aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/AMDGPU/AMDGPUTargetMachine.cpp
blob: f7ecdea770475b335151c25378c791d4c2aece45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
//===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief The AMDGPU target machine contains all of the hardware specific
/// information  needed to emit code for R600 and SI GPUs.
//
//===----------------------------------------------------------------------===//

#include "AMDGPUTargetMachine.h"
#include "AMDGPU.h"
#include "AMDGPUAliasAnalysis.h"
#include "AMDGPUCallLowering.h"
#include "AMDGPUInstructionSelector.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPUMacroFusion.h"
#include "AMDGPUTargetObjectFile.h"
#include "AMDGPUTargetTransformInfo.h"
#include "GCNIterativeScheduler.h"
#include "GCNSchedStrategy.h"
#include "R600MachineScheduler.h"
#include "SIMachineScheduler.h"
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/AlwaysInliner.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Vectorize.h"
#include <memory>

using namespace llvm;

static cl::opt<bool> EnableR600StructurizeCFG(
  "r600-ir-structurize",
  cl::desc("Use StructurizeCFG IR pass"),
  cl::init(true));

static cl::opt<bool> EnableSROA(
  "amdgpu-sroa",
  cl::desc("Run SROA after promote alloca pass"),
  cl::ReallyHidden,
  cl::init(true));

static cl::opt<bool>
EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden,
                        cl::desc("Run early if-conversion"),
                        cl::init(false));

static cl::opt<bool> EnableR600IfConvert(
  "r600-if-convert",
  cl::desc("Use if conversion pass"),
  cl::ReallyHidden,
  cl::init(true));

// Option to disable vectorizer for tests.
static cl::opt<bool> EnableLoadStoreVectorizer(
  "amdgpu-load-store-vectorizer",
  cl::desc("Enable load store vectorizer"),
  cl::init(true),
  cl::Hidden);

// Option to to control global loads scalarization
static cl::opt<bool> ScalarizeGlobal(
  "amdgpu-scalarize-global-loads",
  cl::desc("Enable global load scalarization"),
  cl::init(true),
  cl::Hidden);

// Option to run internalize pass.
static cl::opt<bool> InternalizeSymbols(
  "amdgpu-internalize-symbols",
  cl::desc("Enable elimination of non-kernel functions and unused globals"),
  cl::init(false),
  cl::Hidden);

// Option to inline all early.
static cl::opt<bool> EarlyInlineAll(
  "amdgpu-early-inline-all",
  cl::desc("Inline all functions early"),
  cl::init(false),
  cl::Hidden);

static cl::opt<bool> EnableSDWAPeephole(
  "amdgpu-sdwa-peephole",
  cl::desc("Enable SDWA peepholer"),
  cl::init(true));

// Enable address space based alias analysis
static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden,
  cl::desc("Enable AMDGPU Alias Analysis"),
  cl::init(true));

// Option to enable new waitcnt insertion pass.
static cl::opt<bool> EnableSIInsertWaitcntsPass(
  "enable-si-insert-waitcnts",
  cl::desc("Use new waitcnt insertion pass"),
  cl::init(true));

// Option to run late CFG structurizer
static cl::opt<bool, true> LateCFGStructurize(
  "amdgpu-late-structurize",
  cl::desc("Enable late CFG structurization"),
  cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG),
  cl::Hidden);

static cl::opt<bool> EnableAMDGPUFunctionCalls(
  "amdgpu-function-calls",
  cl::Hidden,
  cl::desc("Enable AMDGPU function call support"),
  cl::init(false));

// Enable lib calls simplifications
static cl::opt<bool> EnableLibCallSimplify(
  "amdgpu-simplify-libcall",
  cl::desc("Enable mdgpu library simplifications"),
  cl::init(true),
  cl::Hidden);

extern "C" void LLVMInitializeAMDGPUTarget() {
  // Register the target
  RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget());
  RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget());

