aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/LiveDebugVariables.cpp
blob: 0c81306a9a501fcd5e6d721cbddc2c527ffc6145 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
//===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveDebugVariables analysis.
//
// Remove all DBG_VALUE instructions referencing virtual registers and replace
// them with a data structure tracking where live user variables are kept - in a
// virtual register or in a stack slot.
//
// Allow the data structure to be updated during register allocation when values
// are moved between registers and stack slots. Finally emit new DBG_VALUE
// instructions after register allocation is complete.
//
//===----------------------------------------------------------------------===//

#include "LiveDebugVariables.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Metadata.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetOpcodes.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <memory>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "livedebugvars"

static cl::opt<bool>
EnableLDV("live-debug-variables", cl::init(true),
          cl::desc("Enable the live debug variables pass"), cl::Hidden);

STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");

char LiveDebugVariables::ID = 0;

INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
                "Debug Variable Analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
                "Debug Variable Analysis", false, false)

void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<MachineDominatorTree>();
  AU.addRequiredTransitive<LiveIntervals>();
  AU.setPreservesAll();
  MachineFunctionPass::getAnalysisUsage(AU);
}

LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
}

enum : unsigned { UndefLocNo = ~0U };

/// Describes a location by number along with some flags about the original
/// usage of the location.
class DbgValueLocation {
public:
  DbgValueLocation(unsigned LocNo, bool WasIndirect)
      : LocNo(LocNo), WasIndirect(WasIndirect) {
    static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing");
    assert(locNo() == LocNo && "location truncation");
  }

  DbgValueLocation() : LocNo(0), WasIndirect(0) {}

  unsigned locNo() const {
    // Fix up the undef location number, which gets truncated.
    return LocNo == INT_MAX ? UndefLocNo : LocNo;
  }
  bool wasIndirect() const { return WasIndirect; }
  bool isUndef() const { return locNo() == UndefLocNo; }

  DbgValueLocation changeLocNo(unsigned NewLocNo) const {
    return DbgValueLocation(NewLocNo, WasIndirect);
  }

  friend inline bool operator==(const DbgValueLocation &LHS,
                                const DbgValueLocation &RHS) {
    return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect;
  }

  friend inline bool operator!=(const DbgValueLocation &LHS,
                                const DbgValueLocation &RHS) {
    return !(LHS == RHS);
  }

private:
  unsigned LocNo : 31;
  unsigned WasIndirect : 1;
};

/// LocMap - Map of where a user value is live, and its location.
using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>;

namespace {

class LDVImpl;

/// UserValue - A user value is a part of a debug info user variable.
///
/// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
/// holds part of a user variable. The part is identified by a byte offset.
///
/// UserValues are grouped into equivalence classes for easier searching. Two
/// user values are related if they refer to the same variable, or if they are
/// held by the same virtual register. The equivalence class is the transitive
/// closure of that relation.
class UserValue {
  const DILocalVariable *Variable; ///< The debug info variable we are part of.
  const DIExpression *Expression; ///< Any complex address expression.
  DebugLoc dl;            ///< The debug location for the variable. This is
                          ///< used by dwarf writer to find lexical scope.
  UserValue *leader;      ///< Equivalence class leader.
  UserValue *next = nullptr; ///< Next value in equivalence class, or null.

  /// Numbered locations referenced by locmap.
  SmallVector<MachineOperand, 4> locations;

  /// Map of slot indices where this value is live.
  LocMap locInts;

  /// Set of interval start indexes that have been trimmed to the
  /// lexical scope.
  SmallSet<SlotIndex, 2> trimmedDefs;

  /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo.
  void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
                        SlotIndex StopIdx,
                        DbgValueLocation Loc, bool Spilled, LiveIntervals &LIS,
                        const TargetInstrInfo &TII,
                        const TargetRegisterInfo &TRI);

  /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs
  /// is live. Returns true if any changes were made.
  bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
                     LiveIntervals &LIS);

public:
  /// UserValue - Create a new UserValue.
  UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L,
            LocMap::Allocator &alloc)
      : Variable(var), Expression(expr), dl(std::move(L)), leader(this),
        locInts(alloc) {}

  /// getLeader - Get the leader of this value's equivalence class.
  UserValue *getLeader() {
    UserValue *l = leader;
    while (l != l->leader)
      l = l->leader;
    return leader = l;
  }

  /// getNext - Return the next UserValue in the equivalence class.
  UserValue *getNext() const { return next; }

  /// match - Does this UserValue match the parameters?
  bool match(const DILocalVariable *Var, const DIExpression *Expr,
             const DILocation *IA) const {
    // FIXME: The fragment should be part of the equivalence class, but not
    // other things in the expression like stack values.
    return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA;
  }

