aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/MachinePipeliner.cpp
blob: d270b8e5d8f5e8cc7e8b06ac43586e71585a5716 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
//
// Software pipelining (SWP) is an instruction scheduling technique for loops
// that overlap loop iterations and explioits ILP via a compiler transformation.
//
// Swing Modulo Scheduling is an implementation of software pipelining
// that generates schedules that are near optimal in terms of initiation
// interval, register requirements, and stage count. See the papers:
//
// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996
// Conference on Parallel Architectures and Compilation Techiniques.
//
// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
// Transactions on Computers, Vol. 50, No. 3, 2001.
//
// "An Implementation of Swing Modulo Scheduling With Extensions for
// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
// Urbana-Chambpain, 2005.
//
//
// The SMS algorithm consists of three main steps after computing the minimal
// initiation interval (MII).
// 1) Analyze the dependence graph and compute information about each
//    instruction in the graph.
// 2) Order the nodes (instructions) by priority based upon the heuristics
//    described in the algorithm.
// 3) Attempt to schedule the nodes in the specified order using the MII.
//
// This SMS implementation is a target-independent back-end pass. When enabled,
// the pass runs just prior to the register allocation pass, while the machine
// IR is in SSA form. If software pipelining is successful, then the original
// loop is replaced by the optimized loop. The optimized loop contains one or
// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
// the instructions cannot be scheduled in a given MII, we increase the MII by
// one and try again.
//
// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
// represent loop carried dependences in the DAG as order edges to the Phi
// nodes. We also perform several passes over the DAG to eliminate unnecessary
// edges that inhibit the ability to pipeline. The implementation uses the
// DFAPacketizer class to compute the minimum initiation interval and the check
// where an instruction may be inserted in the pipelined schedule.
//
// In order for the SMS pass to work, several target specific hooks need to be
// implemented to get information about the loop structure and to rewrite
// instructions.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PriorityQueue.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/DFAPacketizer.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/RegisterPressure.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/CodeGen/ScheduleDAGMutation.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOpcodes.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstdint>
#include <deque>
#include <functional>
#include <iterator>
#include <map>
#include <memory>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "pipeliner"

STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
STATISTIC(NumPipelined, "Number of loops software pipelined");

/// A command line option to turn software pipelining on or off.
static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
                               cl::ZeroOrMore,
                               cl::desc("Enable Software Pipelining"));

/// A command line option to enable SWP at -Os.
static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
                                      cl::desc("Enable SWP at Os."), cl::Hidden,
                                      cl::init(false));

/// A command line argument to limit minimum initial interval for pipelining.
static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
                              cl::desc("Size limit for the the MII."),
                              cl::Hidden, cl::init(27));

/// A command line argument to limit the number of stages in the pipeline.
static cl::opt<int>
    SwpMaxStages("pipeliner-max-stages",
                 cl::desc("Maximum stages allowed in the generated scheduled."),
                 cl::Hidden, cl::init(3));

/// A command line option to disable the pruning of chain dependences due to
/// an unrelated Phi.
static cl::opt<bool>
    SwpPruneDeps("pipeliner-prune-deps",
                 cl::desc("Prune dependences between unrelated Phi nodes."),
                 cl::Hidden, cl::init(true));

/// A command line option to disable the pruning of loop carried order
/// dependences.
static cl::opt<bool>
    SwpPruneLoopCarried("pipeliner-prune-loop-carried",
                        cl::desc("Prune loop carried order dependences."),
                        cl::Hidden, cl::init(true));

#ifndef NDEBUG
static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
#endif

static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
                                     cl::ReallyHidden, cl::init(false),
                                     cl::ZeroOrMore, cl::desc("Ignore RecMII"));

namespace {

class NodeSet;
class SMSchedule;

/// The main class in the implementation of the target independent
/// software pipeliner pass.
class MachinePipeliner : public MachineFunctionPass {
public:
  MachineFunction *MF = nullptr;
  const MachineLoopInfo *MLI = nullptr;
  const MachineDominatorTree *MDT = nullptr;
  const InstrItineraryData *InstrItins;
  const TargetInstrInfo *TII = nullptr;
  RegisterClassInfo RegClassInfo;

#ifndef NDEBUG
  static int NumTries;
#endif

  /// Cache the target analysis information about the loop.
  struct LoopInfo {
    MachineBasicBlock *TBB = nullptr;
    MachineBasicBlock *FBB = nullptr;
    SmallVector<MachineOperand, 4> BrCond;
    MachineInstr *LoopInductionVar = nullptr;
    MachineInstr *LoopCompare = nullptr;
  };
  LoopInfo LI;

  static char ID;

  MachinePipeliner() : MachineFunctionPass(ID) {
    initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AAResultsWrapperPass>();
    AU.addPreserved<AAResultsWrapperPass>();
    AU.addRequired<MachineLoopInfo>();
    AU.addRequired<MachineDominatorTree>();
    AU.addRequired<LiveIntervals>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

private:
  bool canPipelineLoop(MachineLoop &L);
  bool scheduleLoop(MachineLoop &L);
  bool swingModuloScheduler(MachineLoop &L);
};

/// This class builds the dependence graph for the instructions in a loop,
/// and attempts to schedule the instructions using the SMS algorithm.
class SwingSchedulerDAG : public ScheduleDAGInstrs {
  MachinePipeliner &Pass;
  /// The minimum initiation interval between iterations for this schedule.
  unsigned MII = 0;
  /// Set to true if a valid pipelined schedule is found for the loop.
  bool Scheduled = false;
  MachineLoop &Loop;
  LiveIntervals &LIS;
  const RegisterClassInfo &RegClassInfo;

  /// A toplogical ordering of the SUnits, which is needed for changing
  /// dependences and iterating over the SUnits.
  ScheduleDAGTopologicalSort Topo;

  struct NodeInfo {
    int ASAP = 0;
    int ALAP = 0;

    NodeInfo() = default;
  };
  /// Computed properties for each node in the graph.
  std::vector<NodeInfo> ScheduleInfo;

  enum OrderKind { BottomUp = 0, TopDown = 1 };
  /// Computed node ordering for scheduling.
  SetVector<SUnit *> NodeOrder;

  using NodeSetType = SmallVector<NodeSet, 8>;
  using ValueMapTy = DenseMap<unsigned, unsigned>;
  using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
  using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;

  /// Instructions to change when emitting the final schedule.
  DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;

  /// We may create a new instruction, so remember it because it
  /// must be deleted when the pass is finished.
  SmallPtrSet<MachineInstr *, 4> NewMIs;

  /// Ordered list of DAG postprocessing steps.
  std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;

  /// Helper class to implement Johnson's circuit finding algorithm.
  class Circuits {
    std::vector<SUnit> &SUnits;
    SetVector<SUnit *> Stack;
    BitVector Blocked;
    SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
    SmallVector<SmallVector<int, 4>, 16> AdjK;
    unsigned NumPaths;
    static unsigned MaxPaths;

  public:
    Circuits(std::vector<SUnit> &SUs)
        : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {}

    /// Reset the data structures used in the circuit algorithm.
    void reset() {
      Stack.clear();
      Blocked.reset();
      B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
      NumPaths = 0;
    }

    void createAdjacencyStructure(SwingSchedulerDAG *DAG);
    bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
    void unblock(int U);
  };

public:
  SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
                    const RegisterClassInfo &rci)
      : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis),
        RegClassInfo(rci), Topo(SUnits, &ExitSU) {
    P.MF->getSubtarget().getSMSMutations(Mutations);
  }

  void schedule() override;
  void finishBlock() override;

  /// Return true if the loop kernel has been scheduled.
  bool hasNewSchedule() { return Scheduled; }

  /// Return the earliest time an instruction may be scheduled.
  int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }

  /// Return the latest time an instruction my be scheduled.
  int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }

  /// The mobility function, which the the number of slots in which
  /// an instruction may be scheduled.
  int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }

  /// The depth, in the dependence graph, for a node.
  int getDepth(SUnit *Node) { return Node->getDepth(); }

  /// The height, in the dependence graph, for a node.
  int getHeight(SUnit *Node) { return Node->getHeight(); }

  /// Return true if the dependence is a back-edge in the data dependence graph.
  /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
  /// using an anti dependence from a Phi to an instruction.
  bool isBackedge(SUnit *Source, const SDep &Dep) {
    if (Dep.getKind() != SDep::Anti)
      return false;
    return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
  }

  /// Return true if the dependence is an order dependence between non-Phis.
  static bool isOrder(SUnit *Source, const SDep &Dep) {
    if (Dep.getKind() != SDep::Order)
      return false;
    return (!Source->getInstr()->isPHI() &&
            !Dep.getSUnit()->getInstr()->isPHI());
  }

  bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true);

  /// The latency of the dependence.
  unsigned getLatency(SUnit *Source, const SDep &Dep) {
    // Anti dependences represent recurrences, so use the latency of the
    // instruction on the back-edge.
    if (Dep.getKind() == SDep::Anti) {
      if (Source->getInstr()->isPHI())
        return Dep.getSUnit()->Latency;
      if (Dep.getSUnit()->getInstr()->isPHI())
        return Source->Latency;
      return Dep.getLatency();
    }
    return Dep.getLatency();
  }

  /// The distance function, which indicates that operation V of iteration I
  /// depends on operations U of iteration I-distance.
  unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
    // Instructions that feed a Phi have a distance of 1. Computing larger
    // values for arrays requires data dependence information.
    if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
      return 1;
    return 0;
  }

  /// Set the Minimum Initiation Interval for this schedule attempt.
  void setMII(unsigned mii) { MII = mii; }

  void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule);

  void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs);

  /// Return the new base register that was stored away for the changed
  /// instruction.
  unsigned getInstrBaseReg(SUnit *SU) {
    DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
        InstrChanges.find(SU);
    if (It != InstrChanges.end())
      return It->second.first;
    return 0;
  }

  void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
    Mutations.push_back(std::move(Mutation));
  }

private:
  void addLoopCarriedDependences(AliasAnalysis *AA);
  void updatePhiDependences();
  void changeDependences();
  unsigned calculateResMII();
  unsigned calculateRecMII(NodeSetType &RecNodeSets);
  void findCircuits(NodeSetType &NodeSets);
  void fuseRecs(NodeSetType &NodeSets);
  void removeDuplicateNodes(NodeSetType &NodeSets);
  void computeNodeFunctions(NodeSetType &NodeSets);
  void registerPressureFilter(NodeSetType &NodeSets);
  void colocateNodeSets(NodeSetType &NodeSets);
  void checkNodeSets(NodeSetType &NodeSets);
  void groupRemainingNodes(NodeSetType &NodeSets);
  void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
                         SetVector<SUnit *> &NodesAdded);
  void computeNodeOrder(NodeSetType &NodeSets);
  bool schedulePipeline(SMSchedule &Schedule);
  void generatePipelinedLoop(SMSchedule &Schedule);
  void generateProlog(SMSchedule &Schedule, unsigned LastStage,
                      MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
                      MBBVectorTy &PrologBBs);
  void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
                      MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
                      MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
  void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
                            MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
                            SMSchedule &Schedule, ValueMapTy *VRMap,
                            InstrMapTy &InstrMap, unsigned LastStageNum,
                            unsigned CurStageNum, bool IsLast);
  void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
                    MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
                    SMSchedule &Schedule, ValueMapTy *VRMap,
                    InstrMapTy &InstrMap, unsigned LastStageNum,
                    unsigned CurStageNum, bool IsLast);
  void removeDeadInstructions(MachineBasicBlock *KernelBB,
                              MBBVectorTy &EpilogBBs);
  void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
                      SMSchedule &Schedule);
  void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
                   MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
                   ValueMapTy *VRMap);
  bool computeDelta(MachineInstr &MI, unsigned &Delta);
  void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
                         unsigned Num);
  MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
                           unsigned InstStageNum);
  MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
                                    unsigned InstStageNum,
                                    SMSchedule &Schedule);
  void updateInstruction(MachineInstr *NewMI, bool LastDef,
                         unsigned CurStageNum, unsigned InstStageNum,
                         SMSchedule &Schedule, ValueMapTy *VRMap);
  MachineInstr *findDefInLoop(unsigned Reg);
  unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
                         unsigned LoopStage, ValueMapTy *VRMap,
                         MachineBasicBlock *BB);
  void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
                        SMSchedule &Schedule, ValueMapTy *VRMap,
                        InstrMapTy &InstrMap);
  void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
                             InstrMapTy &InstrMap, unsigned CurStageNum,
                             unsigned PhiNum, MachineInstr *Phi,
                             unsigned OldReg, unsigned NewReg,
                             unsigned PrevReg = 0);
  bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
                             unsigned &OffsetPos, unsigned &NewBase,
                             int64_t &NewOffset);
  void postprocessDAG();
};

/// A NodeSet contains a set of SUnit DAG nodes with additional information
/// that assigns a priority to the set.
class NodeSet {
  SetVector<SUnit *> Nodes;
  bool HasRecurrence = false;
  unsigned RecMII = 0;
  int MaxMOV = 0;
  int MaxDepth = 0;
  unsigned Colocate = 0;
  SUnit *ExceedPressure = nullptr;

public:
  using iterator = SetVector<SUnit *>::const_iterator;

  NodeSet() = default;
  NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {}

  bool insert(SUnit *SU) { return Nodes.insert(SU); }

  void insert(iterator S, iterator E) { Nodes.insert(S, E); }

  template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
    return Nodes.remove_if(P);
  }

  unsigned count(SUnit *SU) const { return Nodes.count(SU); }

  bool hasRecurrence() { return HasRecurrence; };

  unsigned size() const { return Nodes.size(); }

  bool empty() const { return Nodes.empty(); }

  SUnit *getNode(unsigned i) const { return Nodes[i]; };

  void setRecMII(unsigned mii) { RecMII = mii; };

  void setColocate(unsigned c) { Colocate = c; };

  void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }

  bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }

  int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }

  int getRecMII() { return RecMII; }

  /// Summarize node functions for the entire node set.
  void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
    for (SUnit *SU : *this) {
      MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
      MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
    }
  }

  void clear() {
    Nodes.clear();
    RecMII = 0;
    HasRecurrence = false;
    MaxMOV = 0;
    MaxDepth = 0;
    Colocate = 0;
    ExceedPressure = nullptr;
  }

  operator SetVector<SUnit *> &() { return Nodes; }

  /// Sort the node sets by importance. First, rank them by recurrence MII,
  /// then by mobility (least mobile done first), and finally by depth.
  /// Each node set may contain a colocate value which is used as the first
  /// tie breaker, if it's set.
  bool operator>(const NodeSet &RHS) const {
    if (RecMII == RHS.RecMII) {
      if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
        return Colocate < RHS.Colocate;
      if (MaxMOV == RHS.MaxMOV)
        return MaxDepth > RHS.MaxDepth;
      return MaxMOV < RHS.MaxMOV;
    }
    return RecMII > RHS.RecMII;
  }

  bool operator==(const NodeSet &RHS) const {
    return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
           MaxDepth == RHS.MaxDepth;
  }

  bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }

  iterator begin() { return Nodes.begin(); }
  iterator end() { return Nodes.end(); }

  void print(raw_ostream &os) const {
    os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
       << " depth " << MaxDepth << " col " << Colocate << "\n";
    for (const auto &I : Nodes)
      os << "   SU(" << I->NodeNum << ") " << *(I->getInstr());
    os << "\n";
  }

