aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/UnreachableBlockElim.cpp
blob: bdd25f29aea414f1ee9750727690db9c70792472 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
//===-- UnreachableBlockElim.cpp - Remove unreachable blocks for codegen --===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass is an extremely simple version of the SimplifyCFG pass.  Its sole
// job is to delete LLVM basic blocks that are not reachable from the entry
// node.  To do this, it performs a simple depth first traversal of the CFG,
// then deletes any unvisited nodes.
//
// Note that this pass is really a hack.  In particular, the instruction
// selectors for various targets should just not generate code for unreachable
// blocks.  Until LLVM has a more systematic way of defining instruction
// selectors, however, we cannot really expect them to handle additional
// complexity.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/UnreachableBlockElim.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;

static bool eliminateUnreachableBlock(Function &F) {
  df_iterator_default_set<BasicBlock*> Reachable;

  // Mark all reachable blocks.
  for (BasicBlock *BB : depth_first_ext(&F, Reachable))
    (void)BB/* Mark all reachable blocks */;

  // Loop over all dead blocks, remembering them and deleting all instructions
  // in them.
  std::vector<BasicBlock*> DeadBlocks;
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
    if (!Reachable.count(&*I)) {
      BasicBlock *BB = &*I;
      DeadBlocks.push_back(BB);
      while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
        PN->replaceAllUsesWith(Constant::getNullValue(PN->getType()));
        BB->getInstList().pop_front();
      }
      for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
        (*SI)->removePredecessor(BB);
      BB->dropAllReferences();
    }

  // Actually remove the blocks now.
  for (unsigned i = 0, e = DeadBlocks.size(); i != e; ++i) {
    DeadBlocks[i]->eraseFromParent();
  }

  return !DeadBlocks.empty();
}

namespace {
class UnreachableBlockElimLegacyPass : public FunctionPass {
  bool runOnFunction(Function &F) override {
    return eliminateUnreachableBlock(F);
  }

public:
  static char ID; // Pass identification, replacement for typeid
  UnreachableBlockElimLegacyPass() : FunctionPass(ID) {
    initializeUnreachableBlockElimLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addPreserved<DominatorTreeWrapperPass>();
  }
};
}
char UnreachableBlockElimLegacyPass::ID = 0;
INITIALIZE_PASS(UnreachableBlockElimLegacyPass, "unreachableblockelim",
                "Remove unreachable blocks from the CFG", false, false)

FunctionPass *llvm::createUnreachableBlockEliminationPass() {
  return new UnreachableBlockElimLegacyPass();
}

PreservedAnalyses UnreachableBlockElimPass::run(Function &F,
                                                FunctionAnalysisManager &AM) {
  bool Changed = eliminateUnreachableBlock(F);
  if (!Changed)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  return PA;
}

namespace {
  class UnreachableMachineBlockElim : public MachineFunctionPass {
    bool runOnMachineFunction(MachineFunction &F) override;
    void getAnalysisUsage(AnalysisUsage &AU) const override;
    MachineModuleInfo *MMI;
  public:
    static char ID; // Pass identification, replacement for typeid
    UnreachableMachineBlockElim() : MachineFunctionPass(ID) {}
  };
}
char UnreachableMachineBlockElim::ID = 0;

INITIALIZE_PASS(UnreachableMachineBlockElim, "unreachable-mbb-elimination",
  "Remove unreachable machine basic blocks", false, false)

char &llvm::UnreachableMachineBlockElimID = UnreachableMachineBlockElim::ID;

void UnreachableMachineBlockElim::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addPreserved<MachineLoopInfo>();
  AU.addPreserved<MachineDominatorTree>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

bool UnreachableMachineBlockElim::runOnMachineFunction(MachineFunction &F) {
  df_iterator_default_set<MachineBasicBlock*> Reachable;
  bool ModifiedPHI = false;

  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
  MachineDominatorTree *MDT = getAnalysisIfAvailable<MachineDominatorTree>();
  MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();

  // Mark all reachable blocks.
  for (MachineBasicBlock *BB : depth_first_ext(&F, Reachable))
    (void)BB/* Mark all reachable blocks */;

  // Loop over all dead blocks, remembering them and deleting all instructions
  // in them.
  std::vector<MachineBasicBlock*> DeadBlocks;
  for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
    MachineBasicBlock *BB = &*I;

    // Test for deadness.
    if (!Reachable.count(BB)) {
      DeadBlocks.push_back(BB);

      // Update dominator and loop info.
      if (MLI) MLI->removeBlock(BB);
      if (MDT && MDT->getNode(BB)) MDT->eraseNode(BB);

      while (BB->succ_begin() != BB->succ_end()) {
        MachineBasicBlock* succ = *BB->succ_begin();

        MachineBasicBlock::iterator start = succ->begin();
        while (start != succ->end() && start->isPHI()) {
          for (unsigned i = start->getNumOperands() - 1; i >= 2; i-=2)
            if (start->getOperand(i).isMBB() &&
                start->getOperand(i).getMBB() == BB) {
              start->RemoveOperand(i);
              start->RemoveOperand(i-1);
            }

          start++;
        }

        BB->removeSuccessor(BB->succ_begin());
      }
    }
  }

  // Actually remove the blocks now.
  for (unsigned i = 0, e = DeadBlocks.size(); i != e; ++i)
    DeadBlocks[i]->eraseFromParent();

  // Cleanup PHI nodes.
  for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
    MachineBasicBlock *BB = &*I;
    // Prune unneeded PHI entries.
    SmallPtrSet<MachineBasicBlock*, 8> preds(BB->pred_begin(),
                                             BB->pred_end());
    MachineBasicBlock::iterator phi = BB->begin();
    while (phi != BB->end() && phi->isPHI()) {
      for (unsigned i = phi->getNumOperands() - 1; i >= 2; i-=2)
        if (!preds.count(phi->getOperand(i).getMBB())) {
          phi->RemoveOperand(i);
          phi->RemoveOperand(i-1);
          ModifiedPHI = true;
        }

      if (phi->getNumOperands() == 3) {
        const MachineOperand &Input = phi->getOperand(1);
        const MachineOperand &Output = phi->getOperand(0);
        unsigned InputReg = Input.getReg();
        unsigned OutputReg = Output.getReg();
        assert(Output.getSubReg() == 0 && "Cannot have output subregister");
        ModifiedPHI = true;

        if (InputReg != OutputReg) {
          MachineRegisterInfo &MRI = F.getRegInfo();
          unsigned InputSub = Input.getSubReg();
          if (InputSub == 0 &&
              MRI.constrainRegClass(InputReg, MRI.getRegClass(OutputReg)) &&
              !Input.isUndef()) {
            MRI.replaceRegWith(OutputReg, InputReg);
          } else {
            // The input register to the PHI has a subregister or it can't be
            // constrained to the proper register class or it is undef:
            // insert a COPY instead of simply replacing the output
            // with the input.
            const TargetInstrInfo *TII = F.getSubtarget().getInstrInfo();
            BuildMI(*BB, BB->getFirstNonPHI(), phi->getDebugLoc(),
                    TII->get(TargetOpcode::COPY), OutputReg)
                .addReg(InputReg, getRegState(Input), InputSub);
          }
          phi++->eraseFromParent();
        }
        continue;
      }

      ++phi;
    }
  }

  F.RenumberBlocks();

  return (!DeadBlocks.empty() || ModifiedPHI);
}