  /// merge - Merge equivalence classes.
  static UserValue *merge(UserValue *L1, UserValue *L2) {
    L2 = L2->getLeader();
    if (!L1)
      return L2;
    L1 = L1->getLeader();
    if (L1 == L2)
      return L1;
    // Splice L2 before L1's members.
    UserValue *End = L2;
    while (End->next) {
      End->leader = L1;
      End = End->next;
    }
    End->leader = L1;
    End->next = L1->next;
    L1->next = L2;
    return L1;
  }

  /// getLocationNo - Return the location number that matches Loc.
  unsigned getLocationNo(const MachineOperand &LocMO) {
    if (LocMO.isReg()) {
      if (LocMO.getReg() == 0)
        return UndefLocNo;
      // For register locations we dont care about use/def and other flags.
      for (unsigned i = 0, e = locations.size(); i != e; ++i)
        if (locations[i].isReg() &&
            locations[i].getReg() == LocMO.getReg() &&
            locations[i].getSubReg() == LocMO.getSubReg())
          return i;
    } else
      for (unsigned i = 0, e = locations.size(); i != e; ++i)
        if (LocMO.isIdenticalTo(locations[i]))
          return i;
    locations.push_back(LocMO);
    // We are storing a MachineOperand outside a MachineInstr.
    locations.back().clearParent();
    // Don't store def operands.
    if (locations.back().isReg())
      locations.back().setIsUse();
    return locations.size() - 1;
  }

  /// mapVirtRegs - Ensure that all virtual register locations are mapped.
  void mapVirtRegs(LDVImpl *LDV);

  /// addDef - Add a definition point to this value.
  void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) {
    DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect);
    // Add a singular (Idx,Idx) -> Loc mapping.
    LocMap::iterator I = locInts.find(Idx);
    if (!I.valid() || I.start() != Idx)
      I.insert(Idx, Idx.getNextSlot(), Loc);
    else
      // A later DBG_VALUE at the same SlotIndex overrides the old location.
      I.setValue(Loc);
  }

  /// extendDef - Extend the current definition as far as possible down.
  /// Stop when meeting an existing def or when leaving the live
  /// range of VNI.
  /// End points where VNI is no longer live are added to Kills.
  /// @param Idx   Starting point for the definition.
  /// @param Loc   Location number to propagate.
  /// @param LR    Restrict liveness to where LR has the value VNI. May be null.
  /// @param VNI   When LR is not null, this is the value to restrict to.
  /// @param Kills Append end points of VNI's live range to Kills.
  /// @param LIS   Live intervals analysis.
  void extendDef(SlotIndex Idx, DbgValueLocation Loc,
                 LiveRange *LR, const VNInfo *VNI,
                 SmallVectorImpl<SlotIndex> *Kills,
                 LiveIntervals &LIS);

  /// addDefsFromCopies - The value in LI/LocNo may be copies to other
  /// registers. Determine if any of the copies are available at the kill
  /// points, and add defs if possible.
  /// @param LI      Scan for copies of the value in LI->reg.
  /// @param LocNo   Location number of LI->reg.
  /// @param WasIndirect Indicates if the original use of LI->reg was indirect
  /// @param Kills   Points where the range of LocNo could be extended.
  /// @param NewDefs Append (Idx, LocNo) of inserted defs here.
  void addDefsFromCopies(
      LiveInterval *LI, unsigned LocNo, bool WasIndirect,
      const SmallVectorImpl<SlotIndex> &Kills,
      SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
      MachineRegisterInfo &MRI, LiveIntervals &LIS);

  /// computeIntervals - Compute the live intervals of all locations after
  /// collecting all their def points.
  void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
                        LiveIntervals &LIS, LexicalScopes &LS);

  /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is
  /// live. Returns true if any changes were made.
  bool splitRegister(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
                     LiveIntervals &LIS);

  /// rewriteLocations - Rewrite virtual register locations according to the
  /// provided virtual register map. Record which locations were spilled.
  void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI,
                        BitVector &SpilledLocations);

  /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
  void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
                       const TargetInstrInfo &TII,
                       const TargetRegisterInfo &TRI,
                       const BitVector &SpilledLocations);

  /// getDebugLoc - Return DebugLoc of this UserValue.
  DebugLoc getDebugLoc() { return dl;}

  void print(raw_ostream &, const TargetRegisterInfo *);
};

/// LDVImpl - Implementation of the LiveDebugVariables pass.
class LDVImpl {
  LiveDebugVariables &pass;
  LocMap::Allocator allocator;
  MachineFunction *MF = nullptr;
  LiveIntervals *LIS;
  const TargetRegisterInfo *TRI;

