aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/AArch64/AArch64SchedA53.td
blob: 90ebd78f4ab9c50c6e10b593a0108e6619673d70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
//==- AArch64SchedA53.td - Cortex-A53 Scheduling Definitions -*- tablegen -*-=//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the itinerary class data for the ARM Cortex A53 processors.
//
//===----------------------------------------------------------------------===//

// ===---------------------------------------------------------------------===//
// The following definitions describe the simpler per-operand machine model.
// This works with MachineScheduler. See MCSchedule.h for details.

// Cortex-A53 machine model for scheduling and other instruction cost heuristics.
def CortexA53Model : SchedMachineModel {
  let MicroOpBufferSize = 0; // Explicitly set to zero since A53 is in-order.
  let IssueWidth = 2;        // 2 micro-ops are dispatched per cycle.
  let LoadLatency = 3;       // Optimistic load latency assuming bypass.
                             // This is overriden by OperandCycles if the
                             // Itineraries are queried instead.
  let MispredictPenalty = 9; // Based on "Cortex-A53 Software Optimisation
                             // Specification - Instruction Timings"
                             // v 1.0 Spreadsheet
  let CompleteModel = 1;

  list<Predicate> UnsupportedFeatures = [HasSVE];
}


//===----------------------------------------------------------------------===//
// Define each kind of processor resource and number available.

// Modeling each pipeline as a ProcResource using the BufferSize = 0 since
// Cortex-A53 is in-order.

def A53UnitALU    : ProcResource<2> { let BufferSize = 0; } // Int ALU
def A53UnitMAC    : ProcResource<1> { let BufferSize = 0; } // Int MAC
def A53UnitDiv    : ProcResource<1> { let BufferSize = 0; } // Int Division
def A53UnitLdSt   : ProcResource<1> { let BufferSize = 0; } // Load/Store
def A53UnitB      : ProcResource<1> { let BufferSize = 0; } // Branch
def A53UnitFPALU  : ProcResource<1> { let BufferSize = 0; } // FP ALU
def A53UnitFPMDS  : ProcResource<1> { let BufferSize = 0; } // FP Mult/Div/Sqrt


//===----------------------------------------------------------------------===//
// Subtarget-specific SchedWrite types which both map the ProcResources and
// set the latency.

let SchedModel = CortexA53Model in {

// ALU - Despite having a full latency of 4, most of the ALU instructions can
//       forward a cycle earlier and then two cycles earlier in the case of a
//       shift-only instruction. These latencies will be incorrect when the
//       result cannot be forwarded, but modeling isn't rocket surgery.
def : WriteRes<WriteImm, [A53UnitALU]> { let Latency = 3; }
def : WriteRes<WriteI, [A53UnitALU]> { let Latency = 3; }
def : WriteRes<WriteISReg, [A53UnitALU]> { let Latency = 3; }
def : WriteRes<WriteIEReg, [A53UnitALU]> { let Latency = 3; }
def : WriteRes<WriteIS, [A53UnitALU]> { let Latency = 2; }
def : WriteRes<WriteExtr, [A53UnitALU]> { let Latency = 3; }

// MAC
def : WriteRes<WriteIM32, [A53UnitMAC]> { let Latency = 4; }
def : WriteRes<WriteIM64, [A53UnitMAC]> { let Latency = 4; }

// Div
def : WriteRes<WriteID32, [A53UnitDiv]> { let Latency = 4; }
def : WriteRes<WriteID64, [A53UnitDiv]> { let Latency = 4; }

// Load
def : WriteRes<WriteLD, [A53UnitLdSt]> { let Latency = 4; }
def : WriteRes<WriteLDIdx, [A53UnitLdSt]> { let Latency = 4; }
def : WriteRes<WriteLDHi, [A53UnitLdSt]> { let Latency = 4; }

