aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/InlineSpiller.cpp
blob: 2e991de6221175636c9b0cbe025c3642affc98eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
//===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The inline spiller modifies the machine function directly instead of
// inserting spills and restores in VirtRegMap.
//
//===----------------------------------------------------------------------===//

#include "LiveRangeCalc.h"
#include "Spiller.h"
#include "SplitKit.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetOpcodes.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <cassert>
#include <iterator>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "regalloc"

STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
STATISTIC(NumSnippets,        "Number of spilled snippets");
STATISTIC(NumSpills,          "Number of spills inserted");
STATISTIC(NumSpillsRemoved,   "Number of spills removed");
STATISTIC(NumReloads,         "Number of reloads inserted");
STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
STATISTIC(NumFolded,          "Number of folded stack accesses");
STATISTIC(NumFoldedLoads,     "Number of folded loads");
STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");

static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
                                     cl::desc("Disable inline spill hoisting"));

namespace {

class HoistSpillHelper : private LiveRangeEdit::Delegate {
  MachineFunction &MF;
  LiveIntervals &LIS;
  LiveStacks &LSS;
  AliasAnalysis *AA;
  MachineDominatorTree &MDT;
  MachineLoopInfo &Loops;
  VirtRegMap &VRM;
  MachineRegisterInfo &MRI;
  const TargetInstrInfo &TII;
  const TargetRegisterInfo &TRI;
  const MachineBlockFrequencyInfo &MBFI;

  InsertPointAnalysis IPA;

  // Map from StackSlot to the LiveInterval of the original register.
  // Note the LiveInterval of the original register may have been deleted
  // after it is spilled. We keep a copy here to track the range where
  // spills can be moved.
  DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;

  // Map from pair of (StackSlot and Original VNI) to a set of spills which
  // have the same stackslot and have equal values defined by Original VNI.
  // These spills are mergeable and are hoist candiates.
  using MergeableSpillsMap =
      MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
  MergeableSpillsMap MergeableSpills;

  /// This is the map from original register to a set containing all its
  /// siblings. To hoist a spill to another BB, we need to find out a live
  /// sibling there and use it as the source of the new spill.
  DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap;

  bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
                     MachineBasicBlock &BB, unsigned &LiveReg);

  void rmRedundantSpills(
      SmallPtrSet<MachineInstr *, 16> &Spills,
      SmallVectorImpl<MachineInstr *> &SpillsToRm,
      DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);

  void getVisitOrders(
      MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
      SmallVectorImpl<MachineDomTreeNode *> &Orders,
      SmallVectorImpl<MachineInstr *> &SpillsToRm,
      DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
      DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);

  void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
                      SmallPtrSet<MachineInstr *, 16> &Spills,
                      SmallVectorImpl<MachineInstr *> &SpillsToRm,
                      DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);

public:
  HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
                   VirtRegMap &vrm)
      : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
        LSS(pass.getAnalysis<LiveStacks>()),
        AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
        MDT(pass.getAnalysis<MachineDominatorTree>()),
        Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
        MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
        TRI(*mf.getSubtarget().getRegisterInfo()),
        MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
        IPA(LIS, mf.getNumBlockIDs()) {}

  void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
                            unsigned Original);
  bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
  void hoistAllSpills();
  void LRE_DidCloneVirtReg(unsigned, unsigned) override;
};

class InlineSpiller : public Spiller {
  MachineFunction &MF;
  LiveIntervals &LIS;
  LiveStacks &LSS;
  AliasAnalysis *AA;
  MachineDominatorTree &MDT;
  MachineLoopInfo &Loops;
  VirtRegMap &VRM;
  MachineRegisterInfo &MRI;
  const TargetInstrInfo &TII;
  const TargetRegisterInfo &TRI;
  const MachineBlockFrequencyInfo &MBFI;

  // Variables that are valid during spill(), but used by multiple methods.
  LiveRangeEdit *Edit;
  LiveInterval *StackInt;
  int StackSlot;
  unsigned Original;

  // All registers to spill to StackSlot, including the main register.
  SmallVector<unsigned, 8> RegsToSpill;

  // All COPY instructions to/from snippets.
  // They are ignored since both operands refer to the same stack slot.
  SmallPtrSet<MachineInstr*, 8> SnippetCopies;

  // Values that failed to remat at some point.
  SmallPtrSet<VNInfo*, 8> UsedValues;

  // Dead defs generated during spilling.
  SmallVector<MachineInstr*, 8> DeadDefs;

  // Object records spills information and does the hoisting.
  HoistSpillHelper HSpiller;

  ~InlineSpiller() override = default;

public:
  InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
      : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
        LSS(pass.getAnalysis<LiveStacks>()),
        AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
        MDT(pass.getAnalysis<MachineDominatorTree>()),
        Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
        MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
        TRI(*mf.getSubtarget().getRegisterInfo()),
        MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
        HSpiller(pass, mf, vrm) {}

  void spill(LiveRangeEdit &) override;
  void postOptimization() override;

private:
  bool isSnippet(const LiveInterval &SnipLI);
  void collectRegsToSpill();

  bool isRegToSpill(unsigned Reg) { return is_contained(RegsToSpill, Reg); }

  bool isSibling(unsigned Reg);
  bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
  void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);

  void markValueUsed(LiveInterval*, VNInfo*);
  bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
  void reMaterializeAll();

  bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
  bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
                         MachineInstr *LoadMI = nullptr);
  void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI);
  void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI);

  void spillAroundUses(unsigned Reg);
  void spillAll();
};

} // end anonymous namespace

Spiller::~Spiller() = default;

void Spiller::anchor() {}

Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass,
                                   MachineFunction &mf,
                                   VirtRegMap &vrm) {
  return new InlineSpiller(pass, mf, vrm);
}

//===----------------------------------------------------------------------===//
//                                Snippets
//===----------------------------------------------------------------------===//

// When spilling a virtual register, we also spill any snippets it is connected
// to. The snippets are small live ranges that only have a single real use,
// leftovers from live range splitting. Spilling them enables memory operand
// folding or tightens the live range around the single use.
//
// This minimizes register pressure and maximizes the store-to-load distance for
// spill slots which can be important in tight loops.

/// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
/// otherwise return 0.
static unsigned isFullCopyOf(const MachineInstr &MI, unsigned Reg) {
  if (!MI.isFullCopy())
    return 0;
  if (MI.getOperand(0).getReg() == Reg)
    return MI.getOperand(1).getReg();
  if (MI.getOperand(1).getReg() == Reg)
    return MI.getOperand(0).getReg();
  return 0;
}

/// isSnippet - Identify if a live interval is a snippet that should be spilled.
/// It is assumed that SnipLI is a virtual register with the same original as
/// Edit->getReg().
bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
  unsigned Reg = Edit->getReg();

  // A snippet is a tiny live range with only a single instruction using it
  // besides copies to/from Reg or spills/fills. We accept:
  //
  //   %snip = COPY %Reg / FILL fi#
  //   %snip = USE %snip
  //   %Reg = COPY %snip / SPILL %snip, fi#
  //
  if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
    return false;

  MachineInstr *UseMI = nullptr;

  // Check that all uses satisfy our criteria.
  for (MachineRegisterInfo::reg_instr_nodbg_iterator
       RI = MRI.reg_instr_nodbg_begin(SnipLI.reg),
       E = MRI.reg_instr_nodbg_end(); RI != E; ) {
    MachineInstr &MI = *RI++;

    // Allow copies to/from Reg.
    if (isFullCopyOf(MI, Reg))
      continue;

    // Allow stack slot loads.
    int FI;
    if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
      continue;

    // Allow stack slot stores.
    if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
      continue;

    // Allow a single additional instruction.
    if (UseMI && &MI != UseMI)
      return false;
    UseMI = &MI;
  }
  return true;
}

/// collectRegsToSpill - Collect live range snippets that only have a single
/// real use.
void InlineSpiller::collectRegsToSpill() {
  unsigned Reg = Edit->getReg();

  // Main register always spills.
  RegsToSpill.assign(1, Reg);
  SnippetCopies.clear();

  // Snippets all have the same original, so there can't be any for an original
  // register.
  if (Original == Reg)
    return;

  for (MachineRegisterInfo::reg_instr_iterator
       RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
    MachineInstr &MI = *RI++;
    unsigned SnipReg = isFullCopyOf(MI, Reg);
    if (!isSibling(SnipReg))
      continue;
    LiveInterval &SnipLI = LIS.getInterval(SnipReg);
    if (!isSnippet(SnipLI))
      continue;
    SnippetCopies.insert(&MI);
    if (isRegToSpill(SnipReg))
      continue;
    RegsToSpill.push_back(SnipReg);
    DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
    ++NumSnippets;
  }
}

bool InlineSpiller::isSibling(unsigned Reg) {
  return TargetRegisterInfo::isVirtualRegister(Reg) &&
           VRM.getOriginal(Reg) == Original;
}

/// It is beneficial to spill to earlier place in the same BB in case
/// as follows:
/// There is an alternative def earlier in the same MBB.
/// Hoist the spill as far as possible in SpillMBB. This can ease
/// register pressure:
///
///   x = def
///   y = use x
///   s = copy x
///
/// Hoisting the spill of s to immediately after the def removes the
/// interference between x and y:
///
///   x = def
///   spill x
///   y = use x<kill>
///
/// This hoist only helps when the copy kills its source.
///
bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
                                       MachineInstr &CopyMI) {
  SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
#ifndef NDEBUG
  VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
  assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
#endif

  unsigned SrcReg = CopyMI.getOperand(1).getReg();
  LiveInterval &SrcLI = LIS.getInterval(SrcReg);
  VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
  LiveQueryResult SrcQ = SrcLI.Query(Idx);
  MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
  if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
    return false;

  // Conservatively extend the stack slot range to the range of the original
  // value. We may be able to do better with stack slot coloring by being more
  // careful here.
  assert(StackInt && "No stack slot assigned yet.");
  LiveInterval &OrigLI = LIS.getInterval(Original);
  VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
  StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
  DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
               << *StackInt << '\n');

  // We are going to spill SrcVNI immediately after its def, so clear out
  // any later spills of the same value.
  eliminateRedundantSpills(SrcLI, SrcVNI);

  MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
  MachineBasicBlock::iterator MII;
  if (SrcVNI->isPHIDef())
    MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
  else {
    MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
    assert(DefMI && "Defining instruction disappeared");
    MII = DefMI;
    ++MII;
  }
  // Insert spill without kill flag immediately after def.
  TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
                          MRI.getRegClass(SrcReg), &TRI);
  --MII; // Point to store instruction.
  LIS.InsertMachineInstrInMaps(*MII);
  DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);

  HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
  ++NumSpills;
  return true;
}

/// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
/// redundant spills of this value in SLI.reg and sibling copies.
void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
  assert(VNI && "Missing value");
  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
  WorkList.push_back(std::make_pair(&SLI, VNI));
  assert(StackInt && "No stack slot assigned yet.");

  do {
    LiveInterval *LI;
    std::tie(LI, VNI) = WorkList.pop_back_val();
    unsigned Reg = LI->reg;
    DEBUG(dbgs() << "Checking redundant spills for "
                 << VNI->id << '@' << VNI->def << " in " << *LI << '\n');

