aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/MachineLICM.cpp
blob: efb5c3371de2b21cedd569822562e06587258159 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
//===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs loop invariant code motion on machine instructions. We
// attempt to remove as much code from the body of a loop as possible.
//
// This pass is not intended to be a replacement or a complete alternative
// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
// constructs that are not exposed before lowering and instruction selection.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
#include <cassert>
#include <limits>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "machinelicm"

static cl::opt<bool>
AvoidSpeculation("avoid-speculation",
                 cl::desc("MachineLICM should avoid speculation"),
                 cl::init(true), cl::Hidden);

static cl::opt<bool>
HoistCheapInsts("hoist-cheap-insts",
                cl::desc("MachineLICM should hoist even cheap instructions"),
                cl::init(false), cl::Hidden);

static cl::opt<bool>
SinkInstsToAvoidSpills("sink-insts-to-avoid-spills",
                       cl::desc("MachineLICM should sink instructions into "
                                "loops to avoid register spills"),
                       cl::init(false), cl::Hidden);

STATISTIC(NumHoisted,
          "Number of machine instructions hoisted out of loops");
STATISTIC(NumLowRP,
          "Number of instructions hoisted in low reg pressure situation");
STATISTIC(NumHighLatency,
          "Number of high latency instructions hoisted");
STATISTIC(NumCSEed,
          "Number of hoisted machine instructions CSEed");
STATISTIC(NumPostRAHoisted,
          "Number of machine instructions hoisted out of loops post regalloc");

namespace {

  class MachineLICM : public MachineFunctionPass {
    const TargetInstrInfo *TII;
    const TargetLoweringBase *TLI;
    const TargetRegisterInfo *TRI;
    const MachineFrameInfo *MFI;
    MachineRegisterInfo *MRI;
    TargetSchedModel SchedModel;
    bool PreRegAlloc = true;

    // Various analyses that we use...
    AliasAnalysis        *AA;      // Alias analysis info.
    MachineLoopInfo      *MLI;     // Current MachineLoopInfo
    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop

    // State that is updated as we process loops
    bool         Changed;          // True if a loop is changed.
    bool         FirstInLoop;      // True if it's the first LICM in the loop.
    MachineLoop *CurLoop;          // The current loop we are working on.
    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.

    // Exit blocks for CurLoop.
    SmallVector<MachineBasicBlock *, 8> ExitBlocks;

    bool isExitBlock(const MachineBasicBlock *MBB) const {
      return is_contained(ExitBlocks, MBB);
    }

    // Track 'estimated' register pressure.
    SmallSet<unsigned, 32> RegSeen;
    SmallVector<unsigned, 8> RegPressure;

    // Register pressure "limit" per register pressure set. If the pressure
    // is higher than the limit, then it's considered high.
    SmallVector<unsigned, 8> RegLimit;

    // Register pressure on path leading from loop preheader to current BB.
    SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;

    // For each opcode, keep a list of potential CSE instructions.
    DenseMap<unsigned, std::vector<const MachineInstr *>> CSEMap;

    enum {
      SpeculateFalse   = 0,
      SpeculateTrue    = 1,
      SpeculateUnknown = 2
    };

    // If a MBB does not dominate loop exiting blocks then it may not safe
    // to hoist loads from this block.
    // Tri-state: 0 - false, 1 - true, 2 - unknown
    unsigned SpeculationState;

  public:
    static char ID; // Pass identification, replacement for typeid

    MachineLICM() : MachineFunctionPass(ID) {
      initializeMachineLICMPass(*PassRegistry::getPassRegistry());
    }

    explicit MachineLICM(bool PreRA)
        : MachineFunctionPass(ID), PreRegAlloc(PreRA) {
        initializeMachineLICMPass(*PassRegistry::getPassRegistry());
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineLoopInfo>();
      AU.addRequired<MachineDominatorTree>();
      AU.addRequired<AAResultsWrapperPass>();
      AU.addPreserved<MachineLoopInfo>();
      AU.addPreserved<MachineDominatorTree>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    void releaseMemory() override {
      RegSeen.clear();
      RegPressure.clear();
      RegLimit.clear();
      BackTrace.clear();
      CSEMap.clear();
    }

  private:
    /// Keep track of information about hoisting candidates.
    struct CandidateInfo {
      MachineInstr *MI;
      unsigned      Def;
      int           FI;

      CandidateInfo(MachineInstr *mi, unsigned def, int fi)
        : MI(mi), Def(def), FI(fi) {}
    };

    void HoistRegionPostRA();

    void HoistPostRA(MachineInstr *MI, unsigned Def);

    void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs,
                   BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs,
                   SmallVectorImpl<CandidateInfo> &Candidates);

    void AddToLiveIns(unsigned Reg);

    bool IsLICMCandidate(MachineInstr &I);

    bool IsLoopInvariantInst(MachineInstr &I);

    bool HasLoopPHIUse(const MachineInstr *MI) const;

    bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
                               unsigned Reg) const;

    bool IsCheapInstruction(MachineInstr &MI) const;

    bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost,
                                 bool Cheap);

    void UpdateBackTraceRegPressure(const MachineInstr *MI);

    bool IsProfitableToHoist(MachineInstr &MI);

    bool IsGuaranteedToExecute(MachineBasicBlock *BB);

    void EnterScope(MachineBasicBlock *MBB);

    void ExitScope(MachineBasicBlock *MBB);

    void ExitScopeIfDone(
        MachineDomTreeNode *Node,
        DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren,
        DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap);

    void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode);

    void HoistRegion(MachineDomTreeNode *N, bool IsHeader);

    void SinkIntoLoop();

    void InitRegPressure(MachineBasicBlock *BB);

    DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI,
                                             bool ConsiderSeen,
                                             bool ConsiderUnseenAsDef);

    void UpdateRegPressure(const MachineInstr *MI,
                           bool ConsiderUnseenAsDef = false);

    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);

    const MachineInstr *
    LookForDuplicate(const MachineInstr *MI,
                     std::vector<const MachineInstr *> &PrevMIs);

    bool EliminateCSE(
        MachineInstr *MI,
        DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI);

    bool MayCSE(MachineInstr *MI);

    bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);

    void InitCSEMap(MachineBasicBlock *BB);

    MachineBasicBlock *getCurPreheader();
  };

} // end anonymous namespace

char MachineLICM::ID = 0;

char &llvm::MachineLICMID = MachineLICM::ID;

INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE,
                      "Machine Loop Invariant Code Motion", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE,
                    "Machine Loop Invariant Code Motion", false, false)

/// Test if the given loop is the outer-most loop that has a unique predecessor.
static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
  // Check whether this loop even has a unique predecessor.
  if (!CurLoop->getLoopPredecessor())
    return false;
  // Ok, now check to see if any of its outer loops do.
  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
    if (L->getLoopPredecessor())
      return false;
  // None of them did, so this is the outermost with a unique predecessor.
  return true;
}

bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(*MF.getFunction()))
    return false;

  Changed = FirstInLoop = false;
  const TargetSubtargetInfo &ST = MF.getSubtarget();
  TII = ST.getInstrInfo();
  TLI = ST.getTargetLowering();
  TRI = ST.getRegisterInfo();
  MFI = &MF.getFrameInfo();
  MRI = &MF.getRegInfo();
  SchedModel.init(ST.getSchedModel(), &ST, TII);

  PreRegAlloc = MRI->isSSA();

  if (PreRegAlloc)
    DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
  else
    DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
  DEBUG(dbgs() << MF.getName() << " ********\n");

  if (PreRegAlloc) {
    // Estimate register pressure during pre-regalloc pass.
    unsigned NumRPS = TRI->getNumRegPressureSets();
    RegPressure.resize(NumRPS);
    std::fill(RegPressure.begin(), RegPressure.end(), 0);
    RegLimit.resize(NumRPS);
    for (unsigned i = 0, e = NumRPS; i != e; ++i)
      RegLimit[i] = TRI->getRegPressureSetLimit(MF, i);
  }

  // Get our Loop information...
  MLI = &getAnalysis<MachineLoopInfo>();
  DT  = &getAnalysis<MachineDominatorTree>();
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();

  SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
  while (!Worklist.empty()) {
    CurLoop = Worklist.pop_back_val();
    CurPreheader = nullptr;
    ExitBlocks.clear();

    // If this is done before regalloc, only visit outer-most preheader-sporting
    // loops.
    if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
      Worklist.append(CurLoop->begin(), CurLoop->end());
      continue;
    }

    CurLoop->getExitBlocks(ExitBlocks);

    if (!PreRegAlloc)
      HoistRegionPostRA();
    else {
      // CSEMap is initialized for loop header when the first instruction is
      // being hoisted.
      MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
      FirstInLoop = true;
      HoistOutOfLoop(N);
      CSEMap.clear();

      if (SinkInstsToAvoidSpills)
        SinkIntoLoop();
    }
  }

  return Changed;
}

/// Return true if instruction stores to the specified frame.
static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
  // If we lost memory operands, conservatively assume that the instruction
  // writes to all slots.
  if (MI->memoperands_empty())
    return true;
  for (const MachineMemOperand *MemOp : MI->memoperands()) {
    if (!MemOp->isStore() || !MemOp->getPseudoValue())
      continue;
    if (const FixedStackPseudoSourceValue *Value =
        dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) {
      if (Value->getFrameIndex() == FI)
        return true;
    }
  }
  return false;
}

/// Examine the instruction for potentai LICM candidate. Also
/// gather register def and frame object update information.
void MachineLICM::ProcessMI(MachineInstr *MI,
                            BitVector &PhysRegDefs,
                            BitVector &PhysRegClobbers,
                            SmallSet<int, 32> &StoredFIs,
                            SmallVectorImpl<CandidateInfo> &Candidates) {
  bool RuledOut = false;
  bool HasNonInvariantUse = false;
  unsigned Def = 0;
  for (const MachineOperand &MO : MI->operands()) {
    if (MO.isFI()) {
      // Remember if the instruction stores to the frame index.
      int FI = MO.getIndex();
      if (!StoredFIs.count(FI) &&
          MFI->isSpillSlotObjectIndex(FI) &&
          InstructionStoresToFI(MI, FI))
        StoredFIs.insert(FI);
      HasNonInvariantUse = true;
      continue;
    }