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
#endif
};

/// This class repesents the scheduled code.  The main data structure is a
/// map from scheduled cycle to instructions.  During scheduling, the
/// data structure explicitly represents all stages/iterations.   When
/// the algorithm finshes, the schedule is collapsed into a single stage,
/// which represents instructions from different loop iterations.
///
/// The SMS algorithm allows negative values for cycles, so the first cycle
/// in the schedule is the smallest cycle value.
class SMSchedule {
private:
  /// Map from execution cycle to instructions.
  DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;

  /// Map from instruction to execution cycle.
  std::map<SUnit *, int> InstrToCycle;

  /// Map for each register and the max difference between its uses and def.
  /// The first element in the pair is the max difference in stages. The
  /// second is true if the register defines a Phi value and loop value is
  /// scheduled before the Phi.
  std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;

  /// Keep track of the first cycle value in the schedule.  It starts
  /// as zero, but the algorithm allows negative values.
  int FirstCycle = 0;

  /// Keep track of the last cycle value in the schedule.
  int LastCycle = 0;

  /// The initiation interval (II) for the schedule.
  int InitiationInterval = 0;

  /// Target machine information.
  const TargetSubtargetInfo &ST;

  /// Virtual register information.
  MachineRegisterInfo &MRI;

  std::unique_ptr<DFAPacketizer> Resources;

public:
  SMSchedule(MachineFunction *mf)
      : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
        Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {}

  void reset() {
    ScheduledInstrs.clear();
    InstrToCycle.clear();
    RegToStageDiff.clear();
    FirstCycle = 0;
    LastCycle = 0;
    InitiationInterval = 0;
  }

  /// Set the initiation interval for this schedule.
  void setInitiationInterval(int ii) { InitiationInterval = ii; }

  /// Return the first cycle in the completed schedule.  This
  /// can be a negative value.
  int getFirstCycle() const { return FirstCycle; }

  /// Return the last cycle in the finalized schedule.
  int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }

  /// Return the cycle of the earliest scheduled instruction in the dependence
  /// chain.
  int earliestCycleInChain(const SDep &Dep);

  /// Return the cycle of the latest scheduled instruction in the dependence
  /// chain.
  int latestCycleInChain(const SDep &Dep);

  void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
                    int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
  bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);

  /// Iterators for the cycle to instruction map.
  using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator;
  using const_sched_iterator =
      DenseMap<int, std::deque<SUnit *>>::const_iterator;

  /// Return true if the instruction is scheduled at the specified stage.
  bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
    return (stageScheduled(SU) == (int)StageNum);
  }

  /// Return the stage for a scheduled instruction.  Return -1 if
  /// the instruction has not been scheduled.
  int stageScheduled(SUnit *SU) const {
    std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
    if (it == InstrToCycle.end())
      return -1;
    return (it->second - FirstCycle) / InitiationInterval;
  }

  /// Return the cycle for a scheduled instruction. This function normalizes
  /// the first cycle to be 0.
  unsigned cycleScheduled(SUnit *SU) const {
    std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
    assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
    return (it->second - FirstCycle) % InitiationInterval;
  }

  /// Return the maximum stage count needed for this schedule.
  unsigned getMaxStageCount() {
    return (LastCycle - FirstCycle) / InitiationInterval;
  }

  /// Return the max. number of stages/iterations that can occur between a
  /// register definition and its uses.
  unsigned getStagesForReg(int Reg, unsigned CurStage) {
    std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
    if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
      return 1;
    return Stages.first;
  }

  /// The number of stages for a Phi is a little different than other
  /// instructions. The minimum value computed in RegToStageDiff is 1
  /// because we assume the Phi is needed for at least 1 iteration.
  /// This is not the case if the loop value is scheduled prior to the
  /// Phi in the same stage.  This function returns the number of stages
  /// or iterations needed between the Phi definition and any uses.
  unsigned getStagesForPhi(int Reg) {
    std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
    if (Stages.second)
      return Stages.first;
    return Stages.first - 1;
  }

  /// Return the instructions that are scheduled at the specified cycle.
  std::deque<SUnit *> &getInstructions(int cycle) {
    return ScheduledInstrs[cycle];
  }

  bool isValidSchedule(SwingSchedulerDAG *SSD);
  void finalizeSchedule(SwingSchedulerDAG *SSD);
  bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
                       std::deque<SUnit *> &Insts);
  bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
  bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst,
                             MachineOperand &MO);
  void print(raw_ostream &os) const;
  void dump() const;
};

} // end anonymous namespace

unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
char MachinePipeliner::ID = 0;
#ifndef NDEBUG
int MachinePipeliner::NumTries = 0;
#endif
char &llvm::MachinePipelinerID = MachinePipeliner::ID;

INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
                      "Modulo Software Pipelining", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
                    "Modulo Software Pipelining", false, false)

/// The "main" function for implementing Swing Modulo Scheduling.
bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
  if (skipFunction(*mf.getFunction()))
    return false;

  if (!EnableSWP)
    return false;

  if (mf.getFunction()->getAttributes().hasAttribute(
          AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
      !EnableSWPOptSize.getPosition())
    return false;

  MF = &mf;
  MLI = &getAnalysis<MachineLoopInfo>();
  MDT = &getAnalysis<MachineDominatorTree>();
  TII = MF->getSubtarget().getInstrInfo();
  RegClassInfo.runOnMachineFunction(*MF);

  for (auto &L : *MLI)
    scheduleLoop(*L);

  return false;
}

/// Attempt to perform the SMS algorithm on the specified loop. This function is
/// the main entry point for the algorithm.  The function identifies candidate
/// loops, calculates the minimum initiation interval, and attempts to schedule
/// the loop.
bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
  bool Changed = false;
  for (auto &InnerLoop : L)
    Changed |= scheduleLoop(*InnerLoop);

#ifndef NDEBUG
  // Stop trying after reaching the limit (if any).
  int Limit = SwpLoopLimit;
  if (Limit >= 0) {
    if (NumTries >= SwpLoopLimit)
      return Changed;
    NumTries++;
  }
#endif

  if (!canPipelineLoop(L))
    return Changed;

  ++NumTrytoPipeline;

  Changed = swingModuloScheduler(L);

  return Changed;
}

/// Return true if the loop can be software pipelined.  The algorithm is
/// restricted to loops with a single basic block.  Make sure that the
/// branch in the loop can be analyzed.
bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
  if (L.getNumBlocks() != 1)
    return false;

  // Check if the branch can't be understood because we can't do pipelining
  // if that's the case.
  LI.TBB = nullptr;
  LI.FBB = nullptr;
  LI.BrCond.clear();
  if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
    return false;

  LI.LoopInductionVar = nullptr;
  LI.LoopCompare = nullptr;
  if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
    return false;

  if (!L.getLoopPreheader())
    return false;

  // If any of the Phis contain subregs, then we can't pipeline
  // because we don't know how to maintain subreg information in the
  // VMap structure.
  MachineBasicBlock *MBB = L.getHeader();
  for (MachineBasicBlock::iterator BBI = MBB->instr_begin(),
                                   BBE = MBB->getFirstNonPHI();
       BBI != BBE; ++BBI)
    for (unsigned i = 1; i != BBI->getNumOperands(); i += 2)
      if (BBI->getOperand(i).getSubReg() != 0)
        return false;

  return true;
}

/// The SMS algorithm consists of the following main steps:
/// 1. Computation and analysis of the dependence graph.
/// 2. Ordering of the nodes (instructions).
/// 3. Attempt to Schedule the loop.
bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
  assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");

  SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);

  MachineBasicBlock *MBB = L.getHeader();
  // The kernel should not include any terminator instructions.  These
  // will be added back later.
  SMS.startBlock(MBB);

  // Compute the number of 'real' instructions in the basic block by
  // ignoring terminators.
  unsigned size = MBB->size();
  for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
                                   E = MBB->instr_end();
       I != E; ++I, --size)
    ;

  SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
  SMS.schedule();
  SMS.exitRegion();

  SMS.finishBlock();
  return SMS.hasNewSchedule();
}

/// We override the schedule function in ScheduleDAGInstrs to implement the
/// scheduling part of the Swing Modulo Scheduling algorithm.
void SwingSchedulerDAG::schedule() {
  AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
  buildSchedGraph(AA);
  addLoopCarriedDependences(AA);
  updatePhiDependences();
  Topo.InitDAGTopologicalSorting();
  postprocessDAG();
  changeDependences();
  DEBUG({
    for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
      SUnits[su].dumpAll(this);
  });

  NodeSetType NodeSets;
  findCircuits(NodeSets);

  // Calculate the MII.
  unsigned ResMII = calculateResMII();
  unsigned RecMII = calculateRecMII(NodeSets);

  fuseRecs(NodeSets);

  // This flag is used for testing and can cause correctness problems.
  if (SwpIgnoreRecMII)
    RecMII = 0;

  MII = std::max(ResMII, RecMII);
  DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII
               << ")\n");

  // Can't schedule a loop without a valid MII.
  if (MII == 0)
    return;

  // Don't pipeline large loops.
  if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
    return;

  computeNodeFunctions(NodeSets);

  registerPressureFilter(NodeSets);

  colocateNodeSets(NodeSets);

  checkNodeSets(NodeSets);

  DEBUG({
    for (auto &I : NodeSets) {
      dbgs() << "  Rec NodeSet ";
      I.dump();
    }
  });

  std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());

  groupRemainingNodes(NodeSets);

  removeDuplicateNodes(NodeSets);

  DEBUG({
    for (auto &I : NodeSets) {
      dbgs() << "  NodeSet ";
      I.dump();
    }
  });

  computeNodeOrder(NodeSets);

  SMSchedule Schedule(Pass.MF);
  Scheduled = schedulePipeline(Schedule);

  if (!Scheduled)
    return;

  unsigned numStages = Schedule.getMaxStageCount();
  // No need to generate pipeline if there are no overlapped iterations.
  if (numStages == 0)
    return;

  // Check that the maximum stage count is less than user-defined limit.
  if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
    return;

  generatePipelinedLoop(Schedule);
  ++NumPipelined;
}

/// Clean up after the software pipeliner runs.
void SwingSchedulerDAG::finishBlock() {
  for (MachineInstr *I : NewMIs)
    MF.DeleteMachineInstr(I);
  NewMIs.clear();

  // Call the superclass.
  ScheduleDAGInstrs::finishBlock();
}

/// Return the register values for  the operands of a Phi instruction.
/// This function assume the instruction is a Phi.
static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
                       unsigned &InitVal, unsigned &LoopVal) {
  assert(Phi.isPHI() && "Expecting a Phi.");

  InitVal = 0;
  LoopVal = 0;
  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
    if (Phi.getOperand(i + 1).getMBB() != Loop)
      InitVal = Phi.getOperand(i).getReg();
    else
      LoopVal = Phi.getOperand(i).getReg();

  assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
}

/// Return the Phi register value that comes from the incoming block.
static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
    if (Phi.getOperand(i + 1).getMBB() != LoopBB)
      return Phi.getOperand(i).getReg();
  return 0;
}

/// Return the Phi register value that comes the the loop block.
static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
    if (Phi.getOperand(i + 1).getMBB() == LoopBB)
      return Phi.getOperand(i).getReg();
  return 0;
}

/// Return true if SUb can be reached from SUa following the chain edges.
static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
  SmallPtrSet<SUnit *, 8> Visited;
  SmallVector<SUnit *, 8> Worklist;
  Worklist.push_back(SUa);
  while (!Worklist.empty()) {
    const SUnit *SU = Worklist.pop_back_val();
    for (auto &SI : SU->Succs) {
      SUnit *SuccSU = SI.getSUnit();
      if (SI.getKind() == SDep::Order) {
        if (Visited.count(SuccSU))
          continue;
        if (SuccSU == SUb)
          return true;
        Worklist.push_back(SuccSU);
        Visited.insert(SuccSU);
      }
    }
  }
  return false;
}

/// Return true if the instruction causes a chain between memory
/// references before and after it.
static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
  return MI.isCall() || MI.hasUnmodeledSideEffects() ||
         (MI.hasOrderedMemoryRef() &&
          (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
}

/// Return the underlying objects for the memory references of an instruction.
/// This function calls the code in ValueTracking, but first checks that the
/// instruction has a memory operand.
static void getUnderlyingObjects(MachineInstr *MI,
                                 SmallVectorImpl<Value *> &Objs,
                                 const DataLayout &DL) {
  if (!MI->hasOneMemOperand())
    return;
  MachineMemOperand *MM = *MI->memoperands_begin();
  if (!MM->getValue())
    return;
  GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
}

/// Add a chain edge between a load and store if the store can be an
/// alias of the load on a subsequent iteration, i.e., a loop carried
/// dependence. This code is very similar to the code in ScheduleDAGInstrs
/// but that code doesn't create loop carried dependences.
void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
  MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
  for (auto &SU : SUnits) {
    MachineInstr &MI = *SU.getInstr();
    if (isDependenceBarrier(MI, AA))
      PendingLoads.clear();
    else if (MI.mayLoad()) {
      SmallVector<Value *, 4> Objs;
      getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
      for (auto V : Objs) {
        SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
        SUs.push_back(&SU);
      }
    } else if (MI.mayStore()) {
      SmallVector<Value *, 4> Objs;
      getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
      for (auto V : Objs) {
        MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
            PendingLoads.find(V);
        if (I == PendingLoads.end())
          continue;
        for (auto Load : I->second) {
          if (isSuccOrder(Load, &SU))
            continue;
          MachineInstr &LdMI = *Load->getInstr();
          // First, perform the cheaper check that compares the base register.
          // If they are the same and the load offset is less than the store
          // offset, then mark the dependence as loop carried potentially.
          unsigned BaseReg1, BaseReg2;
          int64_t Offset1, Offset2;
          if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) ||
              !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) {
            SU.addPred(SDep(Load, SDep::Barrier));
            continue;            
          }
          if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) {
            assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
                   "What happened to the chain edge?");
            SU.addPred(SDep(Load, SDep::Barrier));
            continue;
          }
          // Second, the more expensive check that uses alias analysis on the
          // base registers. If they alias, and the load offset is less than
          // the store offset, the mark the dependence as loop carried.
          if (!AA) {
            SU.addPred(SDep(Load, SDep::Barrier));
            continue;
          }
          MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
          MachineMemOperand *MMO2 = *MI.memoperands_begin();
          if (!MMO1->getValue() || !MMO2->getValue()) {
            SU.addPred(SDep(Load, SDep::Barrier));
            continue;
          }
          if (MMO1->getValue() == MMO2->getValue() &&
              MMO1->getOffset() <= MMO2->getOffset()) {
            SU.addPred(SDep(Load, SDep::Barrier));
            continue;
          }
          AliasResult AAResult = AA->alias(
              MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
                             MMO1->getAAInfo()),
              MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
                             MMO2->getAAInfo()));

          if (AAResult != NoAlias)
            SU.addPred(SDep(Load, SDep::Barrier));
        }
      }
    }
  }
}

/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
/// processes dependences for PHIs. This function adds true dependences
/// from a PHI to a use, and a loop carried dependence from the use to the
/// PHI. The loop carried dependence is represented as an anti dependence
/// edge. This function also removes chain dependences between unrelated
/// PHIs.
void SwingSchedulerDAG::updatePhiDependences() {
  SmallVector<SDep, 4> RemoveDeps;
  const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();

