aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/GlobalISel/IRTranslator.cpp
blob: 8e31ed0a01539310a7cbd8e7320147bc47e7cc5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
//===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the IRTranslator class.
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCContext.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <string>
#include <utility>
#include <vector>

#define DEBUG_TYPE "irtranslator"

using namespace llvm;

char IRTranslator::ID = 0;

INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
                false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
                false, false)

static void reportTranslationError(MachineFunction &MF,
                                   const TargetPassConfig &TPC,
                                   OptimizationRemarkEmitter &ORE,
                                   OptimizationRemarkMissed &R) {
  MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);

  // Print the function name explicitly if we don't have a debug location (which
  // makes the diagnostic less useful) or if we're going to emit a raw error.
  if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
    R << (" (in function: " + MF.getName() + ")").str();

  if (TPC.isGlobalISelAbortEnabled())
    report_fatal_error(R.getMsg());
  else
    ORE.emit(R);
}

IRTranslator::IRTranslator() : MachineFunctionPass(ID) {
  initializeIRTranslatorPass(*PassRegistry::getPassRegistry());
}

void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<TargetPassConfig>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

unsigned IRTranslator::getOrCreateVReg(const Value &Val) {
  unsigned &ValReg = ValToVReg[&Val];

  if (ValReg)
    return ValReg;

  // Fill ValRegsSequence with the sequence of registers
  // we need to concat together to produce the value.
  assert(Val.getType()->isSized() &&
         "Don't know how to create an empty vreg");
  unsigned VReg =
      MRI->createGenericVirtualRegister(getLLTForType(*Val.getType(), *DL));
  ValReg = VReg;

  if (auto CV = dyn_cast<Constant>(&Val)) {
    bool Success = translate(*CV, VReg);
    if (!Success) {
      OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
                                 MF->getFunction()->getSubprogram(),
                                 &MF->getFunction()->getEntryBlock());
      R << "unable to translate constant: " << ore::NV("Type", Val.getType());
      reportTranslationError(*MF, *TPC, *ORE, R);
      return VReg;
    }
  }

  return VReg;
}

int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
  if (FrameIndices.find(&AI) != FrameIndices.end())
    return FrameIndices[&AI];

  unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType());
  unsigned Size =
      ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();

  // Always allocate at least one byte.
  Size = std::max(Size, 1u);

  unsigned Alignment = AI.getAlignment();
  if (!Alignment)
    Alignment = DL->getABITypeAlignment(AI.getAllocatedType());

  int &FI = FrameIndices[&AI];
  FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
  return FI;
}

unsigned IRTranslator::getMemOpAlignment(const Instruction &I) {
  unsigned Alignment = 0;
  Type *ValTy = nullptr;
  if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
    Alignment = SI->getAlignment();
    ValTy = SI->getValueOperand()->getType();
  } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
    Alignment = LI->getAlignment();
    ValTy = LI->getType();
  } else {
    OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
    R << "unable to translate memop: " << ore::NV("Opcode", &I);
    reportTranslationError(*MF, *TPC, *ORE, R);
    return 1;
  }

  return Alignment ? Alignment : DL->getABITypeAlignment(ValTy);
}

MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
  MachineBasicBlock *&MBB = BBToMBB[&BB];
  assert(MBB && "BasicBlock was not encountered before");
  return *MBB;
}

void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
  assert(NewPred && "new predecessor must be a real MachineBasicBlock");
  MachinePreds[Edge].push_back(NewPred);
}

bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
                                     MachineIRBuilder &MIRBuilder) {
  // FIXME: handle signed/unsigned wrapping flags.