    // We can't hoist an instruction defining a physreg that is clobbered in
    // the loop.
    if (MO.isRegMask()) {
      PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
      continue;
    }

    if (!MO.isReg())
      continue;
    unsigned Reg = MO.getReg();
    if (!Reg)
      continue;
    assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
           "Not expecting virtual register!");

    if (!MO.isDef()) {
      if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
        // If it's using a non-loop-invariant register, then it's obviously not
        // safe to hoist.
        HasNonInvariantUse = true;
      continue;
    }

    if (MO.isImplicit()) {
      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
        PhysRegClobbers.set(*AI);
      if (!MO.isDead())
        // Non-dead implicit def? This cannot be hoisted.
        RuledOut = true;
      // No need to check if a dead implicit def is also defined by
      // another instruction.
      continue;
    }

    // FIXME: For now, avoid instructions with multiple defs, unless
    // it's a dead implicit def.
    if (Def)
      RuledOut = true;
    else
      Def = Reg;

    // If we have already seen another instruction that defines the same
    // register, then this is not safe.  Two defs is indicated by setting a
    // PhysRegClobbers bit.
    for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
      if (PhysRegDefs.test(*AS))
        PhysRegClobbers.set(*AS);
      PhysRegDefs.set(*AS);
    }
    if (PhysRegClobbers.test(Reg))
      // MI defined register is seen defined by another instruction in
      // the loop, it cannot be a LICM candidate.
      RuledOut = true;
  }

  // Only consider reloads for now and remats which do not have register
  // operands. FIXME: Consider unfold load folding instructions.
  if (Def && !RuledOut) {
    int FI = std::numeric_limits<int>::min();
    if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
        (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
      Candidates.push_back(CandidateInfo(MI, Def, FI));
  }
}

/// Walk the specified region of the CFG and hoist loop invariants out to the
/// preheader.
void MachineLICM::HoistRegionPostRA() {
  MachineBasicBlock *Preheader = getCurPreheader();
  if (!Preheader)
    return;

  unsigned NumRegs = TRI->getNumRegs();
  BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
  BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.

  SmallVector<CandidateInfo, 32> Candidates;
  SmallSet<int, 32> StoredFIs;

  // Walk the entire region, count number of defs for each register, and
  // collect potential LICM candidates.
  const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks();
  for (MachineBasicBlock *BB : Blocks) {
    // If the header of the loop containing this basic block is a landing pad,
    // then don't try to hoist instructions out of this loop.
    const MachineLoop *ML = MLI->getLoopFor(BB);
    if (ML && ML->getHeader()->isEHPad()) continue;

    // Conservatively treat live-in's as an external def.
    // FIXME: That means a reload that're reused in successor block(s) will not
    // be LICM'ed.
    for (const auto &LI : BB->liveins()) {
      for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI)
        PhysRegDefs.set(*AI);
    }

    SpeculationState = SpeculateUnknown;
    for (MachineInstr &MI : *BB)
      ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
  }

  // Gather the registers read / clobbered by the terminator.
  BitVector TermRegs(NumRegs);
  MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
  if (TI != Preheader->end()) {
    for (const MachineOperand &MO : TI->operands()) {
      if (!MO.isReg())
        continue;
      unsigned Reg = MO.getReg();
      if (!Reg)
        continue;
      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
        TermRegs.set(*AI);
    }
  }

  // Now evaluate whether the potential candidates qualify.
  // 1. Check if the candidate defined register is defined by another
  //    instruction in the loop.
  // 2. If the candidate is a load from stack slot (always true for now),
  //    check if the slot is stored anywhere in the loop.
  // 3. Make sure candidate def should not clobber
  //    registers read by the terminator. Similarly its def should not be
  //    clobbered by the terminator.
  for (CandidateInfo &Candidate : Candidates) {
    if (Candidate.FI != std::numeric_limits<int>::min() &&
        StoredFIs.count(Candidate.FI))
      continue;

    unsigned Def = Candidate.Def;
    if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
      bool Safe = true;
      MachineInstr *MI = Candidate.MI;
      for (const MachineOperand &MO : MI->operands()) {
        if (!MO.isReg() || MO.isDef() || !MO.getReg())
          continue;
        unsigned Reg = MO.getReg();
        if (PhysRegDefs.test(Reg) ||
            PhysRegClobbers.test(Reg)) {
          // If it's using a non-loop-invariant register, then it's obviously
          // not safe to hoist.
          Safe = false;
          break;
        }
      }
      if (Safe)
        HoistPostRA(MI, Candidate.Def);
    }
  }
}

/// Add register 'Reg' to the livein sets of BBs in the current loop, and make
/// sure it is not killed by any instructions in the loop.
void MachineLICM::AddToLiveIns(unsigned Reg) {
  const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks();
  for (MachineBasicBlock *BB : Blocks) {
    if (!BB->isLiveIn(Reg))
      BB->addLiveIn(Reg);
    for (MachineInstr &MI : *BB) {
      for (MachineOperand &MO : MI.operands()) {
        if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
        if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
          MO.setIsKill(false);
      }
    }
  }
}

/// When an instruction is found to only use loop invariant operands that is
/// safe to hoist, this instruction is called to do the dirty work.
void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
  MachineBasicBlock *Preheader = getCurPreheader();

