheduleInlineAsm)
    return true;

  return false;
}

/// Measure the specified inline asm to determine an approximation of its
/// length.
/// Comments (which run till the next SeparatorString or newline) do not
/// count as an instruction.
/// Any other non-whitespace text is considered an instruction, with
/// multiple instructions separated by SeparatorString or newlines.
/// Variable-length instructions are not handled here; this function
/// may be overloaded in the target code to do that.
/// Hexagon counts the number of ##'s and adjust for that many
/// constant exenders.
unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str,
      const MCAsmInfo &MAI) const {
  StringRef AStr(Str);
  // Count the number of instructions in the asm.
  bool atInsnStart = true;
  unsigned Length = 0;
  for (; *Str; ++Str) {
    if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
                                strlen(MAI.getSeparatorString())) == 0)
      atInsnStart = true;
    if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
      Length += MAI.getMaxInstLength();
      atInsnStart = false;
    }
    if (atInsnStart && strncmp(Str, MAI.getCommentString().data(),
                               MAI.getCommentString().size()) == 0)
      atInsnStart = false;
  }

  // Add to size number of constant extenders seen * 4.
  StringRef Occ("##");
  Length += AStr.count(Occ)*4;
  return Length;
}

ScheduleHazardRecognizer*
HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
      const InstrItineraryData *II, const ScheduleDAG *DAG) const {
  if (UseDFAHazardRec)
    return new HexagonHazardRecognizer(II, this, Subtarget);
  return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
}

/// \brief For a comparison instruction, return the source registers in
/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
/// compares against in CmpValue. Return true if the comparison instruction
/// can be analyzed.
bool HexagonInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
                                      unsigned &SrcReg2, int &Mask,
                                      int &Value) const {
  unsigned Opc = MI.getOpcode();

  // Set mask and the first source register.
  switch (Opc) {
    case Hexagon::C2_cmpeq:
    case Hexagon::C2_cmpeqp:
    case Hexagon::C2_cmpgt:
    case Hexagon::C2_cmpgtp:
    case Hexagon::C2_cmpgtu:
    case Hexagon::C2_cmpgtup:
    case Hexagon::C4_cmpneq:
    case Hexagon::C4_cmplte:
    case Hexagon::C4_cmplteu:
    case Hexagon::C2_cmpeqi:
    case Hexagon::C2_cmpgti:
    case Hexagon::C2_cmpgtui:
    case Hexagon::C4_cmpneqi:
    case Hexagon::C4_cmplteui:
    case Hexagon::C4_cmpltei:
      SrcReg = MI.getOperand(1).getReg();
      Mask = ~0;
      break;
    case Hexagon::A4_cmpbeq:
    case Hexagon::A4_cmpbgt:
    case Hexagon::A4_cmpbgtu:
    case Hexagon::A4_cmpbeqi:
    case Hexagon::A4_cmpbgti:
    case Hexagon::A4_cmpbgtui:
      SrcReg = MI.getOperand(1).getReg();
      Mask = 0xFF;
      break;
    case Hexagon::A4_cmpheq:
    case Hexagon::A4_cmphgt:
    case Hexagon::A4_cmphgtu:
    case Hexagon::A4_cmpheqi:
    case Hexagon::A4_cmphgti:
    case Hexagon::A4_cmphgtui:
      SrcReg = MI.getOperand(1).getReg();
      Mask = 0xFFFF;
      break;
  }

  // Set the value/second source register.
  switch (Opc) {
    case Hexagon::C2_cmpeq:
    case Hexagon::C2_cmpeqp:
    case Hexagon::C2_cmpgt:
    case Hexagon::C2_cmpgtp:
    case Hexagon::C2_cmpgtu:
    case Hexagon::C2_cmpgtup:
    case Hexagon::A4_cmpbeq:
    case Hexagon::A4_cmpbgt:
    case Hexagon::A4_cmpbgtu:
    case Hexagon::A4_cmpheq:
    case Hexagon::A4_cmphgt:
    case Hexagon::A4_cmphgtu:
    case Hexagon::C4_cmpneq:
    case Hexagon::C4_cmplte:
    case Hexagon::C4_cmplteu:
      SrcReg2 = MI.getOperand(2).getReg();
      return true;

    case Hexagon::C2_cmpeqi:
    case Hexagon::C2_cmpgtui:
    case Hexagon::C2_cmpgti:
    case Hexagon::C4_cmpneqi:
    case Hexagon::C4_cmplteui:
    case Hexagon::C4_cmpltei:
    case Hexagon::A4_cmpbeqi:
    case Hexagon::A4_cmpbgti:
    case Hexagon::A4_cmpbgtui:
    case Hexagon::A4_cmpheqi:
    case Hexagon::A4_cmphgti:
    case Hexagon::A4_cmphgtui: {
      SrcReg2 = 0;
      const MachineOperand &Op2 = MI.getOperand(2);
      if (!Op2.isImm())
        return false;
      Value = MI.getOperand(2).getImm();
      return true;
    }
  }

  return false;
}

unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
                                           const MachineInstr &MI,
                                           unsigned *PredCost) const {
  return getInstrTimingClassLatency(ItinData, MI);
}

DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
    const TargetSubtargetInfo &STI) const {
  const InstrItineraryData *II = STI.getInstrItineraryData();
  return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
}

// Inspired by this pair:
//  %R13<def> = L2_loadri_io %R29, 136; mem:LD4[FixedStack0]
//  S2_storeri_io %R29, 132, %R1<kill>; flags:  mem:ST4[FixedStack1]
// Currently AA considers the addresses in these instructions to be aliasing.
bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(
    MachineInstr &MIa, MachineInstr &MIb, AliasAnalysis *AA) const {
  if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
      MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
    return false;

  // Instructions that are pure loads, not loads and stores like memops are not
  // dependent.
  if (MIa.mayLoad() && !isMemOp(MIa) && MIb.mayLoad() && !isMemOp(MIb))
    return true;

  // Get the base register in MIa.
  unsigned BasePosA, OffsetPosA;
  if (!getBaseAndOffsetPosition(MIa, BasePosA, OffsetPosA))
    return false;
  const MachineOperand &BaseA = MIa.getOperand(BasePosA);
  unsigned BaseRegA = BaseA.getReg();
  unsigned BaseSubA = BaseA.getSubReg();

  // Get the base register in MIb.
  unsigned BasePosB, OffsetPosB;
  if (!getBaseAndOffsetPosition(MIb, BasePosB, OffsetPosB))
    return false;
  const MachineOperand &BaseB = MIb.getOperand(BasePosB);
  unsigned BaseRegB = BaseB.getReg();
  unsigned BaseSubB = BaseB.getSubReg();

  if (BaseRegA != BaseRegB || BaseSubA != BaseSubB)
    return false;

  // Get the access sizes.
  unsigned SizeA = getMemAccessSize(MIa);
  unsigned SizeB = getMemAccessSize(MIb);

  // Get the offsets. Handle immediates only for now.
  const MachineOperand &OffA = MIa.getOperand(OffsetPosA);
  const MachineOperand &OffB = MIb.getOperand(OffsetPosB);
  if (!MIa.getOperand(OffsetPosA).isImm() ||
      !MIb.getOperand(OffsetPosB).isImm())
    return false;
  int OffsetA = isPostIncrement(MIa) ? 0 : OffA.getImm();
  int OffsetB = isPostIncrement(MIb) ? 0 : OffB.getImm();

  // This is a mem access with the same base register and known offsets from it.
  // Reason about it.
  if (OffsetA > OffsetB) {
    uint64_t OffDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
    return SizeB <= OffDiff;
  }
  if (OffsetA < OffsetB) {
    uint64_t OffDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
    return SizeA <= OffDiff;
  }

  return false;
}

/// If the instruction is an increment of a constant value, return the amount.
bool HexagonInstrInfo::getIncrementValue(const MachineInstr &MI,
      int &Value) const {
  if (isPostIncrement(MI)) {
    unsigned BasePos = 0, OffsetPos = 0;
    if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
      return false;
    const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
    if (OffsetOp.isImm()) {
      Value = OffsetOp.getImm();
      return true;
    }
  } else if (MI.getOpcode() == Hexagon::A2_addi) {
    const MachineOperand &AddOp = MI.getOperand(2);
    if (AddOp.isImm()) {
      Value = AddOp.getImm();
      return true;
    }
  }

  return false;
}

std::pair<unsigned, unsigned>
HexagonInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
  return std::make_pair(TF & ~HexagonII::MO_Bitmasks,
                        TF & HexagonII::MO_Bitmasks);
}

ArrayRef<std::pair<unsigned, const char*>>
HexagonInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
  using namespace HexagonII;

  static const std::pair<unsigned, const char*> Flags[] = {
    {MO_PCREL,  "hexagon-pcrel"},
    {MO_GOT,    "hexagon-got"},
    {MO_LO16,   "hexagon-lo16"},
    {MO_HI16,   "hexagon-hi16"},
    {MO_GPREL,  "hexagon-gprel"},
    {MO_GDGOT,  "hexagon-gdgot"},
    {MO_GDPLT,  "hexagon-gdplt"},
    {MO_IE,     "hexagon-ie"},
    {MO_IEGOT,  "hexagon-iegot"},
    {MO_TPREL,  "hexagon-tprel"}
  };
  return makeArrayRef(Flags);
}

ArrayRef<std::pair<unsigned, const char*>>
HexagonInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
  using namespace HexagonII;

  static const std::pair<unsigned, const char*> Flags[] = {
    {HMOTF_ConstExtended, "hexagon-ext"}
  };
  return makeArrayRef(Flags);
}

unsigned HexagonInstrInfo::createVR(MachineFunction *MF, MVT VT) const {
  MachineRegisterInfo &MRI = MF->getRegInfo();
  const TargetRegisterClass *TRC;
  if (VT == MVT::i1) {
    TRC = &Hexagon::PredRegsRegClass;
  } else if (VT == MVT::i32 || VT == MVT::f32) {
    TRC = &Hexagon::IntRegsRegClass;
  } else if (VT == MVT::i64 || VT == MVT::f64) {
    TRC = &Hexagon::DoubleRegsRegClass;
  } else {
    llvm_unreachable("Cannot handle this register class");
  }

  unsigned NewReg = MRI.createVirtualRegister(TRC);
  return NewReg;
}

bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr &MI) const {
  return (getAddrMode(MI) == HexagonII::AbsoluteSet);
}

bool HexagonInstrInfo::isAccumulator(const MachineInstr &MI) const {
  const uint64_t F = MI.getDesc().TSFlags;
  return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
}

bool HexagonInstrInfo::isComplex(const MachineInstr &MI) const {
  return !isTC1(MI) && !isTC2Early(MI) && !MI.getDesc().mayLoad() &&
         !MI.getDesc().mayStore() &&
         MI.getDesc().getOpcode() != Hexagon::S2_allocframe &&
         MI.getDesc().getOpcode() != Hexagon::L2_deallocframe &&
         !isMemOp(MI) && !MI.isBranch() && !MI.isReturn() && !MI.isCall();
}

// Return true if the instruction is a compund branch instruction.
bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr &MI) const {
  return getType(MI) == HexagonII::TypeCJ && MI.isBranch();
}

// TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
// isFPImm and later getFPImm as well.
bool HexagonInstrInfo::isConstExtended(const MachineInstr &MI) const {
  const uint64_t F = MI.getDesc().TSFlags;
  unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
  if (isExtended) // Instruction must be extended.
    return true;

  unsigned isExtendable =
    (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
  if (!isExtendable)
    return false;

  if (MI.isCall())
    return false;

  short ExtOpNum = getCExtOpNum(MI);
  const MachineOperand &MO = MI.getOperand(ExtOpNum);
  // Use MO operand flags to determine if MO
  // has the HMOTF_ConstExtended flag set.
  if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
    return true;
  // If this is a Machine BB address we are talking about, and it is
  // not marked as extended, say so.
  if (MO.isMBB())
    return false;

