aboutsummaryrefslogtreecommitdiff
path: root/lib/IR/Instruction.cpp
blob: ceb521c4c48b5acf60124113ab7263c70f869e09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
//===-- Instruction.cpp - Implement the Instruction class -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Instruction class for the IR library.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/Instruction.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
using namespace llvm;

Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
                         Instruction *InsertBefore)
  : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {

  // If requested, insert this instruction into a basic block...
  if (InsertBefore) {
    BasicBlock *BB = InsertBefore->getParent();
    assert(BB && "Instruction to insert before is not in a basic block!");
    BB->getInstList().insert(InsertBefore->getIterator(), this);
  }
}

Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
                         BasicBlock *InsertAtEnd)
  : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {

  // append this instruction into the basic block
  assert(InsertAtEnd && "Basic block to append to may not be NULL!");
  InsertAtEnd->getInstList().push_back(this);
}

Instruction::~Instruction() {
  assert(!Parent && "Instruction still linked in the program!");
  if (hasMetadataHashEntry())
    clearMetadataHashEntries();
}


void Instruction::setParent(BasicBlock *P) {
  Parent = P;
}

const Module *Instruction::getModule() const {
  return getParent()->getModule();
}

const Function *Instruction::getFunction() const {
  return getParent()->getParent();
}

void Instruction::removeFromParent() {
  getParent()->getInstList().remove(getIterator());
}

iplist<Instruction>::iterator Instruction::eraseFromParent() {
  return getParent()->getInstList().erase(getIterator());
}

/// Insert an unlinked instruction into a basic block immediately before the
/// specified instruction.
void Instruction::insertBefore(Instruction *InsertPos) {
  InsertPos->getParent()->getInstList().insert(InsertPos->getIterator(), this);
}

/// Insert an unlinked instruction into a basic block immediately after the
/// specified instruction.
void Instruction::insertAfter(Instruction *InsertPos) {
  InsertPos->getParent()->getInstList().insertAfter(InsertPos->getIterator(),
                                                    this);
}

/// Unlink this instruction from its current basic block and insert it into the
/// basic block that MovePos lives in, right before MovePos.
void Instruction::moveBefore(Instruction *MovePos) {
  moveBefore(*MovePos->getParent(), MovePos->getIterator());
}

void Instruction::moveAfter(Instruction *MovePos) {
  moveBefore(*MovePos->getParent(), ++MovePos->getIterator());
}

void Instruction::moveBefore(BasicBlock &BB,
                             SymbolTableList<Instruction>::iterator I) {
  assert(I == BB.end() || I->getParent() == &BB);
  BB.getInstList().splice(I, getParent()->getInstList(), getIterator());
}

void Instruction::setHasNoUnsignedWrap(bool b) {
  cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
}

void Instruction::setHasNoSignedWrap(bool b) {
  cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
}

void Instruction::setIsExact(bool b) {
  cast<PossiblyExactOperator>(this)->setIsExact(b);
}

bool Instruction::hasNoUnsignedWrap() const {
  return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
}

bool Instruction::hasNoSignedWrap() const {
  return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
}

void Instruction::dropPoisonGeneratingFlags() {
  switch (getOpcode()) {
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::Shl:
    cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(false);
    cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(false);
    break;

  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::AShr:
  case Instruction::LShr:
    cast<PossiblyExactOperator>(this)->setIsExact(false);
    break;

  case Instruction::GetElementPtr:
    cast<GetElementPtrInst>(this)->setIsInBounds(false);
    break;
  }
}

bool Instruction::isExact() const {
  return cast<PossiblyExactOperator>(this)->isExact();
}

void Instruction::setHasUnsafeAlgebra(bool B) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setHasUnsafeAlgebra(B);
}

void Instruction::setHasNoNaNs(bool B) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setHasNoNaNs(B);
}

void Instruction::setHasNoInfs(bool B) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setHasNoInfs(B);
}

void Instruction::setHasNoSignedZeros(bool B) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setHasNoSignedZeros(B);
}

void Instruction::setHasAllowReciprocal(bool B) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setHasAllowReciprocal(B);
}

void Instruction::setFastMathFlags(FastMathFlags FMF) {
  assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
  cast<FPMathOperator>(this)->setFastMathFlags(FMF);
}