  // Now move the instructions to the predecessor, inserting it before any
  // terminator instructions.
  DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#"
               << MI->getParent()->getNumber() << ": " << *MI);

  // Splice the instruction to the preheader.
  MachineBasicBlock *MBB = MI->getParent();
  Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);

  // Add register to livein list to all the BBs in the current loop since a
  // loop invariant must be kept live throughout the whole loop. This is
  // important to ensure later passes do not scavenge the def register.
  AddToLiveIns(Def);

  ++NumPostRAHoisted;
  Changed = true;
}

/// Check if this mbb is guaranteed to execute. If not then a load from this mbb
/// may not be safe to hoist.
bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) {
  if (SpeculationState != SpeculateUnknown)
    return SpeculationState == SpeculateFalse;

  if (BB != CurLoop->getHeader()) {
    // Check loop exiting blocks.
    SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
    CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
    for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks)
      if (!DT->dominates(BB, CurrentLoopExitingBlock)) {
        SpeculationState = SpeculateTrue;
        return false;
      }
  }

  SpeculationState = SpeculateFalse;
  return true;
}

void MachineLICM::EnterScope(MachineBasicBlock *MBB) {
  DEBUG(dbgs() << "Entering BB#" << MBB->getNumber() << '\n');

  // Remember livein register pressure.
  BackTrace.push_back(RegPressure);
}

void MachineLICM::ExitScope(MachineBasicBlock *MBB) {
  DEBUG(dbgs() << "Exiting BB#" << MBB->getNumber() << '\n');
  BackTrace.pop_back();
}

/// Destroy scope for the MBB that corresponds to the given dominator tree node
/// if its a leaf or all of its children are done. Walk up the dominator tree to
/// destroy ancestors which are now done.
void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node,
                DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
                DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
  if (OpenChildren[Node])
    return;

  // Pop scope.
  ExitScope(Node->getBlock());

  // Now traverse upwards to pop ancestors whose offsprings are all done.
  while (MachineDomTreeNode *Parent = ParentMap[Node]) {
    unsigned Left = --OpenChildren[Parent];
    if (Left != 0)
      break;
    ExitScope(Parent->getBlock());
    Node = Parent;
  }
}

/// Walk the specified loop in the CFG (defined by all blocks dominated by the
/// specified header block, and that are in the current loop) in depth first
/// order w.r.t the DominatorTree. This allows us to visit definitions before
/// uses, allowing us to hoist a loop body in one pass without iteration.
void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
  MachineBasicBlock *Preheader = getCurPreheader();
  if (!Preheader)
    return;

  SmallVector<MachineDomTreeNode*, 32> Scopes;
  SmallVector<MachineDomTreeNode*, 8> WorkList;
  DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
  DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;

  // Perform a DFS walk to determine the order of visit.
  WorkList.push_back(HeaderN);
  while (!WorkList.empty()) {
    MachineDomTreeNode *Node = WorkList.pop_back_val();
    assert(Node && "Null dominator tree node?");
    MachineBasicBlock *BB = Node->getBlock();

    // If the header of the loop containing this basic block is a landing pad,
    // then don't try to hoist instructions out of this loop.
    const MachineLoop *ML = MLI->getLoopFor(BB);
    if (ML && ML->getHeader()->isEHPad())
      continue;

    // If this subregion is not in the top level loop at all, exit.
    if (!CurLoop->contains(BB))
      continue;

    Scopes.push_back(Node);
    const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
    unsigned NumChildren = Children.size();

    // Don't hoist things out of a large switch statement.  This often causes
    // code to be hoisted that wasn't going to be executed, and increases
    // register pressure in a situation where it's likely to matter.
    if (BB->succ_size() >= 25)
      NumChildren = 0;

    OpenChildren[Node] = NumChildren;
    // Add children in reverse order as then the next popped worklist node is
    // the first child of this node.  This means we ultimately traverse the
    // DOM tree in exactly the same order as if we'd recursed.
    for (int i = (int)NumChildren-1; i >= 0; --i) {
      MachineDomTreeNode *Child = Children[i];
      ParentMap[Child] = Node;
      WorkList.push_back(Child);
    }
  }

  if (Scopes.size() == 0)
    return;

  // Compute registers which are livein into the loop headers.
  RegSeen.clear();
  BackTrace.clear();
  InitRegPressure(Preheader);

  // Now perform LICM.
  for (MachineDomTreeNode *Node : Scopes) {
    MachineBasicBlock *MBB = Node->getBlock();

    EnterScope(MBB);

    // Process the block
    SpeculationState = SpeculateUnknown;
    for (MachineBasicBlock::iterator
         MII = MBB->begin(), E = MBB->end(); MII != E; ) {
      MachineBasicBlock::iterator NextMII = MII; ++NextMII;
      MachineInstr *MI = &*MII;
      if (!Hoist(MI, Preheader))
        UpdateRegPressure(MI);
      MII = NextMII;
    }

    // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
    ExitScopeIfDone(Node, OpenChildren, ParentMap);
  }
}

/// Sink instructions into loops if profitable. This especially tries to prevent
/// register spills caused by register pressure if there is little to no
/// overhead moving instructions into loops.
void MachineLICM::SinkIntoLoop() {
  MachineBasicBlock *Preheader = getCurPreheader();
  if (!Preheader)
    return;