  // We could be using an instruction with an extendable immediate and shoehorn
  // a global address into it. If it is a global address it will be constant
  // extended. We do this for COMBINE.
  if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
      MO.isJTI() || MO.isCPI() || MO.isFPImm())
    return true;

  // If the extendable operand is not 'Immediate' type, the instruction should
  // have 'isExtended' flag set.
  assert(MO.isImm() && "Extendable operand must be Immediate type");

  int MinValue = getMinValue(MI);
  int MaxValue = getMaxValue(MI);
  int ImmValue = MO.getImm();

  return (ImmValue < MinValue || ImmValue > MaxValue);
}

bool HexagonInstrInfo::isDeallocRet(const MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  case Hexagon::L4_return:
  case Hexagon::L4_return_t:
  case Hexagon::L4_return_f:
  case Hexagon::L4_return_tnew_pnt:
  case Hexagon::L4_return_fnew_pnt:
  case Hexagon::L4_return_tnew_pt:
  case Hexagon::L4_return_fnew_pt:
    return true;
  }
  return false;
}

// Return true when ConsMI uses a register defined by ProdMI.
bool HexagonInstrInfo::isDependent(const MachineInstr &ProdMI,
      const MachineInstr &ConsMI) const {
  if (!ProdMI.getDesc().getNumDefs())
    return false;
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();

  SmallVector<unsigned, 4> DefsA;
  SmallVector<unsigned, 4> DefsB;
  SmallVector<unsigned, 8> UsesA;
  SmallVector<unsigned, 8> UsesB;

  parseOperands(ProdMI, DefsA, UsesA);
  parseOperands(ConsMI, DefsB, UsesB);

  for (auto &RegA : DefsA)
    for (auto &RegB : UsesB) {
      // True data dependency.
      if (RegA == RegB)
        return true;

      if (TargetRegisterInfo::isPhysicalRegister(RegA))
        for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs)
          if (RegB == *SubRegs)
            return true;

      if (TargetRegisterInfo::isPhysicalRegister(RegB))
        for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs)
          if (RegA == *SubRegs)
            return true;
    }

  return false;
}

// Returns true if the instruction is alread a .cur.
bool HexagonInstrInfo::isDotCurInst(const MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  case Hexagon::V6_vL32b_cur_pi:
  case Hexagon::V6_vL32b_cur_ai:
    return true;
  }
  return false;
}

// Returns true, if any one of the operands is a dot new
// insn, whether it is predicated dot new or register dot new.
bool HexagonInstrInfo::isDotNewInst(const MachineInstr &MI) const {
  if (isNewValueInst(MI) || (isPredicated(MI) && isPredicatedNew(MI)))
    return true;

  return false;
}

/// Symmetrical. See if these two instructions are fit for duplex pair.
bool HexagonInstrInfo::isDuplexPair(const MachineInstr &MIa,
      const MachineInstr &MIb) const {
  HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa);
  HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb);
  return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
}

bool HexagonInstrInfo::isEarlySourceInstr(const MachineInstr &MI) const {
  if (MI.mayLoad() || MI.mayStore() || MI.isCompare())
    return true;

  // Multiply
  unsigned SchedClass = MI.getDesc().getSchedClass();
  return is_TC4x(SchedClass) || is_TC3x(SchedClass);
}

bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
  return (Opcode == Hexagon::ENDLOOP0 ||
          Opcode == Hexagon::ENDLOOP1);
}

bool HexagonInstrInfo::isExpr(unsigned OpType) const {
  switch(OpType) {
  case MachineOperand::MO_MachineBasicBlock:
  case MachineOperand::MO_GlobalAddress:
  case MachineOperand::MO_ExternalSymbol:
  case MachineOperand::MO_JumpTableIndex:
  case MachineOperand::MO_ConstantPoolIndex:
  case MachineOperand::MO_BlockAddress:
    return true;
  default:
    return false;
  }
}

bool HexagonInstrInfo::isExtendable(const MachineInstr &MI) const {
  const MCInstrDesc &MID = MI.getDesc();
  const uint64_t F = MID.TSFlags;
  if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
    return true;

  // TODO: This is largely obsolete now. Will need to be removed
  // in consecutive patches.
  switch (MI.getOpcode()) {
    // PS_fi and PS_fia remain special cases.
    case Hexagon::PS_fi:
    case Hexagon::PS_fia:
      return true;
    default:
      return false;
  }
  return  false;
}

// This returns true in two cases:
// - The OP code itself indicates that this is an extended instruction.
// - One of MOs has been marked with HMOTF_ConstExtended flag.
bool HexagonInstrInfo::isExtended(const MachineInstr &MI) const {
  // First check if this is permanently extended op code.
  const uint64_t F = MI.getDesc().TSFlags;
  if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
    return true;
  // Use MO operand flags to determine if one of MI's operands
  // has HMOTF_ConstExtended flag set.
  for (const MachineOperand &MO : MI.operands())
    if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
      return true;
  return  false;
}

bool HexagonInstrInfo::isFloat(const MachineInstr &MI) const {
  unsigned Opcode = MI.getOpcode();
  const uint64_t F = get(Opcode).TSFlags;
  return (F >> HexagonII::FPPos) & HexagonII::FPMask;
}

// No V60 HVX VMEM with A_INDIRECT.
bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr &I,
      const MachineInstr &J) const {
  if (!isHVXVec(I))
    return false;
  if (!I.mayLoad() && !I.mayStore())
    return false;
  return J.isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J);
}

bool HexagonInstrInfo::isIndirectCall(const MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  case Hexagon::J2_callr:
  case Hexagon::J2_callrf:
  case Hexagon::J2_callrt:
  case Hexagon::PS_call_nr:
    return true;
  }
  return false;
}

bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  case Hexagon::L4_return:
  case Hexagon::L4_return_t:
  case Hexagon::L4_return_f:
  case Hexagon::L4_return_fnew_pnt:
  case Hexagon::L4_return_fnew_pt:
  case Hexagon::L4_return_tnew_pnt:
  case Hexagon::L4_return_tnew_pt:
    return true;
  }
  return false;
}

bool HexagonInstrInfo::isJumpR(const MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  case Hexagon::J2_jumpr:
  case Hexagon::J2_jumprt:
  case Hexagon::J2_jumprf:
  case Hexagon::J2_jumprtnewpt:
  case Hexagon::J2_jumprfnewpt:
  case Hexagon::J2_jumprtnew:
  case Hexagon::J2_jumprfnew:
    return true;
  }
  return false;
}

// Return true if a given MI can accommodate given offset.
// Use abs estimate as oppose to the exact number.
// TODO: This will need to be changed to use MC level
// definition of instruction extendable field size.
bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr &MI,
      unsigned offset) const {
  // This selection of jump instructions matches to that what
  // analyzeBranch can parse, plus NVJ.
  if (isNewValueJump(MI)) // r9:2
    return isInt<11>(offset);

  switch (MI.getOpcode()) {
  // Still missing Jump to address condition on register value.
  default:
    return false;
  case Hexagon::J2_jump: // bits<24> dst; // r22:2
  case Hexagon::J2_call:
  case Hexagon::PS_call_nr:
    return isInt<24>(offset);
  case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
  case Hexagon::J2_jumpf:
  case Hexagon::J2_jumptnew:
  case Hexagon::J2_jumptnewpt:
  case Hexagon::J2_jumpfnew:
  case Hexagon::J2_jumpfnewpt:
  case Hexagon::J2_callt:
  case Hexagon::J2_callf:
    return isInt<17>(offset);
  case Hexagon::J2_loop0i:
  case Hexagon::J2_loop0iext:
  case Hexagon::J2_loop0r:
  case Hexagon::J2_loop0rext:
  case Hexagon::J2_loop1i:
  case Hexagon::J2_loop1iext:
  case Hexagon::J2_loop1r:
  case Hexagon::J2_loop1rext:
    return isInt<9>(offset);
  // TODO: Add all the compound branches here. Can we do this in Relation model?
  case Hexagon::J4_cmpeqi_tp0_jump_nt:
  case Hexagon::J4_cmpeqi_tp1_jump_nt:
    return isInt<11>(offset);
  }
}

bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(const MachineInstr &LRMI,
      const MachineInstr &ESMI) const {
  bool isLate = isLateResultInstr(LRMI);
  bool isEarly = isEarlySourceInstr(ESMI);

  DEBUG(dbgs() << "V60" <<  (isLate ? "-LR  " : " --  "));
  DEBUG(LRMI.dump());
  DEBUG(dbgs() << "V60" <<  (isEarly ? "-ES  " : " --  "));
  DEBUG(ESMI.dump());

  if (isLate && isEarly) {
    DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
    return true;
  }

  return false;
}

bool HexagonInstrInfo::isLateResultInstr(const MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  case TargetOpcode::EXTRACT_SUBREG:
  case TargetOpcode::INSERT_SUBREG:
  case TargetOpcode::SUBREG_TO_REG:
  case TargetOpcode::REG_SEQUENCE:
  case TargetOpcode::IMPLICIT_DEF:
  case TargetOpcode::COPY:
  case TargetOpcode::INLINEASM:
  case TargetOpcode::PHI:
    return false;
  default:
    break;
  }

  unsigned SchedClass = MI.getDesc().getSchedClass();
  return !is_TC1(SchedClass);
}

bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr &MI) const {
  // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
  // resource, but all operands can be received late like an ALU instruction.
  return getType(MI) == HexagonII::TypeCVI_VX_LATE;
}

bool HexagonInstrInfo::isLoopN(const MachineInstr &MI) const {
  unsigned Opcode = MI.getOpcode();
  return Opcode == Hexagon::J2_loop0i    ||
         Opcode == Hexagon::J2_loop0r    ||
         Opcode == Hexagon::J2_loop0iext ||
         Opcode == Hexagon::J2_loop0rext ||
         Opcode == Hexagon::J2_loop1i    ||
         Opcode == Hexagon::J2_loop1r    ||
         Opcode == Hexagon::J2_loop1iext ||
         Opcode == Hexagon::J2_loop1rext;
}

bool HexagonInstrInfo::isMemOp(const MachineInstr &MI) const {
  switch (MI.getOpcode()) {
    default: return false;
    case Hexagon::L4_iadd_memopw_io:
    case Hexagon::L4_isub_memopw_io:
    case Hexagon::L4_add_memopw_io:
    case Hexagon::L4_sub_memopw_io:
    case Hexagon::L4_and_memopw_io:
    case Hexagon::L4_or_memopw_io:
    case Hexagon::L4_iadd_memoph_io:
    case Hexagon::L4_isub_memoph_io:
    case Hexagon::L4_add_memoph_io:
    case Hexagon::L4_sub_memoph_io:
    case Hexagon::L4_and_memoph_io:
    case Hexagon::L4_or_memoph_io:
    case Hexagon::L4_iadd_memopb_io:
    case Hexagon::L4_isub_memopb_io:
    case Hexagon::L4_add_memopb_io:
    case Hexagon::L4_sub_memopb_io:
    case Hexagon::L4_and_memopb_io:
    case Hexagon::L4_or_memopb_io:
    case Hexagon::L4_ior_memopb_io:
    case Hexagon::L4_ior_memoph_io:
    case Hexagon::L4_ior_memopw_io:
    case Hexagon::L4_iand_memopb_io:
    case Hexagon::L4_iand_memoph_io:
    case Hexagon::L4_iand_memopw_io:
    return true;
  }
  return false;
}

bool HexagonInstrInfo::isNewValue(const MachineInstr &MI) const {
  const uint64_t F = MI.getDesc().TSFlags;
  return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
}

bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
  const uint64_t F = get(Opcode).TSFlags;
  return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
}

bool HexagonInstrInfo::isNewValueInst(const MachineInstr &MI) const {
  return isNewValueJump(MI) || isNewValueStore(MI);
}

bool HexagonInstrInfo::isNewValueJump(const MachineInstr &MI) const {
  return isNewValue(MI) && MI.isBranch();
}

bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
  return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
}

bool HexagonInstrInfo::isNewValueStore(const MachineInstr &MI) const {
  const uint64_t F = MI.getDesc().TSFlags;
  return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
}

bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
  const uint64_t F = get(Opcode).TSFlags;
  return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
}