  // Get or create a virtual register for each value.
  // Unless the value is a Constant => loadimm cst?
  // or inline constant each time?
  // Creation of a virtual register needs to have a size.
  unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
  unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
  unsigned Res = getOrCreateVReg(U);
  MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1);
  return true;
}

bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
  // -0.0 - X --> G_FNEG
  if (isa<Constant>(U.getOperand(0)) &&
      U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) {
    MIRBuilder.buildInstr(TargetOpcode::G_FNEG)
        .addDef(getOrCreateVReg(U))
        .addUse(getOrCreateVReg(*U.getOperand(1)));
    return true;
  }
  return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
}

bool IRTranslator::translateCompare(const User &U,
                                    MachineIRBuilder &MIRBuilder) {
  const CmpInst *CI = dyn_cast<CmpInst>(&U);
  unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
  unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
  unsigned Res = getOrCreateVReg(U);
  CmpInst::Predicate Pred =
      CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
                                    cast<ConstantExpr>(U).getPredicate());
  if (CmpInst::isIntPredicate(Pred))
    MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
  else if (Pred == CmpInst::FCMP_FALSE)
    MIRBuilder.buildCopy(
        Res, getOrCreateVReg(*Constant::getNullValue(CI->getType())));
  else if (Pred == CmpInst::FCMP_TRUE)
    MIRBuilder.buildCopy(
        Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType())));
  else
    MIRBuilder.buildFCmp(Pred, Res, Op0, Op1);

  return true;
}

bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
  const ReturnInst &RI = cast<ReturnInst>(U);
  const Value *Ret = RI.getReturnValue();
  // The target may mess up with the insertion point, but
  // this is not important as a return is the last instruction
  // of the block anyway.
  return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret));
}

bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
  const BranchInst &BrInst = cast<BranchInst>(U);
  unsigned Succ = 0;
  if (!BrInst.isUnconditional()) {
    // We want a G_BRCOND to the true BB followed by an unconditional branch.
    unsigned Tst = getOrCreateVReg(*BrInst.getCondition());
    const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
    MachineBasicBlock &TrueBB = getMBB(TrueTgt);
    MIRBuilder.buildBrCond(Tst, TrueBB);
  }

  const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
  MachineBasicBlock &TgtBB = getMBB(BrTgt);
  MachineBasicBlock &CurBB = MIRBuilder.getMBB();

  // If the unconditional target is the layout successor, fallthrough.
  if (!CurBB.isLayoutSuccessor(&TgtBB))
    MIRBuilder.buildBr(TgtBB);

  // Link successors.
  for (const BasicBlock *Succ : BrInst.successors())
    CurBB.addSuccessor(&getMBB(*Succ));
  return true;
}

bool IRTranslator::translateSwitch(const User &U,
                                   MachineIRBuilder &MIRBuilder) {
  // For now, just translate as a chain of conditional branches.
  // FIXME: could we share most of the logic/code in
  // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel?
  // At first sight, it seems most of the logic in there is independent of
  // SelectionDAG-specifics and a lot of work went in to optimize switch
  // lowering in there.

  const SwitchInst &SwInst = cast<SwitchInst>(U);
  const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition());
  const BasicBlock *OrigBB = SwInst.getParent();

  LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL);
  for (auto &CaseIt : SwInst.cases()) {
    const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue());
    const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1);
    MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue);
    MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
    const BasicBlock *TrueBB = CaseIt.getCaseSuccessor();
    MachineBasicBlock &TrueMBB = getMBB(*TrueBB);

    MIRBuilder.buildBrCond(Tst, TrueMBB);
    CurMBB.addSuccessor(&TrueMBB);
    addMachineCFGPred({OrigBB, TrueBB}, &CurMBB);

    MachineBasicBlock *FalseMBB =
        MF->CreateMachineBasicBlock(SwInst.getParent());
    // Insert the comparison blocks one after the other.
    MF->insert(std::next(CurMBB.getIterator()), FalseMBB);
    MIRBuilder.buildBr(*FalseMBB);
    CurMBB.addSuccessor(FalseMBB);

    MIRBuilder.setMBB(*FalseMBB);
  }
  // handle default case
  const BasicBlock *DefaultBB = SwInst.getDefaultDest();
  MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB);
  MIRBuilder.buildBr(DefaultMBB);
  MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
  CurMBB.addSuccessor(&DefaultMBB);
  addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB);

  return true;
}

bool IRTranslator::translateIndirectBr(const User &U,
                                       MachineIRBuilder &MIRBuilder) {
  const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);

  const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress());
  MIRBuilder.buildBrIndirect(Tgt);