  // Iterate over each DAG node.
  for (SUnit &I : SUnits) {
    RemoveDeps.clear();
    // Set to true if the instruction has an operand defined by a Phi.
    unsigned HasPhiUse = 0;
    unsigned HasPhiDef = 0;
    MachineInstr *MI = I.getInstr();
    // Iterate over each operand, and we process the definitions.
    for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
                                    MOE = MI->operands_end();
         MOI != MOE; ++MOI) {
      if (!MOI->isReg())
        continue;
      unsigned Reg = MOI->getReg();
      if (MOI->isDef()) {
        // If the register is used by a Phi, then create an anti dependence.
        for (MachineRegisterInfo::use_instr_iterator
                 UI = MRI.use_instr_begin(Reg),
                 UE = MRI.use_instr_end();
             UI != UE; ++UI) {
          MachineInstr *UseMI = &*UI;
          SUnit *SU = getSUnit(UseMI);
          if (SU != nullptr && UseMI->isPHI()) {
            if (!MI->isPHI()) {
              SDep Dep(SU, SDep::Anti, Reg);
              I.addPred(Dep);
            } else {
              HasPhiDef = Reg;
              // Add a chain edge to a dependent Phi that isn't an existing
              // predecessor.
              if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
                I.addPred(SDep(SU, SDep::Barrier));
            }
          }
        }
      } else if (MOI->isUse()) {
        // If the register is defined by a Phi, then create a true dependence.
        MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
        if (DefMI == nullptr)
          continue;
        SUnit *SU = getSUnit(DefMI);
        if (SU != nullptr && DefMI->isPHI()) {
          if (!MI->isPHI()) {
            SDep Dep(SU, SDep::Data, Reg);
            Dep.setLatency(0);
            ST.adjustSchedDependency(SU, &I, Dep);
            I.addPred(Dep);
          } else {
            HasPhiUse = Reg;
            // Add a chain edge to a dependent Phi that isn't an existing
            // predecessor.
            if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
              I.addPred(SDep(SU, SDep::Barrier));
          }
        }
      }
    }
    // Remove order dependences from an unrelated Phi.
    if (!SwpPruneDeps)
      continue;
    for (auto &PI : I.Preds) {
      MachineInstr *PMI = PI.getSUnit()->getInstr();
      if (PMI->isPHI() && PI.getKind() == SDep::Order) {
        if (I.getInstr()->isPHI()) {
          if (PMI->getOperand(0).getReg() == HasPhiUse)
            continue;
          if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
            continue;
        }
        RemoveDeps.push_back(PI);
      }
    }
    for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
      I.removePred(RemoveDeps[i]);
  }
}

/// Iterate over each DAG node and see if we can change any dependences
/// in order to reduce the recurrence MII.
void SwingSchedulerDAG::changeDependences() {
  // See if an instruction can use a value from the previous iteration.
  // If so, we update the base and offset of the instruction and change
  // the dependences.
  for (SUnit &I : SUnits) {
    unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
    int64_t NewOffset = 0;
    if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
                               NewOffset))
      continue;

    // Get the MI and SUnit for the instruction that defines the original base.
    unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
    MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
    if (!DefMI)
      continue;
    SUnit *DefSU = getSUnit(DefMI);
    if (!DefSU)
      continue;
    // Get the MI and SUnit for the instruction that defins the new base.
    MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
    if (!LastMI)
      continue;
    SUnit *LastSU = getSUnit(LastMI);
    if (!LastSU)
      continue;

    if (Topo.IsReachable(&I, LastSU))
      continue;

    // Remove the dependence. The value now depends on a prior iteration.
    SmallVector<SDep, 4> Deps;
    for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
         ++P)
      if (P->getSUnit() == DefSU)
        Deps.push_back(*P);
    for (int i = 0, e = Deps.size(); i != e; i++) {
      Topo.RemovePred(&I, Deps[i].getSUnit());
      I.removePred(Deps[i]);
    }
    // Remove the chain dependence between the instructions.
    Deps.clear();
    for (auto &P : LastSU->Preds)
      if (P.getSUnit() == &I && P.getKind() == SDep::Order)
        Deps.push_back(P);
    for (int i = 0, e = Deps.size(); i != e; i++) {
      Topo.RemovePred(LastSU, Deps[i].getSUnit());
      LastSU->removePred(Deps[i]);
    }

    // Add a dependence between the new instruction and the instruction
    // that defines the new base.
    SDep Dep(&I, SDep::Anti, NewBase);
    LastSU->addPred(Dep);

    // Remember the base and offset information so that we can update the
    // instruction during code generation.
    InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
  }
}

namespace {

// FuncUnitSorter - Comparison operator used to sort instructions by
// the number of functional unit choices.
struct FuncUnitSorter {
  const InstrItineraryData *InstrItins;
  DenseMap<unsigned, unsigned> Resources;

  FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}

  // Compute the number of functional unit alternatives needed
  // at each stage, and take the minimum value. We prioritize the
  // instructions by the least number of choices first.
  unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
    unsigned schedClass = Inst->getDesc().getSchedClass();
    unsigned min = UINT_MAX;
    for (const InstrStage *IS = InstrItins->beginStage(schedClass),
                          *IE = InstrItins->endStage(schedClass);
         IS != IE; ++IS) {
      unsigned funcUnits = IS->getUnits();
      unsigned numAlternatives = countPopulation(funcUnits);
      if (numAlternatives < min) {
        min = numAlternatives;
        F = funcUnits;
      }
    }
    return min;
  }

  // Compute the critical resources needed by the instruction. This
  // function records the functional units needed by instructions that
  // must use only one functional unit. We use this as a tie breaker
  // for computing the resource MII. The instrutions that require
  // the same, highly used, functional unit have high priority.
  void calcCriticalResources(MachineInstr &MI) {
    unsigned SchedClass = MI.getDesc().getSchedClass();
    for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
                          *IE = InstrItins->endStage(SchedClass);
         IS != IE; ++IS) {
      unsigned FuncUnits = IS->getUnits();
      if (countPopulation(FuncUnits) == 1)
        Resources[FuncUnits]++;
    }
  }

  /// Return true if IS1 has less priority than IS2.
  bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
    unsigned F1 = 0, F2 = 0;
    unsigned MFUs1 = minFuncUnits(IS1, F1);
    unsigned MFUs2 = minFuncUnits(IS2, F2);
    if (MFUs1 == 1 && MFUs2 == 1)
      return Resources.lookup(F1) < Resources.lookup(F2);
    return MFUs1 > MFUs2;
  }
};

} // end anonymous namespace

/// Calculate the resource constrained minimum initiation interval for the
/// specified loop. We use the DFA to model the resources needed for
/// each instruction, and we ignore dependences. A different DFA is created
/// for each cycle that is required. When adding a new instruction, we attempt
/// to add it to each existing DFA, until a legal space is found. If the
/// instruction cannot be reserved in an existing DFA, we create a new one.
unsigned SwingSchedulerDAG::calculateResMII() {
  SmallVector<DFAPacketizer *, 8> Resources;
  MachineBasicBlock *MBB = Loop.getHeader();
  Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));

  // Sort the instructions by the number of available choices for scheduling,
  // least to most. Use the number of critical resources as the tie breaker.
  FuncUnitSorter FUS =
      FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
  for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
                                   E = MBB->getFirstTerminator();
       I != E; ++I)
    FUS.calcCriticalResources(*I);
  PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
      FuncUnitOrder(FUS);

  for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
                                   E = MBB->getFirstTerminator();
       I != E; ++I)
    FuncUnitOrder.push(&*I);

  while (!FuncUnitOrder.empty()) {
    MachineInstr *MI = FuncUnitOrder.top();
    FuncUnitOrder.pop();
    if (TII->isZeroCost(MI->getOpcode()))
      continue;
    // Attempt to reserve the instruction in an existing DFA. At least one
    // DFA is needed for each cycle.
    unsigned NumCycles = getSUnit(MI)->Latency;
    unsigned ReservedCycles = 0;
    SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
    SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
    for (unsigned C = 0; C < NumCycles; ++C)
      while (RI != RE) {
        if ((*RI++)->canReserveResources(*MI)) {
          ++ReservedCycles;
          break;
        }
      }
    // Start reserving resources using existing DFAs.
    for (unsigned C = 0; C < ReservedCycles; ++C) {
      --RI;
      (*RI)->reserveResources(*MI);
    }
    // Add new DFAs, if needed, to reserve resources.
    for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
      DFAPacketizer *NewResource =
          TII->CreateTargetScheduleState(MF.getSubtarget());
      assert(NewResource->canReserveResources(*MI) && "Reserve error.");
      NewResource->reserveResources(*MI);
      Resources.push_back(NewResource);
    }
  }
  int Resmii = Resources.size();
  // Delete the memory for each of the DFAs that were created earlier.
  for (DFAPacketizer *RI : Resources) {
    DFAPacketizer *D = RI;
    delete D;
  }
  Resources.clear();
  return Resmii;
}

/// Calculate the recurrence-constrainted minimum initiation interval.
/// Iterate over each circuit.  Compute the delay(c) and distance(c)
/// for each circuit. The II needs to satisfy the inequality
/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
/// II that satistifies the inequality, and the RecMII is the maximum
/// of those values.
unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
  unsigned RecMII = 0;

  for (NodeSet &Nodes : NodeSets) {
    if (Nodes.empty())
      continue;

    unsigned Delay = Nodes.size() - 1;
    unsigned Distance = 1;

    // ii = ceil(delay / distance)
    unsigned CurMII = (Delay + Distance - 1) / Distance;
    Nodes.setRecMII(CurMII);
    if (CurMII > RecMII)
      RecMII = CurMII;
  }

  return RecMII;
}

/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
/// but we do this to find the circuits, and then change them back.
static void swapAntiDependences(std::vector<SUnit> &SUnits) {
  SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    SUnit *SU = &SUnits[i];
    for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
         IP != EP; ++IP) {
      if (IP->getKind() != SDep::Anti)
        continue;
      DepsAdded.push_back(std::make_pair(SU, *IP));
    }
  }
  for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
                                                          E = DepsAdded.end();
       I != E; ++I) {
    // Remove this anti dependency and add one in the reverse direction.
    SUnit *SU = I->first;
    SDep &D = I->second;
    SUnit *TargetSU = D.getSUnit();
    unsigned Reg = D.getReg();
    unsigned Lat = D.getLatency();
    SU->removePred(D);
    SDep Dep(SU, SDep::Anti, Reg);
    Dep.setLatency(Lat);
    TargetSU->addPred(Dep);
  }
}

/// Create the adjacency structure of the nodes in the graph.
void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
    SwingSchedulerDAG *DAG) {
  BitVector Added(SUnits.size());
  for (int i = 0, e = SUnits.size(); i != e; ++i) {
    Added.reset();
    // Add any successor to the adjacency matrix and exclude duplicates.
    for (auto &SI : SUnits[i].Succs) {
      // Do not process a boundary node and a back-edge is processed only
      // if it goes to a Phi.
      if (SI.getSUnit()->isBoundaryNode() ||
          (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
        continue;
      int N = SI.getSUnit()->NodeNum;
      if (!Added.test(N)) {
        AdjK[i].push_back(N);
        Added.set(N);
      }
    }
    // A chain edge between a store and a load is treated as a back-edge in the
    // adjacency matrix.
    for (auto &PI : SUnits[i].Preds) {
      if (!SUnits[i].getInstr()->mayStore() ||
          !DAG->isLoopCarriedOrder(&SUnits[i], PI, false))
        continue;
      if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
        int N = PI.getSUnit()->NodeNum;
        if (!Added.test(N)) {
          AdjK[i].push_back(N);
          Added.set(N);
        }
      }
    }
  }
}

/// Identify an elementary circuit in the dependence graph starting at the
/// specified node.
bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
                                          bool HasBackedge) {
  SUnit *SV = &SUnits[V];
  bool F = false;
  Stack.insert(SV);
  Blocked.set(V);

  for (auto W : AdjK[V]) {
    if (NumPaths > MaxPaths)
      break;
    if (W < S)
      continue;
    if (W == S) {
      if (!HasBackedge)
        NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
      F = true;
      ++NumPaths;
      break;
    } else if (!Blocked.test(W)) {
      if (circuit(W, S, NodeSets, W < V ? true : HasBackedge))
        F = true;
    }
  }

  if (F)
    unblock(V);
  else {
    for (auto W : AdjK[V]) {
      if (W < S)
        continue;
      if (B[W].count(SV) == 0)
        B[W].insert(SV);
    }
  }
  Stack.pop_back();
  return F;
}

/// Unblock a node in the circuit finding algorithm.
void SwingSchedulerDAG::Circuits::unblock(int U) {
  Blocked.reset(U);
  SmallPtrSet<SUnit *, 4> &BU = B[U];
  while (!BU.empty()) {
    SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
    assert(SI != BU.end() && "Invalid B set.");
    SUnit *W = *SI;
    BU.erase(W);
    if (Blocked.test(W->NodeNum))
      unblock(W->NodeNum);
  }
}

/// Identify all the elementary circuits in the dependence graph using
/// Johnson's circuit algorithm.
void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
  // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
  // but we do this to find the circuits, and then change them back.
  swapAntiDependences(SUnits);

  Circuits Cir(SUnits);
  // Create the adjacency structure.
  Cir.createAdjacencyStructure(this);
  for (int i = 0, e = SUnits.size(); i != e; ++i) {
    Cir.reset();
    Cir.circuit(i, i, NodeSets);
  }

  // Change the dependences back so that we've created a DAG again.
  swapAntiDependences(SUnits);
}

/// Return true for DAG nodes that we ignore when computing the cost functions.
/// We ignore the back-edge recurrence in order to avoid unbounded recurison
/// in the calculation of the ASAP, ALAP, etc functions.
static bool ignoreDependence(const SDep &D, bool isPred) {
  if (D.isArtificial())
    return true;
  return D.getKind() == SDep::Anti && isPred;
}

/// Compute several functions need to order the nodes for scheduling.
///  ASAP - Earliest time to schedule a node.
///  ALAP - Latest time to schedule a node.
///  MOV - Mobility function, difference between ALAP and ASAP.
///  D - Depth of each node.
///  H - Height of each node.
void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
  ScheduleInfo.resize(SUnits.size());

  DEBUG({
    for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
                                                    E = Topo.end();
         I != E; ++I) {
      SUnit *SU = &SUnits[*I];
      SU->dump(this);
    }
  });

  int maxASAP = 0;
  // Compute ASAP.
  for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
                                                  E = Topo.end();
       I != E; ++I) {
    int asap = 0;
    SUnit *SU = &SUnits[*I];
    for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
                                    EP = SU->Preds.end();
         IP != EP; ++IP) {
      if (ignoreDependence(*IP, true))
        continue;
      SUnit *pred = IP->getSUnit();
      asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) -
                                  getDistance(pred, SU, *IP) * MII));
    }
    maxASAP = std::max(maxASAP, asap);
    ScheduleInfo[*I].ASAP = asap;
  }

  // Compute ALAP and MOV.
  for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
                                                          E = Topo.rend();
       I != E; ++I) {
    int alap = maxASAP;
    SUnit *SU = &SUnits[*I];
    for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
                                    ES = SU->Succs.end();
         IS != ES; ++IS) {
      if (ignoreDependence(*IS, true))
        continue;
      SUnit *succ = IS->getSUnit();
      alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) +
                                  getDistance(SU, succ, *IS) * MII));
    }