// Returns true if a particular operand is extendable for an instruction.
bool HexagonInstrInfo::isOperandExtended(const MachineInstr &MI,
    unsigned OperandNum) const {
  const uint64_t F = MI.getDesc().TSFlags;
  return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
          == OperandNum;
}

bool HexagonInstrInfo::isPredicatedNew(const MachineInstr &MI) const {
  const uint64_t F = MI.getDesc().TSFlags;
  assert(isPredicated(MI));
  return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
}

bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
  const uint64_t F = get(Opcode).TSFlags;
  assert(isPredicated(Opcode));
  return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
}

bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr &MI) const {
  const uint64_t F = MI.getDesc().TSFlags;
  return !((F >> HexagonII::PredicatedFalsePos) &
           HexagonII::PredicatedFalseMask);
}

bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
  const uint64_t F = get(Opcode).TSFlags;
  // Make sure that the instruction is predicated.
  assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
  return !((F >> HexagonII::PredicatedFalsePos) &
           HexagonII::PredicatedFalseMask);
}

bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
  const uint64_t F = get(Opcode).TSFlags;
  return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
}

bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
  const uint64_t F = get(Opcode).TSFlags;
  return ~(F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask;
}

bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
  const uint64_t F = get(Opcode).TSFlags;
  assert(get(Opcode).isBranch() &&
         (isPredicatedNew(Opcode) || isNewValue(Opcode)));
  return (F >> HexagonII::TakenPos) & HexagonII::TakenMask;
}

bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr &MI) const {
  return MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
         MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT ||
         MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC ||
         MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC;
}

bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  // Byte
  case Hexagon::L2_loadrb_io:
  case Hexagon::L4_loadrb_ur:
  case Hexagon::L4_loadrb_ap:
  case Hexagon::L2_loadrb_pr:
  case Hexagon::L2_loadrb_pbr:
  case Hexagon::L2_loadrb_pi:
  case Hexagon::L2_loadrb_pci:
  case Hexagon::L2_loadrb_pcr:
  case Hexagon::L2_loadbsw2_io:
  case Hexagon::L4_loadbsw2_ur:
  case Hexagon::L4_loadbsw2_ap:
  case Hexagon::L2_loadbsw2_pr:
  case Hexagon::L2_loadbsw2_pbr:
  case Hexagon::L2_loadbsw2_pi:
  case Hexagon::L2_loadbsw2_pci:
  case Hexagon::L2_loadbsw2_pcr:
  case Hexagon::L2_loadbsw4_io:
  case Hexagon::L4_loadbsw4_ur:
  case Hexagon::L4_loadbsw4_ap:
  case Hexagon::L2_loadbsw4_pr:
  case Hexagon::L2_loadbsw4_pbr:
  case Hexagon::L2_loadbsw4_pi:
  case Hexagon::L2_loadbsw4_pci:
  case Hexagon::L2_loadbsw4_pcr:
  case Hexagon::L4_loadrb_rr:
  case Hexagon::L2_ploadrbt_io:
  case Hexagon::L2_ploadrbt_pi:
  case Hexagon::L2_ploadrbf_io:
  case Hexagon::L2_ploadrbf_pi:
  case Hexagon::L2_ploadrbtnew_io:
  case Hexagon::L2_ploadrbfnew_io:
  case Hexagon::L4_ploadrbt_rr:
  case Hexagon::L4_ploadrbf_rr:
  case Hexagon::L4_ploadrbtnew_rr:
  case Hexagon::L4_ploadrbfnew_rr:
  case Hexagon::L2_ploadrbtnew_pi:
  case Hexagon::L2_ploadrbfnew_pi:
  case Hexagon::L4_ploadrbt_abs:
  case Hexagon::L4_ploadrbf_abs:
  case Hexagon::L4_ploadrbtnew_abs:
  case Hexagon::L4_ploadrbfnew_abs:
  case Hexagon::L2_loadrbgp:
  // Half
  case Hexagon::L2_loadrh_io:
  case Hexagon::L4_loadrh_ur:
  case Hexagon::L4_loadrh_ap:
  case Hexagon::L2_loadrh_pr:
  case Hexagon::L2_loadrh_pbr:
  case Hexagon::L2_loadrh_pi:
  case Hexagon::L2_loadrh_pci:
  case Hexagon::L2_loadrh_pcr:
  case Hexagon::L4_loadrh_rr:
  case Hexagon::L2_ploadrht_io:
  case Hexagon::L2_ploadrht_pi:
  case Hexagon::L2_ploadrhf_io:
  case Hexagon::L2_ploadrhf_pi:
  case Hexagon::L2_ploadrhtnew_io:
  case Hexagon::L2_ploadrhfnew_io:
  case Hexagon::L4_ploadrht_rr:
  case Hexagon::L4_ploadrhf_rr:
  case Hexagon::L4_ploadrhtnew_rr:
  case Hexagon::L4_ploadrhfnew_rr:
  case Hexagon::L2_ploadrhtnew_pi:
  case Hexagon::L2_ploadrhfnew_pi:
  case Hexagon::L4_ploadrht_abs:
  case Hexagon::L4_ploadrhf_abs:
  case Hexagon::L4_ploadrhtnew_abs:
  case Hexagon::L4_ploadrhfnew_abs:
  case Hexagon::L2_loadrhgp:
    return true;
  default:
    return false;
  }
}

bool HexagonInstrInfo::isSolo(const MachineInstr &MI) const {
  const uint64_t F = MI.getDesc().TSFlags;
  return (F >> HexagonII::SoloPos) & HexagonII::SoloMask;
}

bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  case Hexagon::STriw_pred:
  case Hexagon::LDriw_pred:
    return true;
  default:
    return false;
  }
}

bool HexagonInstrInfo::isTailCall(const MachineInstr &MI) const {
  if (!MI.isBranch())
    return false;

  for (auto &Op : MI.operands())
    if (Op.isGlobal() || Op.isSymbol())
      return true;
  return false;
}

// Returns true when SU has a timing class TC1.
bool HexagonInstrInfo::isTC1(const MachineInstr &MI) const {
  unsigned SchedClass = MI.getDesc().getSchedClass();
  return is_TC1(SchedClass);
}

bool HexagonInstrInfo::isTC2(const MachineInstr &MI) const {
  unsigned SchedClass = MI.getDesc().getSchedClass();
  return is_TC2(SchedClass);
}

bool HexagonInstrInfo::isTC2Early(const MachineInstr &MI) const {
  unsigned SchedClass = MI.getDesc().getSchedClass();
  return is_TC2early(SchedClass);
}

bool HexagonInstrInfo::isTC4x(const MachineInstr &MI) const {
  unsigned SchedClass = MI.getDesc().getSchedClass();
  return is_TC4x(SchedClass);
}

// Schedule this ASAP.
bool HexagonInstrInfo::isToBeScheduledASAP(const MachineInstr &MI1,
      const MachineInstr &MI2) const {
  if (mayBeCurLoad(MI1)) {
    // if (result of SU is used in Next) return true;
    unsigned DstReg = MI1.getOperand(0).getReg();
    int N = MI2.getNumOperands();
    for (int I = 0; I < N; I++)
      if (MI2.getOperand(I).isReg() && DstReg == MI2.getOperand(I).getReg())
        return true;
  }
  if (mayBeNewStore(MI2))
    if (MI2.getOpcode() == Hexagon::V6_vS32b_pi)
      if (MI1.getOperand(0).isReg() && MI2.getOperand(3).isReg() &&
          MI1.getOperand(0).getReg() == MI2.getOperand(3).getReg())
        return true;
  return false;
}

bool HexagonInstrInfo::isHVXVec(const MachineInstr &MI) const {
  const uint64_t V = getType(MI);
  return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
}

// Check if the Offset is a valid auto-inc imm by Load/Store Type.
bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, int Offset) const {
  int Size = VT.getSizeInBits() / 8;
  if (Offset % Size != 0)
    return false;
  int Count = Offset / Size;

  switch (VT.getSimpleVT().SimpleTy) {
    // For scalars the auto-inc is s4
    case MVT::i8:
    case MVT::i16:
    case MVT::i32:
    case MVT::i64:
      return isInt<4>(Count);
    // For HVX vectors the auto-inc is s3
    case MVT::v64i8:
    case MVT::v32i16:
    case MVT::v16i32:
    case MVT::v8i64:
    case MVT::v128i8:
    case MVT::v64i16:
    case MVT::v32i32:
    case MVT::v16i64:
      return isInt<3>(Count);
    default:
      break;
  }

  llvm_unreachable("Not an valid type!");
}

bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
      const TargetRegisterInfo *TRI, bool Extend) const {
  // This function is to check whether the "Offset" is in the correct range of
  // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
  // inserted to calculate the final address. Due to this reason, the function
  // assumes that the "Offset" has correct alignment.
  // We used to assert if the offset was not properly aligned, however,
  // there are cases where a misaligned pointer recast can cause this
  // problem, and we need to allow for it. The front end warns of such
  // misaligns with respect to load size.
  switch (Opcode) {
  case Hexagon::PS_vstorerq_ai:
  case Hexagon::PS_vstorerw_ai:
  case Hexagon::PS_vstorerw_nt_ai:
  case Hexagon::PS_vloadrq_ai:
  case Hexagon::PS_vloadrw_ai:
  case Hexagon::PS_vloadrw_nt_ai:
  case Hexagon::V6_vL32b_ai:
  case Hexagon::V6_vS32b_ai:
  case Hexagon::V6_vL32b_nt_ai:
  case Hexagon::V6_vS32b_nt_ai:
  case Hexagon::V6_vL32Ub_ai:
  case Hexagon::V6_vS32Ub_ai: {
    unsigned VectorSize = TRI->getSpillSize(Hexagon::HvxVRRegClass);
    assert(isPowerOf2_32(VectorSize));
    if (Offset & (VectorSize-1))
      return false;
    return isInt<4>(Offset >> Log2_32(VectorSize));
  }

  case Hexagon::J2_loop0i:
  case Hexagon::J2_loop1i:
    return isUInt<10>(Offset);

  case Hexagon::S4_storeirb_io:
  case Hexagon::S4_storeirbt_io:
  case Hexagon::S4_storeirbf_io:
    return isUInt<6>(Offset);

  case Hexagon::S4_storeirh_io:
  case Hexagon::S4_storeirht_io:
  case Hexagon::S4_storeirhf_io:
    return isShiftedUInt<6,1>(Offset);

  case Hexagon::S4_storeiri_io:
  case Hexagon::S4_storeirit_io:
  case Hexagon::S4_storeirif_io:
    return isShiftedUInt<6,2>(Offset);
  }

  if (Extend)
    return true;

  switch (Opcode) {
  case Hexagon::L2_loadri_io:
  case Hexagon::S2_storeri_io:
    return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
      (Offset <= Hexagon_MEMW_OFFSET_MAX);