    // Regs to spill are taken care of.
    if (isRegToSpill(Reg))
      continue;

    // Add all of VNI's live range to StackInt.
    StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
    DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');

    // Find all spills and copies of VNI.
    for (MachineRegisterInfo::use_instr_nodbg_iterator
         UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
         UI != E; ) {
      MachineInstr &MI = *UI++;
      if (!MI.isCopy() && !MI.mayStore())
        continue;
      SlotIndex Idx = LIS.getInstructionIndex(MI);
      if (LI->getVNInfoAt(Idx) != VNI)
        continue;

      // Follow sibling copies down the dominator tree.
      if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
        if (isSibling(DstReg)) {
           LiveInterval &DstLI = LIS.getInterval(DstReg);
           VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
           assert(DstVNI && "Missing defined value");
           assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
           WorkList.push_back(std::make_pair(&DstLI, DstVNI));
        }
        continue;
      }

      // Erase spills.
      int FI;
      if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
        DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
        // eliminateDeadDefs won't normally remove stores, so switch opcode.
        MI.setDesc(TII.get(TargetOpcode::KILL));
        DeadDefs.push_back(&MI);
        ++NumSpillsRemoved;
        if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
          --NumSpills;
      }
    }
  } while (!WorkList.empty());
}

//===----------------------------------------------------------------------===//
//                            Rematerialization
//===----------------------------------------------------------------------===//

/// markValueUsed - Remember that VNI failed to rematerialize, so its defining
/// instruction cannot be eliminated. See through snippet copies
void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
  WorkList.push_back(std::make_pair(LI, VNI));
  do {
    std::tie(LI, VNI) = WorkList.pop_back_val();
    if (!UsedValues.insert(VNI).second)
      continue;

    if (VNI->isPHIDef()) {
      MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
      for (MachineBasicBlock *P : MBB->predecessors()) {
        VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
        if (PVNI)
          WorkList.push_back(std::make_pair(LI, PVNI));
      }
      continue;
    }

    // Follow snippet copies.
    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
    if (!SnippetCopies.count(MI))
      continue;
    LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
    assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
    VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
    assert(SnipVNI && "Snippet undefined before copy");
    WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
  } while (!WorkList.empty());
}

/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
  // Analyze instruction
  SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
  MIBundleOperands::VirtRegInfo RI =
      MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);

  if (!RI.Reads)
    return false;

  SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
  VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());

  if (!ParentVNI) {
    DEBUG(dbgs() << "\tadding <undef> flags: ");
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI.getOperand(i);
      if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
        MO.setIsUndef();
    }
    DEBUG(dbgs() << UseIdx << '\t' << MI);
    return true;
  }

  if (SnippetCopies.count(&MI))
    return false;

  LiveInterval &OrigLI = LIS.getInterval(Original);
  VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
  LiveRangeEdit::Remat RM(ParentVNI);
  RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);

  if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
    markValueUsed(&VirtReg, ParentVNI);
    DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
    return false;
  }

  // If the instruction also writes VirtReg.reg, it had better not require the
  // same register for uses and defs.
  if (RI.Tied) {
    markValueUsed(&VirtReg, ParentVNI);
    DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
    return false;
  }

  // Before rematerializing into a register for a single instruction, try to
  // fold a load into the instruction. That avoids allocating a new register.
  if (RM.OrigMI->canFoldAsLoad() &&
      foldMemoryOperand(Ops, RM.OrigMI)) {
    Edit->markRematerialized(RM.ParentVNI);
    ++NumFoldedLoads;
    return true;
  }

  // Allocate a new register for the remat.
  unsigned NewVReg = Edit->createFrom(Original);

  // Finally we can rematerialize OrigMI before MI.
  SlotIndex DefIdx =
      Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);

  // We take the DebugLoc from MI, since OrigMI may be attributed to a
  // different source location.
  auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
  NewMI->setDebugLoc(MI.getDebugLoc());

  (void)DefIdx;
  DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
               << *LIS.getInstructionFromIndex(DefIdx));

  // Replace operands
  for (const auto &OpPair : Ops) {
    MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
    if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
      MO.setReg(NewVReg);
      MO.setIsKill();
    }
  }
  DEBUG(dbgs() << "\t        " << UseIdx << '\t' << MI << '\n');

  ++NumRemats;
  return true;
}

/// reMaterializeAll - Try to rematerialize as many uses as possible,
/// and trim the live ranges after.
void InlineSpiller::reMaterializeAll() {
  if (!Edit->anyRematerializable(AA))
    return;

  UsedValues.clear();

  // Try to remat before all uses of snippets.
  bool anyRemat = false;
  for (unsigned Reg : RegsToSpill) {
    LiveInterval &LI = LIS.getInterval(Reg);
    for (MachineRegisterInfo::reg_bundle_iterator
           RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
         RegI != E; ) {
      MachineInstr &MI = *RegI++;

      // Debug values are not allowed to affect codegen.
      if (MI.isDebugValue())
        continue;

      anyRemat |= reMaterializeFor(LI, MI);
    }
  }
  if (!anyRemat)
    return;

  // Remove any values that were completely rematted.
  for (unsigned Reg : RegsToSpill) {
    LiveInterval &LI = LIS.getInterval(Reg);
    for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
         I != E; ++I) {
      VNInfo *VNI = *I;
      if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
        continue;
      MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
      MI->addRegisterDead(Reg, &TRI);
      if (!MI->allDefsAreDead())
        continue;
      DEBUG(dbgs() << "All defs dead: " << *MI);
      DeadDefs.push_back(MI);
    }
  }