  PassRegistry *PR = PassRegistry::getPassRegistry();
  initializeR600ClauseMergePassPass(*PR);
  initializeR600ControlFlowFinalizerPass(*PR);
  initializeR600PacketizerPass(*PR);
  initializeR600ExpandSpecialInstrsPassPass(*PR);
  initializeR600VectorRegMergerPass(*PR);
  initializeAMDGPUDAGToDAGISelPass(*PR);
  initializeSILowerI1CopiesPass(*PR);
  initializeSIFixSGPRCopiesPass(*PR);
  initializeSIFixVGPRCopiesPass(*PR);
  initializeSIFoldOperandsPass(*PR);
  initializeSIPeepholeSDWAPass(*PR);
  initializeSIShrinkInstructionsPass(*PR);
  initializeSIOptimizeExecMaskingPreRAPass(*PR);
  initializeSILoadStoreOptimizerPass(*PR);
  initializeAMDGPUAlwaysInlinePass(*PR);
  initializeAMDGPUAnnotateKernelFeaturesPass(*PR);
  initializeAMDGPUAnnotateUniformValuesPass(*PR);
  initializeAMDGPUArgumentUsageInfoPass(*PR);
  initializeAMDGPULowerIntrinsicsPass(*PR);
  initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR);
  initializeAMDGPUPromoteAllocaPass(*PR);
  initializeAMDGPUCodeGenPreparePass(*PR);
  initializeAMDGPURewriteOutArgumentsPass(*PR);
  initializeAMDGPUUnifyMetadataPass(*PR);
  initializeSIAnnotateControlFlowPass(*PR);
  initializeSIInsertWaitsPass(*PR);
  initializeSIInsertWaitcntsPass(*PR);
  initializeSIWholeQuadModePass(*PR);
  initializeSILowerControlFlowPass(*PR);
  initializeSIInsertSkipsPass(*PR);
  initializeSIMemoryLegalizerPass(*PR);
  initializeSIDebuggerInsertNopsPass(*PR);
  initializeSIOptimizeExecMaskingPass(*PR);
  initializeSIFixWWMLivenessPass(*PR);
  initializeAMDGPUUnifyDivergentExitNodesPass(*PR);
  initializeAMDGPUAAWrapperPassPass(*PR);
  initializeAMDGPUUseNativeCallsPass(*PR);
  initializeAMDGPUSimplifyLibCallsPass(*PR);
  initializeAMDGPUInlinerPass(*PR);
}

static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
  return llvm::make_unique<AMDGPUTargetObjectFile>();
}

static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) {
  return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>());
}

static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) {
  return new SIScheduleDAGMI(C);
}

static ScheduleDAGInstrs *
createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
  ScheduleDAGMILive *DAG =
    new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C));
  DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
  DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
  DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
  return DAG;
}

static ScheduleDAGInstrs *
createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
  auto DAG = new GCNIterativeScheduler(C,
    GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY);
  DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
  DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
  return DAG;
}

static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) {
  return new GCNIterativeScheduler(C,
    GCNIterativeScheduler::SCHEDULE_MINREGFORCED);
}

static MachineSchedRegistry
R600SchedRegistry("r600", "Run R600's custom scheduler",
                   createR600MachineScheduler);

static MachineSchedRegistry
SISchedRegistry("si", "Run SI's custom scheduler",
                createSIMachineScheduler);

static MachineSchedRegistry
GCNMaxOccupancySchedRegistry("gcn-max-occupancy",
                             "Run GCN scheduler to maximize occupancy",
                             createGCNMaxOccupancyMachineScheduler);

static MachineSchedRegistry
IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental",
  "Run GCN scheduler to maximize occupancy (experimental)",
  createIterativeGCNMaxOccupancyMachineScheduler);

static MachineSchedRegistry
GCNMinRegSchedRegistry("gcn-minreg",
  "Run GCN iterative scheduler for minimal register usage (experimental)",
  createMinRegScheduler);

static StringRef computeDataLayout(const Triple &TT) {
  if (TT.getArch() == Triple::r600) {
    // 32-bit pointers.
    return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
            "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64";
  }