  case Hexagon::L2_loadrd_io:
  case Hexagon::S2_storerd_io:
    return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
      (Offset <= Hexagon_MEMD_OFFSET_MAX);

  case Hexagon::L2_loadrh_io:
  case Hexagon::L2_loadruh_io:
  case Hexagon::S2_storerh_io:
  case Hexagon::S2_storerf_io:
    return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
      (Offset <= Hexagon_MEMH_OFFSET_MAX);

  case Hexagon::L2_loadrb_io:
  case Hexagon::L2_loadrub_io:
  case Hexagon::S2_storerb_io:
    return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
      (Offset <= Hexagon_MEMB_OFFSET_MAX);

  case Hexagon::A2_addi:
    return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
      (Offset <= Hexagon_ADDI_OFFSET_MAX);

  case Hexagon::L4_iadd_memopw_io:
  case Hexagon::L4_isub_memopw_io:
  case Hexagon::L4_add_memopw_io:
  case Hexagon::L4_sub_memopw_io:
  case Hexagon::L4_and_memopw_io:
  case Hexagon::L4_or_memopw_io:
    return (0 <= Offset && Offset <= 255);

  case Hexagon::L4_iadd_memoph_io:
  case Hexagon::L4_isub_memoph_io:
  case Hexagon::L4_add_memoph_io:
  case Hexagon::L4_sub_memoph_io:
  case Hexagon::L4_and_memoph_io:
  case Hexagon::L4_or_memoph_io:
    return (0 <= Offset && Offset <= 127);

  case Hexagon::L4_iadd_memopb_io:
  case Hexagon::L4_isub_memopb_io:
  case Hexagon::L4_add_memopb_io:
  case Hexagon::L4_sub_memopb_io:
  case Hexagon::L4_and_memopb_io:
  case Hexagon::L4_or_memopb_io:
    return (0 <= Offset && Offset <= 63);

  // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of
  // any size. Later pass knows how to handle it.
  case Hexagon::STriw_pred:
  case Hexagon::LDriw_pred:
  case Hexagon::STriw_mod:
  case Hexagon::LDriw_mod:
    return true;

  case Hexagon::PS_fi:
  case Hexagon::PS_fia:
  case Hexagon::INLINEASM:
    return true;

  case Hexagon::L2_ploadrbt_io:
  case Hexagon::L2_ploadrbf_io:
  case Hexagon::L2_ploadrubt_io:
  case Hexagon::L2_ploadrubf_io:
  case Hexagon::S2_pstorerbt_io:
  case Hexagon::S2_pstorerbf_io:
    return isUInt<6>(Offset);

  case Hexagon::L2_ploadrht_io:
  case Hexagon::L2_ploadrhf_io:
  case Hexagon::L2_ploadruht_io:
  case Hexagon::L2_ploadruhf_io:
  case Hexagon::S2_pstorerht_io:
  case Hexagon::S2_pstorerhf_io:
    return isShiftedUInt<6,1>(Offset);

  case Hexagon::L2_ploadrit_io:
  case Hexagon::L2_ploadrif_io:
  case Hexagon::S2_pstorerit_io:
  case Hexagon::S2_pstorerif_io:
    return isShiftedUInt<6,2>(Offset);

  case Hexagon::L2_ploadrdt_io:
  case Hexagon::L2_ploadrdf_io:
  case Hexagon::S2_pstorerdt_io:
  case Hexagon::S2_pstorerdf_io:
    return isShiftedUInt<6,3>(Offset);
  } // switch

  llvm_unreachable("No offset range is defined for this opcode. "
                   "Please define it in the above switch statement!");
}

bool HexagonInstrInfo::isVecAcc(const MachineInstr &MI) const {
  return isHVXVec(MI) && isAccumulator(MI);
}

bool HexagonInstrInfo::isVecALU(const MachineInstr &MI) const {
  const uint64_t F = get(MI.getOpcode()).TSFlags;
  const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
  return
    V == HexagonII::TypeCVI_VA         ||
    V == HexagonII::TypeCVI_VA_DV;
}

bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr &ProdMI,
      const MachineInstr &ConsMI) const {
  if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
    return true;

  if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
    return true;

  if (mayBeNewStore(ConsMI))
    return true;

  return false;
}

bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  // Byte
  case Hexagon::L2_loadrub_io:
  case Hexagon::L4_loadrub_ur:
  case Hexagon::L4_loadrub_ap:
  case Hexagon::L2_loadrub_pr:
  case Hexagon::L2_loadrub_pbr:
  case Hexagon::L2_loadrub_pi:
  case Hexagon::L2_loadrub_pci:
  case Hexagon::L2_loadrub_pcr:
  case Hexagon::L2_loadbzw2_io:
  case Hexagon::L4_loadbzw2_ur:
  case Hexagon::L4_loadbzw2_ap:
  case Hexagon::L2_loadbzw2_pr:
  case Hexagon::L2_loadbzw2_pbr:
  case Hexagon::L2_loadbzw2_pi:
  case Hexagon::L2_loadbzw2_pci:
  case Hexagon::L2_loadbzw2_pcr:
  case Hexagon::L2_loadbzw4_io:
  case Hexagon::L4_loadbzw4_ur:
  case Hexagon::L4_loadbzw4_ap:
  case Hexagon::L2_loadbzw4_pr:
  case Hexagon::L2_loadbzw4_pbr:
  case Hexagon::L2_loadbzw4_pi:
  case Hexagon::L2_loadbzw4_pci:
  case Hexagon::L2_loadbzw4_pcr:
  case Hexagon::L4_loadrub_rr:
  case Hexagon::L2_ploadrubt_io:
  case Hexagon::L2_ploadrubt_pi:
  case Hexagon::L2_ploadrubf_io:
  case Hexagon::L2_ploadrubf_pi:
  case Hexagon::L2_ploadrubtnew_io:
  case Hexagon::L2_ploadrubfnew_io:
  case Hexagon::L4_ploadrubt_rr:
  case Hexagon::L4_ploadrubf_rr:
  case Hexagon::L4_ploadrubtnew_rr:
  case Hexagon::L4_ploadrubfnew_rr:
  case Hexagon::L2_ploadrubtnew_pi:
  case Hexagon::L2_ploadrubfnew_pi:
  case Hexagon::L4_ploadrubt_abs:
  case Hexagon::L4_ploadrubf_abs:
  case Hexagon::L4_ploadrubtnew_abs:
  case Hexagon::L4_ploadrubfnew_abs:
  case Hexagon::L2_loadrubgp:
  // Half
  case Hexagon::L2_loadruh_io:
  case Hexagon::L4_loadruh_ur:
  case Hexagon::L4_loadruh_ap:
  case Hexagon::L2_loadruh_pr:
  case Hexagon::L2_loadruh_pbr:
  case Hexagon::L2_loadruh_pi:
  case Hexagon::L2_loadruh_pci:
  case Hexagon::L2_loadruh_pcr:
  case Hexagon::L4_loadruh_rr:
  case Hexagon::L2_ploadruht_io:
  case Hexagon::L2_ploadruht_pi:
  case Hexagon::L2_ploadruhf_io:
  case Hexagon::L2_ploadruhf_pi:
  case Hexagon::L2_ploadruhtnew_io:
  case Hexagon::L2_ploadruhfnew_io:
  case Hexagon::L4_ploadruht_rr:
  case Hexagon::L4_ploadruhf_rr:
  case Hexagon::L4_ploadruhtnew_rr:
  case Hexagon::L4_ploadruhfnew_rr:
  case Hexagon::L2_ploadruhtnew_pi:
  case Hexagon::L2_ploadruhfnew_pi:
  case Hexagon::L4_ploadruht_abs:
  case Hexagon::L4_ploadruhf_abs:
  case Hexagon::L4_ploadruhtnew_abs:
  case Hexagon::L4_ploadruhfnew_abs:
  case Hexagon::L2_loadruhgp:
    return true;
  default:
    return false;
  }
}

// Add latency to instruction.
bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr &MI1,
      const MachineInstr &MI2) const {
  if (isHVXVec(MI1) && isHVXVec(MI2))
    if (!isVecUsableNextPacket(MI1, MI2))
      return true;
  return false;
}

/// \brief Get the base register and byte offset of a load/store instr.
bool HexagonInstrInfo::getMemOpBaseRegImmOfs(MachineInstr &LdSt,
      unsigned &BaseReg, int64_t &Offset, const TargetRegisterInfo *TRI)
      const {
  unsigned AccessSize = 0;
  int OffsetVal = 0;
  BaseReg = getBaseAndOffset(LdSt, OffsetVal, AccessSize);
  Offset = OffsetVal;
  return BaseReg != 0;
}

/// \brief Can these instructions execute at the same time in a bundle.
bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr &First,
      const MachineInstr &Second) const {
  if (Second.mayStore() && First.getOpcode() == Hexagon::S2_allocframe) {
    const MachineOperand &Op = Second.getOperand(0);
    if (Op.isReg() && Op.isUse() && Op.getReg() == Hexagon::R29)
      return true;
  }
  if (DisableNVSchedule)
    return false;
  if (mayBeNewStore(Second)) {
    // Make sure the definition of the first instruction is the value being
    // stored.
    const MachineOperand &Stored =
      Second.getOperand(Second.getNumOperands() - 1);
    if (!Stored.isReg())
      return false;
    for (unsigned i = 0, e = First.getNumOperands(); i < e; ++i) {
      const MachineOperand &Op = First.getOperand(i);
      if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg())
        return true;
    }
  }
  return false;
}

bool HexagonInstrInfo::doesNotReturn(const MachineInstr &CallMI) const {
  unsigned Opc = CallMI.getOpcode();
  return Opc == Hexagon::PS_call_nr || Opc == Hexagon::PS_callr_nr;
}

bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const {
  for (auto &I : *B)
    if (I.isEHLabel())
      return true;
  return false;
}

// Returns true if an instruction can be converted into a non-extended
// equivalent instruction.
bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr &MI) const {
  short NonExtOpcode;
  // Check if the instruction has a register form that uses register in place
  // of the extended operand, if so return that as the non-extended form.
  if (Hexagon::getRegForm(MI.getOpcode()) >= 0)
    return true;

  if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
    // Check addressing mode and retrieve non-ext equivalent instruction.

    switch (getAddrMode(MI)) {
    case HexagonII::Absolute:
      // Load/store with absolute addressing mode can be converted into
      // base+offset mode.
      NonExtOpcode = Hexagon::changeAddrMode_abs_io(MI.getOpcode());
      break;
    case HexagonII::BaseImmOffset:
      // Load/store with base+offset addressing mode can be converted into
      // base+register offset addressing mode. However left shift operand should
      // be set to 0.
      NonExtOpcode = Hexagon::changeAddrMode_io_rr(MI.getOpcode());
      break;
    case HexagonII::BaseLongOffset:
      NonExtOpcode = Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
      break;
    default:
      return false;
    }
    if (NonExtOpcode < 0)
      return false;
    return true;
  }
  return false;
}

bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr &MI) const {
  return Hexagon::getRealHWInstr(MI.getOpcode(),
                                 Hexagon::InstrType_Pseudo) >= 0;
}

bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B)
      const {
  MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
  while (I != E) {
    if (I->isBarrier())
      return true;
    ++I;
  }
  return false;
}

// Returns true, if a LD insn can be promoted to a cur load.
bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr &MI) const {
  const uint64_t F = MI.getDesc().TSFlags;
  return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) &&
         Subtarget.hasV60TOps();
}

// Returns true, if a ST insn can be promoted to a new-value store.
bool HexagonInstrInfo::mayBeNewStore(const MachineInstr &MI) const {
  const uint64_t F = MI.getDesc().TSFlags;
  return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask;
}

bool HexagonInstrInfo::producesStall(const MachineInstr &ProdMI,
      const MachineInstr &ConsMI) const {
  // There is no stall when ProdMI is not a V60 vector.
  if (!isHVXVec(ProdMI))
    return false;