  /// Whether emitDebugValues is called.
  bool EmitDone = false;

  /// Whether the machine function is modified during the pass.
  bool ModifiedMF = false;

  /// userValues - All allocated UserValue instances.
  SmallVector<std::unique_ptr<UserValue>, 8> userValues;

  /// Map virtual register to eq class leader.
  using VRMap = DenseMap<unsigned, UserValue *>;
  VRMap virtRegToEqClass;

  /// Map user variable to eq class leader.
  using UVMap = DenseMap<const DILocalVariable *, UserValue *>;
  UVMap userVarMap;

  /// getUserValue - Find or create a UserValue.
  UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr,
                          const DebugLoc &DL);

  /// lookupVirtReg - Find the EC leader for VirtReg or null.
  UserValue *lookupVirtReg(unsigned VirtReg);

  /// handleDebugValue - Add DBG_VALUE instruction to our maps.
  /// @param MI  DBG_VALUE instruction
  /// @param Idx Last valid SLotIndex before instruction.
  /// @return    True if the DBG_VALUE instruction should be deleted.
  bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);

  /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding
  /// a UserValue def for each instruction.
  /// @param mf MachineFunction to be scanned.
  /// @return True if any debug values were found.
  bool collectDebugValues(MachineFunction &mf);

  /// computeIntervals - Compute the live intervals of all user values after
  /// collecting all their def points.
  void computeIntervals();

public:
  LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}

  bool runOnMachineFunction(MachineFunction &mf);

  /// clear - Release all memory.
  void clear() {
    MF = nullptr;
    userValues.clear();
    virtRegToEqClass.clear();
    userVarMap.clear();
    // Make sure we call emitDebugValues if the machine function was modified.
    assert((!ModifiedMF || EmitDone) &&
           "Dbg values are not emitted in LDV");
    EmitDone = false;
    ModifiedMF = false;
  }

  /// mapVirtReg - Map virtual register to an equivalence class.
  void mapVirtReg(unsigned VirtReg, UserValue *EC);

  /// splitRegister -  Replace all references to OldReg with NewRegs.
  void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs);

  /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
  void emitDebugValues(VirtRegMap *VRM);

  void print(raw_ostream&);
};

} // end anonymous namespace

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
                          const LLVMContext &Ctx) {
  if (!DL)
    return;

  auto *Scope = cast<DIScope>(DL.getScope());
  // Omit the directory, because it's likely to be long and uninteresting.
  CommentOS << Scope->getFilename();
  CommentOS << ':' << DL.getLine();
  if (DL.getCol() != 0)
    CommentOS << ':' << DL.getCol();

  DebugLoc InlinedAtDL = DL.getInlinedAt();
  if (!InlinedAtDL)
    return;

  CommentOS << " @[ ";
  printDebugLoc(InlinedAtDL, CommentOS, Ctx);
  CommentOS << " ]";
}

static void printExtendedName(raw_ostream &OS, const DILocalVariable *V,
                              const DILocation *DL) {
  const LLVMContext &Ctx = V->getContext();
  StringRef Res = V->getName();
  if (!Res.empty())
    OS << Res << "," << V->getLine();
  if (auto *InlinedAt = DL->getInlinedAt()) {
    if (DebugLoc InlinedAtDL = InlinedAt) {
      OS << " @[";
      printDebugLoc(InlinedAtDL, OS, Ctx);
      OS << "]";
    }
  }
}

void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
  auto *DV = cast<DILocalVariable>(Variable);
  OS << "!\"";
  printExtendedName(OS, DV, dl);

  OS << "\"\t";
  for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
    OS << " [" << I.start() << ';' << I.stop() << "):";
    if (I.value().isUndef())
      OS << "undef";
    else {
      OS << I.value().locNo();
      if (I.value().wasIndirect())
        OS << " ind";
    }
  }
  for (unsigned i = 0, e = locations.size(); i != e; ++i) {
    OS << " Loc" << i << '=';
    locations[i].print(OS, TRI);
  }
  OS << '\n';
}

void LDVImpl::print(raw_ostream &OS) {
  OS << "********** DEBUG VARIABLES **********\n";
  for (unsigned i = 0, e = userValues.size(); i != e; ++i)
    userValues[i]->print(OS, TRI);
}
#endif

void UserValue::mapVirtRegs(LDVImpl *LDV) {
  for (unsigned i = 0, e = locations.size(); i != e; ++i)
    if (locations[i].isReg() &&
        TargetRegisterInfo::isVirtualRegister(locations[i].getReg()))
      LDV->mapVirtReg(locations[i].getReg(), this);
}

UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
                                 const DIExpression *Expr, const DebugLoc &DL) {
  UserValue *&Leader = userVarMap[Var];
  if (Leader) {
    UserValue *UV = Leader->getLeader();
    Leader = UV;
    for (; UV; UV = UV->getNext())
      if (UV->match(Var, Expr, DL->getInlinedAt()))
        return UV;
  }

  userValues.push_back(
      llvm::make_unique<UserValue>(Var, Expr, DL, allocator));
  UserValue *UV = userValues.back().get();
  Leader = UserValue::merge(Leader, UV);
  return UV;
}

void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) {
  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs");
  UserValue *&Leader = virtRegToEqClass[VirtReg];
  Leader = UserValue::merge(Leader, EC);
}

UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) {
  if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
    return UV->getLeader();
  return nullptr;
}

bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
  // DBG_VALUE loc, offset, variable
  if (MI.getNumOperands() != 4 ||
      !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) ||
      !MI.getOperand(2).isMetadata()) {
    DEBUG(dbgs() << "Can't handle " << MI);
    return false;
  }

  // Get or create the UserValue for (variable,offset) here.
  bool IsIndirect = MI.getOperand(1).isImm();
  if (IsIndirect)
    assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
  const DILocalVariable *Var = MI.getDebugVariable();
  const DIExpression *Expr = MI.getDebugExpression();
  UserValue *UV =
      getUserValue(Var, Expr, MI.getDebugLoc());
  UV->addDef(Idx, MI.getOperand(0), IsIndirect);
  return true;
}

bool LDVImpl::collectDebugValues(MachineFunction &mf) {
  bool Changed = false;
  for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
       ++MFI) {
    MachineBasicBlock *MBB = &*MFI;
    for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
         MBBI != MBBE;) {
      if (!MBBI->isDebugValue()) {
        ++MBBI;
        continue;
      }
      // DBG_VALUE has no slot index, use the previous instruction instead.
      SlotIndex Idx =
          MBBI == MBB->begin()
              ? LIS->getMBBStartIdx(MBB)
              : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
      // Handle consecutive DBG_VALUE instructions with the same slot index.
      do {
        if (handleDebugValue(*MBBI, Idx)) {
          MBBI = MBB->erase(MBBI);
          Changed = true;
        } else
          ++MBBI;
      } while (MBBI != MBBE && MBBI->isDebugValue());
    }
  }
  return Changed;
}

/// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
/// data-flow analysis to propagate them beyond basic block boundaries.
void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR,
                          const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
                          LiveIntervals &LIS) {
  SlotIndex Start = Idx;
  MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
  SlotIndex Stop = LIS.getMBBEndIdx(MBB);
  LocMap::iterator I = locInts.find(Start);

  // Limit to VNI's live range.
  bool ToEnd = true;
  if (LR && VNI) {
    LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
    if (!Segment || Segment->valno != VNI) {
      if (Kills)
        Kills->push_back(Start);
      return;
    }
    if (Segment->end < Stop) {
      Stop = Segment->end;
      ToEnd = false;
    }
  }

  // There could already be a short def at Start.
  if (I.valid() && I.start() <= Start) {
    // Stop when meeting a different location or an already extended interval.
    Start = Start.getNextSlot();
    if (I.value() != Loc || I.stop() != Start)
      return;
    // This is a one-slot placeholder. Just skip it.
    ++I;
  }

  // Limited by the next def.
  if (I.valid() && I.start() < Stop) {
    Stop = I.start();
    ToEnd = false;
  }
  // Limited by VNI's live range.
  else if (!ToEnd && Kills)
    Kills->push_back(Stop);

  if (Start < Stop)
    I.insert(Start, Stop, Loc);
}

void UserValue::addDefsFromCopies(
    LiveInterval *LI, unsigned LocNo, bool WasIndirect,
    const SmallVectorImpl<SlotIndex> &Kills,
    SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
    MachineRegisterInfo &MRI, LiveIntervals &LIS) {
  if (Kills.empty())
    return;
  // Don't track copies from physregs, there are too many uses.
  if (!TargetRegisterInfo::isVirtualRegister(LI->reg))
    return;

  // Collect all the (vreg, valno) pairs that are copies of LI.
  SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues;
  for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) {
    MachineInstr *MI = MO.getParent();
    // Copies of the full value.
    if (MO.getSubReg() || !MI->isCopy())
      continue;
    unsigned DstReg = MI->getOperand(0).getReg();