  SmallVector<MachineInstr *, 8> Candidates;
  for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin();
       I != Preheader->instr_end(); ++I) {
    // We need to ensure that we can safely move this instruction into the loop.
    // As such, it must not have side-effects, e.g. such as a call has.
    if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I))
      Candidates.push_back(&*I);
  }

  for (MachineInstr *I : Candidates) {
    const MachineOperand &MO = I->getOperand(0);
    if (!MO.isDef() || !MO.isReg() || !MO.getReg())
      continue;
    if (!MRI->hasOneDef(MO.getReg()))
      continue;
    bool CanSink = true;
    MachineBasicBlock *B = nullptr;
    for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
      // FIXME: Come up with a proper cost model that estimates whether sinking
      // the instruction (and thus possibly executing it on every loop
      // iteration) is more expensive than a register.
      // For now assumes that copies are cheap and thus almost always worth it.
      if (!MI.isCopy()) {
        CanSink = false;
        break;
      }
      if (!B) {
        B = MI.getParent();
        continue;
      }
      B = DT->findNearestCommonDominator(B, MI.getParent());
      if (!B) {
        CanSink = false;
        break;
      }
    }
    if (!CanSink || !B || B == Preheader)
      continue;
    B->splice(B->getFirstNonPHI(), Preheader, I);
  }
}

static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
  return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
}

/// Find all virtual register references that are liveout of the preheader to
/// initialize the starting "register pressure". Note this does not count live
/// through (livein but not used) registers.
void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
  std::fill(RegPressure.begin(), RegPressure.end(), 0);

  // If the preheader has only a single predecessor and it ends with a
  // fallthrough or an unconditional branch, then scan its predecessor for live
  // defs as well. This happens whenever the preheader is created by splitting
  // the critical edge from the loop predecessor to the loop header.
  if (BB->pred_size() == 1) {
    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
    SmallVector<MachineOperand, 4> Cond;
    if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
      InitRegPressure(*BB->pred_begin());
  }

  for (const MachineInstr &MI : *BB)
    UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true);
}

/// Update estimate of register pressure after the specified instruction.
void MachineLICM::UpdateRegPressure(const MachineInstr *MI,
                                    bool ConsiderUnseenAsDef) {
  auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef);
  for (const auto &RPIdAndCost : Cost) {
    unsigned Class = RPIdAndCost.first;
    if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second)
      RegPressure[Class] = 0;
    else
      RegPressure[Class] += RPIdAndCost.second;
  }
}

/// Calculate the additional register pressure that the registers used in MI
/// cause.
///
/// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
/// figure out which usages are live-ins.
/// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
DenseMap<unsigned, int>
MachineLICM::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen,
                              bool ConsiderUnseenAsDef) {
  DenseMap<unsigned, int> Cost;
  if (MI->isImplicitDef())
    return Cost;
  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || MO.isImplicit())
      continue;
    unsigned Reg = MO.getReg();
    if (!TargetRegisterInfo::isVirtualRegister(Reg))
      continue;

    // FIXME: It seems bad to use RegSeen only for some of these calculations.
    bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false;
    const TargetRegisterClass *RC = MRI->getRegClass(Reg);

    RegClassWeight W = TRI->getRegClassWeight(RC);
    int RCCost = 0;
    if (MO.isDef())
      RCCost = W.RegWeight;
    else {
      bool isKill = isOperandKill(MO, MRI);
      if (isNew && !isKill && ConsiderUnseenAsDef)
        // Haven't seen this, it must be a livein.
        RCCost = W.RegWeight;
      else if (!isNew && isKill)
        RCCost = -W.RegWeight;
    }
    if (RCCost == 0)
      continue;
    const int *PS = TRI->getRegClassPressureSets(RC);
    for (; *PS != -1; ++PS) {
      if (Cost.find(*PS) == Cost.end())
        Cost[*PS] = RCCost;
      else
        Cost[*PS] += RCCost;
    }
  }
  return Cost;
}

/// Return true if this machine instruction loads from global offset table or
/// constant pool.
static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
  assert(MI.mayLoad() && "Expected MI that loads!");

  // If we lost memory operands, conservatively assume that the instruction
  // reads from everything..
  if (MI.memoperands_empty())
    return true;

  for (MachineMemOperand *MemOp : MI.memoperands())
    if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
      if (PSV->isGOT() || PSV->isConstantPool())
        return true;

  return false;
}

/// Returns true if the instruction may be a suitable candidate for LICM.
/// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
  // Check if it's safe to move the instruction.
  bool DontMoveAcrossStore = true;
  if (!I.isSafeToMove(AA, DontMoveAcrossStore))
    return false;

  // If it is load then check if it is guaranteed to execute by making sure that
  // it dominates all exiting blocks. If it doesn't, then there is a path out of
  // the loop which does not execute this load, so we can't hoist it. Loads
  // from constant memory are not safe to speculate all the time, for example
  // indexed load from a jump table.
  // Stores and side effects are already checked by isSafeToMove.
  if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) &&
      !IsGuaranteedToExecute(I.getParent()))
    return false;

  return true;
}

/// Returns true if the instruction is loop invariant.
/// I.e., all virtual register operands are defined outside of the loop,
/// physical registers aren't accessed explicitly, and there are no side
/// effects that aren't captured by the operands or other flags.
bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
  if (!IsLICMCandidate(I))
    return false;