// Vector Load - Vector loads take 1-5 cycles to issue. For the WriteVecLd
//               below, choosing the median of 3 which makes the latency 6.
//               May model this more carefully in the future. The remaining
//               A53WriteVLD# types represent the 1-5 cycle issues explicitly.
def : WriteRes<WriteVLD, [A53UnitLdSt]> { let Latency = 6;
                                          let ResourceCycles = [3]; }
def A53WriteVLD1 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 4; }
def A53WriteVLD2 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 5;
                                                  let ResourceCycles = [2]; }
def A53WriteVLD3 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 6;
                                                  let ResourceCycles = [3]; }
def A53WriteVLD4 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 7;
                                                  let ResourceCycles = [4]; }
def A53WriteVLD5 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 8;
                                                  let ResourceCycles = [5]; }

// Pre/Post Indexing - Performed as part of address generation which is already
//                     accounted for in the WriteST* latencies below
def : WriteRes<WriteAdr, []> { let Latency = 0; }

// Store
def : WriteRes<WriteST, [A53UnitLdSt]> { let Latency = 4; }
def : WriteRes<WriteSTP, [A53UnitLdSt]> { let Latency = 4; }
def : WriteRes<WriteSTIdx, [A53UnitLdSt]> { let Latency = 4; }
def : WriteRes<WriteSTX, [A53UnitLdSt]> { let Latency = 4; }

// Vector Store - Similar to vector loads, can take 1-3 cycles to issue.
def : WriteRes<WriteVST, [A53UnitLdSt]> { let Latency = 5;
                                          let ResourceCycles = [2];}
def A53WriteVST1 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 4; }
def A53WriteVST2 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 5;
                                                  let ResourceCycles = [2]; }
def A53WriteVST3 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 6;
                                                  let ResourceCycles = [3]; }

def : WriteRes<WriteAtomic, []> { let Unsupported = 1; }

// Branch
def : WriteRes<WriteBr, [A53UnitB]>;
def : WriteRes<WriteBrReg, [A53UnitB]>;
def : WriteRes<WriteSys, [A53UnitB]>;
def : WriteRes<WriteBarrier, [A53UnitB]>;
def : WriteRes<WriteHint, [A53UnitB]>;

// FP ALU
def : WriteRes<WriteF, [A53UnitFPALU]> { let Latency = 6; }
def : WriteRes<WriteFCmp, [A53UnitFPALU]> { let Latency = 6; }
def : WriteRes<WriteFCvt, [A53UnitFPALU]> { let Latency = 6; }
def : WriteRes<WriteFCopy, [A53UnitFPALU]> { let Latency = 6; }
def : WriteRes<WriteFImm, [A53UnitFPALU]> { let Latency = 6; }
def : WriteRes<WriteV, [A53UnitFPALU]> { let Latency = 6; }

// FP Mul, Div, Sqrt
def : WriteRes<WriteFMul, [A53UnitFPMDS]> { let Latency = 6; }
def : WriteRes<WriteFDiv, [A53UnitFPMDS]> { let Latency = 33;
                                            let ResourceCycles = [29]; }
def A53WriteFMAC : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 10; }
def A53WriteFDivSP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 18;
                                                     let ResourceCycles = [14]; }
def A53WriteFDivDP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 33;
                                                     let ResourceCycles = [29]; }
def A53WriteFSqrtSP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 17;
                                                      let ResourceCycles = [13]; }
def A53WriteFSqrtDP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 32;
                                                      let ResourceCycles = [28]; }

//===----------------------------------------------------------------------===//
// Subtarget-specific SchedRead types.

// No forwarding for these reads.
def : ReadAdvance<ReadExtrHi, 0>;
def : ReadAdvance<ReadAdrBase, 0>;
def : ReadAdvance<ReadVLD, 0>;

// ALU - Most operands in the ALU pipes are not needed for two cycles. Shiftable
//       operands are needed one cycle later if and only if they are to be
//       shifted. Otherwise, they too are needed two cycles later. This same
//       ReadAdvance applies to Extended registers as well, even though there is
//       a separate SchedPredicate for them.
def : ReadAdvance<ReadI, 2, [WriteImm,WriteI,
                             WriteISReg, WriteIEReg,WriteIS,
                             WriteID32,WriteID64,
                             WriteIM32,WriteIM64]>;
def A53ReadShifted : SchedReadAdvance<1, [WriteImm,WriteI,
                                          WriteISReg, WriteIEReg,WriteIS,
                                          WriteID32,WriteID64,
                                          WriteIM32,WriteIM64]>;
def A53ReadNotShifted : SchedReadAdvance<2, [WriteImm,WriteI,
                                             WriteISReg, WriteIEReg,WriteIS,
                                             WriteID32,WriteID64,
                                             WriteIM32,WriteIM64]>;
def A53ReadISReg : SchedReadVariant<[
	SchedVar<RegShiftedPred, [A53ReadShifted]>,
	SchedVar<NoSchedPred, [A53ReadNotShifted]>]>;
def : SchedAlias<ReadISReg, A53ReadISReg>;