    ScheduleInfo[*I].ALAP = alap;
  }

  // After computing the node functions, compute the summary for each node set.
  for (NodeSet &I : NodeSets)
    I.computeNodeSetInfo(this);

  DEBUG({
    for (unsigned i = 0; i < SUnits.size(); i++) {
      dbgs() << "\tNode " << i << ":\n";
      dbgs() << "\t   ASAP = " << getASAP(&SUnits[i]) << "\n";
      dbgs() << "\t   ALAP = " << getALAP(&SUnits[i]) << "\n";
      dbgs() << "\t   MOV  = " << getMOV(&SUnits[i]) << "\n";
      dbgs() << "\t   D    = " << getDepth(&SUnits[i]) << "\n";
      dbgs() << "\t   H    = " << getHeight(&SUnits[i]) << "\n";
    }
  });
}

/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
/// as the predecessors of the elements of NodeOrder that are not also in
/// NodeOrder.
static bool pred_L(SetVector<SUnit *> &NodeOrder,
                   SmallSetVector<SUnit *, 8> &Preds,
                   const NodeSet *S = nullptr) {
  Preds.clear();
  for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
       I != E; ++I) {
    for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
         PI != PE; ++PI) {
      if (S && S->count(PI->getSUnit()) == 0)
        continue;
      if (ignoreDependence(*PI, true))
        continue;
      if (NodeOrder.count(PI->getSUnit()) == 0)
        Preds.insert(PI->getSUnit());
    }
    // Back-edges are predecessors with an anti-dependence.
    for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
                                    ES = (*I)->Succs.end();
         IS != ES; ++IS) {
      if (IS->getKind() != SDep::Anti)
        continue;
      if (S && S->count(IS->getSUnit()) == 0)
        continue;
      if (NodeOrder.count(IS->getSUnit()) == 0)
        Preds.insert(IS->getSUnit());
    }
  }
  return !Preds.empty();
}

/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
/// as the successors of the elements of NodeOrder that are not also in
/// NodeOrder.
static bool succ_L(SetVector<SUnit *> &NodeOrder,
                   SmallSetVector<SUnit *, 8> &Succs,
                   const NodeSet *S = nullptr) {
  Succs.clear();
  for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
       I != E; ++I) {
    for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
         SI != SE; ++SI) {
      if (S && S->count(SI->getSUnit()) == 0)
        continue;
      if (ignoreDependence(*SI, false))
        continue;
      if (NodeOrder.count(SI->getSUnit()) == 0)
        Succs.insert(SI->getSUnit());
    }
    for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
                                    PE = (*I)->Preds.end();
         PI != PE; ++PI) {
      if (PI->getKind() != SDep::Anti)
        continue;
      if (S && S->count(PI->getSUnit()) == 0)
        continue;
      if (NodeOrder.count(PI->getSUnit()) == 0)
        Succs.insert(PI->getSUnit());
    }
  }
  return !Succs.empty();
}

/// Return true if there is a path from the specified node to any of the nodes
/// in DestNodes. Keep track and return the nodes in any path.
static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
                        SetVector<SUnit *> &DestNodes,
                        SetVector<SUnit *> &Exclude,
                        SmallPtrSet<SUnit *, 8> &Visited) {
  if (Cur->isBoundaryNode())
    return false;
  if (Exclude.count(Cur) != 0)
    return false;
  if (DestNodes.count(Cur) != 0)
    return true;
  if (!Visited.insert(Cur).second)
    return Path.count(Cur) != 0;
  bool FoundPath = false;
  for (auto &SI : Cur->Succs)
    FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
  for (auto &PI : Cur->Preds)
    if (PI.getKind() == SDep::Anti)
      FoundPath |=
          computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
  if (FoundPath)
    Path.insert(Cur);
  return FoundPath;
}

/// Return true if Set1 is a subset of Set2.
template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
  for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
    if (Set2.count(*I) == 0)
      return false;
  return true;
}

/// Compute the live-out registers for the instructions in a node-set.
/// The live-out registers are those that are defined in the node-set,
/// but not used. Except for use operands of Phis.
static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
                            NodeSet &NS) {
  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  SmallVector<RegisterMaskPair, 8> LiveOutRegs;
  SmallSet<unsigned, 4> Uses;
  for (SUnit *SU : NS) {
    const MachineInstr *MI = SU->getInstr();
    if (MI->isPHI())
      continue;
    for (const MachineOperand &MO : MI->operands())
      if (MO.isReg() && MO.isUse()) {
        unsigned Reg = MO.getReg();
        if (TargetRegisterInfo::isVirtualRegister(Reg))
          Uses.insert(Reg);
        else if (MRI.isAllocatable(Reg))
          for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
            Uses.insert(*Units);
      }
  }
  for (SUnit *SU : NS)
    for (const MachineOperand &MO : SU->getInstr()->operands())
      if (MO.isReg() && MO.isDef() && !MO.isDead()) {
        unsigned Reg = MO.getReg();
        if (TargetRegisterInfo::isVirtualRegister(Reg)) {
          if (!Uses.count(Reg))
            LiveOutRegs.push_back(RegisterMaskPair(Reg,
                                                   LaneBitmask::getNone()));
        } else if (MRI.isAllocatable(Reg)) {
          for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
            if (!Uses.count(*Units))
              LiveOutRegs.push_back(RegisterMaskPair(*Units,
                                                     LaneBitmask::getNone()));
        }
      }
  RPTracker.addLiveRegs(LiveOutRegs);
}

/// A heuristic to filter nodes in recurrent node-sets if the register
/// pressure of a set is too high.
void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
  for (auto &NS : NodeSets) {
    // Skip small node-sets since they won't cause register pressure problems.
    if (NS.size() <= 2)
      continue;
    IntervalPressure RecRegPressure;
    RegPressureTracker RecRPTracker(RecRegPressure);
    RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
    computeLiveOuts(MF, RecRPTracker, NS);
    RecRPTracker.closeBottom();

    std::vector<SUnit *> SUnits(NS.begin(), NS.end());
    std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) {
      return A->NodeNum > B->NodeNum;
    });

    for (auto &SU : SUnits) {
      // Since we're computing the register pressure for a subset of the
      // instructions in a block, we need to set the tracker for each
      // instruction in the node-set. The tracker is set to the instruction
      // just after the one we're interested in.
      MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
      RecRPTracker.setPos(std::next(CurInstI));

      RegPressureDelta RPDelta;
      ArrayRef<PressureChange> CriticalPSets;
      RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
                                             CriticalPSets,
                                             RecRegPressure.MaxSetPressure);
      if (RPDelta.Excess.isValid()) {
        DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
                     << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
                     << ":" << RPDelta.Excess.getUnitInc());
        NS.setExceedPressure(SU);
        break;
      }
      RecRPTracker.recede();
    }
  }
}

/// A heuristic to colocate node sets that have the same set of
/// successors.
void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
  unsigned Colocate = 0;
  for (int i = 0, e = NodeSets.size(); i < e; ++i) {
    NodeSet &N1 = NodeSets[i];
    SmallSetVector<SUnit *, 8> S1;
    if (N1.empty() || !succ_L(N1, S1))
      continue;
    for (int j = i + 1; j < e; ++j) {
      NodeSet &N2 = NodeSets[j];
      if (N1.compareRecMII(N2) != 0)
        continue;
      SmallSetVector<SUnit *, 8> S2;
      if (N2.empty() || !succ_L(N2, S2))
        continue;
      if (isSubset(S1, S2) && S1.size() == S2.size()) {
        N1.setColocate(++Colocate);
        N2.setColocate(Colocate);
        break;
      }
    }
  }
}

/// Check if the existing node-sets are profitable. If not, then ignore the
/// recurrent node-sets, and attempt to schedule all nodes together. This is
/// a heuristic. If the MII is large and there is a non-recurrent node with
/// a large depth compared to the MII, then it's best to try and schedule
/// all instruction together instead of starting with the recurrent node-sets.
void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
  // Look for loops with a large MII.
  if (MII <= 20)
    return;
  // Check if the node-set contains only a simple add recurrence.
  for (auto &NS : NodeSets)
    if (NS.size() > 2)
      return;
  // If the depth of any instruction is significantly larger than the MII, then
  // ignore the recurrent node-sets and treat all instructions equally.
  for (auto &SU : SUnits)
    if (SU.getDepth() > MII * 1.5) {
      NodeSets.clear();
      DEBUG(dbgs() << "Clear recurrence node-sets\n");
      return;
    }
}

/// Add the nodes that do not belong to a recurrence set into groups
/// based upon connected componenets.
void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
  SetVector<SUnit *> NodesAdded;
  SmallPtrSet<SUnit *, 8> Visited;
  // Add the nodes that are on a path between the previous node sets and
  // the current node set.
  for (NodeSet &I : NodeSets) {
    SmallSetVector<SUnit *, 8> N;
    // Add the nodes from the current node set to the previous node set.
    if (succ_L(I, N)) {
      SetVector<SUnit *> Path;
      for (SUnit *NI : N) {
        Visited.clear();
        computePath(NI, Path, NodesAdded, I, Visited);
      }
      if (!Path.empty())
        I.insert(Path.begin(), Path.end());
    }
    // Add the nodes from the previous node set to the current node set.
    N.clear();
    if (succ_L(NodesAdded, N)) {
      SetVector<SUnit *> Path;
      for (SUnit *NI : N) {
        Visited.clear();
        computePath(NI, Path, I, NodesAdded, Visited);
      }
      if (!Path.empty())
        I.insert(Path.begin(), Path.end());
    }
    NodesAdded.insert(I.begin(), I.end());
  }

  // Create a new node set with the connected nodes of any successor of a node
  // in a recurrent set.
  NodeSet NewSet;
  SmallSetVector<SUnit *, 8> N;
  if (succ_L(NodesAdded, N))
    for (SUnit *I : N)
      addConnectedNodes(I, NewSet, NodesAdded);
  if (!NewSet.empty())
    NodeSets.push_back(NewSet);

  // Create a new node set with the connected nodes of any predecessor of a node
  // in a recurrent set.
  NewSet.clear();
  if (pred_L(NodesAdded, N))
    for (SUnit *I : N)
      addConnectedNodes(I, NewSet, NodesAdded);
  if (!NewSet.empty())
    NodeSets.push_back(NewSet);

  // Create new nodes sets with the connected nodes any any remaining node that
  // has no predecessor.
  for (unsigned i = 0; i < SUnits.size(); ++i) {
    SUnit *SU = &SUnits[i];
    if (NodesAdded.count(SU) == 0) {
      NewSet.clear();
      addConnectedNodes(SU, NewSet, NodesAdded);
      if (!NewSet.empty())
        NodeSets.push_back(NewSet);
    }
  }
}

/// Add the node to the set, and add all is its connected nodes to the set.
void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
                                          SetVector<SUnit *> &NodesAdded) {
  NewSet.insert(SU);
  NodesAdded.insert(SU);
  for (auto &SI : SU->Succs) {
    SUnit *Successor = SI.getSUnit();
    if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
      addConnectedNodes(Successor, NewSet, NodesAdded);
  }
  for (auto &PI : SU->Preds) {
    SUnit *Predecessor = PI.getSUnit();
    if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
      addConnectedNodes(Predecessor, NewSet, NodesAdded);
  }
}

/// Return true if Set1 contains elements in Set2. The elements in common
/// are returned in a different container.
static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
                        SmallSetVector<SUnit *, 8> &Result) {
  Result.clear();
  for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
    SUnit *SU = Set1[i];
    if (Set2.count(SU) != 0)
      Result.insert(SU);
  }
  return !Result.empty();
}

/// Merge the recurrence node sets that have the same initial node.
void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
  for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
       ++I) {
    NodeSet &NI = *I;
    for (NodeSetType::iterator J = I + 1; J != E;) {
      NodeSet &NJ = *J;
      if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
        if (NJ.compareRecMII(NI) > 0)
          NI.setRecMII(NJ.getRecMII());
        for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
             ++NII)
          I->insert(*NII);
        NodeSets.erase(J);
        E = NodeSets.end();
      } else {
        ++J;
      }
    }
  }
}

/// Remove nodes that have been scheduled in previous NodeSets.
void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
  for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
       ++I)
    for (NodeSetType::iterator J = I + 1; J != E;) {
      J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });

      if (J->empty()) {
        NodeSets.erase(J);
        E = NodeSets.end();
      } else {
        ++J;
      }
    }
}

/// Return true if Inst1 defines a value that is used in Inst2.
static bool hasDataDependence(SUnit *Inst1, SUnit *Inst2) {
  for (auto &SI : Inst1->Succs)
    if (SI.getSUnit() == Inst2 && SI.getKind() == SDep::Data)
      return true;
  return false;
}

/// Compute an ordered list of the dependence graph nodes, which
/// indicates the order that the nodes will be scheduled.  This is a
/// two-level algorithm. First, a partial order is created, which
/// consists of a list of sets ordered from highest to lowest priority.
void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
  SmallSetVector<SUnit *, 8> R;
  NodeOrder.clear();

  for (auto &Nodes : NodeSets) {
    DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
    OrderKind Order;
    SmallSetVector<SUnit *, 8> N;
    if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
      R.insert(N.begin(), N.end());
      Order = BottomUp;
      DEBUG(dbgs() << "  Bottom up (preds) ");
    } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
      R.insert(N.begin(), N.end());
      Order = TopDown;
      DEBUG(dbgs() << "  Top down (succs) ");
    } else if (isIntersect(N, Nodes, R)) {
      // If some of the successors are in the existing node-set, then use the
      // top-down ordering.
      Order = TopDown;
      DEBUG(dbgs() << "  Top down (intersect) ");
    } else if (NodeSets.size() == 1) {
      for (auto &N : Nodes)
        if (N->Succs.size() == 0)
          R.insert(N);
      Order = BottomUp;
      DEBUG(dbgs() << "  Bottom up (all) ");
    } else {
      // Find the node with the highest ASAP.
      SUnit *maxASAP = nullptr;
      for (SUnit *SU : Nodes) {
        if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP))
          maxASAP = SU;
      }
      R.insert(maxASAP);
      Order = BottomUp;
      DEBUG(dbgs() << "  Bottom up (default) ");
    }