void Instruction::copyFastMathFlags(FastMathFlags FMF) {
  assert(isa<FPMathOperator>(this) && "copying fast-math flag on invalid op");
  cast<FPMathOperator>(this)->copyFastMathFlags(FMF);
}

bool Instruction::hasUnsafeAlgebra() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
}

bool Instruction::hasNoNaNs() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->hasNoNaNs();
}

bool Instruction::hasNoInfs() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->hasNoInfs();
}

bool Instruction::hasNoSignedZeros() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->hasNoSignedZeros();
}

bool Instruction::hasAllowReciprocal() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->hasAllowReciprocal();
}

bool Instruction::hasAllowContract() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->hasAllowContract();
}

FastMathFlags Instruction::getFastMathFlags() const {
  assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
  return cast<FPMathOperator>(this)->getFastMathFlags();
}

void Instruction::copyFastMathFlags(const Instruction *I) {
  copyFastMathFlags(I->getFastMathFlags());
}

void Instruction::copyIRFlags(const Value *V, bool IncludeWrapFlags) {
  // Copy the wrapping flags.
  if (IncludeWrapFlags && isa<OverflowingBinaryOperator>(this)) {
    if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
      setHasNoSignedWrap(OB->hasNoSignedWrap());
      setHasNoUnsignedWrap(OB->hasNoUnsignedWrap());
    }
  }

  // Copy the exact flag.
  if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
    if (isa<PossiblyExactOperator>(this))
      setIsExact(PE->isExact());

  // Copy the fast-math flags.
  if (auto *FP = dyn_cast<FPMathOperator>(V))
    if (isa<FPMathOperator>(this))
      copyFastMathFlags(FP->getFastMathFlags());

  if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(V))
    if (auto *DestGEP = dyn_cast<GetElementPtrInst>(this))
      DestGEP->setIsInBounds(SrcGEP->isInBounds() | DestGEP->isInBounds());
}

void Instruction::andIRFlags(const Value *V) {
  if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
    if (isa<OverflowingBinaryOperator>(this)) {
      setHasNoSignedWrap(hasNoSignedWrap() & OB->hasNoSignedWrap());
      setHasNoUnsignedWrap(hasNoUnsignedWrap() & OB->hasNoUnsignedWrap());
    }
  }

  if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
    if (isa<PossiblyExactOperator>(this))
      setIsExact(isExact() & PE->isExact());

  if (auto *FP = dyn_cast<FPMathOperator>(V)) {
    if (isa<FPMathOperator>(this)) {
      FastMathFlags FM = getFastMathFlags();
      FM &= FP->getFastMathFlags();
      copyFastMathFlags(FM);
    }
  }

  if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(V))
    if (auto *DestGEP = dyn_cast<GetElementPtrInst>(this))
      DestGEP->setIsInBounds(SrcGEP->isInBounds() & DestGEP->isInBounds());
}

const char *Instruction::getOpcodeName(unsigned OpCode) {
  switch (OpCode) {
  // Terminators
  case Ret:    return "ret";
  case Br:     return "br";
  case Switch: return "switch";
  case IndirectBr: return "indirectbr";
  case Invoke: return "invoke";
  case Resume: return "resume";
  case Unreachable: return "unreachable";
  case CleanupRet: return "cleanupret";
  case CatchRet: return "catchret";
  case CatchPad: return "catchpad";
  case CatchSwitch: return "catchswitch";

  // Standard binary operators...
  case Add: return "add";
  case FAdd: return "fadd";
  case Sub: return "sub";
  case FSub: return "fsub";
  case Mul: return "mul";
  case FMul: return "fmul";
  case UDiv: return "udiv";
  case SDiv: return "sdiv";
  case FDiv: return "fdiv";
  case URem: return "urem";
  case SRem: return "srem";
  case FRem: return "frem";

  // Logical operators...
  case And: return "and";
  case Or : return "or";
  case Xor: return "xor";

  // Memory instructions...
  case Alloca:        return "alloca";
  case Load:          return "load";
  case Store:         return "store";
  case AtomicCmpXchg: return "cmpxchg";
  case AtomicRMW:     return "atomicrmw";
  case Fence:         return "fence";
  case GetElementPtr: return "getelementptr";