  // Eliminate dead code after remat. Note that some snippet copies may be
  // deleted here.
  if (DeadDefs.empty())
    return;
  DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
  Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);

  // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
  // after rematerialization.  To remove a VNI for a vreg from its LiveInterval,
  // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
  // removed, PHI VNI are still left in the LiveInterval.
  // So to get rid of unused reg, we need to check whether it has non-dbg
  // reference instead of whether it has non-empty interval.
  unsigned ResultPos = 0;
  for (unsigned Reg : RegsToSpill) {
    if (MRI.reg_nodbg_empty(Reg)) {
      Edit->eraseVirtReg(Reg);
      continue;
    }

    assert(LIS.hasInterval(Reg) &&
           (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
           "Empty and not used live-range?!");

    RegsToSpill[ResultPos++] = Reg;
  }
  RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
  DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
}

//===----------------------------------------------------------------------===//
//                                 Spilling
//===----------------------------------------------------------------------===//

/// If MI is a load or store of StackSlot, it can be removed.
bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
  int FI = 0;
  unsigned InstrReg = TII.isLoadFromStackSlot(*MI, FI);
  bool IsLoad = InstrReg;
  if (!IsLoad)
    InstrReg = TII.isStoreToStackSlot(*MI, FI);

  // We have a stack access. Is it the right register and slot?
  if (InstrReg != Reg || FI != StackSlot)
    return false;

  if (!IsLoad)
    HSpiller.rmFromMergeableSpills(*MI, StackSlot);

  DEBUG(dbgs() << "Coalescing stack access: " << *MI);
  LIS.RemoveMachineInstrFromMaps(*MI);
  MI->eraseFromParent();

  if (IsLoad) {
    ++NumReloadsRemoved;
    --NumReloads;
  } else {
    ++NumSpillsRemoved;
    --NumSpills;
  }

  return true;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD
// Dump the range of instructions from B to E with their slot indexes.
static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
                                               MachineBasicBlock::iterator E,
                                               LiveIntervals const &LIS,
                                               const char *const header,
                                               unsigned VReg =0) {
  char NextLine = '\n';
  char SlotIndent = '\t';

  if (std::next(B) == E) {
    NextLine = ' ';
    SlotIndent = ' ';
  }

  dbgs() << '\t' << header << ": " << NextLine;

  for (MachineBasicBlock::iterator I = B; I != E; ++I) {
    SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();

    // If a register was passed in and this instruction has it as a
    // destination that is marked as an early clobber, print the
    // early-clobber slot index.
    if (VReg) {
      MachineOperand *MO = I->findRegisterDefOperand(VReg);
      if (MO && MO->isEarlyClobber())
        Idx = Idx.getRegSlot(true);
    }

    dbgs() << SlotIndent << Idx << '\t' << *I;
  }
}
#endif

/// foldMemoryOperand - Try folding stack slot references in Ops into their
/// instructions.
///
/// @param Ops    Operand indices from analyzeVirtReg().
/// @param LoadMI Load instruction to use instead of stack slot when non-null.
/// @return       True on success.
bool InlineSpiller::
foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
                  MachineInstr *LoadMI) {
  if (Ops.empty())
    return false;
  // Don't attempt folding in bundles.
  MachineInstr *MI = Ops.front().first;
  if (Ops.back().first != MI || MI->isBundled())
    return false;

  bool WasCopy = MI->isCopy();
  unsigned ImpReg = 0;

  // Spill subregs if the target allows it.
  // We always want to spill subregs for stackmap/patchpoint pseudos.
  bool SpillSubRegs = TII.isSubregFoldable() ||
                      MI->getOpcode() == TargetOpcode::STATEPOINT ||
                      MI->getOpcode() == TargetOpcode::PATCHPOINT ||
                      MI->getOpcode() == TargetOpcode::STACKMAP;

  // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
  // operands.
  SmallVector<unsigned, 8> FoldOps;
  for (const auto &OpPair : Ops) {
    unsigned Idx = OpPair.second;
    assert(MI == OpPair.first && "Instruction conflict during operand folding");
    MachineOperand &MO = MI->getOperand(Idx);
    if (MO.isImplicit()) {
      ImpReg = MO.getReg();
      continue;
    }

    if (!SpillSubRegs && MO.getSubReg())
      return false;
    // We cannot fold a load instruction into a def.
    if (LoadMI && MO.isDef())
      return false;
    // Tied use operands should not be passed to foldMemoryOperand.
    if (!MI->isRegTiedToDefOperand(Idx))
      FoldOps.push_back(Idx);
  }

  // If we only have implicit uses, we won't be able to fold that.
  // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
  if (FoldOps.empty())
    return false;

  MachineInstrSpan MIS(MI);

  MachineInstr *FoldMI =
      LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
             : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS);
  if (!FoldMI)
    return false;

  // Remove LIS for any dead defs in the original MI not in FoldMI.
  for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
    if (!MO->isReg())
      continue;
    unsigned Reg = MO->getReg();
    if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) ||
        MRI.isReserved(Reg)) {
      continue;
    }
    // Skip non-Defs, including undef uses and internal reads.
    if (MO->isUse())
      continue;
    MIBundleOperands::PhysRegInfo RI =
        MIBundleOperands(*FoldMI).analyzePhysReg(Reg, &TRI);
    if (RI.FullyDefined)
      continue;
    // FoldMI does not define this physreg. Remove the LI segment.
    assert(MO->isDead() && "Cannot fold physreg def");
    SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
    LIS.removePhysRegDefAt(Reg, Idx);
  }

  int FI;
  if (TII.isStoreToStackSlot(*MI, FI) &&
      HSpiller.rmFromMergeableSpills(*MI, FI))
    --NumSpills;
  LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
  MI->eraseFromParent();