  // 32-bit private, local, and region pointers. 64-bit global, constant and
  // flat.
  if (TT.getEnvironmentName() == "amdgiz" ||
      TT.getEnvironmentName() == "amdgizcl")
    return "e-p:64:64-p1:64:64-p2:64:64-p3:32:32-p4:32:32-p5:32:32"
         "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
         "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-A5";
  return "e-p:32:32-p1:64:64-p2:64:64-p3:32:32-p4:64:64-p5:32:32"
      "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
      "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64";
}

LLVM_READNONE
static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) {
  if (!GPU.empty())
    return GPU;

  if (TT.getArch() == Triple::amdgcn)
    return "generic";

  return "r600";
}

static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
  // The AMDGPU toolchain only supports generating shared objects, so we
  // must always use PIC.
  return Reloc::PIC_;
}

static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM) {
  if (CM)
    return *CM;
  return CodeModel::Small;
}

AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT,
                                         StringRef CPU, StringRef FS,
                                         TargetOptions Options,
                                         Optional<Reloc::Model> RM,
                                         Optional<CodeModel::Model> CM,
                                         CodeGenOpt::Level OptLevel)
    : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU),
                        FS, Options, getEffectiveRelocModel(RM),
                        getEffectiveCodeModel(CM), OptLevel),
      TLOF(createTLOF(getTargetTriple())) {
  AS = AMDGPU::getAMDGPUAS(TT);
  initAsmInfo();
}

AMDGPUTargetMachine::~AMDGPUTargetMachine() = default;

bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false;

StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const {
  Attribute GPUAttr = F.getFnAttribute("target-cpu");
  return GPUAttr.hasAttribute(Attribute::None) ?
    getTargetCPU() : GPUAttr.getValueAsString();
}

StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const {
  Attribute FSAttr = F.getFnAttribute("target-features");

  return FSAttr.hasAttribute(Attribute::None) ?
    getTargetFeatureString() :
    FSAttr.getValueAsString();
}

static ImmutablePass *createAMDGPUExternalAAWrapperPass() {
  return createExternalAAWrapperPass([](Pass &P, Function &, AAResults &AAR) {
      if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
        AAR.addAAResult(WrapperPass->getResult());
      });
}

/// Predicate for Internalize pass.
static bool mustPreserveGV(const GlobalValue &GV) {
  if (const Function *F = dyn_cast<Function>(&GV))
    return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv());

  return !GV.use_empty();
}

void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
  Builder.DivergentTarget = true;

  bool EnableOpt = getOptLevel() > CodeGenOpt::None;
  bool Internalize = InternalizeSymbols;
  bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableAMDGPUFunctionCalls;
  bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt;
  bool LibCallSimplify = EnableLibCallSimplify && EnableOpt;

  if (EnableAMDGPUFunctionCalls) {
    delete Builder.Inliner;
    Builder.Inliner = createAMDGPUFunctionInliningPass();
  }

  if (Internalize) {
    // If we're generating code, we always have the whole program available. The
    // relocations expected for externally visible functions aren't supported,
    // so make sure every non-entry function is hidden.
    Builder.addExtension(
      PassManagerBuilder::EP_EnabledOnOptLevel0,
      [](const PassManagerBuilder &, legacy::PassManagerBase &PM) {
        PM.add(createInternalizePass(mustPreserveGV));
      });
  }

  Builder.addExtension(
    PassManagerBuilder::EP_ModuleOptimizerEarly,
    [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &,
                                         legacy::PassManagerBase &PM) {
      if (AMDGPUAA) {
        PM.add(createAMDGPUAAWrapperPass());
        PM.add(createAMDGPUExternalAAWrapperPass());
      }
      PM.add(createAMDGPUUnifyMetadataPass());
      if (Internalize) {
        PM.add(createInternalizePass(mustPreserveGV));
        PM.add(createGlobalDCEPass());
      }
      if (EarlyInline)
        PM.add(createAMDGPUAlwaysInlinePass(false));
  });

  const auto &Opt = Options;
  Builder.addExtension(
    PassManagerBuilder::EP_EarlyAsPossible,
    [AMDGPUAA, LibCallSimplify, &Opt](const PassManagerBuilder &,
                                      legacy::PassManagerBase &PM) {
      if (AMDGPUAA) {
        PM.add(createAMDGPUAAWrapperPass());
        PM.add(createAMDGPUExternalAAWrapperPass());
      }
      PM.add(llvm::createAMDGPUUseNativeCallsPass());
      if (LibCallSimplify)
        PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt));
  });