    // Don't follow copies to physregs. These are usually setting up call
    // arguments, and the argument registers are always call clobbered. We are
    // better off in the source register which could be a callee-saved register,
    // or it could be spilled.
    if (!TargetRegisterInfo::isVirtualRegister(DstReg))
      continue;

    // Is LocNo extended to reach this copy? If not, another def may be blocking
    // it, or we are looking at a wrong value of LI.
    SlotIndex Idx = LIS.getInstructionIndex(*MI);
    LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
    if (!I.valid() || I.value().locNo() != LocNo)
      continue;

    if (!LIS.hasInterval(DstReg))
      continue;
    LiveInterval *DstLI = &LIS.getInterval(DstReg);
    const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
    assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
    CopyValues.push_back(std::make_pair(DstLI, DstVNI));
  }

  if (CopyValues.empty())
    return;

  DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI << '\n');

  // Try to add defs of the copied values for each kill point.
  for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
    SlotIndex Idx = Kills[i];
    for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) {
      LiveInterval *DstLI = CopyValues[j].first;
      const VNInfo *DstVNI = CopyValues[j].second;
      if (DstLI->getVNInfoAt(Idx) != DstVNI)
        continue;
      // Check that there isn't already a def at Idx
      LocMap::iterator I = locInts.find(Idx);
      if (I.valid() && I.start() <= Idx)
        continue;
      DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #"
                   << DstVNI->id << " in " << *DstLI << '\n');
      MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
      assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
      unsigned LocNo = getLocationNo(CopyMI->getOperand(0));
      DbgValueLocation NewLoc(LocNo, WasIndirect);
      I.insert(Idx, Idx.getNextSlot(), NewLoc);
      NewDefs.push_back(std::make_pair(Idx, NewLoc));
      break;
    }
  }
}

void UserValue::computeIntervals(MachineRegisterInfo &MRI,
                                 const TargetRegisterInfo &TRI,
                                 LiveIntervals &LIS, LexicalScopes &LS) {
  SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs;

  // Collect all defs to be extended (Skipping undefs).
  for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
    if (!I.value().isUndef())
      Defs.push_back(std::make_pair(I.start(), I.value()));

  // Extend all defs, and possibly add new ones along the way.
  for (unsigned i = 0; i != Defs.size(); ++i) {
    SlotIndex Idx = Defs[i].first;
    DbgValueLocation Loc = Defs[i].second;
    const MachineOperand &LocMO = locations[Loc.locNo()];

    if (!LocMO.isReg()) {
      extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS);
      continue;
    }

    // Register locations are constrained to where the register value is live.
    if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) {
      LiveInterval *LI = nullptr;
      const VNInfo *VNI = nullptr;
      if (LIS.hasInterval(LocMO.getReg())) {
        LI = &LIS.getInterval(LocMO.getReg());
        VNI = LI->getVNInfoAt(Idx);
      }
      SmallVector<SlotIndex, 16> Kills;
      extendDef(Idx, Loc, LI, VNI, &Kills, LIS);
      if (LI)
        addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI,
                          LIS);
      continue;
    }

    // For physregs, we only mark the start slot idx. DwarfDebug will see it
    // as if the DBG_VALUE is valid up until the end of the basic block, or
    // the next def of the physical register. So we do not need to extend the
    // range. It might actually happen that the DBG_VALUE is the last use of
    // the physical register (e.g. if this is an unused input argument to a
    // function).
  }

  // Erase all the undefs.
  for (LocMap::iterator I = locInts.begin(); I.valid();)
    if (I.value().isUndef())
      I.erase();
    else
      ++I;

  // The computed intervals may extend beyond the range of the debug
  // location's lexical scope. In this case, splitting of an interval
  // can result in an interval outside of the scope being created,
  // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
  // this, trim the intervals to the lexical scope.

  LexicalScope *Scope = LS.findLexicalScope(dl);
  if (!Scope)
    return;

  SlotIndex PrevEnd;
  LocMap::iterator I = locInts.begin();

  // Iterate over the lexical scope ranges. Each time round the loop
  // we check the intervals for overlap with the end of the previous
  // range and the start of the next. The first range is handled as
  // a special case where there is no PrevEnd.
  for (const InsnRange &Range : Scope->getRanges()) {
    SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
    SlotIndex REnd = LIS.getInstructionIndex(*Range.second);

    // At the start of each iteration I has been advanced so that
    // I.stop() >= PrevEnd. Check for overlap.
    if (PrevEnd && I.start() < PrevEnd) {
      SlotIndex IStop = I.stop();
      DbgValueLocation Loc = I.value();

      // Stop overlaps previous end - trim the end of the interval to
      // the scope range.
      I.setStopUnchecked(PrevEnd);
      ++I;