  // Link successors.
  MachineBasicBlock &CurBB = MIRBuilder.getMBB();
  for (const BasicBlock *Succ : BrInst.successors())
    CurBB.addSuccessor(&getMBB(*Succ));

  return true;
}

bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
  const LoadInst &LI = cast<LoadInst>(U);

  auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile
                               : MachineMemOperand::MONone;
  Flags |= MachineMemOperand::MOLoad;

  unsigned Res = getOrCreateVReg(LI);
  unsigned Addr = getOrCreateVReg(*LI.getPointerOperand());

  MIRBuilder.buildLoad(
      Res, Addr,
      *MF->getMachineMemOperand(MachinePointerInfo(LI.getPointerOperand()),
                                Flags, DL->getTypeStoreSize(LI.getType()),
                                getMemOpAlignment(LI), AAMDNodes(), nullptr,
                                LI.getSyncScopeID(), LI.getOrdering()));
  return true;
}

bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
  const StoreInst &SI = cast<StoreInst>(U);
  auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile
                               : MachineMemOperand::MONone;
  Flags |= MachineMemOperand::MOStore;

  unsigned Val = getOrCreateVReg(*SI.getValueOperand());
  unsigned Addr = getOrCreateVReg(*SI.getPointerOperand());

  MIRBuilder.buildStore(
      Val, Addr,
      *MF->getMachineMemOperand(
          MachinePointerInfo(SI.getPointerOperand()), Flags,
          DL->getTypeStoreSize(SI.getValueOperand()->getType()),
          getMemOpAlignment(SI), AAMDNodes(), nullptr, SI.getSyncScopeID(),
          SI.getOrdering()));
  return true;
}

bool IRTranslator::translateExtractValue(const User &U,
                                         MachineIRBuilder &MIRBuilder) {
  const Value *Src = U.getOperand(0);
  Type *Int32Ty = Type::getInt32Ty(U.getContext());
  SmallVector<Value *, 1> Indices;

  // If Src is a single element ConstantStruct, translate extractvalue
  // to that element to avoid inserting a cast instruction.
  if (auto CS = dyn_cast<ConstantStruct>(Src))
    if (CS->getNumOperands() == 1) {
      unsigned Res = getOrCreateVReg(*CS->getOperand(0));
      ValToVReg[&U] = Res;
      return true;
    }

  // getIndexedOffsetInType is designed for GEPs, so the first index is the
  // usual array element rather than looking into the actual aggregate.
  Indices.push_back(ConstantInt::get(Int32Ty, 0));

  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
    for (auto Idx : EVI->indices())
      Indices.push_back(ConstantInt::get(Int32Ty, Idx));
  } else {
    for (unsigned i = 1; i < U.getNumOperands(); ++i)
      Indices.push_back(U.getOperand(i));
  }

  uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices);

  unsigned Res = getOrCreateVReg(U);
  MIRBuilder.buildExtract(Res, getOrCreateVReg(*Src), Offset);

  return true;
}

bool IRTranslator::translateInsertValue(const User &U,
                                        MachineIRBuilder &MIRBuilder) {
  const Value *Src = U.getOperand(0);
  Type *Int32Ty = Type::getInt32Ty(U.getContext());
  SmallVector<Value *, 1> Indices;

  // getIndexedOffsetInType is designed for GEPs, so the first index is the
  // usual array element rather than looking into the actual aggregate.
  Indices.push_back(ConstantInt::get(Int32Ty, 0));