    while (!R.empty()) {
      if (Order == TopDown) {
        // Choose the node with the maximum height.  If more than one, choose
        // the node with the lowest MOV. If still more than one, check if there
        // is a dependence between the instructions.
        while (!R.empty()) {
          SUnit *maxHeight = nullptr;
          for (SUnit *I : R) {
            if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
              maxHeight = I;
            else if (getHeight(I) == getHeight(maxHeight) &&
                     getMOV(I) < getMOV(maxHeight) &&
                     !hasDataDependence(maxHeight, I))
              maxHeight = I;
            else if (hasDataDependence(I, maxHeight))
              maxHeight = I;
          }
          NodeOrder.insert(maxHeight);
          DEBUG(dbgs() << maxHeight->NodeNum << " ");
          R.remove(maxHeight);
          for (const auto &I : maxHeight->Succs) {
            if (Nodes.count(I.getSUnit()) == 0)
              continue;
            if (NodeOrder.count(I.getSUnit()) != 0)
              continue;
            if (ignoreDependence(I, false))
              continue;
            R.insert(I.getSUnit());
          }
          // Back-edges are predecessors with an anti-dependence.
          for (const auto &I : maxHeight->Preds) {
            if (I.getKind() != SDep::Anti)
              continue;
            if (Nodes.count(I.getSUnit()) == 0)
              continue;
            if (NodeOrder.count(I.getSUnit()) != 0)
              continue;
            R.insert(I.getSUnit());
          }
        }
        Order = BottomUp;
        DEBUG(dbgs() << "\n   Switching order to bottom up ");
        SmallSetVector<SUnit *, 8> N;
        if (pred_L(NodeOrder, N, &Nodes))
          R.insert(N.begin(), N.end());
      } else {
        // Choose the node with the maximum depth.  If more than one, choose
        // the node with the lowest MOV. If there is still more than one, check
        // for a dependence between the instructions.
        while (!R.empty()) {
          SUnit *maxDepth = nullptr;
          for (SUnit *I : R) {
            if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
              maxDepth = I;
            else if (getDepth(I) == getDepth(maxDepth) &&
                     getMOV(I) < getMOV(maxDepth) &&
                     !hasDataDependence(I, maxDepth))
              maxDepth = I;
            else if (hasDataDependence(maxDepth, I))
              maxDepth = I;
          }
          NodeOrder.insert(maxDepth);
          DEBUG(dbgs() << maxDepth->NodeNum << " ");
          R.remove(maxDepth);
          if (Nodes.isExceedSU(maxDepth)) {
            Order = TopDown;
            R.clear();
            R.insert(Nodes.getNode(0));
            break;
          }
          for (const auto &I : maxDepth->Preds) {
            if (Nodes.count(I.getSUnit()) == 0)
              continue;
            if (NodeOrder.count(I.getSUnit()) != 0)
              continue;
            if (I.getKind() == SDep::Anti)
              continue;
            R.insert(I.getSUnit());
          }
          // Back-edges are predecessors with an anti-dependence.
          for (const auto &I : maxDepth->Succs) {
            if (I.getKind() != SDep::Anti)
              continue;
            if (Nodes.count(I.getSUnit()) == 0)
              continue;
            if (NodeOrder.count(I.getSUnit()) != 0)
              continue;
            R.insert(I.getSUnit());
          }
        }
        Order = TopDown;
        DEBUG(dbgs() << "\n   Switching order to top down ");
        SmallSetVector<SUnit *, 8> N;
        if (succ_L(NodeOrder, N, &Nodes))
          R.insert(N.begin(), N.end());
      }
    }
    DEBUG(dbgs() << "\nDone with Nodeset\n");
  }

  DEBUG({
    dbgs() << "Node order: ";
    for (SUnit *I : NodeOrder)
      dbgs() << " " << I->NodeNum << " ";
    dbgs() << "\n";
  });
}

/// Process the nodes in the computed order and create the pipelined schedule
/// of the instructions, if possible. Return true if a schedule is found.
bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
  if (NodeOrder.empty())
    return false;

  bool scheduleFound = false;
  // Keep increasing II until a valid schedule is found.
  for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
    Schedule.reset();
    Schedule.setInitiationInterval(II);
    DEBUG(dbgs() << "Try to schedule with " << II << "\n");

    SetVector<SUnit *>::iterator NI = NodeOrder.begin();
    SetVector<SUnit *>::iterator NE = NodeOrder.end();
    do {
      SUnit *SU = *NI;

      // Compute the schedule time for the instruction, which is based
      // upon the scheduled time for any predecessors/successors.
      int EarlyStart = INT_MIN;
      int LateStart = INT_MAX;
      // These values are set when the size of the schedule window is limited
      // due to chain dependences.
      int SchedEnd = INT_MAX;
      int SchedStart = INT_MIN;
      Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
                            II, this);
      DEBUG({
        dbgs() << "Inst (" << SU->NodeNum << ") ";
        SU->getInstr()->dump();
        dbgs() << "\n";
      });
      DEBUG({
        dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
               << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
      });

      if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
          SchedStart > LateStart)
        scheduleFound = false;
      else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
        SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
        scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
      } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
        SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
        scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
      } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
        SchedEnd =
            std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
        // When scheduling a Phi it is better to start at the late cycle and go
        // backwards. The default order may insert the Phi too far away from
        // its first dependence.
        if (SU->getInstr()->isPHI())
          scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
        else
          scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
      } else {
        int FirstCycle = Schedule.getFirstCycle();
        scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
                                        FirstCycle + getASAP(SU) + II - 1, II);
      }
      // Even if we find a schedule, make sure the schedule doesn't exceed the
      // allowable number of stages. We keep trying if this happens.
      if (scheduleFound)
        if (SwpMaxStages > -1 &&
            Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
          scheduleFound = false;

      DEBUG({
        if (!scheduleFound)
          dbgs() << "\tCan't schedule\n";
      });
    } while (++NI != NE && scheduleFound);

    // If a schedule is found, check if it is a valid schedule too.
    if (scheduleFound)
      scheduleFound = Schedule.isValidSchedule(this);
  }

  DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n");

  if (scheduleFound)
    Schedule.finalizeSchedule(this);
  else
    Schedule.reset();

  return scheduleFound && Schedule.getMaxStageCount() > 0;
}

/// Given a schedule for the loop, generate a new version of the loop,
/// and replace the old version.  This function generates a prolog
/// that contains the initial iterations in the pipeline, and kernel
/// loop, and the epilogue that contains the code for the final
/// iterations.
void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
  // Create a new basic block for the kernel and add it to the CFG.
  MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());

  unsigned MaxStageCount = Schedule.getMaxStageCount();

  // Remember the registers that are used in different stages. The index is
  // the iteration, or stage, that the instruction is scheduled in.  This is
  // a map between register names in the orignal block and the names created
  // in each stage of the pipelined loop.
  ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
  InstrMapTy InstrMap;

  SmallVector<MachineBasicBlock *, 4> PrologBBs;
  // Generate the prolog instructions that set up the pipeline.
  generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
  MF.insert(BB->getIterator(), KernelBB);

  // Rearrange the instructions to generate the new, pipelined loop,
  // and update register names as needed.
  for (int Cycle = Schedule.getFirstCycle(),
           LastCycle = Schedule.getFinalCycle();
       Cycle <= LastCycle; ++Cycle) {
    std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
    // This inner loop schedules each instruction in the cycle.
    for (SUnit *CI : CycleInstrs) {
      if (CI->getInstr()->isPHI())
        continue;
      unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
      MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
      updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
      KernelBB->push_back(NewMI);
      InstrMap[NewMI] = CI->getInstr();
    }
  }

  // Copy any terminator instructions to the new kernel, and update
  // names as needed.
  for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
                                   E = BB->instr_end();
       I != E; ++I) {
    MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
    updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
    KernelBB->push_back(NewMI);
    InstrMap[NewMI] = &*I;
  }

  KernelBB->transferSuccessors(BB);
  KernelBB->replaceSuccessor(BB, KernelBB);

  generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
                       VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
  generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
               InstrMap, MaxStageCount, MaxStageCount, false);

  DEBUG(dbgs() << "New block\n"; KernelBB->dump(););

  SmallVector<MachineBasicBlock *, 4> EpilogBBs;
  // Generate the epilog instructions to complete the pipeline.
  generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
                 PrologBBs);

  // We need this step because the register allocation doesn't handle some
  // situations well, so we insert copies to help out.
  splitLifetimes(KernelBB, EpilogBBs, Schedule);

  // Remove dead instructions due to loop induction variables.
  removeDeadInstructions(KernelBB, EpilogBBs);

  // Add branches between prolog and epilog blocks.
  addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);

  // Remove the original loop since it's no longer referenced.
  BB->clear();
  BB->eraseFromParent();

  delete[] VRMap;
}

/// Generate the pipeline prolog code.
void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
                                       MachineBasicBlock *KernelBB,
                                       ValueMapTy *VRMap,
                                       MBBVectorTy &PrologBBs) {
  MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
  assert(PreheaderBB != nullptr &&
         "Need to add code to handle loops w/o preheader");
  MachineBasicBlock *PredBB = PreheaderBB;
  InstrMapTy InstrMap;

  // Generate a basic block for each stage, not including the last stage,
  // which will be generated in the kernel. Each basic block may contain
  // instructions from multiple stages/iterations.
  for (unsigned i = 0; i < LastStage; ++i) {
    // Create and insert the prolog basic block prior to the original loop
    // basic block.  The original loop is removed later.
    MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
    PrologBBs.push_back(NewBB);
    MF.insert(BB->getIterator(), NewBB);
    NewBB->transferSuccessors(PredBB);
    PredBB->addSuccessor(NewBB);
    PredBB = NewBB;

    // Generate instructions for each appropriate stage. Process instructions
    // in original program order.
    for (int StageNum = i; StageNum >= 0; --StageNum) {
      for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
                                       BBE = BB->getFirstTerminator();
           BBI != BBE; ++BBI) {
        if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
          if (BBI->isPHI())
            continue;
          MachineInstr *NewMI =
              cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
          updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
                            VRMap);
          NewBB->push_back(NewMI);
          InstrMap[NewMI] = &*BBI;
        }
      }
    }
    rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
    DEBUG({
      dbgs() << "prolog:\n";
      NewBB->dump();
    });
  }

  PredBB->replaceSuccessor(BB, KernelBB);

  // Check if we need to remove the branch from the preheader to the original
  // loop, and replace it with a branch to the new loop.
  unsigned numBranches = TII->removeBranch(*PreheaderBB);
  if (numBranches) {
    SmallVector<MachineOperand, 0> Cond;
    TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
  }
}

/// Generate the pipeline epilog code. The epilog code finishes the iterations
/// that were started in either the prolog or the kernel.  We create a basic
/// block for each stage that needs to complete.
void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
                                       MachineBasicBlock *KernelBB,
                                       ValueMapTy *VRMap,
                                       MBBVectorTy &EpilogBBs,
                                       MBBVectorTy &PrologBBs) {
  // We need to change the branch from the kernel to the first epilog block, so
  // this call to analyze branch uses the kernel rather than the original BB.
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
  SmallVector<MachineOperand, 4> Cond;
  bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
  assert(!checkBranch && "generateEpilog must be able to analyze the branch");
  if (checkBranch)
    return;

  MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
  if (*LoopExitI == KernelBB)
    ++LoopExitI;
  assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
  MachineBasicBlock *LoopExitBB = *LoopExitI;

  MachineBasicBlock *PredBB = KernelBB;
  MachineBasicBlock *EpilogStart = LoopExitBB;
  InstrMapTy InstrMap;

  // Generate a basic block for each stage, not including the last stage,
  // which was generated for the kernel.  Each basic block may contain
  // instructions from multiple stages/iterations.
  int EpilogStage = LastStage + 1;
  for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
    MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
    EpilogBBs.push_back(NewBB);
    MF.insert(BB->getIterator(), NewBB);

    PredBB->replaceSuccessor(LoopExitBB, NewBB);
    NewBB->addSuccessor(LoopExitBB);

    if (EpilogStart == LoopExitBB)
      EpilogStart = NewBB;

    // Add instructions to the epilog depending on the current block.
    // Process instructions in original program order.
    for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
      for (auto &BBI : *BB) {
        if (BBI.isPHI())
          continue;
        MachineInstr *In = &BBI;
        if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
          MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0);
          updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
          NewBB->push_back(NewMI);
          InstrMap[NewMI] = In;
        }
      }
    }
    generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
                         VRMap, InstrMap, LastStage, EpilogStage, i == 1);
    generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
                 InstrMap, LastStage, EpilogStage, i == 1);
    PredBB = NewBB;

    DEBUG({
      dbgs() << "epilog:\n";
      NewBB->dump();
    });
  }

  // Fix any Phi nodes in the loop exit block.
  for (MachineInstr &MI : *LoopExitBB) {
    if (!MI.isPHI())
      break;
    for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
      MachineOperand &MO = MI.getOperand(i);
      if (MO.getMBB() == BB)
        MO.setMBB(PredBB);
    }
  }

  // Create a branch to the new epilog from the kernel.
  // Remove the original branch and add a new branch to the epilog.
  TII->removeBranch(*KernelBB);
  TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
  // Add a branch to the loop exit.
  if (EpilogBBs.size() > 0) {
    MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
    SmallVector<MachineOperand, 4> Cond1;
    TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
  }
}

/// Replace all uses of FromReg that appear outside the specified
/// basic block with ToReg.
static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
                                    MachineBasicBlock *MBB,
                                    MachineRegisterInfo &MRI,
                                    LiveIntervals &LIS) {
  for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
                                         E = MRI.use_end();
       I != E;) {
    MachineOperand &O = *I;
    ++I;
    if (O.getParent()->getParent() != MBB)
      O.setReg(ToReg);
  }
  if (!LIS.hasInterval(ToReg))
    LIS.createEmptyInterval(ToReg);
}

/// Return true if the register has a use that occurs outside the
/// specified loop.
static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
                            MachineRegisterInfo &MRI) {
  for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
                                         E = MRI.use_end();
       I != E; ++I)
    if (I->getParent()->getParent() != BB)
      return true;
  return false;
}

/// Generate Phis for the specific block in the generated pipelined code.
/// This function looks at the Phis from the original code to guide the
/// creation of new Phis.
void SwingSchedulerDAG::generateExistingPhis(
    MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
    MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
    InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
    bool IsLast) {
  // Compute the stage number for the initial value of the Phi, which
  // comes from the prolog. The prolog to use depends on to which kernel/
  // epilog that we're adding the Phi.
  unsigned PrologStage = 0;
  unsigned PrevStage = 0;
  bool InKernel = (LastStageNum == CurStageNum);
  if (InKernel) {
    PrologStage = LastStageNum - 1;
    PrevStage = CurStageNum;
  } else {
    PrologStage = LastStageNum - (CurStageNum - LastStageNum);
    PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
  }

  for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
                                   BBE = BB->getFirstNonPHI();
       BBI != BBE; ++BBI) {
    unsigned Def = BBI->getOperand(0).getReg();

    unsigned InitVal = 0;
    unsigned LoopVal = 0;
    getPhiRegs(*BBI, BB, InitVal, LoopVal);

    unsigned PhiOp1 = 0;
    // The Phi value from the loop body typically is defined in the loop, but
    // not always. So, we need to check if the value is defined in the loop.
    unsigned PhiOp2 = LoopVal;
    if (VRMap[LastStageNum].count(LoopVal))
      PhiOp2 = VRMap[LastStageNum][LoopVal];

    int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
    int LoopValStage =
        Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
    unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
    if (NumStages == 0) {
      // We don't need to generate a Phi anymore, but we need to rename any uses
      // of the Phi value.
      unsigned NewReg = VRMap[PrevStage][LoopVal];
      rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
                            Def, NewReg);
      if (VRMap[CurStageNum].count(LoopVal))
        VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
    }
    // Adjust the number of Phis needed depending on the number of prologs left,
    // and the distance from where the Phi is first scheduled.
    unsigned NumPhis = NumStages;
    if (!InKernel && (int)PrologStage < LoopValStage)
      // The NumPhis is the maximum number of new Phis needed during the steady
      // state. If the Phi has not been scheduled in current prolog, then we
      // need to generate less Phis.
      NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1);
    // The number of Phis cannot exceed the number of prolog stages. Each
    // stage can potentially define two values.
    NumPhis = std::min(NumPhis, PrologStage + 2);

    unsigned NewReg = 0;

    unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
    // In the epilog, we may need to look back one stage to get the correct
    // Phi name because the epilog and prolog blocks execute the same stage.
    // The correct name is from the previous block only when the Phi has
    // been completely scheduled prior to the epilog, and Phi value is not
    // needed in multiple stages.
    int StageDiff = 0;
    if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
        NumPhis == 1)
      StageDiff = 1;
    // Adjust the computations below when the phi and the loop definition
    // are scheduled in different stages.
    if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
      StageDiff = StageScheduled - LoopValStage;
    for (unsigned np = 0; np < NumPhis; ++np) {
      // If the Phi hasn't been scheduled, then use the initial Phi operand
      // value. Otherwise, use the scheduled version of the instruction. This
      // is a little complicated when a Phi references another Phi.
      if (np > PrologStage || StageScheduled >= (int)LastStageNum)
        PhiOp1 = InitVal;
      // Check if the Phi has already been scheduled in a prolog stage.
      else if (PrologStage >= AccessStage + StageDiff + np &&
               VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
        PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
      // Check if the Phi has already been scheduled, but the loop intruction
      // is either another Phi, or doesn't occur in the loop.
      else if (PrologStage >= AccessStage + StageDiff + np) {
        // If the Phi references another Phi, we need to examine the other
        // Phi to get the correct value.
        PhiOp1 = LoopVal;
        MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
        int Indirects = 1;
        while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
          int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
          if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
            PhiOp1 = getInitPhiReg(*InstOp1, BB);
          else
            PhiOp1 = getLoopPhiReg(*InstOp1, BB);
          InstOp1 = MRI.getVRegDef(PhiOp1);
          int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
          int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
          if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
              VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
            PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
            break;
          }
          ++Indirects;
        }
      } else
        PhiOp1 = InitVal;
      // If this references a generated Phi in the kernel, get the Phi operand
      // from the incoming block.
      if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
        if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
          PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);

      MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
      bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
      // In the epilog, a map lookup is needed to get the value from the kernel,
      // or previous epilog block. How is does this depends on if the
      // instruction is scheduled in the previous block.
      if (!InKernel) {
        int StageDiffAdj = 0;
        if (LoopValStage != -1 && StageScheduled > LoopValStage)
          StageDiffAdj = StageScheduled - LoopValStage;
        // Use the loop value defined in the kernel, unless the kernel
        // contains the last definition of the Phi.
        if (np == 0 && PrevStage == LastStageNum &&
            (StageScheduled != 0 || LoopValStage != 0) &&
            VRMap[PrevStage - StageDiffAdj].count(LoopVal))
          PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
        // Use the value defined by the Phi. We add one because we switch
        // from looking at the loop value to the Phi definition.
        else if (np > 0 && PrevStage == LastStageNum &&
                 VRMap[PrevStage - np + 1].count(Def))
          PhiOp2 = VRMap[PrevStage - np + 1][Def];
        // Use the loop value defined in the kernel.
        else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 &&
                 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
          PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
        // Use the value defined by the Phi, unless we're generating the first
        // epilog and the Phi refers to a Phi in a different stage.
        else if (VRMap[PrevStage - np].count(Def) &&
                 (!LoopDefIsPhi || PrevStage != LastStageNum))
          PhiOp2 = VRMap[PrevStage - np][Def];
      }

      // Check if we can reuse an existing Phi. This occurs when a Phi
      // references another Phi, and the other Phi is scheduled in an
      // earlier stage. We can try to reuse an existing Phi up until the last
      // stage of the current Phi.
      if (LoopDefIsPhi && (int)PrologStage >= StageScheduled) {
        int LVNumStages = Schedule.getStagesForPhi(LoopVal);
        int StageDiff = (StageScheduled - LoopValStage);
        LVNumStages -= StageDiff;
        if (LVNumStages > (int)np) {
          NewReg = PhiOp2;
          unsigned ReuseStage = CurStageNum;
          if (Schedule.isLoopCarried(this, *PhiInst))
            ReuseStage -= LVNumStages;
          // Check if the Phi to reuse has been generated yet. If not, then
          // there is nothing to reuse.
          if (VRMap[ReuseStage].count(LoopVal)) {
            NewReg = VRMap[ReuseStage][LoopVal];

            rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
                                  &*BBI, Def, NewReg);
            // Update the map with the new Phi name.
            VRMap[CurStageNum - np][Def] = NewReg;
            PhiOp2 = NewReg;
            if (VRMap[LastStageNum - np - 1].count(LoopVal))
              PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];

            if (IsLast && np == NumPhis - 1)
              replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
            continue;
          }
        } else if (InKernel && StageDiff > 0 &&
                   VRMap[CurStageNum - StageDiff - np].count(LoopVal))
          PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
      }

      const TargetRegisterClass *RC = MRI.getRegClass(Def);
      NewReg = MRI.createVirtualRegister(RC);

      MachineInstrBuilder NewPhi =
          BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
                  TII->get(TargetOpcode::PHI), NewReg);
      NewPhi.addReg(PhiOp1).addMBB(BB1);
      NewPhi.addReg(PhiOp2).addMBB(BB2);
      if (np == 0)
        InstrMap[NewPhi] = &*BBI;

      // We define the Phis after creating the new pipelined code, so
      // we need to rename the Phi values in scheduled instructions.

      unsigned PrevReg = 0;
      if (InKernel && VRMap[PrevStage - np].count(LoopVal))
        PrevReg = VRMap[PrevStage - np][LoopVal];
      rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
                            Def, NewReg, PrevReg);
      // If the Phi has been scheduled, use the new name for rewriting.
      if (VRMap[CurStageNum - np].count(Def)) {
        unsigned R = VRMap[CurStageNum - np][Def];
        rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
                              R, NewReg);
      }

      // Check if we need to rename any uses that occurs after the loop. The
      // register to replace depends on whether the Phi is scheduled in the
      // epilog.
      if (IsLast && np == NumPhis - 1)
        replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);

      // In the kernel, a dependent Phi uses the value from this Phi.
      if (InKernel)
        PhiOp2 = NewReg;

      // Update the map with the new Phi name.
      VRMap[CurStageNum - np][Def] = NewReg;
    }

    while (NumPhis++ < NumStages) {
      rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
                            &*BBI, Def, NewReg, 0);
    }

    // Check if we need to rename a Phi that has been eliminated due to
    // scheduling.
    if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
      replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
  }
}

/// Generate Phis for the specified block in the generated pipelined code.
/// These are new Phis needed because the definition is scheduled after the
/// use in the pipelened sequence.
void SwingSchedulerDAG::generatePhis(
    MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
    MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
    InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
    bool IsLast) {
  // Compute the stage number that contains the initial Phi value, and
  // the Phi from the previous stage.
  unsigned PrologStage = 0;
  unsigned PrevStage = 0;
  unsigned StageDiff = CurStageNum - LastStageNum;
  bool InKernel = (StageDiff == 0);
  if (InKernel) {
    PrologStage = LastStageNum - 1;
    PrevStage = CurStageNum;
  } else {
    PrologStage = LastStageNum - StageDiff;
    PrevStage = LastStageNum + StageDiff - 1;
  }

  for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
                                   BBE = BB->instr_end();
       BBI != BBE; ++BBI) {
    for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = BBI->getOperand(i);
      if (!MO.isReg() || !MO.isDef() ||
          !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
        continue;

      int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
      assert(StageScheduled != -1 && "Expecting scheduled instruction.");
      unsigned Def = MO.getReg();
      unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
      // An instruction scheduled in stage 0 and is used after the loop
      // requires a phi in the epilog for the last definition from either
      // the kernel or prolog.
      if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
          hasUseAfterLoop(Def, BB, MRI))
        NumPhis = 1;
      if (!InKernel && (unsigned)StageScheduled > PrologStage)
        continue;

      unsigned PhiOp2 = VRMap[PrevStage][Def];
      if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
        if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
          PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
      // The number of Phis can't exceed the number of prolog stages. The
      // prolog stage number is zero based.
      if (NumPhis > PrologStage + 1 - StageScheduled)
        NumPhis = PrologStage + 1 - StageScheduled;
      for (unsigned np = 0; np < NumPhis; ++np) {
        unsigned PhiOp1 = VRMap[PrologStage][Def];
        if (np <= PrologStage)
          PhiOp1 = VRMap[PrologStage - np][Def];
        if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
          if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
            PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
          if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
            PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
        }
        if (!InKernel)
          PhiOp2 = VRMap[PrevStage - np][Def];

        const TargetRegisterClass *RC = MRI.getRegClass(Def);
        unsigned NewReg = MRI.createVirtualRegister(RC);

        MachineInstrBuilder NewPhi =
            BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
                    TII->get(TargetOpcode::PHI), NewReg);
        NewPhi.addReg(PhiOp1).addMBB(BB1);
        NewPhi.addReg(PhiOp2).addMBB(BB2);
        if (np == 0)
          InstrMap[NewPhi] = &*BBI;

        // Rewrite uses and update the map. The actions depend upon whether
        // we generating code for the kernel or epilog blocks.
        if (InKernel) {
          rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
                                &*BBI, PhiOp1, NewReg);
          rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
                                &*BBI, PhiOp2, NewReg);

          PhiOp2 = NewReg;
          VRMap[PrevStage - np - 1][Def] = NewReg;
        } else {
          VRMap[CurStageNum - np][Def] = NewReg;
          if (np == NumPhis - 1)
            rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
                                  &*BBI, Def, NewReg);
        }
        if (IsLast && np == NumPhis - 1)
          replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
      }
    }
  }
}

/// Remove instructions that generate values with no uses.
/// Typically, these are induction variable operations that generate values
/// used in the loop itself.  A dead instruction has a definition with
/// no uses, or uses that occur in the original loop only.
void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
                                               MBBVectorTy &EpilogBBs) {
  // For each epilog block, check that the value defined by each instruction
  // is used.  If not, delete it.
  for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
                                     MBE = EpilogBBs.rend();
       MBB != MBE; ++MBB)
    for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
                                                   ME = (*MBB)->instr_rend();
         MI != ME;) {
      // From DeadMachineInstructionElem. Don't delete inline assembly.
      if (MI->isInlineAsm()) {
        ++MI;
        continue;
      }
      bool SawStore = false;
      // Check if it's safe to remove the instruction due to side effects.
      // We can, and want to, remove Phis here.
      if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
        ++MI;
        continue;
      }
      bool used = true;
      for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
                                      MOE = MI->operands_end();
           MOI != MOE; ++MOI) {
        if (!MOI->isReg() || !MOI->isDef())
          continue;
        unsigned reg = MOI->getReg();
        unsigned realUses = 0;
        for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
                                               EI = MRI.use_end();
             UI != EI; ++UI) {
          // Check if there are any uses that occur only in the original
          // loop.  If so, that's not a real use.
          if (UI->getParent()->getParent() != BB) {
            realUses++;
            used = true;
            break;
          }
        }
        if (realUses > 0)
          break;
        used = false;
      }
      if (!used) {
        MI++->eraseFromParent();
        continue;
      }
      ++MI;
    }
  // In the kernel block, check if we can remove a Phi that generates a value
  // used in an instruction removed in the epilog block.
  for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
                                   BBE = KernelBB->getFirstNonPHI();
       BBI != BBE;) {
    MachineInstr *MI = &*BBI;
    ++BBI;
    unsigned reg = MI->getOperand(0).getReg();
    if (MRI.use_begin(reg) == MRI.use_end()) {
      MI->eraseFromParent();
    }
  }
}

/// For loop carried definitions, we split the lifetime of a virtual register
/// that has uses past the definition in the next iteration. A copy with a new
/// virtual register is inserted before the definition, which helps with
/// generating a better register assignment.
///
///   v1 = phi(a, v2)     v1 = phi(a, v2)
///   v2 = phi(b, v3)     v2 = phi(b, v3)
///   v3 = ..             v4 = copy v1
///   .. = V1             v3 = ..
///                       .. = v4
void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
                                       MBBVectorTy &EpilogBBs,
                                       SMSchedule &Schedule) {
  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
  for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
                                   BBF = KernelBB->getFirstNonPHI();
       BBI != BBF; ++BBI) {
    unsigned Def = BBI->getOperand(0).getReg();
    // Check for any Phi definition that used as an operand of another Phi
    // in the same block.
    for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
                                                 E = MRI.use_instr_end();
         I != E; ++I) {
      if (I->isPHI() && I->getParent() == KernelBB) {
        // Get the loop carried definition.
        unsigned LCDef = getLoopPhiReg(*BBI, KernelBB);
        if (!LCDef)
          continue;
        MachineInstr *MI = MRI.getVRegDef(LCDef);
        if (!MI || MI->getParent() != KernelBB || MI->isPHI())
          continue;
        // Search through the rest of the block looking for uses of the Phi
        // definition. If one occurs, then split the lifetime.
        unsigned SplitReg = 0;
        for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
                                    KernelBB->instr_end()))
          if (BBJ.readsRegister(Def)) {
            // We split the lifetime when we find the first use.
            if (SplitReg == 0) {
              SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
              BuildMI(*KernelBB, MI, MI->getDebugLoc(),
                      TII->get(TargetOpcode::COPY), SplitReg)
                  .addReg(Def);
            }
            BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
          }
        if (!SplitReg)
          continue;
        // Search through each of the epilog blocks for any uses to be renamed.
        for (auto &Epilog : EpilogBBs)
          for (auto &I : *Epilog)
            if (I.readsRegister(Def))
              I.substituteRegister(Def, SplitReg, 0, *TRI);
        break;
      }
    }
  }
}

/// Remove the incoming block from the Phis in a basic block.
static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
  for (MachineInstr &MI : *BB) {
    if (!MI.isPHI())
      break;
    for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
      if (MI.getOperand(i + 1).getMBB() == Incoming) {
        MI.RemoveOperand(i + 1);
        MI.RemoveOperand(i);
        break;
      }
  }
}

/// Create branches from each prolog basic block to the appropriate epilog
/// block.  These edges are needed if the loop ends before reaching the
/// kernel.
void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
                                    MachineBasicBlock *KernelBB,
                                    MBBVectorTy &EpilogBBs,
                                    SMSchedule &Schedule, ValueMapTy *VRMap) {
  assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
  MachineInstr *IndVar = Pass.LI.LoopInductionVar;
  MachineInstr *Cmp = Pass.LI.LoopCompare;
  MachineBasicBlock *LastPro = KernelBB;
  MachineBasicBlock *LastEpi = KernelBB;

  // Start from the blocks connected to the kernel and work "out"
  // to the first prolog and the last epilog blocks.
  SmallVector<MachineInstr *, 4> PrevInsts;
  unsigned MaxIter = PrologBBs.size() - 1;
  unsigned LC = UINT_MAX;
  unsigned LCMin = UINT_MAX;
  for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
    // Add branches to the prolog that go to the corresponding
    // epilog, and the fall-thru prolog/kernel block.
    MachineBasicBlock *Prolog = PrologBBs[j];
    MachineBasicBlock *Epilog = EpilogBBs[i];
    // We've executed one iteration, so decrement the loop count and check for
    // the loop end.
    SmallVector<MachineOperand, 4> Cond;
    // Check if the LOOP0 has already been removed. If so, then there is no need
    // to reduce the trip count.
    if (LC != 0)
      LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
                                MaxIter);