  // Insert any new instructions other than FoldMI into the LIS maps.
  assert(!MIS.empty() && "Unexpected empty span of instructions!");
  for (MachineInstr &MI : MIS)
    if (&MI != FoldMI)
      LIS.InsertMachineInstrInMaps(MI);

  // TII.foldMemoryOperand may have left some implicit operands on the
  // instruction.  Strip them.
  if (ImpReg)
    for (unsigned i = FoldMI->getNumOperands(); i; --i) {
      MachineOperand &MO = FoldMI->getOperand(i - 1);
      if (!MO.isReg() || !MO.isImplicit())
        break;
      if (MO.getReg() == ImpReg)
        FoldMI->RemoveOperand(i - 1);
    }

  DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
                                           "folded"));

  if (!WasCopy)
    ++NumFolded;
  else if (Ops.front().second == 0) {
    ++NumSpills;
    HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
  } else
    ++NumReloads;
  return true;
}

void InlineSpiller::insertReload(unsigned NewVReg,
                                 SlotIndex Idx,
                                 MachineBasicBlock::iterator MI) {
  MachineBasicBlock &MBB = *MI->getParent();

  MachineInstrSpan MIS(MI);
  TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
                           MRI.getRegClass(NewVReg), &TRI);

  LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);

  DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
                                           NewVReg));
  ++NumReloads;
}

/// Check if \p Def fully defines a VReg with an undefined value.
/// If that's the case, that means the value of VReg is actually
/// not relevant.
static bool isFullUndefDef(const MachineInstr &Def) {
  if (!Def.isImplicitDef())
    return false;
  assert(Def.getNumOperands() == 1 &&
         "Implicit def with more than one definition");
  // We can say that the VReg defined by Def is undef, only if it is
  // fully defined by Def. Otherwise, some of the lanes may not be
  // undef and the value of the VReg matters.
  return !Def.getOperand(0).getSubReg();
}

/// insertSpill - Insert a spill of NewVReg after MI.
void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill,
                                 MachineBasicBlock::iterator MI) {
  MachineBasicBlock &MBB = *MI->getParent();

  MachineInstrSpan MIS(MI);
  bool IsRealSpill = true;
  if (isFullUndefDef(*MI)) {
    // Don't spill undef value.
    // Anything works for undef, in particular keeping the memory
    // uninitialized is a viable option and it saves code size and
    // run time.
    BuildMI(MBB, std::next(MI), MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
        .addReg(NewVReg, getKillRegState(isKill));
    IsRealSpill = false;
  } else
    TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot,
                            MRI.getRegClass(NewVReg), &TRI);

  LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end());

  DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS,
                                           "spill"));
  ++NumSpills;
  if (IsRealSpill)
    HSpiller.addToMergeableSpills(*std::next(MI), StackSlot, Original);
}

/// spillAroundUses - insert spill code around each use of Reg.
void InlineSpiller::spillAroundUses(unsigned Reg) {
  DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
  LiveInterval &OldLI = LIS.getInterval(Reg);

  // Iterate over instructions using Reg.
  for (MachineRegisterInfo::reg_bundle_iterator
       RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
       RegI != E; ) {
    MachineInstr *MI = &*(RegI++);

    // Debug values are not allowed to affect codegen.
    if (MI->isDebugValue()) {
      // Modify DBG_VALUE now that the value is in a spill slot.
      MachineBasicBlock *MBB = MI->getParent();
      DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI);
      buildDbgValueForSpill(*MBB, MI, *MI, StackSlot);
      MBB->erase(MI);
      continue;
    }

    // Ignore copies to/from snippets. We'll delete them.
    if (SnippetCopies.count(MI))
      continue;

    // Stack slot accesses may coalesce away.
    if (coalesceStackAccess(MI, Reg))
      continue;

    // Analyze instruction.
    SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
    MIBundleOperands::VirtRegInfo RI =
        MIBundleOperands(*MI).analyzeVirtReg(Reg, &Ops);

    // Find the slot index where this instruction reads and writes OldLI.
    // This is usually the def slot, except for tied early clobbers.
    SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
    if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
      if (SlotIndex::isSameInstr(Idx, VNI->def))
        Idx = VNI->def;

    // Check for a sibling copy.
    unsigned SibReg = isFullCopyOf(*MI, Reg);
    if (SibReg && isSibling(SibReg)) {
      // This may actually be a copy between snippets.
      if (isRegToSpill(SibReg)) {
        DEBUG(dbgs() << "Found new snippet copy: " << *MI);
        SnippetCopies.insert(MI);
        continue;
      }
      if (RI.Writes) {
        if (hoistSpillInsideBB(OldLI, *MI)) {
          // This COPY is now dead, the value is already in the stack slot.
          MI->getOperand(0).setIsDead();
          DeadDefs.push_back(MI);
          continue;
        }
      } else {
        // This is a reload for a sib-reg copy. Drop spills downstream.
        LiveInterval &SibLI = LIS.getInterval(SibReg);
        eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
        // The COPY will fold to a reload below.
      }
    }

    // Attempt to fold memory ops.
    if (foldMemoryOperand(Ops))
      continue;

    // Create a new virtual register for spill/fill.
    // FIXME: Infer regclass from instruction alone.
    unsigned NewVReg = Edit->createFrom(Reg);

    if (RI.Reads)
      insertReload(NewVReg, Idx, MI);

    // Rewrite instruction operands.
    bool hasLiveDef = false;
    for (const auto &OpPair : Ops) {
      MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
      MO.setReg(NewVReg);
      if (MO.isUse()) {
        if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
          MO.setIsKill();
      } else {
        if (!MO.isDead())
          hasLiveDef = true;
      }
    }
    DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');