  // Convert instructions...
  case Trunc:         return "trunc";
  case ZExt:          return "zext";
  case SExt:          return "sext";
  case FPTrunc:       return "fptrunc";
  case FPExt:         return "fpext";
  case FPToUI:        return "fptoui";
  case FPToSI:        return "fptosi";
  case UIToFP:        return "uitofp";
  case SIToFP:        return "sitofp";
  case IntToPtr:      return "inttoptr";
  case PtrToInt:      return "ptrtoint";
  case BitCast:       return "bitcast";
  case AddrSpaceCast: return "addrspacecast";

  // Other instructions...
  case ICmp:           return "icmp";
  case FCmp:           return "fcmp";
  case PHI:            return "phi";
  case Select:         return "select";
  case Call:           return "call";
  case Shl:            return "shl";
  case LShr:           return "lshr";
  case AShr:           return "ashr";
  case VAArg:          return "va_arg";
  case ExtractElement: return "extractelement";
  case InsertElement:  return "insertelement";
  case ShuffleVector:  return "shufflevector";
  case ExtractValue:   return "extractvalue";
  case InsertValue:    return "insertvalue";
  case LandingPad:     return "landingpad";
  case CleanupPad:     return "cleanuppad";

  default: return "<Invalid operator> ";
  }
}

/// Return true if both instructions have the same special state. This must be
/// kept in sync with FunctionComparator::cmpOperations in
/// lib/Transforms/IPO/MergeFunctions.cpp.
static bool haveSameSpecialState(const Instruction *I1, const Instruction *I2,
                                 bool IgnoreAlignment = false) {
  assert(I1->getOpcode() == I2->getOpcode() &&
         "Can not compare special state of different instructions");

  if (const AllocaInst *AI = dyn_cast<AllocaInst>(I1))
    return AI->getAllocatedType() == cast<AllocaInst>(I2)->getAllocatedType() &&
           (AI->getAlignment() == cast<AllocaInst>(I2)->getAlignment() ||
            IgnoreAlignment);
  if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
    return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
           (LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() ||
            IgnoreAlignment) &&
           LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
           LI->getSyncScopeID() == cast<LoadInst>(I2)->getSyncScopeID();
  if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
    return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
           (SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() ||
            IgnoreAlignment) &&
           SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
           SI->getSyncScopeID() == cast<StoreInst>(I2)->getSyncScopeID();
  if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
    return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
  if (const CallInst *CI = dyn_cast<CallInst>(I1))
    return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
           CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
           CI->getAttributes() == cast<CallInst>(I2)->getAttributes() &&
           CI->hasIdenticalOperandBundleSchema(*cast<CallInst>(I2));
  if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
    return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
           CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes() &&
           CI->hasIdenticalOperandBundleSchema(*cast<InvokeInst>(I2));
  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
    return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
    return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
  if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
    return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
           FI->getSyncScopeID() == cast<FenceInst>(I2)->getSyncScopeID();
  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
    return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
           CXI->isWeak() == cast<AtomicCmpXchgInst>(I2)->isWeak() &&
           CXI->getSuccessOrdering() ==
               cast<AtomicCmpXchgInst>(I2)->getSuccessOrdering() &&
           CXI->getFailureOrdering() ==
               cast<AtomicCmpXchgInst>(I2)->getFailureOrdering() &&
           CXI->getSyncScopeID() ==
               cast<AtomicCmpXchgInst>(I2)->getSyncScopeID();
  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
    return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
           RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
           RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
           RMWI->getSyncScopeID() == cast<AtomicRMWInst>(I2)->getSyncScopeID();

  return true;
}

bool Instruction::isIdenticalTo(const Instruction *I) const {
  return isIdenticalToWhenDefined(I) &&
         SubclassOptionalData == I->SubclassOptionalData;
}

bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
  if (getOpcode() != I->getOpcode() ||
      getNumOperands() != I->getNumOperands() ||
      getType() != I->getType())
    return false;

  // If both instructions have no operands, they are identical.
  if (getNumOperands() == 0 && I->getNumOperands() == 0)
    return haveSameSpecialState(this, I);