    // Record the value of the first trip count, which is used to determine if
    // branches and blocks can be removed for constant trip counts.
    if (LCMin == UINT_MAX)
      LCMin = LC;

    unsigned numAdded = 0;
    if (TargetRegisterInfo::isVirtualRegister(LC)) {
      Prolog->addSuccessor(Epilog);
      numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
    } else if (j >= LCMin) {
      Prolog->addSuccessor(Epilog);
      Prolog->removeSuccessor(LastPro);
      LastEpi->removeSuccessor(Epilog);
      numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
      removePhis(Epilog, LastEpi);
      // Remove the blocks that are no longer referenced.
      if (LastPro != LastEpi) {
        LastEpi->clear();
        LastEpi->eraseFromParent();
      }
      LastPro->clear();
      LastPro->eraseFromParent();
    } else {
      numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
      removePhis(Epilog, Prolog);
    }
    LastPro = Prolog;
    LastEpi = Epilog;
    for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
                                                   E = Prolog->instr_rend();
         I != E && numAdded > 0; ++I, --numAdded)
      updateInstruction(&*I, false, j, 0, Schedule, VRMap);
  }
}

/// Return true if we can compute the amount the instruction changes
/// during each iteration. Set Delta to the amount of the change.
bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
  unsigned BaseReg;
  int64_t Offset;
  if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
    return false;

  MachineRegisterInfo &MRI = MF.getRegInfo();
  // Check if there is a Phi. If so, get the definition in the loop.
  MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
  if (BaseDef && BaseDef->isPHI()) {
    BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
    BaseDef = MRI.getVRegDef(BaseReg);
  }
  if (!BaseDef)
    return false;

  int D = 0;
  if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
    return false;

  Delta = D;
  return true;
}

/// Update the memory operand with a new offset when the pipeliner
/// generates a new copy of the instruction that refers to a
/// different memory location.
void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
                                          MachineInstr &OldMI, unsigned Num) {
  if (Num == 0)
    return;
  // If the instruction has memory operands, then adjust the offset
  // when the instruction appears in different stages.
  unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin();
  if (NumRefs == 0)
    return;
  MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs);
  unsigned Refs = 0;
  for (MachineMemOperand *MMO : NewMI.memoperands()) {
    if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) ||
        (!MMO->getValue())) {
      NewMemRefs[Refs++] = MMO;
      continue;
    }
    unsigned Delta;
    if (computeDelta(OldMI, Delta)) {
      int64_t AdjOffset = Delta * Num;
      NewMemRefs[Refs++] =
          MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize());
    } else
      NewMemRefs[Refs++] = MF.getMachineMemOperand(MMO, 0, UINT64_MAX);
  }
  NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs);
}

/// Clone the instruction for the new pipelined loop and update the
/// memory operands, if needed.
MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
                                            unsigned CurStageNum,
                                            unsigned InstStageNum) {
  MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
  // Check for tied operands in inline asm instructions. This should be handled
  // elsewhere, but I'm not sure of the best solution.
  if (OldMI->isInlineAsm())
    for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
      const auto &MO = OldMI->getOperand(i);
      if (MO.isReg() && MO.isUse())
        break;
      unsigned UseIdx;
      if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
        NewMI->tieOperands(i, UseIdx);
    }
  updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
  return NewMI;
}

/// Clone the instruction for the new pipelined loop. If needed, this
/// function updates the instruction using the values saved in the
/// InstrChanges structure.
MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
                                                     unsigned CurStageNum,
                                                     unsigned InstStageNum,
                                                     SMSchedule &Schedule) {
  MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
  DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
      InstrChanges.find(getSUnit(OldMI));
  if (It != InstrChanges.end()) {
    std::pair<unsigned, int64_t> RegAndOffset = It->second;
    unsigned BasePos, OffsetPos;
    if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
      return nullptr;
    int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
    MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
    if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
      NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
    NewMI->getOperand(OffsetPos).setImm(NewOffset);
  }
  updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
  return NewMI;
}

/// Update the machine instruction with new virtual registers.  This
/// function may change the defintions and/or uses.
void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
                                          unsigned CurStageNum,
                                          unsigned InstrStageNum,
                                          SMSchedule &Schedule,
                                          ValueMapTy *VRMap) {
  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = NewMI->getOperand(i);
    if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
      continue;
    unsigned reg = MO.getReg();
    if (MO.isDef()) {
      // Create a new virtual register for the definition.
      const TargetRegisterClass *RC = MRI.getRegClass(reg);
      unsigned NewReg = MRI.createVirtualRegister(RC);
      MO.setReg(NewReg);
      VRMap[CurStageNum][reg] = NewReg;
      if (LastDef)
        replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
    } else if (MO.isUse()) {
      MachineInstr *Def = MRI.getVRegDef(reg);
      // Compute the stage that contains the last definition for instruction.
      int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
      unsigned StageNum = CurStageNum;
      if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
        // Compute the difference in stages between the defintion and the use.
        unsigned StageDiff = (InstrStageNum - DefStageNum);
        // Make an adjustment to get the last definition.
        StageNum -= StageDiff;
      }
      if (VRMap[StageNum].count(reg))
        MO.setReg(VRMap[StageNum][reg]);
    }
  }
}

/// Return the instruction in the loop that defines the register.
/// If the definition is a Phi, then follow the Phi operand to
/// the instruction in the loop.
MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
  SmallPtrSet<MachineInstr *, 8> Visited;
  MachineInstr *Def = MRI.getVRegDef(Reg);
  while (Def->isPHI()) {
    if (!Visited.insert(Def).second)
      break;
    for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
      if (Def->getOperand(i + 1).getMBB() == BB) {
        Def = MRI.getVRegDef(Def->getOperand(i).getReg());
        break;
      }
  }
  return Def;
}

/// Return the new name for the value from the previous stage.
unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
                                          unsigned LoopVal, unsigned LoopStage,
                                          ValueMapTy *VRMap,
                                          MachineBasicBlock *BB) {
  unsigned PrevVal = 0;
  if (StageNum > PhiStage) {
    MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
    if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
      // The name is defined in the previous stage.
      PrevVal = VRMap[StageNum - 1][LoopVal];
    else if (VRMap[StageNum].count(LoopVal))
      // The previous name is defined in the current stage when the instruction
      // order is swapped.
      PrevVal = VRMap[StageNum][LoopVal];
    else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
      // The loop value hasn't yet been scheduled.
      PrevVal = LoopVal;
    else if (StageNum == PhiStage + 1)
      // The loop value is another phi, which has not been scheduled.
      PrevVal = getInitPhiReg(*LoopInst, BB);
    else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
      // The loop value is another phi, which has been scheduled.
      PrevVal =
          getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
                        LoopStage, VRMap, BB);
  }
  return PrevVal;
}

/// Rewrite the Phi values in the specified block to use the mappings
/// from the initial operand. Once the Phi is scheduled, we switch
/// to using the loop value instead of the Phi value, so those names
/// do not need to be rewritten.
void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
                                         unsigned StageNum,
                                         SMSchedule &Schedule,
                                         ValueMapTy *VRMap,
                                         InstrMapTy &InstrMap) {
  for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
                                   BBE = BB->getFirstNonPHI();
       BBI != BBE; ++BBI) {
    unsigned InitVal = 0;
    unsigned LoopVal = 0;
    getPhiRegs(*BBI, BB, InitVal, LoopVal);
    unsigned PhiDef = BBI->getOperand(0).getReg();

    unsigned PhiStage =
        (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
    unsigned LoopStage =
        (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
    unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
    if (NumPhis > StageNum)
      NumPhis = StageNum;
    for (unsigned np = 0; np <= NumPhis; ++np) {
      unsigned NewVal =
          getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
      if (!NewVal)
        NewVal = InitVal;
      rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &*BBI,
                            PhiDef, NewVal);
    }
  }
}

/// Rewrite a previously scheduled instruction to use the register value
/// from the new instruction. Make sure the instruction occurs in the
/// basic block, and we don't change the uses in the new instruction.
void SwingSchedulerDAG::rewriteScheduledInstr(
    MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
    unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
    unsigned NewReg, unsigned PrevReg) {
  bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
  int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
  // Rewrite uses that have been scheduled already to use the new
  // Phi register.
  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
                                         EI = MRI.use_end();
       UI != EI;) {
    MachineOperand &UseOp = *UI;
    MachineInstr *UseMI = UseOp.getParent();
    ++UI;
    if (UseMI->getParent() != BB)
      continue;
    if (UseMI->isPHI()) {
      if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
        continue;
      if (getLoopPhiReg(*UseMI, BB) != OldReg)
        continue;
    }
    InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
    assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
    SUnit *OrigMISU = getSUnit(OrigInstr->second);
    int StageSched = Schedule.stageScheduled(OrigMISU);
    int CycleSched = Schedule.cycleScheduled(OrigMISU);
    unsigned ReplaceReg = 0;
    // This is the stage for the scheduled instruction.
    if (StagePhi == StageSched && Phi->isPHI()) {
      int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
      if (PrevReg && InProlog)
        ReplaceReg = PrevReg;
      else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
               (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
        ReplaceReg = PrevReg;
      else
        ReplaceReg = NewReg;
    }
    // The scheduled instruction occurs before the scheduled Phi, and the
    // Phi is not loop carried.
    if (!InProlog && StagePhi + 1 == StageSched &&
        !Schedule.isLoopCarried(this, *Phi))
      ReplaceReg = NewReg;
    if (StagePhi > StageSched && Phi->isPHI())
      ReplaceReg = NewReg;
    if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
      ReplaceReg = NewReg;
    if (ReplaceReg) {
      MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
      UseOp.setReg(ReplaceReg);
    }
  }
}

/// Check if we can change the instruction to use an offset value from the
/// previous iteration. If so, return true and set the base and offset values
/// so that we can rewrite the load, if necessary.
///   v1 = Phi(v0, v3)
///   v2 = load v1, 0
///   v3 = post_store v1, 4, x
/// This function enables the load to be rewritten as v2 = load v3, 4.
bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
                                              unsigned &BasePos,
                                              unsigned &OffsetPos,
                                              unsigned &NewBase,
                                              int64_t &Offset) {
  // Get the load instruction.
  if (TII->isPostIncrement(*MI))
    return false;
  unsigned BasePosLd, OffsetPosLd;
  if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
    return false;
  unsigned BaseReg = MI->getOperand(BasePosLd).getReg();

  // Look for the Phi instruction.
  MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
  MachineInstr *Phi = MRI.getVRegDef(BaseReg);
  if (!Phi || !Phi->isPHI())
    return false;
  // Get the register defined in the loop block.
  unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
  if (!PrevReg)
    return false;

  // Check for the post-increment load/store instruction.
  MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
  if (!PrevDef || PrevDef == MI)
    return false;

  if (!TII->isPostIncrement(*PrevDef))
    return false;

  unsigned BasePos1 = 0, OffsetPos1 = 0;
  if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
    return false;

  // Make sure offset values are both positive or both negative.
  int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
  int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
  if ((LoadOffset >= 0) != (StoreOffset >= 0))
    return false;

  // Set the return value once we determine that we return true.
  BasePos = BasePosLd;
  OffsetPos = OffsetPosLd;
  NewBase = PrevReg;
  Offset = StoreOffset;
  return true;
}

/// Apply changes to the instruction if needed. The changes are need
/// to improve the scheduling and depend up on the final schedule.
void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
                                         SMSchedule &Schedule) {
  SUnit *SU = getSUnit(MI);
  DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
      InstrChanges.find(SU);
  if (It != InstrChanges.end()) {
    std::pair<unsigned, int64_t> RegAndOffset = It->second;
    unsigned BasePos, OffsetPos;
    if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
      return;
    unsigned BaseReg = MI->getOperand(BasePos).getReg();
    MachineInstr *LoopDef = findDefInLoop(BaseReg);
    int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
    int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
    int BaseStageNum = Schedule.stageScheduled(SU);
    int BaseCycleNum = Schedule.cycleScheduled(SU);
    if (BaseStageNum < DefStageNum) {
      MachineInstr *NewMI = MF.CloneMachineInstr(MI);
      int OffsetDiff = DefStageNum - BaseStageNum;
      if (DefCycleNum < BaseCycleNum) {
        NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
        if (OffsetDiff > 0)
          --OffsetDiff;
      }
      int64_t NewOffset =
          MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
      NewMI->getOperand(OffsetPos).setImm(NewOffset);
      SU->setInstr(NewMI);
      MISUnitMap[NewMI] = SU;
      NewMIs.insert(NewMI);
    }
  }
}

/// Return true for an order dependence that is loop carried potentially.
/// An order dependence is loop carried if the destination defines a value
/// that may be used by the source in a subsequent iteration.
bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep,
                                           bool isSucc) {
  if (!isOrder(Source, Dep) || Dep.isArtificial())
    return false;

  if (!SwpPruneLoopCarried)
    return true;

  MachineInstr *SI = Source->getInstr();
  MachineInstr *DI = Dep.getSUnit()->getInstr();
  if (!isSucc)
    std::swap(SI, DI);
  assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");

  // Assume ordered loads and stores may have a loop carried dependence.
  if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
      SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
    return true;

  // Only chain dependences between a load and store can be loop carried.
  if (!DI->mayStore() || !SI->mayLoad())
    return false;

  unsigned DeltaS, DeltaD;
  if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
    return true;

  unsigned BaseRegS, BaseRegD;
  int64_t OffsetS, OffsetD;
  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
  if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) ||
      !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI))
    return true;

  if (BaseRegS != BaseRegD)
    return true;

  uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
  uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();

  // This is the main test, which checks the offset values and the loop
  // increment value to determine if the accesses may be loop carried.
  if (OffsetS >= OffsetD)
    return OffsetS + AccessSizeS > DeltaS;
  else
    return OffsetD + AccessSizeD > DeltaD;

  return true;
}

void SwingSchedulerDAG::postprocessDAG() {
  for (auto &M : Mutations)
    M->apply(this);
}

/// Try to schedule the node at the specified StartCycle and continue
/// until the node is schedule or the EndCycle is reached.  This function
/// returns true if the node is scheduled.  This routine may search either
/// forward or backward for a place to insert the instruction based upon
/// the relative values of StartCycle and EndCycle.
bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
  bool forward = true;
  if (StartCycle > EndCycle)
    forward = false;

  // The terminating condition depends on the direction.
  int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
  for (int curCycle = StartCycle; curCycle != termCycle;
       forward ? ++curCycle : --curCycle) {

    // Add the already scheduled instructions at the specified cycle to the DFA.
    Resources->clearResources();
    for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
         checkCycle <= LastCycle; checkCycle += II) {
      std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];

      for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
                                         E = cycleInstrs.end();
           I != E; ++I) {
        if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
          continue;
        assert(Resources->canReserveResources(*(*I)->getInstr()) &&
               "These instructions have already been scheduled.");
        Resources->reserveResources(*(*I)->getInstr());
      }
    }
    if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
        Resources->canReserveResources(*SU->getInstr())) {
      DEBUG({
        dbgs() << "\tinsert at cycle " << curCycle << " ";
        SU->getInstr()->dump();
      });

      ScheduledInstrs[curCycle].push_back(SU);
      InstrToCycle.insert(std::make_pair(SU, curCycle));
      if (curCycle > LastCycle)
        LastCycle = curCycle;
      if (curCycle < FirstCycle)
        FirstCycle = curCycle;
      return true;
    }
    DEBUG({
      dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
      SU->getInstr()->dump();
    });
  }
  return false;
}