    // FIXME: Use a second vreg if instruction has no tied ops.
    if (RI.Writes)
      if (hasLiveDef)
        insertSpill(NewVReg, true, MI);
  }
}

/// spillAll - Spill all registers remaining after rematerialization.
void InlineSpiller::spillAll() {
  // Update LiveStacks now that we are committed to spilling.
  if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
    StackSlot = VRM.assignVirt2StackSlot(Original);
    StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
    StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
  } else
    StackInt = &LSS.getInterval(StackSlot);

  if (Original != Edit->getReg())
    VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);

  assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
  for (unsigned Reg : RegsToSpill)
    StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
                                     StackInt->getValNumInfo(0));
  DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');

  // Spill around uses of all RegsToSpill.
  for (unsigned Reg : RegsToSpill)
    spillAroundUses(Reg);

  // Hoisted spills may cause dead code.
  if (!DeadDefs.empty()) {
    DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
    Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
  }

  // Finally delete the SnippetCopies.
  for (unsigned Reg : RegsToSpill) {
    for (MachineRegisterInfo::reg_instr_iterator
         RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end();
         RI != E; ) {
      MachineInstr &MI = *(RI++);
      assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
      // FIXME: Do this with a LiveRangeEdit callback.
      LIS.RemoveMachineInstrFromMaps(MI);
      MI.eraseFromParent();
    }
  }

  // Delete all spilled registers.
  for (unsigned Reg : RegsToSpill)
    Edit->eraseVirtReg(Reg);
}

void InlineSpiller::spill(LiveRangeEdit &edit) {
  ++NumSpilledRanges;
  Edit = &edit;
  assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
         && "Trying to spill a stack slot.");
  // Share a stack slot among all descendants of Original.
  Original = VRM.getOriginal(edit.getReg());
  StackSlot = VRM.getStackSlot(Original);
  StackInt = nullptr;

  DEBUG(dbgs() << "Inline spilling "
               << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
               << ':' << edit.getParent()
               << "\nFrom original " << PrintReg(Original) << '\n');
  assert(edit.getParent().isSpillable() &&
         "Attempting to spill already spilled value.");
  assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");

  collectRegsToSpill();
  reMaterializeAll();

  // Remat may handle everything.
  if (!RegsToSpill.empty())
    spillAll();

  Edit->calculateRegClassAndHint(MF, Loops, MBFI);
}

/// Optimizations after all the reg selections and spills are done.
void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }

/// When a spill is inserted, add the spill to MergeableSpills map.
void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
                                            unsigned Original) {
  BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
  LiveInterval &OrigLI = LIS.getInterval(Original);
  // save a copy of LiveInterval in StackSlotToOrigLI because the original
  // LiveInterval may be cleared after all its references are spilled.
  if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) {
    auto LI = llvm::make_unique<LiveInterval>(OrigLI.reg, OrigLI.weight);
    LI->assign(OrigLI, Allocator);
    StackSlotToOrigLI[StackSlot] = std::move(LI);
  }
  SlotIndex Idx = LIS.getInstructionIndex(Spill);
  VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
  std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
  MergeableSpills[MIdx].insert(&Spill);
}

/// When a spill is removed, remove the spill from MergeableSpills map.
/// Return true if the spill is removed successfully.
bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
                                             int StackSlot) {
  auto It = StackSlotToOrigLI.find(StackSlot);
  if (It == StackSlotToOrigLI.end())
    return false;
  SlotIndex Idx = LIS.getInstructionIndex(Spill);
  VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
  std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
  return MergeableSpills[MIdx].erase(&Spill);
}

/// Check BB to see if it is a possible target BB to place a hoisted spill,
/// i.e., there should be a living sibling of OrigReg at the insert point.
bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
                                     MachineBasicBlock &BB, unsigned &LiveReg) {
  SlotIndex Idx;
  unsigned OrigReg = OrigLI.reg;
  MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB);
  if (MI != BB.end())
    Idx = LIS.getInstructionIndex(*MI);
  else
    Idx = LIS.getMBBEndIdx(&BB).getPrevSlot();
  SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg];
  assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");

  for (auto const SibReg : Siblings) {
    LiveInterval &LI = LIS.getInterval(SibReg);
    VNInfo *VNI = LI.getVNInfoAt(Idx);
    if (VNI) {
      LiveReg = SibReg;
      return true;
    }
  }
  return false;
}

/// Remove redundant spills in the same BB. Save those redundant spills in
/// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
void HoistSpillHelper::rmRedundantSpills(
    SmallPtrSet<MachineInstr *, 16> &Spills,
    SmallVectorImpl<MachineInstr *> &SpillsToRm,
    DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
  // For each spill saw, check SpillBBToSpill[] and see if its BB already has
  // another spill inside. If a BB contains more than one spill, only keep the
  // earlier spill with smaller SlotIndex.
  for (const auto CurrentSpill : Spills) {
    MachineBasicBlock *Block = CurrentSpill->getParent();
    MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
    MachineInstr *PrevSpill = SpillBBToSpill[Node];
    if (PrevSpill) {
      SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
      SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
      MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
      MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
      SpillsToRm.push_back(SpillToRm);
      SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
    } else {
      SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
    }
  }
  for (const auto SpillToRm : SpillsToRm)
    Spills.erase(SpillToRm);
}