      // If the interval also overlaps the start of the "next" (i.e.
      // current) range create a new interval for the remainder (which
      // may be further trimmed).
      if (RStart < IStop)
        I.insert(RStart, IStop, Loc);
    }

    // Advance I so that I.stop() >= RStart, and check for overlap.
    I.advanceTo(RStart);
    if (!I.valid())
      return;

    if (I.start() < RStart) {
      // Interval start overlaps range - trim to the scope range.
      I.setStartUnchecked(RStart);
      // Remember that this interval was trimmed.
      trimmedDefs.insert(RStart);
    }

    // The end of a lexical scope range is the last instruction in the
    // range. To convert to an interval we need the index of the
    // instruction after it.
    REnd = REnd.getNextIndex();

    // Advance I to first interval outside current range.
    I.advanceTo(REnd);
    if (!I.valid())
      return;

    PrevEnd = REnd;
  }

  // Check for overlap with end of final range.
  if (PrevEnd && I.start() < PrevEnd)
    I.setStopUnchecked(PrevEnd);
}

void LDVImpl::computeIntervals() {
  LexicalScopes LS;
  LS.initialize(*MF);

  for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
    userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
    userValues[i]->mapVirtRegs(this);
  }
}

bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
  clear();
  MF = &mf;
  LIS = &pass.getAnalysis<LiveIntervals>();
  TRI = mf.getSubtarget().getRegisterInfo();
  DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
               << mf.getName() << " **********\n");

  bool Changed = collectDebugValues(mf);
  computeIntervals();
  DEBUG(print(dbgs()));
  ModifiedMF = Changed;
  return Changed;
}

static void removeDebugValues(MachineFunction &mf) {
  for (MachineBasicBlock &MBB : mf) {
    for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
      if (!MBBI->isDebugValue()) {
        ++MBBI;
        continue;
      }
      MBBI = MBB.erase(MBBI);
    }
  }
}

bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
  if (!EnableLDV)
    return false;
  if (!mf.getFunction()->getSubprogram()) {
    removeDebugValues(mf);
    return false;
  }
  if (!pImpl)
    pImpl = new LDVImpl(this);
  return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
}

void LiveDebugVariables::releaseMemory() {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->clear();
}

LiveDebugVariables::~LiveDebugVariables() {
  if (pImpl)
    delete static_cast<LDVImpl*>(pImpl);
}

//===----------------------------------------------------------------------===//
//                           Live Range Splitting
//===----------------------------------------------------------------------===//

bool
UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
                         LiveIntervals& LIS) {
  DEBUG({
    dbgs() << "Splitting Loc" << OldLocNo << '\t';
    print(dbgs(), nullptr);
  });
  bool DidChange = false;
  LocMap::iterator LocMapI;
  LocMapI.setMap(locInts);
  for (unsigned i = 0; i != NewRegs.size(); ++i) {
    LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
    if (LI->empty())
      continue;

    // Don't allocate the new LocNo until it is needed.
    unsigned NewLocNo = UndefLocNo;

    // Iterate over the overlaps between locInts and LI.
    LocMapI.find(LI->beginIndex());
    if (!LocMapI.valid())
      continue;
    LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
    LiveInterval::iterator LIE = LI->end();
    while (LocMapI.valid() && LII != LIE) {
      // At this point, we know that LocMapI.stop() > LII->start.
      LII = LI->advanceTo(LII, LocMapI.start());
      if (LII == LIE)
        break;

      // Now LII->end > LocMapI.start(). Do we have an overlap?
      if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) {
        // Overlapping correct location. Allocate NewLocNo now.
        if (NewLocNo == UndefLocNo) {
          MachineOperand MO = MachineOperand::CreateReg(LI->reg, false);
          MO.setSubReg(locations[OldLocNo].getSubReg());
          NewLocNo = getLocationNo(MO);
          DidChange = true;
        }

        SlotIndex LStart = LocMapI.start();
        SlotIndex LStop  = LocMapI.stop();
        DbgValueLocation OldLoc = LocMapI.value();

        // Trim LocMapI down to the LII overlap.
        if (LStart < LII->start)
          LocMapI.setStartUnchecked(LII->start);
        if (LStop > LII->end)
          LocMapI.setStopUnchecked(LII->end);

        // Change the value in the overlap. This may trigger coalescing.
        LocMapI.setValue(OldLoc.changeLocNo(NewLocNo));

        // Re-insert any removed OldLocNo ranges.
        if (LStart < LocMapI.start()) {
          LocMapI.insert(LStart, LocMapI.start(), OldLoc);
          ++LocMapI;
          assert(LocMapI.valid() && "Unexpected coalescing");
        }
        if (LStop > LocMapI.stop()) {
          ++LocMapI;
          LocMapI.insert(LII->end, LStop, OldLoc);
          --LocMapI;
        }
      }