  // We have two instructions of identical opcode and #operands.  Check to see
  // if all operands are the same.
  if (!std::equal(op_begin(), op_end(), I->op_begin()))
    return false;

  if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) {
    const PHINode *otherPHI = cast<PHINode>(I);
    return std::equal(thisPHI->block_begin(), thisPHI->block_end(),
                      otherPHI->block_begin());
  }

  return haveSameSpecialState(this, I);
}

// Keep this in sync with FunctionComparator::cmpOperations in
// lib/Transforms/IPO/MergeFunctions.cpp.
bool Instruction::isSameOperationAs(const Instruction *I,
                                    unsigned flags) const {
  bool IgnoreAlignment = flags & CompareIgnoringAlignment;
  bool UseScalarTypes  = flags & CompareUsingScalarTypes;

  if (getOpcode() != I->getOpcode() ||
      getNumOperands() != I->getNumOperands() ||
      (UseScalarTypes ?
       getType()->getScalarType() != I->getType()->getScalarType() :
       getType() != I->getType()))
    return false;

  // We have two instructions of identical opcode and #operands.  Check to see
  // if all operands are the same type
  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    if (UseScalarTypes ?
        getOperand(i)->getType()->getScalarType() !=
          I->getOperand(i)->getType()->getScalarType() :
        getOperand(i)->getType() != I->getOperand(i)->getType())
      return false;

  return haveSameSpecialState(this, I, IgnoreAlignment);
}

bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
  for (const Use &U : uses()) {
    // PHI nodes uses values in the corresponding predecessor block.  For other
    // instructions, just check to see whether the parent of the use matches up.
    const Instruction *I = cast<Instruction>(U.getUser());
    const PHINode *PN = dyn_cast<PHINode>(I);
    if (!PN) {
      if (I->getParent() != BB)
        return true;
      continue;
    }

    if (PN->getIncomingBlock(U) != BB)
      return true;
  }
  return false;
}

bool Instruction::mayReadFromMemory() const {
  switch (getOpcode()) {
  default: return false;
  case Instruction::VAArg:
  case Instruction::Load:
  case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
  case Instruction::AtomicCmpXchg:
  case Instruction::AtomicRMW:
  case Instruction::CatchPad:
  case Instruction::CatchRet:
    return true;
  case Instruction::Call:
    return !cast<CallInst>(this)->doesNotAccessMemory();
  case Instruction::Invoke:
    return !cast<InvokeInst>(this)->doesNotAccessMemory();
  case Instruction::Store:
    return !cast<StoreInst>(this)->isUnordered();
  }
}

bool Instruction::mayWriteToMemory() const {
  switch (getOpcode()) {
  default: return false;
  case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
  case Instruction::Store:
  case Instruction::VAArg:
  case Instruction::AtomicCmpXchg:
  case Instruction::AtomicRMW:
  case Instruction::CatchPad:
  case Instruction::CatchRet:
    return true;
  case Instruction::Call:
    return !cast<CallInst>(this)->onlyReadsMemory();
  case Instruction::Invoke:
    return !cast<InvokeInst>(this)->onlyReadsMemory();
  case Instruction::Load:
    return !cast<LoadInst>(this)->isUnordered();
  }
}

bool Instruction::isAtomic() const {
  switch (getOpcode()) {
  default:
    return false;
  case Instruction::AtomicCmpXchg:
  case Instruction::AtomicRMW:
  case Instruction::Fence:
    return true;
  case Instruction::Load:
    return cast<LoadInst>(this)->getOrdering() != AtomicOrdering::NotAtomic;
  case Instruction::Store:
    return cast<StoreInst>(this)->getOrdering() != AtomicOrdering::NotAtomic;
  }
}

bool Instruction::hasAtomicLoad() const {
  assert(isAtomic());
  switch (getOpcode()) {
  default:
    return false;
  case Instruction::AtomicCmpXchg:
  case Instruction::AtomicRMW:
  case Instruction::Load:
    return true;
  }
}

bool Instruction::hasAtomicStore() const {
  assert(isAtomic());
  switch (getOpcode()) {
  default:
    return false;
  case Instruction::AtomicCmpXchg:
  case Instruction::AtomicRMW:
  case Instruction::Store:
    return true;
  }
}

bool Instruction::mayThrow() const {
  if (const CallInst *CI = dyn_cast<CallInst>(this))
    return !CI->doesNotThrow();
  if (const auto *CRI = dyn_cast<CleanupReturnInst>(this))
    return CRI->unwindsToCaller();
  if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(this))
    return CatchSwitch->unwindsToCaller();
  return isa<ResumeInst>(this);
}

bool Instruction::isAssociative() const {
  unsigned Opcode = getOpcode();
  if (isAssociative(Opcode))
    return true;

  switch (Opcode) {
  case FMul:
  case FAdd:
    return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
  default:
    return false;
  }
}