  Builder.addExtension(
    PassManagerBuilder::EP_CGSCCOptimizerLate,
    [](const PassManagerBuilder &, legacy::PassManagerBase &PM) {
      // Add infer address spaces pass to the opt pipeline after inlining
      // but before SROA to increase SROA opportunities.
      PM.add(createInferAddressSpacesPass());
  });
}

//===----------------------------------------------------------------------===//
// R600 Target Machine (R600 -> Cayman)
//===----------------------------------------------------------------------===//

R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT,
                                     StringRef CPU, StringRef FS,
                                     TargetOptions Options,
                                     Optional<Reloc::Model> RM,
                                     Optional<CodeModel::Model> CM,
                                     CodeGenOpt::Level OL, bool JIT)
    : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {
  setRequiresStructuredCFG(true);
}

const R600Subtarget *R600TargetMachine::getSubtargetImpl(
  const Function &F) const {
  StringRef GPU = getGPUName(F);
  StringRef FS = getFeatureString(F);

  SmallString<128> SubtargetKey(GPU);
  SubtargetKey.append(FS);

  auto &I = SubtargetMap[SubtargetKey];
  if (!I) {
    // This needs to be done before we create a new subtarget since any
    // creation will depend on the TM and the code generation flags on the
    // function that reside in TargetOptions.
    resetTargetOptions(F);
    I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this);
  }

  return I.get();
}

//===----------------------------------------------------------------------===//
// GCN Target Machine (SI+)
//===----------------------------------------------------------------------===//

GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT,
                                   StringRef CPU, StringRef FS,
                                   TargetOptions Options,
                                   Optional<Reloc::Model> RM,
                                   Optional<CodeModel::Model> CM,
                                   CodeGenOpt::Level OL, bool JIT)
    : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {}

const SISubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const {
  StringRef GPU = getGPUName(F);
  StringRef FS = getFeatureString(F);

  SmallString<128> SubtargetKey(GPU);
  SubtargetKey.append(FS);

  auto &I = SubtargetMap[SubtargetKey];
  if (!I) {
    // This needs to be done before we create a new subtarget since any
    // creation will depend on the TM and the code generation flags on the
    // function that reside in TargetOptions.
    resetTargetOptions(F);
    I = llvm::make_unique<SISubtarget>(TargetTriple, GPU, FS, *this);
  }

  I->setScalarizeGlobalBehavior(ScalarizeGlobal);

  return I.get();
}

//===----------------------------------------------------------------------===//
// AMDGPU Pass Setup
//===----------------------------------------------------------------------===//

namespace {

class AMDGPUPassConfig : public TargetPassConfig {
public:
  AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
    : TargetPassConfig(TM, PM) {
    // Exceptions and StackMaps are not supported, so these passes will never do
    // anything.
    disablePass(&StackMapLivenessID);
    disablePass(&FuncletLayoutID);
  }

  AMDGPUTargetMachine &getAMDGPUTargetMachine() const {
    return getTM<AMDGPUTargetMachine>();
  }

  ScheduleDAGInstrs *
  createMachineScheduler(MachineSchedContext *C) const override {
    ScheduleDAGMILive *DAG = createGenericSchedLive(C);
    DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
    DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
    return DAG;
  }

  void addEarlyCSEOrGVNPass();
  void addStraightLineScalarOptimizationPasses();
  void addIRPasses() override;
  void addCodeGenPrepare() override;
  bool addPreISel() override;
  bool addInstSelector() override;
  bool addGCPasses() override;
};

class R600PassConfig final : public AMDGPUPassConfig {
public:
  R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
    : AMDGPUPassConfig(TM, PM) {}