  // There is no stall when ProdMI and ConsMI are not dependent.
  if (!isDependent(ProdMI, ConsMI))
    return false;

  // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
  // are scheduled in consecutive packets.
  if (isVecUsableNextPacket(ProdMI, ConsMI))
    return false;

  return true;
}

bool HexagonInstrInfo::producesStall(const MachineInstr &MI,
      MachineBasicBlock::const_instr_iterator BII) const {
  // There is no stall when I is not a V60 vector.
  if (!isHVXVec(MI))
    return false;

  MachineBasicBlock::const_instr_iterator MII = BII;
  MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();

  if (!(*MII).isBundle()) {
    const MachineInstr &J = *MII;
    return producesStall(J, MI);
  }

  for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
    const MachineInstr &J = *MII;
    if (producesStall(J, MI))
      return true;
  }
  return false;
}

bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr &MI,
      unsigned PredReg) const {
  for (const MachineOperand &MO : MI.operands()) {
    // Predicate register must be explicitly defined.
    if (MO.isRegMask() && MO.clobbersPhysReg(PredReg))
      return false;
    if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
      return false;
  }

  // Hexagon Programmer's Reference says that decbin, memw_locked, and
  // memd_locked cannot be used as .new as well,
  // but we don't seem to have these instructions defined.
  return MI.getOpcode() != Hexagon::A4_tlbmatch;
}

bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
  return Opcode == Hexagon::J2_jumpt      ||
         Opcode == Hexagon::J2_jumptpt    ||
         Opcode == Hexagon::J2_jumpf      ||
         Opcode == Hexagon::J2_jumpfpt    ||
         Opcode == Hexagon::J2_jumptnew   ||
         Opcode == Hexagon::J2_jumpfnew   ||
         Opcode == Hexagon::J2_jumptnewpt ||
         Opcode == Hexagon::J2_jumpfnewpt;
}

bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
  if (Cond.empty() || !isPredicated(Cond[0].getImm()))
    return false;
  return !isPredicatedTrue(Cond[0].getImm());
}

unsigned HexagonInstrInfo::getAddrMode(const MachineInstr &MI) const {
  const uint64_t F = MI.getDesc().TSFlags;
  return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
}

// Returns the base register in a memory access (load/store). The offset is
// returned in Offset and the access size is returned in AccessSize.
// If the base register has a subregister or the offset field does not contain
// an immediate value, return 0.
unsigned HexagonInstrInfo::getBaseAndOffset(const MachineInstr &MI,
      int &Offset, unsigned &AccessSize) const {
  // Return if it is not a base+offset type instruction or a MemOp.
  if (getAddrMode(MI) != HexagonII::BaseImmOffset &&
      getAddrMode(MI) != HexagonII::BaseLongOffset &&
      !isMemOp(MI) && !isPostIncrement(MI))
    return 0;

  AccessSize = getMemAccessSize(MI);

  unsigned BasePos = 0, OffsetPos = 0;
  if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
    return 0;

  // Post increment updates its EA after the mem access,
  // so we need to treat its offset as zero.
  if (isPostIncrement(MI)) {
    Offset = 0;
  } else {
    const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
    if (!OffsetOp.isImm())
      return 0;
    Offset = OffsetOp.getImm();
  }

  const MachineOperand &BaseOp = MI.getOperand(BasePos);
  if (BaseOp.getSubReg() != 0)
    return 0;
  return BaseOp.getReg();
}

/// Return the position of the base and offset operands for this instruction.
bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr &MI,
      unsigned &BasePos, unsigned &OffsetPos) const {
  // Deal with memops first.
  if (isMemOp(MI)) {
    BasePos = 0;
    OffsetPos = 1;
  } else if (MI.mayStore()) {
    BasePos = 0;
    OffsetPos = 1;
  } else if (MI.mayLoad()) {
    BasePos = 1;
    OffsetPos = 2;
  } else
    return false;

  if (isPredicated(MI)) {
    BasePos++;
    OffsetPos++;
  }
  if (isPostIncrement(MI)) {
    BasePos++;
    OffsetPos++;
  }

  if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm())
    return false;

  return true;
}

// Inserts branching instructions in reverse order of their occurrence.
// e.g. jump_t t1 (i1)
// jump t2        (i2)
// Jumpers = {i2, i1}
SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs(
      MachineBasicBlock& MBB) const {
  SmallVector<MachineInstr*, 2> Jumpers;
  // If the block has no terminators, it just falls into the block after it.
  MachineBasicBlock::instr_iterator I = MBB.instr_end();
  if (I == MBB.instr_begin())
    return Jumpers;

  // A basic block may looks like this:
  //
  //  [   insn
  //     EH_LABEL
  //      insn
  //      insn
  //      insn
  //     EH_LABEL
  //      insn     ]
  //
  // It has two succs but does not have a terminator
  // Don't know how to handle it.
  do {
    --I;
    if (I->isEHLabel())
      return Jumpers;
  } while (I != MBB.instr_begin());

  I = MBB.instr_end();
  --I;

  while (I->isDebugValue()) {
    if (I == MBB.instr_begin())
      return Jumpers;
    --I;
  }
  if (!isUnpredicatedTerminator(*I))
    return Jumpers;

  // Get the last instruction in the block.
  MachineInstr *LastInst = &*I;
  Jumpers.push_back(LastInst);
  MachineInstr *SecondLastInst = nullptr;
  // Find one more terminator if present.
  do {
    if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
      if (!SecondLastInst) {
        SecondLastInst = &*I;
        Jumpers.push_back(SecondLastInst);
      } else // This is a third branch.
        return Jumpers;
    }
    if (I == MBB.instr_begin())
      break;
    --I;
  } while (true);
  return Jumpers;
}

// Returns Operand Index for the constant extended instruction.
unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr &MI) const {
  const uint64_t F = MI.getDesc().TSFlags;
  return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask;
}

// See if instruction could potentially be a duplex candidate.
// If so, return its group. Zero otherwise.
HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup(
      const MachineInstr &MI) const {
  unsigned DstReg, SrcReg, Src1Reg, Src2Reg;

  switch (MI.getOpcode()) {
  default:
    return HexagonII::HCG_None;
  //
  // Compound pairs.
  // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
  // "Rd16=#U6 ; jump #r9:2"
  // "Rd16=Rs16 ; jump #r9:2"
  //
  case Hexagon::C2_cmpeq:
  case Hexagon::C2_cmpgt:
  case Hexagon::C2_cmpgtu:
    DstReg = MI.getOperand(0).getReg();
    Src1Reg = MI.getOperand(1).getReg();
    Src2Reg = MI.getOperand(2).getReg();
    if (Hexagon::PredRegsRegClass.contains(DstReg) &&
        (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
        isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
      return HexagonII::HCG_A;
    break;
  case Hexagon::C2_cmpeqi:
  case Hexagon::C2_cmpgti:
  case Hexagon::C2_cmpgtui:
    // P0 = cmp.eq(Rs,#u2)
    DstReg = MI.getOperand(0).getReg();
    SrcReg = MI.getOperand(1).getReg();
    if (Hexagon::PredRegsRegClass.contains(DstReg) &&
        (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
        isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
        ((isUInt<5>(MI.getOperand(2).getImm())) ||
         (MI.getOperand(2).getImm() == -1)))
      return HexagonII::HCG_A;
    break;
  case Hexagon::A2_tfr:
    // Rd = Rs
    DstReg = MI.getOperand(0).getReg();
    SrcReg = MI.getOperand(1).getReg();
    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
      return HexagonII::HCG_A;
    break;
  case Hexagon::A2_tfrsi:
    // Rd = #u6
    // Do not test for #u6 size since the const is getting extended
    // regardless and compound could be formed.
    DstReg = MI.getOperand(0).getReg();
    if (isIntRegForSubInst(DstReg))
      return HexagonII::HCG_A;
    break;
  case Hexagon::S2_tstbit_i:
    DstReg = MI.getOperand(0).getReg();
    Src1Reg = MI.getOperand(1).getReg();
    if (Hexagon::PredRegsRegClass.contains(DstReg) &&
        (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
        MI.getOperand(2).isImm() &&
        isIntRegForSubInst(Src1Reg) && (MI.getOperand(2).getImm() == 0))
      return HexagonII::HCG_A;
    break;
  // The fact that .new form is used pretty much guarantees
  // that predicate register will match. Nevertheless,
  // there could be some false positives without additional
  // checking.
  case Hexagon::J2_jumptnew:
  case Hexagon::J2_jumpfnew:
  case Hexagon::J2_jumptnewpt:
  case Hexagon::J2_jumpfnewpt:
    Src1Reg = MI.getOperand(0).getReg();
    if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
        (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
      return HexagonII::HCG_B;
    break;
  // Transfer and jump:
  // Rd=#U6 ; jump #r9:2
  // Rd=Rs ; jump #r9:2
  // Do not test for jump range here.
  case Hexagon::J2_jump:
  case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
  case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
    return HexagonII::HCG_C;
  }

  return HexagonII::HCG_None;
}

// Returns -1 when there is no opcode found.
unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr &GA,
      const MachineInstr &GB) const {
  assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A);
  assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B);
  if ((GA.getOpcode() != Hexagon::C2_cmpeqi) ||
      (GB.getOpcode() != Hexagon::J2_jumptnew))
    return -1;
  unsigned DestReg = GA.getOperand(0).getReg();
  if (!GB.readsRegister(DestReg))
    return -1;
  if (DestReg == Hexagon::P0)
    return Hexagon::J4_cmpeqi_tp0_jump_nt;
  if (DestReg == Hexagon::P1)
    return Hexagon::J4_cmpeqi_tp1_jump_nt;
  return -1;
}

int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
  enum Hexagon::PredSense inPredSense;
  inPredSense = invertPredicate ? Hexagon::PredSense_false :
                                  Hexagon::PredSense_true;
  int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
  if (CondOpcode >= 0) // Valid Conditional opcode/instruction
    return CondOpcode;

  llvm_unreachable("Unexpected predicable instruction");
}

// Return the cur value instruction for a given store.
int HexagonInstrInfo::getDotCurOp(const MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  default: llvm_unreachable("Unknown .cur type");
  case Hexagon::V6_vL32b_pi:
    return Hexagon::V6_vL32b_cur_pi;
  case Hexagon::V6_vL32b_ai:
    return Hexagon::V6_vL32b_cur_ai;
  case Hexagon::V6_vL32b_nt_pi:
    return Hexagon::V6_vL32b_nt_cur_pi;
  case Hexagon::V6_vL32b_nt_ai:
    return Hexagon::V6_vL32b_nt_cur_ai;
  }
  return 0;
}

// Return the regular version of the .cur instruction.
int HexagonInstrInfo::getNonDotCurOp(const MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  default: llvm_unreachable("Unknown .cur type");
  case Hexagon::V6_vL32b_cur_pi:
    return Hexagon::V6_vL32b_pi;
  case Hexagon::V6_vL32b_cur_ai:
    return Hexagon::V6_vL32b_ai;
  case Hexagon::V6_vL32b_nt_cur_pi:
    return Hexagon::V6_vL32b_nt_pi;
  case Hexagon::V6_vL32b_nt_cur_ai:
    return Hexagon::V6_vL32b_nt_ai;
  }
  return 0;
}