def A53ReadIEReg : SchedReadVariant<[
	SchedVar<RegExtendedPred, [A53ReadShifted]>,
	SchedVar<NoSchedPred, [A53ReadNotShifted]>]>;
def : SchedAlias<ReadIEReg, A53ReadIEReg>;

// MAC - Operands are generally needed one cycle later in the MAC pipe.
//       Accumulator operands are needed two cycles later.
def : ReadAdvance<ReadIM, 1, [WriteImm,WriteI,
                              WriteISReg, WriteIEReg,WriteIS,
                              WriteID32,WriteID64,
                              WriteIM32,WriteIM64]>;
def : ReadAdvance<ReadIMA, 2, [WriteImm,WriteI,
                               WriteISReg, WriteIEReg,WriteIS,
                               WriteID32,WriteID64,
                               WriteIM32,WriteIM64]>;

// Div
def : ReadAdvance<ReadID, 1, [WriteImm,WriteI,
                              WriteISReg, WriteIEReg,WriteIS,
                              WriteID32,WriteID64,
                              WriteIM32,WriteIM64]>;

//===----------------------------------------------------------------------===//
// Subtarget-specific InstRWs.

//---
// Miscellaneous
//---
def : InstRW<[WriteI], (instrs COPY)>;

//---
// Vector Loads
//---
def : InstRW<[A53WriteVLD1], (instregex "LD1i(8|16|32|64)$")>;
def : InstRW<[A53WriteVLD1], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
def : InstRW<[A53WriteVLD1], (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
def : InstRW<[A53WriteVLD2], (instregex "LD1Twov(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
def : InstRW<[A53WriteVLD3], (instregex "LD1Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
def : InstRW<[A53WriteVLD4], (instregex "LD1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
def : InstRW<[A53WriteVLD1, WriteAdr], (instregex "LD1i(8|16|32|64)_POST$")>;
def : InstRW<[A53WriteVLD1, WriteAdr], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
def : InstRW<[A53WriteVLD1, WriteAdr], (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD1Twov(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
def : InstRW<[A53WriteVLD3, WriteAdr], (instregex "LD1Threev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
def : InstRW<[A53WriteVLD4, WriteAdr], (instregex "LD1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;

def : InstRW<[A53WriteVLD1], (instregex "LD2i(8|16|32|64)$")>;
def : InstRW<[A53WriteVLD1], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
def : InstRW<[A53WriteVLD2], (instregex "LD2Twov(8b|4h|2s)$")>;
def : InstRW<[A53WriteVLD4], (instregex "LD2Twov(16b|8h|4s|2d)$")>;
def : InstRW<[A53WriteVLD1, WriteAdr], (instregex "LD2i(8|16|32|64)(_POST)?$")>;
def : InstRW<[A53WriteVLD1, WriteAdr], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>;
def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD2Twov(8b|4h|2s)(_POST)?$")>;
def : InstRW<[A53WriteVLD4, WriteAdr], (instregex "LD2Twov(16b|8h|4s|2d)(_POST)?$")>;

def : InstRW<[A53WriteVLD2], (instregex "LD3i(8|16|32|64)$")>;
def : InstRW<[A53WriteVLD2], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
def : InstRW<[A53WriteVLD4], (instregex "LD3Threev(8b|4h|2s|1d|16b|8h|4s)$")>;
def : InstRW<[A53WriteVLD3], (instregex "LD3Threev(2d)$")>;
def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD3i(8|16|32|64)_POST$")>;
def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
def : InstRW<[A53WriteVLD4, WriteAdr], (instregex "LD3Threev(8b|4h|2s|1d|16b|8h|4s)_POST$")>;
def : InstRW<[A53WriteVLD3, WriteAdr], (instregex "LD3Threev(2d)_POST$")>;