  ScheduleDAGInstrs *createMachineScheduler(
    MachineSchedContext *C) const override {
    return createR600MachineScheduler(C);
  }

  bool addPreISel() override;
  bool addInstSelector() override;
  void addPreRegAlloc() override;
  void addPreSched2() override;
  void addPreEmitPass() override;
};

class GCNPassConfig final : public AMDGPUPassConfig {
public:
  GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
    : AMDGPUPassConfig(TM, PM) {
    // It is necessary to know the register usage of the entire call graph.  We
    // allow calls without EnableAMDGPUFunctionCalls if they are marked
    // noinline, so this is always required.
    setRequiresCodeGenSCCOrder(true);
  }

  GCNTargetMachine &getGCNTargetMachine() const {
    return getTM<GCNTargetMachine>();
  }

  ScheduleDAGInstrs *
  createMachineScheduler(MachineSchedContext *C) const override;

  bool addPreISel() override;
  void addMachineSSAOptimization() override;
  bool addILPOpts() override;
  bool addInstSelector() override;
  bool addIRTranslator() override;
  bool addLegalizeMachineIR() override;
  bool addRegBankSelect() override;
  bool addGlobalInstructionSelect() override;
  void addFastRegAlloc(FunctionPass *RegAllocPass) override;
  void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override;
  void addPreRegAlloc() override;
  void addPostRegAlloc() override;
  void addPreSched2() override;
  void addPreEmitPass() override;
};

} // end anonymous namespace

TargetIRAnalysis AMDGPUTargetMachine::getTargetIRAnalysis() {
  return TargetIRAnalysis([this](const Function &F) {
    return TargetTransformInfo(AMDGPUTTIImpl(this, F));
  });
}

void AMDGPUPassConfig::addEarlyCSEOrGVNPass() {
  if (getOptLevel() == CodeGenOpt::Aggressive)
    addPass(createGVNPass());
  else
    addPass(createEarlyCSEPass());
}

void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() {
  addPass(createSeparateConstOffsetFromGEPPass());
  addPass(createSpeculativeExecutionPass());
  // ReassociateGEPs exposes more opportunites for SLSR. See
  // the example in reassociate-geps-and-slsr.ll.
  addPass(createStraightLineStrengthReducePass());
  // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
  // EarlyCSE can reuse.
  addEarlyCSEOrGVNPass();
  // Run NaryReassociate after EarlyCSE/GVN to be more effective.
  addPass(createNaryReassociatePass());
  // NaryReassociate on GEPs creates redundant common expressions, so run
  // EarlyCSE after it.
  addPass(createEarlyCSEPass());
}

void AMDGPUPassConfig::addIRPasses() {
  const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine();

  // There is no reason to run these.
  disablePass(&StackMapLivenessID);
  disablePass(&FuncletLayoutID);
  disablePass(&PatchableFunctionID);

  addPass(createAMDGPULowerIntrinsicsPass());

  if (TM.getTargetTriple().getArch() == Triple::r600 ||
      !EnableAMDGPUFunctionCalls) {
    // Function calls are not supported, so make sure we inline everything.
    addPass(createAMDGPUAlwaysInlinePass());
    addPass(createAlwaysInlinerLegacyPass());
    // We need to add the barrier noop pass, otherwise adding the function
    // inlining pass will cause all of the PassConfigs passes to be run
    // one function at a time, which means if we have a nodule with two
    // functions, then we will generate code for the first function
    // without ever running any passes on the second.
    addPass(createBarrierNoopPass());
  }

  if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
    // TODO: May want to move later or split into an early and late one.

    addPass(createAMDGPUCodeGenPreparePass());
  }

  // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments.
  addPass(createAMDGPUOpenCLImageTypeLoweringPass());