  // The instruction is loop invariant if all of its operands are.
  for (const MachineOperand &MO : I.operands()) {
    if (!MO.isReg())
      continue;

    unsigned Reg = MO.getReg();
    if (Reg == 0) continue;

    // Don't hoist an instruction that uses or defines a physical register.
    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
      if (MO.isUse()) {
        // If the physreg has no defs anywhere, it's just an ambient register
        // and we can freely move its uses. Alternatively, if it's allocatable,
        // it could get allocated to something with a def during allocation.
        // However, if the physreg is known to always be caller saved/restored
        // then this use is safe to hoist.
        if (!MRI->isConstantPhysReg(Reg) &&
            !(TRI->isCallerPreservedPhysReg(Reg, *I.getMF())))
          return false;
        // Otherwise it's safe to move.
        continue;
      } else if (!MO.isDead()) {
        // A def that isn't dead. We can't move it.
        return false;
      } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
        // If the reg is live into the loop, we can't hoist an instruction
        // which would clobber it.
        return false;
      }
    }

    if (!MO.isUse())
      continue;

    assert(MRI->getVRegDef(Reg) &&
           "Machine instr not mapped for this vreg?!");

    // If the loop contains the definition of an operand, then the instruction
    // isn't loop invariant.
    if (CurLoop->contains(MRI->getVRegDef(Reg)))
      return false;
  }

  // If we got this far, the instruction is loop invariant!
  return true;
}

/// Return true if the specified instruction is used by a phi node and hoisting
/// it could cause a copy to be inserted.
bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const {
  SmallVector<const MachineInstr*, 8> Work(1, MI);
  do {
    MI = Work.pop_back_val();
    for (const MachineOperand &MO : MI->operands()) {
      if (!MO.isReg() || !MO.isDef())
        continue;
      unsigned Reg = MO.getReg();
      if (!TargetRegisterInfo::isVirtualRegister(Reg))
        continue;
      for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
        // A PHI may cause a copy to be inserted.
        if (UseMI.isPHI()) {
          // A PHI inside the loop causes a copy because the live range of Reg is
          // extended across the PHI.
          if (CurLoop->contains(&UseMI))
            return true;
          // A PHI in an exit block can cause a copy to be inserted if the PHI
          // has multiple predecessors in the loop with different values.
          // For now, approximate by rejecting all exit blocks.
          if (isExitBlock(UseMI.getParent()))
            return true;
          continue;
        }
        // Look past copies as well.
        if (UseMI.isCopy() && CurLoop->contains(&UseMI))
          Work.push_back(&UseMI);
      }
    }
  } while (!Work.empty());
  return false;
}

/// Compute operand latency between a def of 'Reg' and an use in the current
/// loop, return true if the target considered it high.
bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
                                        unsigned DefIdx, unsigned Reg) const {
  if (MRI->use_nodbg_empty(Reg))
    return false;

  for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
    if (UseMI.isCopyLike())
      continue;
    if (!CurLoop->contains(UseMI.getParent()))
      continue;
    for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
      const MachineOperand &MO = UseMI.getOperand(i);
      if (!MO.isReg() || !MO.isUse())
        continue;
      unsigned MOReg = MO.getReg();
      if (MOReg != Reg)
        continue;

      if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i))
        return true;
    }

    // Only look at the first in loop use.
    break;
  }

  return false;
}

/// Return true if the instruction is marked "cheap" or the operand latency
/// between its def and a use is one or less.
bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const {
  if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike())
    return true;

  bool isCheap = false;
  unsigned NumDefs = MI.getDesc().getNumDefs();
  for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
    MachineOperand &DefMO = MI.getOperand(i);
    if (!DefMO.isReg() || !DefMO.isDef())
      continue;
    --NumDefs;
    unsigned Reg = DefMO.getReg();
    if (TargetRegisterInfo::isPhysicalRegister(Reg))
      continue;

    if (!TII->hasLowDefLatency(SchedModel, MI, i))
      return false;
    isCheap = true;
  }

  return isCheap;
}

/// Visit BBs from header to current BB, check if hoisting an instruction of the
/// given cost matrix can cause high register pressure.
bool MachineLICM::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost,
                                          bool CheapInstr) {
  for (const auto &RPIdAndCost : Cost) {
    if (RPIdAndCost.second <= 0)
      continue;

    unsigned Class = RPIdAndCost.first;
    int Limit = RegLimit[Class];

    // Don't hoist cheap instructions if they would increase register pressure,
    // even if we're under the limit.
    if (CheapInstr && !HoistCheapInsts)
      return true;

    for (const auto &RP : BackTrace)
      if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit)
        return true;
  }

  return false;
}

/// Traverse the back trace from header to the current block and update their
/// register pressures to reflect the effect of hoisting MI from the current
/// block to the preheader.
void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) {
  // First compute the 'cost' of the instruction, i.e. its contribution
  // to register pressure.
  auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false,
                               /*ConsiderUnseenAsDef=*/false);

  // Update register pressure of blocks from loop header to current block.
  for (auto &RP : BackTrace)
    for (const auto &RPIdAndCost : Cost)
      RP[RPIdAndCost.first] += RPIdAndCost.second;
}