Instruction *Instruction::cloneImpl() const {
  llvm_unreachable("Subclass of Instruction failed to implement cloneImpl");
}

void Instruction::swapProfMetadata() {
  MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
  if (!ProfileData || ProfileData->getNumOperands() != 3 ||
      !isa<MDString>(ProfileData->getOperand(0)))
    return;

  MDString *MDName = cast<MDString>(ProfileData->getOperand(0));
  if (MDName->getString() != "branch_weights")
    return;

  // The first operand is the name. Fetch them backwards and build a new one.
  Metadata *Ops[] = {ProfileData->getOperand(0), ProfileData->getOperand(2),
                     ProfileData->getOperand(1)};
  setMetadata(LLVMContext::MD_prof,
              MDNode::get(ProfileData->getContext(), Ops));
}

void Instruction::copyMetadata(const Instruction &SrcInst,
                               ArrayRef<unsigned> WL) {
  if (!SrcInst.hasMetadata())
    return;

  DenseSet<unsigned> WLS;
  for (unsigned M : WL)
    WLS.insert(M);

  // Otherwise, enumerate and copy over metadata from the old instruction to the
  // new one.
  SmallVector<std::pair<unsigned, MDNode *>, 4> TheMDs;
  SrcInst.getAllMetadataOtherThanDebugLoc(TheMDs);
  for (const auto &MD : TheMDs) {
    if (WL.empty() || WLS.count(MD.first))
      setMetadata(MD.first, MD.second);
  }
  if (WL.empty() || WLS.count(LLVMContext::MD_dbg))
    setDebugLoc(SrcInst.getDebugLoc());
  return;
}

Instruction *Instruction::clone() const {
  Instruction *New = nullptr;
  switch (getOpcode()) {
  default:
    llvm_unreachable("Unhandled Opcode.");
#define HANDLE_INST(num, opc, clas)                                            \
  case Instruction::opc:                                                       \
    New = cast<clas>(this)->cloneImpl();                                       \
    break;
#include "llvm/IR/Instruction.def"
#undef HANDLE_INST
  }

  New->SubclassOptionalData = SubclassOptionalData;
  New->copyMetadata(*this);
  return New;
}

void Instruction::updateProfWeight(uint64_t S, uint64_t T) {
  auto *ProfileData = getMetadata(LLVMContext::MD_prof);
  if (ProfileData == nullptr)
    return;

  auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
  if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
                        !ProfDataName->getString().equals("VP")))
    return;

  MDBuilder MDB(getContext());
  SmallVector<Metadata *, 3> Vals;
  Vals.push_back(ProfileData->getOperand(0));
  APInt APS(128, S), APT(128, T);
  if (ProfDataName->getString().equals("branch_weights"))
    for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) {
      // Using APInt::div may be expensive, but most cases should fit 64 bits.
      APInt Val(128,
                mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i))
                    ->getValue()
                    .getZExtValue());
      Val *= APS;
      Vals.push_back(MDB.createConstant(
          ConstantInt::get(Type::getInt64Ty(getContext()),
                           Val.udiv(APT).getLimitedValue())));
    }
  else if (ProfDataName->getString().equals("VP"))
    for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
      // The first value is the key of the value profile, which will not change.
      Vals.push_back(ProfileData->getOperand(i));
      // Using APInt::div may be expensive, but most cases should fit 64 bits.
      APInt Val(128,
                mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
                    ->getValue()
                    .getZExtValue());
      Val *= APS;
      Vals.push_back(MDB.createConstant(
          ConstantInt::get(Type::getInt64Ty(getContext()),
                           Val.udiv(APT).getLimitedValue())));
    }
  setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
}

void Instruction::setProfWeight(uint64_t W) {
  assert((isa<CallInst>(this) || isa<InvokeInst>(this)) &&
         "Can only set weights for call and invoke instrucitons");
  SmallVector<uint32_t, 1> Weights;
  Weights.push_back(W);
  MDBuilder MDB(getContext());
  setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
}