  // Replace OpenCL enqueued block function pointers with global variables.
  addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass());

  if (TM.getOptLevel() > CodeGenOpt::None) {
    addPass(createInferAddressSpacesPass());
    addPass(createAMDGPUPromoteAlloca());

    if (EnableSROA)
      addPass(createSROAPass());

    addStraightLineScalarOptimizationPasses();

    if (EnableAMDGPUAliasAnalysis) {
      addPass(createAMDGPUAAWrapperPass());
      addPass(createExternalAAWrapperPass([](Pass &P, Function &,
                                             AAResults &AAR) {
        if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
          AAR.addAAResult(WrapperPass->getResult());
        }));
    }
  }

  TargetPassConfig::addIRPasses();

  // EarlyCSE is not always strong enough to clean up what LSR produces. For
  // example, GVN can combine
  //
  //   %0 = add %a, %b
  //   %1 = add %b, %a
  //
  // and
  //
  //   %0 = shl nsw %a, 2
  //   %1 = shl %a, 2
  //
  // but EarlyCSE can do neither of them.
  if (getOptLevel() != CodeGenOpt::None)
    addEarlyCSEOrGVNPass();
}

void AMDGPUPassConfig::addCodeGenPrepare() {
  TargetPassConfig::addCodeGenPrepare();

  if (EnableLoadStoreVectorizer)
    addPass(createLoadStoreVectorizerPass());
}

bool AMDGPUPassConfig::addPreISel() {
  addPass(createFlattenCFGPass());
  return false;
}

bool AMDGPUPassConfig::addInstSelector() {
  addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()));
  return false;
}

bool AMDGPUPassConfig::addGCPasses() {
  // Do nothing. GC is not supported.
  return false;
}

//===----------------------------------------------------------------------===//
// R600 Pass Setup
//===----------------------------------------------------------------------===//

bool R600PassConfig::addPreISel() {
  AMDGPUPassConfig::addPreISel();

  if (EnableR600StructurizeCFG)
    addPass(createStructurizeCFGPass());
  return false;
}

bool R600PassConfig::addInstSelector() {
  addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel()));
  return false;
}

void R600PassConfig::addPreRegAlloc() {
  addPass(createR600VectorRegMerger());
}

void R600PassConfig::addPreSched2() {
  addPass(createR600EmitClauseMarkers(), false);
  if (EnableR600IfConvert)
    addPass(&IfConverterID, false);
  addPass(createR600ClauseMergePass(), false);
}

void R600PassConfig::addPreEmitPass() {
  addPass(createAMDGPUCFGStructurizerPass(), false);
  addPass(createR600ExpandSpecialInstrsPass(), false);
  addPass(&FinalizeMachineBundlesID, false);
  addPass(createR600Packetizer(), false);
  addPass(createR600ControlFlowFinalizer(), false);
}

TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) {
  return new R600PassConfig(*this, PM);
}

//===----------------------------------------------------------------------===//
// GCN Pass Setup
//===----------------------------------------------------------------------===//

ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler(
  MachineSchedContext *C) const {
  const SISubtarget &ST = C->MF->getSubtarget<SISubtarget>();
  if (ST.enableSIScheduler())
    return createSIMachineScheduler(C);
  return createGCNMaxOccupancyMachineScheduler(C);
}

bool GCNPassConfig::addPreISel() {
  AMDGPUPassConfig::addPreISel();

  // FIXME: We need to run a pass to propagate the attributes when calls are
  // supported.
  addPass(createAMDGPUAnnotateKernelFeaturesPass());

  // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit
  // regions formed by them.
  addPass(&AMDGPUUnifyDivergentExitNodesID);
  if (!LateCFGStructurize) {
    addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions
  }
  addPass(createSinkingPass());
  addPass(createAMDGPUAnnotateUniformValues());
  if (!LateCFGStructurize) {
    addPass(createSIAnnotateControlFlowPass());
  }

  return false;
}

void GCNPassConfig::addMachineSSAOptimization() {
  TargetPassConfig::addMachineSSAOptimization();