  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
    for (auto Idx : IVI->indices())
      Indices.push_back(ConstantInt::get(Int32Ty, Idx));
  } else {
    for (unsigned i = 2; i < U.getNumOperands(); ++i)
      Indices.push_back(U.getOperand(i));
  }

  uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices);

  unsigned Res = getOrCreateVReg(U);
  unsigned Inserted = getOrCreateVReg(*U.getOperand(1));
  MIRBuilder.buildInsert(Res, getOrCreateVReg(*Src), Inserted, Offset);

  return true;
}

bool IRTranslator::translateSelect(const User &U,
                                   MachineIRBuilder &MIRBuilder) {
  unsigned Res = getOrCreateVReg(U);
  unsigned Tst = getOrCreateVReg(*U.getOperand(0));
  unsigned Op0 = getOrCreateVReg(*U.getOperand(1));
  unsigned Op1 = getOrCreateVReg(*U.getOperand(2));
  MIRBuilder.buildSelect(Res, Tst, Op0, Op1);
  return true;
}

bool IRTranslator::translateBitCast(const User &U,
                                    MachineIRBuilder &MIRBuilder) {
  // If we're bitcasting to the source type, we can reuse the source vreg.
  if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
      getLLTForType(*U.getType(), *DL)) {
    // Get the source vreg now, to avoid invalidating ValToVReg.
    unsigned SrcReg = getOrCreateVReg(*U.getOperand(0));
    unsigned &Reg = ValToVReg[&U];
    // If we already assigned a vreg for this bitcast, we can't change that.
    // Emit a copy to satisfy the users we already emitted.
    if (Reg)
      MIRBuilder.buildCopy(Reg, SrcReg);
    else
      Reg = SrcReg;
    return true;
  }
  return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
}

bool IRTranslator::translateCast(unsigned Opcode, const User &U,
                                 MachineIRBuilder &MIRBuilder) {
  unsigned Op = getOrCreateVReg(*U.getOperand(0));
  unsigned Res = getOrCreateVReg(U);
  MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op);
  return true;
}

bool IRTranslator::translateGetElementPtr(const User &U,
                                          MachineIRBuilder &MIRBuilder) {
  // FIXME: support vector GEPs.
  if (U.getType()->isVectorTy())
    return false;

  Value &Op0 = *U.getOperand(0);
  unsigned BaseReg = getOrCreateVReg(Op0);
  Type *PtrIRTy = Op0.getType();
  LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
  Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
  LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);

  int64_t Offset = 0;
  for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
       GTI != E; ++GTI) {
    const Value *Idx = GTI.getOperand();
    if (StructType *StTy = GTI.getStructTypeOrNull()) {
      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
      Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
      continue;
    } else {
      uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());

      // If this is a scalar constant or a splat vector of constants,
      // handle it quickly.
      if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
        Offset += ElementSize * CI->getSExtValue();
        continue;
      }

      if (Offset != 0) {
        unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
        unsigned OffsetReg =
            getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset));
        MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg);

        BaseReg = NewBaseReg;
        Offset = 0;
      }

      // N = N + Idx * ElementSize;
      unsigned ElementSizeReg =
          getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize));

      unsigned IdxReg = getOrCreateVReg(*Idx);
      if (MRI->getType(IdxReg) != OffsetTy) {
        unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy);
        MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg);
        IdxReg = NewIdxReg;
      }

      unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy);
      MIRBuilder.buildMul(OffsetReg, ElementSizeReg, IdxReg);

      unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
      MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg);
      BaseReg = NewBaseReg;
    }
  }

  if (Offset != 0) {
    unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset));
    MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg);
    return true;
  }

  MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
  return true;
}

bool IRTranslator::translateMemfunc(const CallInst &CI,
                                    MachineIRBuilder &MIRBuilder,
                                    unsigned ID) {
  LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL);
  Type *DstTy = CI.getArgOperand(0)->getType();
  if (cast<PointerType>(DstTy)->getAddressSpace() != 0 ||
      SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0))
    return false;