// Return the cycle of the earliest scheduled instruction in the chain.
int SMSchedule::earliestCycleInChain(const SDep &Dep) {
  SmallPtrSet<SUnit *, 8> Visited;
  SmallVector<SDep, 8> Worklist;
  Worklist.push_back(Dep);
  int EarlyCycle = INT_MAX;
  while (!Worklist.empty()) {
    const SDep &Cur = Worklist.pop_back_val();
    SUnit *PrevSU = Cur.getSUnit();
    if (Visited.count(PrevSU))
      continue;
    std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
    if (it == InstrToCycle.end())
      continue;
    EarlyCycle = std::min(EarlyCycle, it->second);
    for (const auto &PI : PrevSU->Preds)
      if (SwingSchedulerDAG::isOrder(PrevSU, PI))
        Worklist.push_back(PI);
    Visited.insert(PrevSU);
  }
  return EarlyCycle;
}

// Return the cycle of the latest scheduled instruction in the chain.
int SMSchedule::latestCycleInChain(const SDep &Dep) {
  SmallPtrSet<SUnit *, 8> Visited;
  SmallVector<SDep, 8> Worklist;
  Worklist.push_back(Dep);
  int LateCycle = INT_MIN;
  while (!Worklist.empty()) {
    const SDep &Cur = Worklist.pop_back_val();
    SUnit *SuccSU = Cur.getSUnit();
    if (Visited.count(SuccSU))
      continue;
    std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
    if (it == InstrToCycle.end())
      continue;
    LateCycle = std::max(LateCycle, it->second);
    for (const auto &SI : SuccSU->Succs)
      if (SwingSchedulerDAG::isOrder(SuccSU, SI))
        Worklist.push_back(SI);
    Visited.insert(SuccSU);
  }
  return LateCycle;
}

/// If an instruction has a use that spans multiple iterations, then
/// return true. These instructions are characterized by having a back-ege
/// to a Phi, which contains a reference to another Phi.
static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
  for (auto &P : SU->Preds)
    if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
      for (auto &S : P.getSUnit()->Succs)
        if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI())
          return P.getSUnit();
  return nullptr;
}

/// Compute the scheduling start slot for the instruction.  The start slot
/// depends on any predecessor or successor nodes scheduled already.
void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
                              int *MinEnd, int *MaxStart, int II,
                              SwingSchedulerDAG *DAG) {
  // Iterate over each instruction that has been scheduled already.  The start
  // slot computuation depends on whether the previously scheduled instruction
  // is a predecessor or successor of the specified instruction.
  for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {

    // Iterate over each instruction in the current cycle.
    for (SUnit *I : getInstructions(cycle)) {
      // Because we're processing a DAG for the dependences, we recognize
      // the back-edge in recurrences by anti dependences.
      for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
        const SDep &Dep = SU->Preds[i];
        if (Dep.getSUnit() == I) {
          if (!DAG->isBackedge(SU, Dep)) {
            int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
                             DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
            *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
            if (DAG->isLoopCarriedOrder(SU, Dep, false)) {
              int End = earliestCycleInChain(Dep) + (II - 1);
              *MinEnd = std::min(*MinEnd, End);
            }
          } else {
            int LateStart = cycle - DAG->getLatency(SU, Dep) +
                            DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
            *MinLateStart = std::min(*MinLateStart, LateStart);
          }
        }
        // For instruction that requires multiple iterations, make sure that
        // the dependent instruction is not scheduled past the definition.
        SUnit *BE = multipleIterations(I, DAG);
        if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
            !SU->isPred(I))
          *MinLateStart = std::min(*MinLateStart, cycle);
      }
      for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i)
        if (SU->Succs[i].getSUnit() == I) {
          const SDep &Dep = SU->Succs[i];
          if (!DAG->isBackedge(SU, Dep)) {
            int LateStart = cycle - DAG->getLatency(SU, Dep) +
                            DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
            *MinLateStart = std::min(*MinLateStart, LateStart);
            if (DAG->isLoopCarriedOrder(SU, Dep)) {
              int Start = latestCycleInChain(Dep) + 1 - II;
              *MaxStart = std::max(*MaxStart, Start);
            }
          } else {
            int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
                             DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
            *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
          }
        }
    }
  }
}

/// Order the instructions within a cycle so that the definitions occur
/// before the uses. Returns true if the instruction is added to the start
/// of the list, or false if added to the end.
bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
                                 std::deque<SUnit *> &Insts) {
  MachineInstr *MI = SU->getInstr();
  bool OrderBeforeUse = false;
  bool OrderAfterDef = false;
  bool OrderBeforeDef = false;
  unsigned MoveDef = 0;
  unsigned MoveUse = 0;
  int StageInst1 = stageScheduled(SU);

  unsigned Pos = 0;
  for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
       ++I, ++Pos) {
    // Relative order of Phis does not matter.
    if (MI->isPHI() && (*I)->getInstr()->isPHI())
      continue;
    for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
      MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
        continue;
      unsigned Reg = MO.getReg();
      unsigned BasePos, OffsetPos;
      if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
        if (MI->getOperand(BasePos).getReg() == Reg)
          if (unsigned NewReg = SSD->getInstrBaseReg(SU))
            Reg = NewReg;
      bool Reads, Writes;
      std::tie(Reads, Writes) =
          (*I)->getInstr()->readsWritesVirtualRegister(Reg);
      if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
        OrderBeforeUse = true;
        MoveUse = Pos;
      } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
        // Add the instruction after the scheduled instruction.
        OrderAfterDef = true;
        MoveDef = Pos;
      } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
        if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
          OrderBeforeUse = true;
          MoveUse = Pos;
        } else {
          OrderAfterDef = true;
          MoveDef = Pos;
        }
      } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
        OrderBeforeUse = true;
        MoveUse = Pos;
        if (MoveUse != 0) {
          OrderAfterDef = true;
          MoveDef = Pos - 1;
        }
      } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
        // Add the instruction before the scheduled instruction.
        OrderBeforeUse = true;
        MoveUse = Pos;
      } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
                 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
        OrderBeforeDef = true;
        MoveUse = Pos;
      }
    }
    // Check for order dependences between instructions. Make sure the source
    // is ordered before the destination.
    for (auto &S : SU->Succs)
      if (S.getKind() == SDep::Order) {
        if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
          OrderBeforeUse = true;
          MoveUse = Pos;
        }
      } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) {
        if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) {
          if (S.isAssignedRegDep()) {
            OrderAfterDef = true;
            MoveDef = Pos;
          }
        } else {
          OrderBeforeUse = true;
          MoveUse = Pos;
        }
      }
    for (auto &P : SU->Preds)
      if (P.getKind() == SDep::Order) {
        if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
          OrderAfterDef = true;
          MoveDef = Pos;
        }
      } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) {
        if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) {
          if (P.isAssignedRegDep()) {
            OrderBeforeUse = true;
            MoveUse = Pos;
          }
        } else {
          OrderAfterDef = true;
          MoveDef = Pos;
        }
      }
  }

  // A circular dependence.
  if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
    OrderBeforeUse = false;

  // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
  // to a loop-carried dependence.
  if (OrderBeforeDef)
    OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);

  // The uncommon case when the instruction order needs to be updated because
  // there is both a use and def.
  if (OrderBeforeUse && OrderAfterDef) {
    SUnit *UseSU = Insts.at(MoveUse);
    SUnit *DefSU = Insts.at(MoveDef);
    if (MoveUse > MoveDef) {
      Insts.erase(Insts.begin() + MoveUse);
      Insts.erase(Insts.begin() + MoveDef);
    } else {
      Insts.erase(Insts.begin() + MoveDef);
      Insts.erase(Insts.begin() + MoveUse);
    }
    if (orderDependence(SSD, UseSU, Insts)) {
      Insts.push_front(SU);
      orderDependence(SSD, DefSU, Insts);
      return true;
    }
    Insts.pop_back();
    Insts.push_back(SU);
    Insts.push_back(UseSU);
    orderDependence(SSD, DefSU, Insts);
    return false;
  }
  // Put the new instruction first if there is a use in the list. Otherwise,
  // put it at the end of the list.
  if (OrderBeforeUse)
    Insts.push_front(SU);
  else
    Insts.push_back(SU);
  return OrderBeforeUse;
}

/// Return true if the scheduled Phi has a loop carried operand.
bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
  if (!Phi.isPHI())
    return false;
  assert(Phi.isPHI() && "Expecing a Phi.");
  SUnit *DefSU = SSD->getSUnit(&Phi);
  unsigned DefCycle = cycleScheduled(DefSU);
  int DefStage = stageScheduled(DefSU);

  unsigned InitVal = 0;
  unsigned LoopVal = 0;
  getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
  SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
  if (!UseSU)
    return true;
  if (UseSU->getInstr()->isPHI())
    return true;
  unsigned LoopCycle = cycleScheduled(UseSU);
  int LoopStage = stageScheduled(UseSU);
  return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
}

/// Return true if the instruction is a definition that is loop carried
/// and defines the use on the next iteration.
///        v1 = phi(v2, v3)
///  (Def) v3 = op v1
///  (MO)   = v1
/// If MO appears before Def, then then v1 and v3 may get assigned to the same
/// register.
bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
                                       MachineInstr *Def, MachineOperand &MO) {
  if (!MO.isReg())
    return false;
  if (Def->isPHI())
    return false;
  MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
  if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
    return false;
  if (!isLoopCarried(SSD, *Phi))
    return false;
  unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
  for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
    MachineOperand &DMO = Def->getOperand(i);
    if (!DMO.isReg() || !DMO.isDef())
      continue;
    if (DMO.getReg() == LoopReg)
      return true;
  }
  return false;
}

// Check if the generated schedule is valid. This function checks if
// an instruction that uses a physical register is scheduled in a
// different stage than the definition. The pipeliner does not handle
// physical register values that may cross a basic block boundary.
bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
  for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
    SUnit &SU = SSD->SUnits[i];
    if (!SU.hasPhysRegDefs)
      continue;
    int StageDef = stageScheduled(&SU);
    assert(StageDef != -1 && "Instruction should have been scheduled.");
    for (auto &SI : SU.Succs)
      if (SI.isAssignedRegDep())
        if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
          if (stageScheduled(SI.getSUnit()) != StageDef)
            return false;
  }
  return true;
}

/// Attempt to fix the degenerate cases when the instruction serialization
/// causes the register lifetimes to overlap. For example,
///   p' = store_pi(p, b)
///      = load p, offset
/// In this case p and p' overlap, which means that two registers are needed.
/// Instead, this function changes the load to use p' and updates the offset.
void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
  unsigned OverlapReg = 0;
  unsigned NewBaseReg = 0;
  for (SUnit *SU : Instrs) {
    MachineInstr *MI = SU->getInstr();
    for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
      const MachineOperand &MO = MI->getOperand(i);
      // Look for an instruction that uses p. The instruction occurs in the
      // same cycle but occurs later in the serialized order.
      if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
        // Check that the instruction appears in the InstrChanges structure,
        // which contains instructions that can have the offset updated.
        DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
          InstrChanges.find(SU);
        if (It != InstrChanges.end()) {
          unsigned BasePos, OffsetPos;
          // Update the base register and adjust the offset.
          if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
            MachineInstr *NewMI = MF.CloneMachineInstr(MI);
            NewMI->getOperand(BasePos).setReg(NewBaseReg);
            int64_t NewOffset =
                MI->getOperand(OffsetPos).getImm() - It->second.second;
            NewMI->getOperand(OffsetPos).setImm(NewOffset);
            SU->setInstr(NewMI);
            MISUnitMap[NewMI] = SU;
            NewMIs.insert(NewMI);
          }
        }
        OverlapReg = 0;
        NewBaseReg = 0;
        break;
      }
      // Look for an instruction of the form p' = op(p), which uses and defines
      // two virtual registers that get allocated to the same physical register.
      unsigned TiedUseIdx = 0;
      if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
        // OverlapReg is p in the example above.
        OverlapReg = MI->getOperand(TiedUseIdx).getReg();
        // NewBaseReg is p' in the example above.
        NewBaseReg = MI->getOperand(i).getReg();
        break;
      }
    }
  }
}

/// After the schedule has been formed, call this function to combine
/// the instructions from the different stages/cycles.  That is, this
/// function creates a schedule that represents a single iteration.
void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
  // Move all instructions to the first stage from later stages.
  for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
    for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
         ++stage) {
      std::deque<SUnit *> &cycleInstrs =
          ScheduledInstrs[cycle + (stage * InitiationInterval)];
      for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
                                                 E = cycleInstrs.rend();
           I != E; ++I)
        ScheduledInstrs[cycle].push_front(*I);
    }
  }
  // Iterate over the definitions in each instruction, and compute the
  // stage difference for each use.  Keep the maximum value.
  for (auto &I : InstrToCycle) {
    int DefStage = stageScheduled(I.first);
    MachineInstr *MI = I.first->getInstr();
    for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
      MachineOperand &Op = MI->getOperand(i);
      if (!Op.isReg() || !Op.isDef())
        continue;

      unsigned Reg = Op.getReg();
      unsigned MaxDiff = 0;
      bool PhiIsSwapped = false;
      for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
                                             EI = MRI.use_end();
           UI != EI; ++UI) {
        MachineOperand &UseOp = *UI;
        MachineInstr *UseMI = UseOp.getParent();
        SUnit *SUnitUse = SSD->getSUnit(UseMI);
        int UseStage = stageScheduled(SUnitUse);
        unsigned Diff = 0;
        if (UseStage != -1 && UseStage >= DefStage)
          Diff = UseStage - DefStage;
        if (MI->isPHI()) {
          if (isLoopCarried(SSD, *MI))
            ++Diff;
          else
            PhiIsSwapped = true;
        }
        MaxDiff = std::max(Diff, MaxDiff);
      }
      RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
    }
  }

  // Erase all the elements in the later stages. Only one iteration should
  // remain in the scheduled list, and it contains all the instructions.
  for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
    ScheduledInstrs.erase(cycle);

  // Change the registers in instruction as specified in the InstrChanges
  // map. We need to use the new registers to create the correct order.
  for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
    SUnit *SU = &SSD->SUnits[i];
    SSD->applyInstrChange(SU->getInstr(), *this);
  }

  // Reorder the instructions in each cycle to fix and improve the
  // generated code.
  for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
    std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
    std::deque<SUnit *> newOrderZC;
    // Put the zero-cost, pseudo instructions at the start of the cycle.
    for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
      SUnit *SU = cycleInstrs[i];
      if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
        orderDependence(SSD, SU, newOrderZC);
    }
    std::deque<SUnit *> newOrderI;
    // Then, add the regular instructions back.
    for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
      SUnit *SU = cycleInstrs[i];
      if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
        orderDependence(SSD, SU, newOrderI);
    }
    // Replace the old order with the new order.
    cycleInstrs.swap(newOrderZC);
    cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
    SSD->fixupRegisterOverlaps(cycleInstrs);
  }

  DEBUG(dump(););
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the schedule information to the given output.
void SMSchedule::print(raw_ostream &os) const {
  // Iterate over each cycle.
  for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
    // Iterate over each instruction in the cycle.
    const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
    for (SUnit *CI : cycleInstrs->second) {
      os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
      os << "(" << CI->NodeNum << ") ";
      CI->getInstr()->print(os);
      os << "\n";
    }
  }
}

/// Utility function used for debugging to print the schedule.
LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
#endif