  // We want to fold operands after PeepholeOptimizer has run (or as part of
  // it), because it will eliminate extra copies making it easier to fold the
  // real source operand. We want to eliminate dead instructions after, so that
  // we see fewer uses of the copies. We then need to clean up the dead
  // instructions leftover after the operands are folded as well.
  //
  // XXX - Can we get away without running DeadMachineInstructionElim again?
  addPass(&SIFoldOperandsID);
  addPass(&DeadMachineInstructionElimID);
  addPass(&SILoadStoreOptimizerID);
  if (EnableSDWAPeephole) {
    addPass(&SIPeepholeSDWAID);
    addPass(&MachineLICMID);
    addPass(&MachineCSEID);
    addPass(&SIFoldOperandsID);
    addPass(&DeadMachineInstructionElimID);
  }
  addPass(createSIShrinkInstructionsPass());
}

bool GCNPassConfig::addILPOpts() {
  if (EnableEarlyIfConversion)
    addPass(&EarlyIfConverterID);

  TargetPassConfig::addILPOpts();
  return false;
}

bool GCNPassConfig::addInstSelector() {
  AMDGPUPassConfig::addInstSelector();
  addPass(createSILowerI1CopiesPass());
  addPass(&SIFixSGPRCopiesID);
  return false;
}

bool GCNPassConfig::addIRTranslator() {
  addPass(new IRTranslator());
  return false;
}

bool GCNPassConfig::addLegalizeMachineIR() {
  addPass(new Legalizer());
  return false;
}

bool GCNPassConfig::addRegBankSelect() {
  addPass(new RegBankSelect());
  return false;
}

bool GCNPassConfig::addGlobalInstructionSelect() {
  addPass(new InstructionSelect());
  return false;
}

void GCNPassConfig::addPreRegAlloc() {
  if (LateCFGStructurize) {
    addPass(createAMDGPUMachineCFGStructurizerPass());
  }
  addPass(createSIWholeQuadModePass());
}

void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) {
  // FIXME: We have to disable the verifier here because of PHIElimination +
  // TwoAddressInstructions disabling it.

  // This must be run immediately after phi elimination and before
  // TwoAddressInstructions, otherwise the processing of the tied operand of
  // SI_ELSE will introduce a copy of the tied operand source after the else.
  insertPass(&PHIEliminationID, &SILowerControlFlowID, false);

  // This must be run after SILowerControlFlow, since it needs to use the
  // machine-level CFG, but before register allocation.
  insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false);

  TargetPassConfig::addFastRegAlloc(RegAllocPass);
}

void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
  insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID);

  // This must be run immediately after phi elimination and before
  // TwoAddressInstructions, otherwise the processing of the tied operand of
  // SI_ELSE will introduce a copy of the tied operand source after the else.
  insertPass(&PHIEliminationID, &SILowerControlFlowID, false);

  // This must be run after SILowerControlFlow, since it needs to use the
  // machine-level CFG, but before register allocation.
  insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false);

  TargetPassConfig::addOptimizedRegAlloc(RegAllocPass);
}

void GCNPassConfig::addPostRegAlloc() {
  addPass(&SIFixVGPRCopiesID);
  addPass(&SIOptimizeExecMaskingID);
  TargetPassConfig::addPostRegAlloc();
}

void GCNPassConfig::addPreSched2() {
}

void GCNPassConfig::addPreEmitPass() {
  // The hazard recognizer that runs as part of the post-ra scheduler does not
  // guarantee to be able handle all hazards correctly. This is because if there
  // are multiple scheduling regions in a basic block, the regions are scheduled
  // bottom up, so when we begin to schedule a region we don't know what
  // instructions were emitted directly before it.
  //
  // Here we add a stand-alone hazard recognizer pass which can handle all
  // cases.
  addPass(&PostRAHazardRecognizerID);

  if (EnableSIInsertWaitcntsPass)
    addPass(createSIInsertWaitcntsPass());
  else
    addPass(createSIInsertWaitsPass());
  addPass(createSIShrinkInstructionsPass());
  addPass(&SIInsertSkipsPassID);
  addPass(createSIMemoryLegalizerPass());
  addPass(createSIDebuggerInsertNopsPass());
  addPass(&BranchRelaxationPassID);
}

TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) {
  return new GCNPassConfig(*this, PM);
}