def : InstRW<[A53WriteVLD2], (instregex "LD4i(8|16|32|64)$")>;
def : InstRW<[A53WriteVLD2], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
def : InstRW<[A53WriteVLD5], (instregex "LD4Fourv(8b|4h|2s|1d|16b|8h|4s)$")>;
def : InstRW<[A53WriteVLD4], (instregex "LD4Fourv(2d)$")>;
def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD4i(8|16|32|64)_POST$")>;
def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
def : InstRW<[A53WriteVLD5, WriteAdr], (instregex "LD4Fourv(8b|4h|2s|1d|16b|8h|4s)_POST$")>;
def : InstRW<[A53WriteVLD4, WriteAdr], (instregex "LD4Fourv(2d)_POST$")>;

//---
// Vector Stores
//---
def : InstRW<[A53WriteVST1], (instregex "ST1i(8|16|32|64)$")>;
def : InstRW<[A53WriteVST1], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
def : InstRW<[A53WriteVST1], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
def : InstRW<[A53WriteVST2], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
def : InstRW<[A53WriteVST2], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
def : InstRW<[A53WriteVST1, WriteAdr], (instregex "ST1i(8|16|32|64)_POST$")>;
def : InstRW<[A53WriteVST1, WriteAdr], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
def : InstRW<[A53WriteVST1, WriteAdr], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;

def : InstRW<[A53WriteVST1], (instregex "ST2i(8|16|32|64)$")>;
def : InstRW<[A53WriteVST1], (instregex "ST2Twov(8b|4h|2s)$")>;
def : InstRW<[A53WriteVST2], (instregex "ST2Twov(16b|8h|4s|2d)$")>;
def : InstRW<[A53WriteVST1, WriteAdr], (instregex "ST2i(8|16|32|64)_POST$")>;
def : InstRW<[A53WriteVST1, WriteAdr], (instregex "ST2Twov(8b|4h|2s)_POST$")>;
def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST2Twov(16b|8h|4s|2d)_POST$")>;

def : InstRW<[A53WriteVST2], (instregex "ST3i(8|16|32|64)$")>;
def : InstRW<[A53WriteVST3], (instregex "ST3Threev(8b|4h|2s|1d|16b|8h|4s)$")>;
def : InstRW<[A53WriteVST2], (instregex "ST3Threev(2d)$")>;
def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST3i(8|16|32|64)_POST$")>;
def : InstRW<[A53WriteVST3, WriteAdr], (instregex "ST3Threev(8b|4h|2s|1d|16b|8h|4s)_POST$")>;
def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST3Threev(2d)_POST$")>;

def : InstRW<[A53WriteVST2], (instregex "ST4i(8|16|32|64)$")>;
def : InstRW<[A53WriteVST3], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s)$")>;
def : InstRW<[A53WriteVST2], (instregex "ST4Fourv(2d)$")>;
def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST4i(8|16|32|64)_POST$")>;
def : InstRW<[A53WriteVST3, WriteAdr], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s)_POST$")>;
def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST4Fourv(2d)_POST$")>;

//---
// Floating Point MAC, DIV, SQRT
//---
def : InstRW<[A53WriteFMAC], (instregex "^FN?M(ADD|SUB).*")>;
def : InstRW<[A53WriteFMAC], (instregex "^FML(A|S).*")>;
def : InstRW<[A53WriteFDivSP], (instrs FDIVSrr)>;
def : InstRW<[A53WriteFDivDP], (instrs FDIVDrr)>;
def : InstRW<[A53WriteFDivSP], (instregex "^FDIVv.*32$")>;
def : InstRW<[A53WriteFDivDP], (instregex "^FDIVv.*64$")>;
def : InstRW<[A53WriteFSqrtSP], (instregex "^.*SQRT.*32$")>;
def : InstRW<[A53WriteFSqrtDP], (instregex "^.*SQRT.*64$")>;

}