/// Starting from \p Root find a top-down traversal order of the dominator
/// tree to visit all basic blocks containing the elements of \p Spills.
/// Redundant spills will be found and put into \p SpillsToRm at the same
/// time. \p SpillBBToSpill will be populated as part of the process and
/// maps a basic block to the first store occurring in the basic block.
/// \post SpillsToRm.union(Spills\@post) == Spills\@pre
void HoistSpillHelper::getVisitOrders(
    MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
    SmallVectorImpl<MachineDomTreeNode *> &Orders,
    SmallVectorImpl<MachineInstr *> &SpillsToRm,
    DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
    DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
  // The set contains all the possible BB nodes to which we may hoist
  // original spills.
  SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
  // Save the BB nodes on the path from the first BB node containing
  // non-redundant spill to the Root node.
  SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
  // All the spills to be hoisted must originate from a single def instruction
  // to the OrigReg. It means the def instruction should dominate all the spills
  // to be hoisted. We choose the BB where the def instruction is located as
  // the Root.
  MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
  // For every node on the dominator tree with spill, walk up on the dominator
  // tree towards the Root node until it is reached. If there is other node
  // containing spill in the middle of the path, the previous spill saw will
  // be redundant and the node containing it will be removed. All the nodes on
  // the path starting from the first node with non-redundant spill to the Root
  // node will be added to the WorkSet, which will contain all the possible
  // locations where spills may be hoisted to after the loop below is done.
  for (const auto Spill : Spills) {
    MachineBasicBlock *Block = Spill->getParent();
    MachineDomTreeNode *Node = MDT[Block];
    MachineInstr *SpillToRm = nullptr;
    while (Node != RootIDomNode) {
      // If Node dominates Block, and it already contains a spill, the spill in
      // Block will be redundant.
      if (Node != MDT[Block] && SpillBBToSpill[Node]) {
        SpillToRm = SpillBBToSpill[MDT[Block]];
        break;
        /// If we see the Node already in WorkSet, the path from the Node to
        /// the Root node must already be traversed by another spill.
        /// Then no need to repeat.
      } else if (WorkSet.count(Node)) {
        break;
      } else {
        NodesOnPath.insert(Node);
      }
      Node = Node->getIDom();
    }
    if (SpillToRm) {
      SpillsToRm.push_back(SpillToRm);
    } else {
      // Add a BB containing the original spills to SpillsToKeep -- i.e.,
      // set the initial status before hoisting start. The value of BBs
      // containing original spills is set to 0, in order to descriminate
      // with BBs containing hoisted spills which will be inserted to
      // SpillsToKeep later during hoisting.
      SpillsToKeep[MDT[Block]] = 0;
      WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
    }
    NodesOnPath.clear();
  }

  // Sort the nodes in WorkSet in top-down order and save the nodes
  // in Orders. Orders will be used for hoisting in runHoistSpills.
  unsigned idx = 0;
  Orders.push_back(MDT.getBase().getNode(Root));
  do {
    MachineDomTreeNode *Node = Orders[idx++];
    const std::vector<MachineDomTreeNode *> &Children = Node->getChildren();
    unsigned NumChildren = Children.size();
    for (unsigned i = 0; i != NumChildren; ++i) {
      MachineDomTreeNode *Child = Children[i];
      if (WorkSet.count(Child))
        Orders.push_back(Child);
    }
  } while (idx != Orders.size());
  assert(Orders.size() == WorkSet.size() &&
         "Orders have different size with WorkSet");

#ifndef NDEBUG
  DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
  SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
  for (; RIt != Orders.rend(); RIt++)
    DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
  DEBUG(dbgs() << "\n");
#endif
}

/// Try to hoist spills according to BB hotness. The spills to removed will
/// be saved in \p SpillsToRm. The spills to be inserted will be saved in
/// \p SpillsToIns.
void HoistSpillHelper::runHoistSpills(
    LiveInterval &OrigLI, VNInfo &OrigVNI,
    SmallPtrSet<MachineInstr *, 16> &Spills,
    SmallVectorImpl<MachineInstr *> &SpillsToRm,
    DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
  // Visit order of dominator tree nodes.
  SmallVector<MachineDomTreeNode *, 32> Orders;
  // SpillsToKeep contains all the nodes where spills are to be inserted
  // during hoisting. If the spill to be inserted is an original spill
  // (not a hoisted one), the value of the map entry is 0. If the spill
  // is a hoisted spill, the value of the map entry is the VReg to be used
  // as the source of the spill.
  DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
  // Map from BB to the first spill inside of it.
  DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;

  rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);

  MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
  getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
                 SpillBBToSpill);

  // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
  // nodes set and the cost of all the spills inside those nodes.
  // The nodes set are the locations where spills are to be inserted
  // in the subtree of current node.
  using NodesCostPair =
      std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
  DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;

  // Iterate Orders set in reverse order, which will be a bottom-up order
  // in the dominator tree. Once we visit a dom tree node, we know its
  // children have already been visited and the spill locations in the
  // subtrees of all the children have been determined.
  SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
  for (; RIt != Orders.rend(); RIt++) {
    MachineBasicBlock *Block = (*RIt)->getBlock();

    // If Block contains an original spill, simply continue.
    if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
      SpillsInSubTreeMap[*RIt].first.insert(*RIt);
      // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
      SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
      continue;
    }

    // Collect spills in subtree of current node (*RIt) to
    // SpillsInSubTreeMap[*RIt].first.
    const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren();
    unsigned NumChildren = Children.size();
    for (unsigned i = 0; i != NumChildren; ++i) {
      MachineDomTreeNode *Child = Children[i];
      if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
        continue;
      // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
      // should be placed before getting the begin and end iterators of
      // SpillsInSubTreeMap[Child].first, or else the iterators may be
      // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
      // and the map grows and then the original buckets in the map are moved.
      SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
          SpillsInSubTreeMap[*RIt].first;
      BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
      SubTreeCost += SpillsInSubTreeMap[Child].second;
      auto BI = SpillsInSubTreeMap[Child].first.begin();
      auto EI = SpillsInSubTreeMap[Child].first.end();
      SpillsInSubTree.insert(BI, EI);
      SpillsInSubTreeMap.erase(Child);
    }

    SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
          SpillsInSubTreeMap[*RIt].first;
    BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
    // No spills in subtree, simply continue.
    if (SpillsInSubTree.empty())
      continue;

    // Check whether Block is a possible candidate to insert spill.
    unsigned LiveReg = 0;
    if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
      continue;

    // If there are multiple spills that could be merged, bias a little
    // to hoist the spill.
    BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
                                       ? BranchProbability(9, 10)
                                       : BranchProbability(1, 1);
    if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
      // Hoist: Move spills to current Block.
      for (const auto SpillBB : SpillsInSubTree) {
        // When SpillBB is a BB contains original spill, insert the spill
        // to SpillsToRm.
        if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
            !SpillsToKeep[SpillBB]) {
          MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
          SpillsToRm.push_back(SpillToRm);
        }
        // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
        SpillsToKeep.erase(SpillBB);
      }
      // Current Block is the BB containing the new hoisted spill. Add it to
      // SpillsToKeep. LiveReg is the source of the new spill.
      SpillsToKeep[*RIt] = LiveReg;
      DEBUG({
        dbgs() << "spills in BB: ";
        for (const auto Rspill : SpillsInSubTree)
          dbgs() << Rspill->getBlock()->getNumber() << " ";
        dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
               << "\n";
      });
      SpillsInSubTree.clear();
      SpillsInSubTree.insert(*RIt);
      SubTreeCost = MBFI.getBlockFreq(Block);
    }
  }
  // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
  // save them to SpillsToIns.
  for (const auto Ent : SpillsToKeep) {
    if (Ent.second)
      SpillsToIns[Ent.first->getBlock()] = Ent.second;
  }
}

/// For spills with equal values, remove redundant spills and hoist those left
/// to less hot spots.
///
/// Spills with equal values will be collected into the same set in
/// MergeableSpills when spill is inserted. These equal spills are originated
/// from the same defining instruction and are dominated by the instruction.
/// Before hoisting all the equal spills, redundant spills inside in the same
/// BB are first marked to be deleted. Then starting from the spills left, walk
/// up on the dominator tree towards the Root node where the define instruction
/// is located, mark the dominated spills to be deleted along the way and
/// collect the BB nodes on the path from non-dominated spills to the define
/// instruction into a WorkSet. The nodes in WorkSet are the candidate places
/// where we are considering to hoist the spills. We iterate the WorkSet in
/// bottom-up order, and for each node, we will decide whether to hoist spills
/// inside its subtree to that node. In this way, we can get benefit locally
/// even if hoisting all the equal spills to one cold place is impossible.
void HoistSpillHelper::hoistAllSpills() {
  SmallVector<unsigned, 4> NewVRegs;
  LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);

  for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    unsigned Original = VRM.getPreSplitReg(Reg);
    if (!MRI.def_empty(Reg))
      Virt2SiblingsMap[Original].insert(Reg);
  }

  // Each entry in MergeableSpills contains a spill set with equal values.
  for (auto &Ent : MergeableSpills) {
    int Slot = Ent.first.first;
    LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
    VNInfo *OrigVNI = Ent.first.second;
    SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
    if (Ent.second.empty())
      continue;

    DEBUG({
      dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
             << "Equal spills in BB: ";
      for (const auto spill : EqValSpills)
        dbgs() << spill->getParent()->getNumber() << " ";
      dbgs() << "\n";
    });

    // SpillsToRm is the spill set to be removed from EqValSpills.
    SmallVector<MachineInstr *, 16> SpillsToRm;
    // SpillsToIns is the spill set to be newly inserted after hoisting.
    DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;

    runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);

    DEBUG({
      dbgs() << "Finally inserted spills in BB: ";
      for (const auto Ispill : SpillsToIns)
        dbgs() << Ispill.first->getNumber() << " ";
      dbgs() << "\nFinally removed spills in BB: ";
      for (const auto Rspill : SpillsToRm)
        dbgs() << Rspill->getParent()->getNumber() << " ";
      dbgs() << "\n";
    });

    // Stack live range update.
    LiveInterval &StackIntvl = LSS.getInterval(Slot);
    if (!SpillsToIns.empty() || !SpillsToRm.empty())
      StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
                                     StackIntvl.getValNumInfo(0));

    // Insert hoisted spills.
    for (auto const Insert : SpillsToIns) {
      MachineBasicBlock *BB = Insert.first;
      unsigned LiveReg = Insert.second;
      MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB);
      TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot,
                              MRI.getRegClass(LiveReg), &TRI);
      LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI);
      ++NumSpills;
    }

    // Remove redundant spills or change them to dead instructions.
    NumSpills -= SpillsToRm.size();
    for (auto const RMEnt : SpillsToRm) {
      RMEnt->setDesc(TII.get(TargetOpcode::KILL));
      for (unsigned i = RMEnt->getNumOperands(); i; --i) {
        MachineOperand &MO = RMEnt->getOperand(i - 1);
        if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
          RMEnt->RemoveOperand(i - 1);
      }
    }
    Edit.eliminateDeadDefs(SpillsToRm, None, AA);
  }
}

/// For VirtReg clone, the \p New register should have the same physreg or
/// stackslot as the \p old register.
void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
  if (VRM.hasPhys(Old))
    VRM.assignVirt2Phys(New, VRM.getPhys(Old));
  else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
    VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
  else
    llvm_unreachable("VReg should be assigned either physreg or stackslot");
}