// The diagram below shows the steps involved in the conversion of a predicated
// store instruction to its .new predicated new-value form.
//
// Note: It doesn't include conditional new-value stores as they can't be
// converted to .new predicate.
//
//               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
//                ^           ^
//               /             \ (not OK. it will cause new-value store to be
//              /               X conditional on p0.new while R2 producer is
//             /                 \ on p0)
//            /                   \.
//     p.new store                 p.old NV store
// [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new]
//            ^                  ^
//             \                /
//              \              /
//               \            /
//                 p.old store
//             [if (p0)memw(R0+#0)=R2]
//
// The following set of instructions further explains the scenario where
// conditional new-value store becomes invalid when promoted to .new predicate
// form.
//
// { 1) if (p0) r0 = add(r1, r2)
//   2) p0 = cmp.eq(r3, #0) }
//
//   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with
// the first two instructions because in instr 1, r0 is conditional on old value
// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
// is not valid for new-value stores.
// Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
// from the "Conditional Store" list. Because a predicated new value store
// would NOT be promoted to a double dot new store. See diagram below:
// This function returns yes for those stores that are predicated but not
// yet promoted to predicate dot new instructions.
//
//                          +---------------------+
//                    /-----| if (p0) memw(..)=r0 |---------\~
//                   ||     +---------------------+         ||
//          promote  ||       /\       /\                   ||  promote
//                   ||      /||\     /||\                  ||
//                  \||/    demote     ||                  \||/
//                   \/       ||       ||                   \/
//       +-------------------------+   ||   +-------------------------+
//       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
//       +-------------------------+   ||   +-------------------------+
//                        ||           ||         ||
//                        ||         demote      \||/
//                      promote        ||         \/ NOT possible
//                        ||           ||         /\~
//                       \||/          ||        /||\~
//                        \/           ||         ||
//                      +-----------------------------+
//                      | if (p0.new) memw(..)=r0.new |
//                      +-----------------------------+
//                           Double Dot New Store
//
// Returns the most basic instruction for the .new predicated instructions and
// new-value stores.
// For example, all of the following instructions will be converted back to the
// same instruction:
// 1) if (p0.new) memw(R0+#0) = R1.new  --->
// 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1
// 3) if (p0.new) memw(R0+#0) = R1      --->
//
// To understand the translation of instruction 1 to its original form, consider
// a packet with 3 instructions.
// { p0 = cmp.eq(R0,R1)
//   if (p0.new) R2 = add(R3, R4)
//   R5 = add (R3, R1)
// }
// if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
//
// This instruction can be part of the previous packet only if both p0 and R2
// are promoted to .new values. This promotion happens in steps, first
// predicate register is promoted to .new and in the next iteration R2 is
// promoted. Therefore, in case of dependence check failure (due to R5) during
// next iteration, it should be converted back to its most basic form.

// Return the new value instruction for a given store.
int HexagonInstrInfo::getDotNewOp(const MachineInstr &MI) const {
  int NVOpcode = Hexagon::getNewValueOpcode(MI.getOpcode());
  if (NVOpcode >= 0) // Valid new-value store instruction.
    return NVOpcode;

  switch (MI.getOpcode()) {
  default:
    report_fatal_error(std::string("Unknown .new type: ") +
      std::to_string(MI.getOpcode()));
  case Hexagon::S4_storerb_ur:
    return Hexagon::S4_storerbnew_ur;

  case Hexagon::S2_storerb_pci:
    return Hexagon::S2_storerb_pci;

  case Hexagon::S2_storeri_pci:
    return Hexagon::S2_storeri_pci;

  case Hexagon::S2_storerh_pci:
    return Hexagon::S2_storerh_pci;

  case Hexagon::S2_storerd_pci:
    return Hexagon::S2_storerd_pci;

  case Hexagon::S2_storerf_pci:
    return Hexagon::S2_storerf_pci;

  case Hexagon::V6_vS32b_ai:
    return Hexagon::V6_vS32b_new_ai;

  case Hexagon::V6_vS32b_pi:
    return Hexagon::V6_vS32b_new_pi;
  }
  return 0;
}

// Returns the opcode to use when converting MI, which is a conditional jump,
// into a conditional instruction which uses the .new value of the predicate.
// We also use branch probabilities to add a hint to the jump.
// If MBPI is null, all edges will be treated as equally likely for the
// purposes of establishing a predication hint.
int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr &MI,
      const MachineBranchProbabilityInfo *MBPI) const {
  // We assume that block can have at most two successors.
  const MachineBasicBlock *Src = MI.getParent();
  const MachineOperand &BrTarget = MI.getOperand(1);
  bool Taken = false;
  const BranchProbability OneHalf(1, 2);

  auto getEdgeProbability = [MBPI] (const MachineBasicBlock *Src,
                                    const MachineBasicBlock *Dst) {
    if (MBPI)
      return MBPI->getEdgeProbability(Src, Dst);
    return BranchProbability(1, Src->succ_size());
  };

  if (BrTarget.isMBB()) {
    const MachineBasicBlock *Dst = BrTarget.getMBB();
    Taken = getEdgeProbability(Src, Dst) >= OneHalf;
  } else {
    // The branch target is not a basic block (most likely a function).
    // Since BPI only gives probabilities for targets that are basic blocks,
    // try to identify another target of this branch (potentially a fall-
    // -through) and check the probability of that target.
    //
    // The only handled branch combinations are:
    // - one conditional branch,
    // - one conditional branch followed by one unconditional branch.
    // Otherwise, assume not-taken.
    assert(MI.isConditionalBranch());
    const MachineBasicBlock &B = *MI.getParent();
    bool SawCond = false, Bad = false;
    for (const MachineInstr &I : B) {
      if (!I.isBranch())
        continue;
      if (I.isConditionalBranch()) {
        SawCond = true;
        if (&I != &MI) {
          Bad = true;
          break;
        }
      }
      if (I.isUnconditionalBranch() && !SawCond) {
        Bad = true;
        break;
      }
    }
    if (!Bad) {
      MachineBasicBlock::const_instr_iterator It(MI);
      MachineBasicBlock::const_instr_iterator NextIt = std::next(It);
      if (NextIt == B.instr_end()) {
        // If this branch is the last, look for the fall-through block.
        for (const MachineBasicBlock *SB : B.successors()) {
          if (!B.isLayoutSuccessor(SB))
            continue;
          Taken = getEdgeProbability(Src, SB) < OneHalf;
          break;
        }
      } else {
        assert(NextIt->isUnconditionalBranch());
        // Find the first MBB operand and assume it's the target.
        const MachineBasicBlock *BT = nullptr;
        for (const MachineOperand &Op : NextIt->operands()) {
          if (!Op.isMBB())
            continue;
          BT = Op.getMBB();
          break;
        }
        Taken = BT && getEdgeProbability(Src, BT) < OneHalf;
      }
    } // if (!Bad)
  }

  // The Taken flag should be set to something reasonable by this point.

  switch (MI.getOpcode()) {
  case Hexagon::J2_jumpt:
    return Taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
  case Hexagon::J2_jumpf:
    return Taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;

  default:
    llvm_unreachable("Unexpected jump instruction.");
  }
}

// Return .new predicate version for an instruction.
int HexagonInstrInfo::getDotNewPredOp(const MachineInstr &MI,
      const MachineBranchProbabilityInfo *MBPI) const {
  switch (MI.getOpcode()) {
  // Condtional Jumps
  case Hexagon::J2_jumpt:
  case Hexagon::J2_jumpf:
    return getDotNewPredJumpOp(MI, MBPI);
  }

  int NewOpcode = Hexagon::getPredNewOpcode(MI.getOpcode());
  if (NewOpcode >= 0)
    return NewOpcode;
  return 0;
}

int HexagonInstrInfo::getDotOldOp(const MachineInstr &MI) const {
  int NewOp = MI.getOpcode();
  if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
    NewOp = Hexagon::getPredOldOpcode(NewOp);
    // All Hexagon architectures have prediction bits on dot-new branches,
    // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure
    // to pick the right opcode when converting back to dot-old.
    if (!Subtarget.getFeatureBits()[Hexagon::ArchV60]) {
      switch (NewOp) {
      case Hexagon::J2_jumptpt:
        NewOp = Hexagon::J2_jumpt;
        break;
      case Hexagon::J2_jumpfpt:
        NewOp = Hexagon::J2_jumpf;
        break;
      case Hexagon::J2_jumprtpt:
        NewOp = Hexagon::J2_jumprt;
        break;
      case Hexagon::J2_jumprfpt:
        NewOp = Hexagon::J2_jumprf;
        break;
      }
    }
    assert(NewOp >= 0 &&
           "Couldn't change predicate new instruction to its old form.");
  }

  if (isNewValueStore(NewOp)) { // Convert into non-new-value format
    NewOp = Hexagon::getNonNVStore(NewOp);
    assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
  }

  if (Subtarget.hasV60TOps())
    return NewOp;

  // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps.
  switch (NewOp) {
  case Hexagon::J2_jumpfpt:
    return Hexagon::J2_jumpf;
  case Hexagon::J2_jumptpt:
    return Hexagon::J2_jumpt;
  case Hexagon::J2_jumprfpt:
    return Hexagon::J2_jumprf;
  case Hexagon::J2_jumprtpt:
    return Hexagon::J2_jumprt;
  }
  return NewOp;
}

// See if instruction could potentially be a duplex candidate.
// If so, return its group. Zero otherwise.
HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup(
      const MachineInstr &MI) const {
  unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();