      // Advance to the next overlap.
      if (LII->end < LocMapI.stop()) {
        if (++LII == LIE)
          break;
        LocMapI.advanceTo(LII->start);
      } else {
        ++LocMapI;
        if (!LocMapI.valid())
          break;
        LII = LI->advanceTo(LII, LocMapI.start());
      }
    }
  }

  // Finally, remove any remaining OldLocNo intervals and OldLocNo itself.
  locations.erase(locations.begin() + OldLocNo);
  LocMapI.goToBegin();
  while (LocMapI.valid()) {
    DbgValueLocation v = LocMapI.value();
    if (v.locNo() == OldLocNo) {
      DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';'
                   << LocMapI.stop() << ")\n");
      LocMapI.erase();
    } else {
      if (v.locNo() > OldLocNo)
        LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1));
      ++LocMapI;
    }
  }

  DEBUG({dbgs() << "Split result: \t"; print(dbgs(), nullptr);});
  return DidChange;
}

bool
UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
                         LiveIntervals &LIS) {
  bool DidChange = false;
  // Split locations referring to OldReg. Iterate backwards so splitLocation can
  // safely erase unused locations.
  for (unsigned i = locations.size(); i ; --i) {
    unsigned LocNo = i-1;
    const MachineOperand *Loc = &locations[LocNo];
    if (!Loc->isReg() || Loc->getReg() != OldReg)
      continue;
    DidChange |= splitLocation(LocNo, NewRegs, LIS);
  }
  return DidChange;
}

void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) {
  bool DidChange = false;
  for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
    DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);

  if (!DidChange)
    return;

  // Map all of the new virtual registers.
  UserValue *UV = lookupVirtReg(OldReg);
  for (unsigned i = 0; i != NewRegs.size(); ++i)
    mapVirtReg(NewRegs[i], UV);
}

void LiveDebugVariables::
splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
}

void UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI,
                                 BitVector &SpilledLocations) {
  // Build a set of new locations with new numbers so we can coalesce our
  // IntervalMap if two vreg intervals collapse to the same physical location.
  // Use MapVector instead of SetVector because MapVector::insert returns the
  // position of the previously or newly inserted element. The boolean value
  // tracks if the location was produced by a spill.
  // FIXME: This will be problematic if we ever support direct and indirect
  // frame index locations, i.e. expressing both variables in memory and
  // 'int x, *px = &x'. The "spilled" bit must become part of the location.
  MapVector<MachineOperand, bool> NewLocations;
  SmallVector<unsigned, 4> LocNoMap(locations.size());
  for (unsigned I = 0, E = locations.size(); I != E; ++I) {
    bool Spilled = false;
    MachineOperand Loc = locations[I];
    // Only virtual registers are rewritten.
    if (Loc.isReg() && Loc.getReg() &&
        TargetRegisterInfo::isVirtualRegister(Loc.getReg())) {
      unsigned VirtReg = Loc.getReg();
      if (VRM.isAssignedReg(VirtReg) &&
          TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) {
        // This can create a %noreg operand in rare cases when the sub-register
        // index is no longer available. That means the user value is in a
        // non-existent sub-register, and %noreg is exactly what we want.
        Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
      } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
        // FIXME: Translate SubIdx to a stackslot offset.
        Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
        Spilled = true;
      } else {
        Loc.setReg(0);
        Loc.setSubReg(0);
      }
    }

    // Insert this location if it doesn't already exist and record a mapping
    // from the old number to the new number.
    auto InsertResult = NewLocations.insert({Loc, Spilled});
    unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
    LocNoMap[I] = NewLocNo;
  }

  // Rewrite the locations and record which ones were spill slots.
  locations.clear();
  SpilledLocations.clear();
  SpilledLocations.resize(NewLocations.size());
  for (auto &Pair : NewLocations) {
    locations.push_back(Pair.first);
    if (Pair.second) {
      unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
      SpilledLocations.set(NewLocNo);
    }
  }

  // Update the interval map, but only coalesce left, since intervals to the
  // right use the old location numbers. This should merge two contiguous
  // DBG_VALUE intervals with different vregs that were allocated to the same
  // physical register.
  for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
    DbgValueLocation Loc = I.value();
    unsigned NewLocNo = LocNoMap[Loc.locNo()];
    I.setValueUnchecked(Loc.changeLocNo(NewLocNo));
    I.setStart(I.start());
  }
}