/// Return true if it is potentially profitable to hoist the given loop
/// invariant.
bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
  if (MI.isImplicitDef())
    return true;

  // Besides removing computation from the loop, hoisting an instruction has
  // these effects:
  //
  // - The value defined by the instruction becomes live across the entire
  //   loop. This increases register pressure in the loop.
  //
  // - If the value is used by a PHI in the loop, a copy will be required for
  //   lowering the PHI after extending the live range.
  //
  // - When hoisting the last use of a value in the loop, that value no longer
  //   needs to be live in the loop. This lowers register pressure in the loop.

  bool CheapInstr = IsCheapInstruction(MI);
  bool CreatesCopy = HasLoopPHIUse(&MI);

  // Don't hoist a cheap instruction if it would create a copy in the loop.
  if (CheapInstr && CreatesCopy) {
    DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
    return false;
  }

  // Rematerializable instructions should always be hoisted since the register
  // allocator can just pull them down again when needed.
  if (TII->isTriviallyReMaterializable(MI, AA))
    return true;

  // FIXME: If there are long latency loop-invariant instructions inside the
  // loop at this point, why didn't the optimizer's LICM hoist them?
  for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if (!MO.isReg() || MO.isImplicit())
      continue;
    unsigned Reg = MO.getReg();
    if (!TargetRegisterInfo::isVirtualRegister(Reg))
      continue;
    if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) {
      DEBUG(dbgs() << "Hoist High Latency: " << MI);
      ++NumHighLatency;
      return true;
    }
  }

  // Estimate register pressure to determine whether to LICM the instruction.
  // In low register pressure situation, we can be more aggressive about
  // hoisting. Also, favors hoisting long latency instructions even in
  // moderately high pressure situation.
  // Cheap instructions will only be hoisted if they don't increase register
  // pressure at all.
  auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false,
                               /*ConsiderUnseenAsDef=*/false);

  // Visit BBs from header to current BB, if hoisting this doesn't cause
  // high register pressure, then it's safe to proceed.
  if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
    DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
    ++NumLowRP;
    return true;
  }

  // Don't risk increasing register pressure if it would create copies.
  if (CreatesCopy) {
    DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
    return false;
  }

  // Do not "speculate" in high register pressure situation. If an
  // instruction is not guaranteed to be executed in the loop, it's best to be
  // conservative.
  if (AvoidSpeculation &&
      (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
    DEBUG(dbgs() << "Won't speculate: " << MI);
    return false;
  }

  // High register pressure situation, only hoist if the instruction is going
  // to be remat'ed.
  if (!TII->isTriviallyReMaterializable(MI, AA) &&
      !MI.isDereferenceableInvariantLoad(AA)) {
    DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
    return false;
  }

  return true;
}

/// Unfold a load from the given machineinstr if the load itself could be
/// hoisted. Return the unfolded and hoistable load, or null if the load
/// couldn't be unfolded or if it wouldn't be hoistable.
MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
  // Don't unfold simple loads.
  if (MI->canFoldAsLoad())
    return nullptr;

  // If not, we may be able to unfold a load and hoist that.
  // First test whether the instruction is loading from an amenable
  // memory location.
  if (!MI->isDereferenceableInvariantLoad(AA))
    return nullptr;

  // Next determine the register class for a temporary register.
  unsigned LoadRegIndex;
  unsigned NewOpc =
    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
                                    /*UnfoldLoad=*/true,
                                    /*UnfoldStore=*/false,
                                    &LoadRegIndex);
  if (NewOpc == 0) return nullptr;
  const MCInstrDesc &MID = TII->get(NewOpc);
  MachineFunction &MF = *MI->getMF();
  const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
  // Ok, we're unfolding. Create a temporary register and do the unfold.
  unsigned Reg = MRI->createVirtualRegister(RC);

  SmallVector<MachineInstr *, 2> NewMIs;
  bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg,
                                          /*UnfoldLoad=*/true,
                                          /*UnfoldStore=*/false, NewMIs);
  (void)Success;
  assert(Success &&
         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
         "succeeded!");
  assert(NewMIs.size() == 2 &&
         "Unfolded a load into multiple instructions!");
  MachineBasicBlock *MBB = MI->getParent();
  MachineBasicBlock::iterator Pos = MI;
  MBB->insert(Pos, NewMIs[0]);
  MBB->insert(Pos, NewMIs[1]);
  // If unfolding produced a load that wasn't loop-invariant or profitable to
  // hoist, discard the new instructions and bail.
  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
    NewMIs[0]->eraseFromParent();
    NewMIs[1]->eraseFromParent();
    return nullptr;
  }

  // Update register pressure for the unfolded instruction.
  UpdateRegPressure(NewMIs[1]);

  // Otherwise we successfully unfolded a load that we can hoist.
  MI->eraseFromParent();
  return NewMIs[0];
}

/// Initialize the CSE map with instructions that are in the current loop
/// preheader that may become duplicates of instructions that are hoisted
/// out of the loop.
void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
  for (MachineInstr &MI : *BB)
    CSEMap[MI.getOpcode()].push_back(&MI);
}