  switch (MI.getOpcode()) {
  default:
    return HexagonII::HSIG_None;
  //
  // Group L1:
  //
  // Rd = memw(Rs+#u4:2)
  // Rd = memub(Rs+#u4:0)
  case Hexagon::L2_loadri_io:
    DstReg = MI.getOperand(0).getReg();
    SrcReg = MI.getOperand(1).getReg();
    // Special case this one from Group L2.
    // Rd = memw(r29+#u5:2)
    if (isIntRegForSubInst(DstReg)) {
      if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
          HRI.getStackRegister() == SrcReg &&
          MI.getOperand(2).isImm() &&
          isShiftedUInt<5,2>(MI.getOperand(2).getImm()))
        return HexagonII::HSIG_L2;
      // Rd = memw(Rs+#u4:2)
      if (isIntRegForSubInst(SrcReg) &&
          (MI.getOperand(2).isImm() &&
          isShiftedUInt<4,2>(MI.getOperand(2).getImm())))
        return HexagonII::HSIG_L1;
    }
    break;
  case Hexagon::L2_loadrub_io:
    // Rd = memub(Rs+#u4:0)
    DstReg = MI.getOperand(0).getReg();
    SrcReg = MI.getOperand(1).getReg();
    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
        MI.getOperand(2).isImm() && isUInt<4>(MI.getOperand(2).getImm()))
      return HexagonII::HSIG_L1;
    break;
  //
  // Group L2:
  //
  // Rd = memh/memuh(Rs+#u3:1)
  // Rd = memb(Rs+#u3:0)
  // Rd = memw(r29+#u5:2) - Handled above.
  // Rdd = memd(r29+#u5:3)
  // deallocframe
  // [if ([!]p0[.new])] dealloc_return
  // [if ([!]p0[.new])] jumpr r31
  case Hexagon::L2_loadrh_io:
  case Hexagon::L2_loadruh_io:
    // Rd = memh/memuh(Rs+#u3:1)
    DstReg = MI.getOperand(0).getReg();
    SrcReg = MI.getOperand(1).getReg();
    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
        MI.getOperand(2).isImm() &&
        isShiftedUInt<3,1>(MI.getOperand(2).getImm()))
      return HexagonII::HSIG_L2;
    break;
  case Hexagon::L2_loadrb_io:
    // Rd = memb(Rs+#u3:0)
    DstReg = MI.getOperand(0).getReg();
    SrcReg = MI.getOperand(1).getReg();
    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
        MI.getOperand(2).isImm() &&
        isUInt<3>(MI.getOperand(2).getImm()))
      return HexagonII::HSIG_L2;
    break;
  case Hexagon::L2_loadrd_io:
    // Rdd = memd(r29+#u5:3)
    DstReg = MI.getOperand(0).getReg();
    SrcReg = MI.getOperand(1).getReg();
    if (isDblRegForSubInst(DstReg, HRI) &&
        Hexagon::IntRegsRegClass.contains(SrcReg) &&
        HRI.getStackRegister() == SrcReg &&
        MI.getOperand(2).isImm() &&
        isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
      return HexagonII::HSIG_L2;
    break;
  // dealloc_return is not documented in Hexagon Manual, but marked
  // with A_SUBINSN attribute in iset_v4classic.py.
  case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
  case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
  case Hexagon::L4_return:
  case Hexagon::L2_deallocframe:
    return HexagonII::HSIG_L2;
  case Hexagon::EH_RETURN_JMPR:
  case Hexagon::PS_jmpret:
    // jumpr r31
    // Actual form JMPR %PC<imp-def>, %R31<imp-use>, %R0<imp-use,internal>.
    DstReg = MI.getOperand(0).getReg();
    if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
      return HexagonII::HSIG_L2;
    break;
  case Hexagon::PS_jmprett:
  case Hexagon::PS_jmpretf:
  case Hexagon::PS_jmprettnewpt:
  case Hexagon::PS_jmpretfnewpt:
  case Hexagon::PS_jmprettnew:
  case Hexagon::PS_jmpretfnew:
    DstReg = MI.getOperand(1).getReg();
    SrcReg = MI.getOperand(0).getReg();
    // [if ([!]p0[.new])] jumpr r31
    if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
        (Hexagon::P0 == SrcReg)) &&
        (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
      return HexagonII::HSIG_L2;
    break;
  case Hexagon::L4_return_t:
  case Hexagon::L4_return_f:
  case Hexagon::L4_return_tnew_pnt:
  case Hexagon::L4_return_fnew_pnt:
  case Hexagon::L4_return_tnew_pt:
  case Hexagon::L4_return_fnew_pt:
    // [if ([!]p0[.new])] dealloc_return
    SrcReg = MI.getOperand(0).getReg();
    if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
      return HexagonII::HSIG_L2;
    break;
  //
  // Group S1:
  //
  // memw(Rs+#u4:2) = Rt
  // memb(Rs+#u4:0) = Rt
  case Hexagon::S2_storeri_io:
    // Special case this one from Group S2.
    // memw(r29+#u5:2) = Rt
    Src1Reg = MI.getOperand(0).getReg();
    Src2Reg = MI.getOperand(2).getReg();
    if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
        isIntRegForSubInst(Src2Reg) &&
        HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
        isShiftedUInt<5,2>(MI.getOperand(1).getImm()))
      return HexagonII::HSIG_S2;
    // memw(Rs+#u4:2) = Rt
    if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
        MI.getOperand(1).isImm() &&
        isShiftedUInt<4,2>(MI.getOperand(1).getImm()))
      return HexagonII::HSIG_S1;
    break;
  case Hexagon::S2_storerb_io:
    // memb(Rs+#u4:0) = Rt
    Src1Reg = MI.getOperand(0).getReg();
    Src2Reg = MI.getOperand(2).getReg();
    if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
        MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()))
      return HexagonII::HSIG_S1;
    break;
  //
  // Group S2:
  //
  // memh(Rs+#u3:1) = Rt
  // memw(r29+#u5:2) = Rt
  // memd(r29+#s6:3) = Rtt
  // memw(Rs+#u4:2) = #U1
  // memb(Rs+#u4) = #U1
  // allocframe(#u5:3)
  case Hexagon::S2_storerh_io:
    // memh(Rs+#u3:1) = Rt
    Src1Reg = MI.getOperand(0).getReg();
    Src2Reg = MI.getOperand(2).getReg();
    if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
        MI.getOperand(1).isImm() &&
        isShiftedUInt<3,1>(MI.getOperand(1).getImm()))
      return HexagonII::HSIG_S1;
    break;
  case Hexagon::S2_storerd_io:
    // memd(r29+#s6:3) = Rtt
    Src1Reg = MI.getOperand(0).getReg();
    Src2Reg = MI.getOperand(2).getReg();
    if (isDblRegForSubInst(Src2Reg, HRI) &&
        Hexagon::IntRegsRegClass.contains(Src1Reg) &&
        HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
        isShiftedInt<6,3>(MI.getOperand(1).getImm()))
      return HexagonII::HSIG_S2;
    break;
  case Hexagon::S4_storeiri_io:
    // memw(Rs+#u4:2) = #U1
    Src1Reg = MI.getOperand(0).getReg();
    if (isIntRegForSubInst(Src1Reg) && MI.getOperand(1).isImm() &&
        isShiftedUInt<4,2>(MI.getOperand(1).getImm()) &&
        MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
      return HexagonII::HSIG_S2;
    break;
  case Hexagon::S4_storeirb_io:
    // memb(Rs+#u4) = #U1
    Src1Reg = MI.getOperand(0).getReg();
    if (isIntRegForSubInst(Src1Reg) &&
        MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()) &&
        MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
      return HexagonII::HSIG_S2;
    break;
  case Hexagon::S2_allocframe:
    if (MI.getOperand(0).isImm() &&
        isShiftedUInt<5,3>(MI.getOperand(0).getImm()))
      return HexagonII::HSIG_S1;
    break;
  //
  // Group A:
  //
  // Rx = add(Rx,#s7)
  // Rd = Rs
  // Rd = #u6
  // Rd = #-1
  // if ([!]P0[.new]) Rd = #0
  // Rd = add(r29,#u6:2)
  // Rx = add(Rx,Rs)
  // P0 = cmp.eq(Rs,#u2)
  // Rdd = combine(#0,Rs)
  // Rdd = combine(Rs,#0)
  // Rdd = combine(#u2,#U2)
  // Rd = add(Rs,#1)
  // Rd = add(Rs,#-1)
  // Rd = sxth/sxtb/zxtb/zxth(Rs)
  // Rd = and(Rs,#1)
  case Hexagon::A2_addi:
    DstReg = MI.getOperand(0).getReg();
    SrcReg = MI.getOperand(1).getReg();
    if (isIntRegForSubInst(DstReg)) {
      // Rd = add(r29,#u6:2)
      if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
        HRI.getStackRegister() == SrcReg && MI.getOperand(2).isImm() &&
        isShiftedUInt<6,2>(MI.getOperand(2).getImm()))
        return HexagonII::HSIG_A;
      // Rx = add(Rx,#s7)
      if ((DstReg == SrcReg) && MI.getOperand(2).isImm() &&
          isInt<7>(MI.getOperand(2).getImm()))
        return HexagonII::HSIG_A;
      // Rd = add(Rs,#1)
      // Rd = add(Rs,#-1)
      if (isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
          ((MI.getOperand(2).getImm() == 1) ||
          (MI.getOperand(2).getImm() == -1)))
        return HexagonII::HSIG_A;
    }
    break;
  case Hexagon::A2_add:
    // Rx = add(Rx,Rs)
    DstReg = MI.getOperand(0).getReg();
    Src1Reg = MI.getOperand(1).getReg();
    Src2Reg = MI.getOperand(2).getReg();
    if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
        isIntRegForSubInst(Src2Reg))
      return HexagonII::HSIG_A;
    break;
  case Hexagon::A2_andir:
    // Same as zxtb.
    // Rd16=and(Rs16,#255)
    // Rd16=and(Rs16,#1)
    DstReg = MI.getOperand(0).getReg();
    SrcReg = MI.getOperand(1).getReg();
    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
        MI.getOperand(2).isImm() &&
        ((MI.getOperand(2).getImm() == 1) ||
        (MI.getOperand(2).getImm() == 255)))
      return HexagonII::HSIG_A;
    break;
  case Hexagon::A2_tfr:
    // Rd = Rs
    DstReg = MI.getOperand(0).getReg();
    SrcReg = MI.getOperand(1).getReg();
    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
      return HexagonII::HSIG_A;
    break;
  case Hexagon::A2_tfrsi:
    // Rd = #u6
    // Do not test for #u6 size since the const is getting extended
    // regardless and compound could be formed.
    // Rd = #-1
    DstReg = MI.getOperand(0).getReg();
    if (isIntRegForSubInst(DstReg))
      return HexagonII::HSIG_A;
    break;
  case Hexagon::C2_cmoveit:
  case Hexagon::C2_cmovenewit:
  case Hexagon::C2_cmoveif:
  case Hexagon::C2_cmovenewif:
    // if ([!]P0[.new]) Rd = #0
    // Actual form:
    // %R16<def> = C2_cmovenewit %P0<internal>, 0, %R16<imp-use,undef>;
    DstReg = MI.getOperand(0).getReg();
    SrcReg = MI.getOperand(1).getReg();
    if (isIntRegForSubInst(DstReg) &&
        Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
        MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0)
      return HexagonII::HSIG_A;
    break;
  case Hexagon::C2_cmpeqi:
    // P0 = cmp.eq(Rs,#u2)
    DstReg = MI.getOperand(0).getReg();
    SrcReg = MI.getOperand(1).getReg();
    if (Hexagon::PredRegsRegClass.contains(DstReg) &&
        Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
        MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm()))
      return HexagonII::HSIG_A;
    break;
  case Hexagon::A2_combineii:
  case Hexagon::A4_combineii:
    // Rdd = combine(#u2,#U2)
    DstReg = MI.getOperand(0).getReg();
    if (isDblRegForSubInst(DstReg, HRI) &&
        ((MI.getOperand(1).isImm() && isUInt<2>(MI.getOperand(1).getImm())) ||
        (MI.getOperand(1).isGlobal() &&
        isUInt<2>(MI.getOperand(1).getOffset()))) &&
        ((MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) ||
        (MI.getOperand(2).isGlobal() &&
        isUInt<2>(MI.getOperand(2).getOffset()))))
      return HexagonII::HSIG_A;
    break;
  case Hexagon::A4_combineri:
    // Rdd = combine(Rs,#0)
    DstReg = MI.getOperand(0).getReg();
    SrcReg = MI.getOperand(1).getReg();
    if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
        ((MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) ||
        (MI.getOperand(2).isGlobal() && MI.getOperand(2).getOffset() == 0)))
      return HexagonII::HSIG_A;
    break;
  case Hexagon::A4_combineir:
    // Rdd = combine(#0,Rs)
    DstReg = MI.getOperand(0).getReg();
    SrcReg = MI.getOperand(2).getReg();
    if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
        ((MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) ||
        (MI.getOperand(1).isGlobal() && MI.getOperand(1).getOffset() == 0)))
      return HexagonII::HSIG_A;
    break;
  case Hexagon::A2_sxtb:
  case Hexagon::A2_sxth:
  case Hexagon::A2_zxtb:
  case Hexagon::A2_zxth:
    // Rd = sxth/sxtb/zxtb/zxth(Rs)
    DstReg = MI.getOperand(0).getReg();
    SrcReg = MI.getOperand(1).getReg();
    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
      return HexagonII::HSIG_A;
    break;
  }

  return HexagonII::HSIG_None;
}

short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr &MI) const {
  return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Real);
}

unsigned HexagonInstrInfo::getInstrTimingClassLatency(
      const InstrItineraryData *ItinData, const MachineInstr &MI) const {
  // Default to one cycle for no itinerary. However, an "empty" itinerary may
  // still have a MinLatency property, which getStageLatency checks.
  if (!ItinData)
    return getInstrLatency(ItinData, MI);

  if (MI.isTransient())
    return 0;
  return ItinData->getStageLatency(MI.getDesc().getSchedClass());
}