/// Find an iterator for inserting a DBG_VALUE instruction.
static MachineBasicBlock::iterator
findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
                   LiveIntervals &LIS) {
  SlotIndex Start = LIS.getMBBStartIdx(MBB);
  Idx = Idx.getBaseIndex();

  // Try to find an insert location by going backwards from Idx.
  MachineInstr *MI;
  while (!(MI = LIS.getInstructionFromIndex(Idx))) {
    // We've reached the beginning of MBB.
    if (Idx == Start) {
      MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
      return I;
    }
    Idx = Idx.getPrevIndex();
  }

  // Don't insert anything after the first terminator, though.
  return MI->isTerminator() ? MBB->getFirstTerminator() :
                              std::next(MachineBasicBlock::iterator(MI));
}

/// Find an iterator for inserting the next DBG_VALUE instruction
/// (or end if no more insert locations found).
static MachineBasicBlock::iterator
findNextInsertLocation(MachineBasicBlock *MBB,
                       MachineBasicBlock::iterator I,
                       SlotIndex StopIdx, MachineOperand &LocMO,
                       LiveIntervals &LIS,
                       const TargetRegisterInfo &TRI) {
  if (!LocMO.isReg())
    return MBB->instr_end();
  unsigned Reg = LocMO.getReg();

  // Find the next instruction in the MBB that define the register Reg.
  while (I != MBB->end()) {
    if (!LIS.isNotInMIMap(*I) &&
        SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
      break;
    if (I->definesRegister(Reg, &TRI))
      // The insert location is directly after the instruction/bundle.
      return std::next(I);
    ++I;
  }
  return MBB->end();
}

void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
                                 SlotIndex StopIdx,
                                 DbgValueLocation Loc, bool Spilled,
                                 LiveIntervals &LIS,
                                 const TargetInstrInfo &TII,
                                 const TargetRegisterInfo &TRI) {
  SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
  // Only search within the current MBB.
  StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
  MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS);
  MachineOperand &MO = locations[Loc.locNo()];
  ++NumInsertedDebugValues;

  assert(cast<DILocalVariable>(Variable)
             ->isValidLocationForIntrinsic(getDebugLoc()) &&
         "Expected inlined-at fields to agree");

  // If the location was spilled, the new DBG_VALUE will be indirect. If the
  // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
  // that the original virtual register was a pointer.
  const DIExpression *Expr = Expression;
  bool IsIndirect = Loc.wasIndirect();
  if (Spilled) {
    if (IsIndirect)
      Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
    IsIndirect = true;
  }

  assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index");

  do {
    MachineInstrBuilder MIB =
      BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE))
          .add(MO);
    if (IsIndirect)
      MIB.addImm(0U);
    else
      MIB.addReg(0U, RegState::Debug);
    MIB.addMetadata(Variable).addMetadata(Expr);

    // Continue and insert DBG_VALUES after every redefinition of register
    // associated with the debug value within the range
    I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI);
  } while (I != MBB->end());
}

void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
                                const TargetInstrInfo &TII,
                                const TargetRegisterInfo &TRI,
                                const BitVector &SpilledLocations) {
  MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();

  for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
    SlotIndex Start = I.start();
    SlotIndex Stop = I.stop();
    DbgValueLocation Loc = I.value();
    bool Spilled = !Loc.isUndef() ? SpilledLocations.test(Loc.locNo()) : false;

    // If the interval start was trimmed to the lexical scope insert the
    // DBG_VALUE at the previous index (otherwise it appears after the
    // first instruction in the range).
    if (trimmedDefs.count(Start))
      Start = Start.getPrevIndex();

    DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo());
    MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
    SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);

    DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd);
    insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, LIS, TII, TRI);
    // This interval may span multiple basic blocks.
    // Insert a DBG_VALUE into each one.
    while (Stop > MBBEnd) {
      // Move to the next block.
      Start = MBBEnd;
      if (++MBB == MFEnd)
        break;
      MBBEnd = LIS.getMBBEndIdx(&*MBB);
      DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd);
      insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, LIS, TII, TRI);
    }
    DEBUG(dbgs() << '\n');
    if (MBB == MFEnd)
      break;

    ++I;
  }
}

void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
  DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
  if (!MF)
    return;
  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
  BitVector SpilledLocations;
  for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
    DEBUG(userValues[i]->print(dbgs(), TRI));
    userValues[i]->rewriteLocations(*VRM, *TRI, SpilledLocations);
    userValues[i]->emitDebugValues(VRM, *LIS, *TII, *TRI, SpilledLocations);
  }
  EmitDone = true;
}

void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
}

bool LiveDebugVariables::doInitialization(Module &M) {
  return Pass::doInitialization(M);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->print(dbgs());
}
#endif