/// Find an instruction amount PrevMIs that is a duplicate of MI.
/// Return this instruction if it's found.
const MachineInstr*
MachineLICM::LookForDuplicate(const MachineInstr *MI,
                              std::vector<const MachineInstr*> &PrevMIs) {
  for (const MachineInstr *PrevMI : PrevMIs)
    if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr)))
      return PrevMI;

  return nullptr;
}

/// Given a LICM'ed instruction, look for an instruction on the preheader that
/// computes the same value. If it's found, do a RAU on with the definition of
/// the existing instruction rather than hoisting the instruction to the
/// preheader.
bool MachineLICM::EliminateCSE(MachineInstr *MI,
          DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI) {
  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
  // the undef property onto uses.
  if (CI == CSEMap.end() || MI->isImplicitDef())
    return false;

  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
    DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);

    // Replace virtual registers defined by MI by their counterparts defined
    // by Dup.
    SmallVector<unsigned, 2> Defs;
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      const MachineOperand &MO = MI->getOperand(i);

      // Physical registers may not differ here.
      assert((!MO.isReg() || MO.getReg() == 0 ||
              !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
              MO.getReg() == Dup->getOperand(i).getReg()) &&
             "Instructions with different phys regs are not identical!");

      if (MO.isReg() && MO.isDef() &&
          !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
        Defs.push_back(i);
    }

    SmallVector<const TargetRegisterClass*, 2> OrigRCs;
    for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
      unsigned Idx = Defs[i];
      unsigned Reg = MI->getOperand(Idx).getReg();
      unsigned DupReg = Dup->getOperand(Idx).getReg();
      OrigRCs.push_back(MRI->getRegClass(DupReg));

      if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
        // Restore old RCs if more than one defs.
        for (unsigned j = 0; j != i; ++j)
          MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
        return false;
      }
    }

    for (unsigned Idx : Defs) {
      unsigned Reg = MI->getOperand(Idx).getReg();
      unsigned DupReg = Dup->getOperand(Idx).getReg();
      MRI->replaceRegWith(Reg, DupReg);
      MRI->clearKillFlags(DupReg);
    }

    MI->eraseFromParent();
    ++NumCSEed;
    return true;
  }
  return false;
}

/// Return true if the given instruction will be CSE'd if it's hoisted out of
/// the loop.
bool MachineLICM::MayCSE(MachineInstr *MI) {
  unsigned Opcode = MI->getOpcode();
  DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
    CI = CSEMap.find(Opcode);
  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
  // the undef property onto uses.
  if (CI == CSEMap.end() || MI->isImplicitDef())
    return false;

  return LookForDuplicate(MI, CI->second) != nullptr;
}

/// When an instruction is found to use only loop invariant operands
/// that are safe to hoist, this instruction is called to do the dirty work.
/// It returns true if the instruction is hoisted.
bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
  // First check whether we should hoist this instruction.
  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
    // If not, try unfolding a hoistable load.
    MI = ExtractHoistableLoad(MI);
    if (!MI) return false;
  }

  // Now move the instructions to the predecessor, inserting it before any
  // terminator instructions.
  DEBUG({
      dbgs() << "Hoisting " << *MI;
      if (MI->getParent()->getBasicBlock())
        dbgs() << " from BB#" << MI->getParent()->getNumber();
      if (Preheader->getBasicBlock())
        dbgs() << " to BB#" << Preheader->getNumber();
      dbgs() << "\n";
    });

  // If this is the first instruction being hoisted to the preheader,
  // initialize the CSE map with potential common expressions.
  if (FirstInLoop) {
    InitCSEMap(Preheader);
    FirstInLoop = false;
  }

  // Look for opportunity to CSE the hoisted instruction.
  unsigned Opcode = MI->getOpcode();
  DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
    CI = CSEMap.find(Opcode);
  if (!EliminateCSE(MI, CI)) {
    // Otherwise, splice the instruction to the preheader.
    Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);

    // Since we are moving the instruction out of its basic block, we do not
    // retain its debug location. Doing so would degrade the debugging
    // experience and adversely affect the accuracy of profiling information.
    MI->setDebugLoc(DebugLoc());

    // Update register pressure for BBs from header to this block.
    UpdateBackTraceRegPressure(MI);

    // Clear the kill flags of any register this instruction defines,
    // since they may need to be live throughout the entire loop
    // rather than just live for part of it.
    for (MachineOperand &MO : MI->operands())
      if (MO.isReg() && MO.isDef() && !MO.isDead())
        MRI->clearKillFlags(MO.getReg());

    // Add to the CSE map.
    if (CI != CSEMap.end())
      CI->second.push_back(MI);
    else
      CSEMap[Opcode].push_back(MI);
  }

  ++NumHoisted;
  Changed = true;

  return true;
}

/// Get the preheader for the current loop, splitting a critical edge if needed.
MachineBasicBlock *MachineLICM::getCurPreheader() {
  // Determine the block to which to hoist instructions. If we can't find a
  // suitable loop predecessor, we can't do any hoisting.

  // If we've tried to get a preheader and failed, don't try again.
  if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
    return nullptr;

  if (!CurPreheader) {
    CurPreheader = CurLoop->getLoopPreheader();
    if (!CurPreheader) {
      MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
      if (!Pred) {
        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
        return nullptr;
      }

      CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this);
      if (!CurPreheader) {
        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
        return nullptr;
      }
    }
  }
  return CurPreheader;
}