/// getOperandLatency - Compute and return the use operand latency of a given
/// pair of def and use.
/// In most cases, the static scheduling itinerary was enough to determine the
/// operand latency. But it may not be possible for instructions with variable
/// number of defs / uses.
///
/// This is a raw interface to the itinerary that may be directly overriden by
/// a target. Use computeOperandLatency to get the best estimate of latency.
int HexagonInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
                                        const MachineInstr &DefMI,
                                        unsigned DefIdx,
                                        const MachineInstr &UseMI,
                                        unsigned UseIdx) const {
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();

  // Get DefIdx and UseIdx for super registers.
  MachineOperand DefMO = DefMI.getOperand(DefIdx);

  if (HRI.isPhysicalRegister(DefMO.getReg())) {
    if (DefMO.isImplicit()) {
      for (MCSuperRegIterator SR(DefMO.getReg(), &HRI); SR.isValid(); ++SR) {
        int Idx = DefMI.findRegisterDefOperandIdx(*SR, false, false, &HRI);
        if (Idx != -1) {
          DefIdx = Idx;
          break;
        }
      }
    }

    MachineOperand UseMO = UseMI.getOperand(UseIdx);
    if (UseMO.isImplicit()) {
      for (MCSuperRegIterator SR(UseMO.getReg(), &HRI); SR.isValid(); ++SR) {
        int Idx = UseMI.findRegisterUseOperandIdx(*SR, false, &HRI);
        if (Idx != -1) {
          UseIdx = Idx;
          break;
        }
      }
    }
  }

  return TargetInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
                                            UseMI, UseIdx);
}

// inverts the predication logic.
// p -> NotP
// NotP -> P
bool HexagonInstrInfo::getInvertedPredSense(
      SmallVectorImpl<MachineOperand> &Cond) const {
  if (Cond.empty())
    return false;
  unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
  Cond[0].setImm(Opc);
  return true;
}

unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
  int InvPredOpcode;
  InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
                                        : Hexagon::getTruePredOpcode(Opc);
  if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
    return InvPredOpcode;

  llvm_unreachable("Unexpected predicated instruction");
}

// Returns the max value that doesn't need to be extended.
int HexagonInstrInfo::getMaxValue(const MachineInstr &MI) const {
  const uint64_t F = MI.getDesc().TSFlags;
  unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
                    & HexagonII::ExtentSignedMask;
  unsigned bits =  (F >> HexagonII::ExtentBitsPos)
                    & HexagonII::ExtentBitsMask;

  if (isSigned) // if value is signed
    return ~(-1U << (bits - 1));
  else
    return ~(-1U << bits);
}

unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr &MI) const {
  using namespace HexagonII;

  const uint64_t F = MI.getDesc().TSFlags;
  unsigned S = (F >> MemAccessSizePos) & MemAccesSizeMask;
  unsigned Size = getMemAccessSizeInBytes(MemAccessSize(S));
  if (Size != 0)
    return Size;

  // Handle vector access sizes.
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
  switch (S) {
    case HexagonII::HVXVectorAccess:
      return HRI.getSpillSize(Hexagon::HvxVRRegClass);
    default:
      llvm_unreachable("Unexpected instruction");
  }
}

// Returns the min value that doesn't need to be extended.
int HexagonInstrInfo::getMinValue(const MachineInstr &MI) const {
  const uint64_t F = MI.getDesc().TSFlags;
  unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
                    & HexagonII::ExtentSignedMask;
  unsigned bits =  (F >> HexagonII::ExtentBitsPos)
                    & HexagonII::ExtentBitsMask;

  if (isSigned) // if value is signed
    return -1U << (bits - 1);
  else
    return 0;
}

// Returns opcode of the non-extended equivalent instruction.
short HexagonInstrInfo::getNonExtOpcode(const MachineInstr &MI) const {
  // Check if the instruction has a register form that uses register in place
  // of the extended operand, if so return that as the non-extended form.
  short NonExtOpcode = Hexagon::getRegForm(MI.getOpcode());
    if (NonExtOpcode >= 0)
      return NonExtOpcode;

  if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
    // Check addressing mode and retrieve non-ext equivalent instruction.
    switch (getAddrMode(MI)) {
    case HexagonII::Absolute:
      return Hexagon::changeAddrMode_abs_io(MI.getOpcode());
    case HexagonII::BaseImmOffset:
      return Hexagon::changeAddrMode_io_rr(MI.getOpcode());
    case HexagonII::BaseLongOffset:
      return Hexagon::changeAddrMode_ur_rr(MI.getOpcode());

    default:
      return -1;
    }
  }
  return -1;
}

bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
      unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
  if (Cond.empty())
    return false;
  assert(Cond.size() == 2);
  if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
    DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
    return false;
  }
  PredReg = Cond[1].getReg();
  PredRegPos = 1;
  // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
  PredRegFlags = 0;
  if (Cond[1].isImplicit())
    PredRegFlags = RegState::Implicit;
  if (Cond[1].isUndef())
    PredRegFlags |= RegState::Undef;
  return true;
}

short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr &MI) const {
  return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Pseudo);
}

short HexagonInstrInfo::getRegForm(const MachineInstr &MI) const {
  return Hexagon::getRegForm(MI.getOpcode());
}

// Return the number of bytes required to encode the instruction.
// Hexagon instructions are fixed length, 4 bytes, unless they
// use a constant extender, which requires another 4 bytes.
// For debug instructions and prolog labels, return 0.
unsigned HexagonInstrInfo::getSize(const MachineInstr &MI) const {
  if (MI.isDebugValue() || MI.isPosition())
    return 0;

  unsigned Size = MI.getDesc().getSize();
  if (!Size)
    // Assume the default insn size in case it cannot be determined
    // for whatever reason.
    Size = HEXAGON_INSTR_SIZE;

  if (isConstExtended(MI) || isExtended(MI))
    Size += HEXAGON_INSTR_SIZE;

  // Try and compute number of instructions in asm.
  if (BranchRelaxAsmLarge && MI.getOpcode() == Hexagon::INLINEASM) {
    const MachineBasicBlock &MBB = *MI.getParent();
    const MachineFunction *MF = MBB.getParent();
    const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();

    // Count the number of register definitions to find the asm string.
    unsigned NumDefs = 0;
    for (; MI.getOperand(NumDefs).isReg() && MI.getOperand(NumDefs).isDef();
         ++NumDefs)
      assert(NumDefs != MI.getNumOperands()-2 && "No asm string?");

    assert(MI.getOperand(NumDefs).isSymbol() && "No asm string?");
    // Disassemble the AsmStr and approximate number of instructions.
    const char *AsmStr = MI.getOperand(NumDefs).getSymbolName();
    Size = getInlineAsmLength(AsmStr, *MAI);
  }

  return Size;
}

uint64_t HexagonInstrInfo::getType(const MachineInstr &MI) const {
  const uint64_t F = MI.getDesc().TSFlags;
  return (F >> HexagonII::TypePos) & HexagonII::TypeMask;
}

unsigned HexagonInstrInfo::getUnits(const MachineInstr &MI) const {
  const InstrItineraryData &II = *Subtarget.getInstrItineraryData();
  const InstrStage &IS = *II.beginStage(MI.getDesc().getSchedClass());

  return IS.getUnits();
}

// Calculate size of the basic block without debug instructions.
unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const {
  return nonDbgMICount(BB->instr_begin(), BB->instr_end());
}

unsigned HexagonInstrInfo::nonDbgBundleSize(
      MachineBasicBlock::const_iterator BundleHead) const {
  assert(BundleHead->isBundle() && "Not a bundle header");
  auto MII = BundleHead.getInstrIterator();
  // Skip the bundle header.
  return nonDbgMICount(++MII, getBundleEnd(BundleHead.getInstrIterator()));
}

/// immediateExtend - Changes the instruction in place to one using an immediate
/// extender.
void HexagonInstrInfo::immediateExtend(MachineInstr &MI) const {
  assert((isExtendable(MI)||isConstExtended(MI)) &&
                               "Instruction must be extendable");
  // Find which operand is extendable.
  short ExtOpNum = getCExtOpNum(MI);
  MachineOperand &MO = MI.getOperand(ExtOpNum);
  // This needs to be something we understand.
  assert((MO.isMBB() || MO.isImm()) &&
         "Branch with unknown extendable field type");
  // Mark given operand as extended.
  MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
}

bool HexagonInstrInfo::invertAndChangeJumpTarget(
      MachineInstr &MI, MachineBasicBlock *NewTarget) const {
  DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to BB#"
               << NewTarget->getNumber(); MI.dump(););
  assert(MI.isBranch());
  unsigned NewOpcode = getInvertedPredicatedOpcode(MI.getOpcode());
  int TargetPos = MI.getNumOperands() - 1;
  // In general branch target is the last operand,
  // but some implicit defs added at the end might change it.
  while ((TargetPos > -1) && !MI.getOperand(TargetPos).isMBB())
    --TargetPos;
  assert((TargetPos >= 0) && MI.getOperand(TargetPos).isMBB());
  MI.getOperand(TargetPos).setMBB(NewTarget);
  if (EnableBranchPrediction && isPredicatedNew(MI)) {
    NewOpcode = reversePrediction(NewOpcode);
  }
  MI.setDesc(get(NewOpcode));
  return true;
}

void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const {
  /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
  MachineFunction::iterator A = MF.begin();
  MachineBasicBlock &B = *A;
  MachineBasicBlock::iterator I = B.begin();
  DebugLoc DL = I->getDebugLoc();
  MachineInstr *NewMI;

  for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
       insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
    NewMI = BuildMI(B, I, DL, get(insn));
    DEBUG(dbgs() << "\n" << getName(NewMI->getOpcode()) <<
          "  Class: " << NewMI->getDesc().getSchedClass());
    NewMI->eraseFromParent();
  }
  /* --- The code above is used to generate complete set of Hexagon Insn --- */
}

// inverts the predication logic.
// p -> NotP
// NotP -> P
bool HexagonInstrInfo::reversePredSense(MachineInstr &MI) const {
  DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI.dump());
  MI.setDesc(get(getInvertedPredicatedOpcode(MI.getOpcode())));
  return true;
}

// Reverse the branch prediction.
unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
  int PredRevOpcode = -1;
  if (isPredictedTaken(Opcode))
    PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
  else
    PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
  assert(PredRevOpcode > 0);
  return PredRevOpcode;
}

// TODO: Add more rigorous validation.
bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond)
      const {
  return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
}

// Addressing mode relations.
short HexagonInstrInfo::changeAddrMode_abs_io(short Opc) const {
  return Opc >= 0 ? Hexagon::changeAddrMode_abs_io(Opc) : Opc;
}

short HexagonInstrInfo::changeAddrMode_io_abs(short Opc) const {
  return Opc >= 0 ? Hexagon::changeAddrMode_io_abs(Opc) : Opc;
}

short HexagonInstrInfo::changeAddrMode_io_rr(short Opc) const {
  return Opc >= 0 ? Hexagon::changeAddrMode_io_rr(Opc) : Opc;
}

short HexagonInstrInfo::changeAddrMode_rr_io(short Opc) const {
  return Opc >= 0 ? Hexagon::changeAddrMode_rr_io(Opc) : Opc;
}

short HexagonInstrInfo::changeAddrMode_rr_ur(short Opc) const {
  return Opc >= 0 ? Hexagon::changeAddrMode_rr_ur(Opc) : Opc;
}

short HexagonInstrInfo::changeAddrMode_ur_rr(short Opc) const {
  return Opc >= 0 ? Hexagon::changeAddrMode_ur_rr(Opc) : Opc;
}