  SmallVector<CallLowering::ArgInfo, 8> Args;
  for (int i = 0; i < 3; ++i) {
    const auto &Arg = CI.getArgOperand(i);
    Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType());
  }

  const char *Callee;
  switch (ID) {
  case Intrinsic::memmove:
  case Intrinsic::memcpy: {
    Type *SrcTy = CI.getArgOperand(1)->getType();
    if(cast<PointerType>(SrcTy)->getAddressSpace() != 0)
      return false;
    Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove";
    break;
  }
  case Intrinsic::memset:
    Callee = "memset";
    break;
  default:
    return false;
  }

  return CLI->lowerCall(MIRBuilder, CI.getCallingConv(),
                        MachineOperand::CreateES(Callee),
                        CallLowering::ArgInfo(0, CI.getType()), Args);
}

void IRTranslator::getStackGuard(unsigned DstReg,
                                 MachineIRBuilder &MIRBuilder) {
  const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
  MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
  auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD);
  MIB.addDef(DstReg);

  auto &TLI = *MF->getSubtarget().getTargetLowering();
  Value *Global = TLI.getSDagStackGuard(*MF->getFunction()->getParent());
  if (!Global)
    return;

  MachinePointerInfo MPInfo(Global);
  MachineInstr::mmo_iterator MemRefs = MF->allocateMemRefsArray(1);
  auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
               MachineMemOperand::MODereferenceable;
  *MemRefs =
      MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
                               DL->getPointerABIAlignment());
  MIB.setMemRefs(MemRefs, MemRefs + 1);
}

bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
                                              MachineIRBuilder &MIRBuilder) {
  LLT Ty = getLLTForType(*CI.getOperand(0)->getType(), *DL);
  LLT s1 = LLT::scalar(1);
  unsigned Width = Ty.getSizeInBits();
  unsigned Res = MRI->createGenericVirtualRegister(Ty);
  unsigned Overflow = MRI->createGenericVirtualRegister(s1);
  auto MIB = MIRBuilder.buildInstr(Op)
                 .addDef(Res)
                 .addDef(Overflow)
                 .addUse(getOrCreateVReg(*CI.getOperand(0)))
                 .addUse(getOrCreateVReg(*CI.getOperand(1)));

  if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) {
    unsigned Zero = getOrCreateVReg(
        *Constant::getNullValue(Type::getInt1Ty(CI.getContext())));
    MIB.addUse(Zero);
  }

  MIRBuilder.buildSequence(getOrCreateVReg(CI), {Res, Overflow}, {0, Width});
  return true;
}

bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
                                           MachineIRBuilder &MIRBuilder) {
  switch (ID) {
  default:
    break;
  case Intrinsic::lifetime_start:
  case Intrinsic::lifetime_end:
    // Stack coloring is not enabled in O0 (which we care about now) so we can
    // drop these. Make sure someone notices when we start compiling at higher
    // opts though.
    if (MF->getTarget().getOptLevel() != CodeGenOpt::None)
      return false;
    return true;
  case Intrinsic::dbg_declare: {
    const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
    assert(DI.getVariable() && "Missing variable");

    const Value *Address = DI.getAddress();
    if (!Address || isa<UndefValue>(Address)) {
      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
      return true;
    }

    assert(DI.getVariable()->isValidLocationForIntrinsic(
               MIRBuilder.getDebugLoc()) &&
           "Expected inlined-at fields to agree");
    auto AI = dyn_cast<AllocaInst>(Address);
    if (AI && AI->isStaticAlloca()) {
      // Static allocas are tracked at the MF level, no need for DBG_VALUE
      // instructions (in fact, they get ignored if they *do* exist).
      MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
                             getOrCreateFrameIndex(*AI), DI.getDebugLoc());
    } else
      MIRBuilder.buildDirectDbgValue(getOrCreateVReg(*Address),
                                     DI.getVariable(), DI.getExpression());
    return true;
  }
  case Intrinsic::vaend:
    // No target I know of cares about va_end. Certainly no in-tree target
    // does. Simplest intrinsic ever!
    return true;
  case Intrinsic::vastart: {
    auto &TLI = *MF->getSubtarget().getTargetLowering();
    Value *Ptr = CI.getArgOperand(0);
    unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;

    MIRBuilder.buildInstr(TargetOpcode::G_VASTART)
        .addUse(getOrCreateVReg(*Ptr))
        .addMemOperand(MF->getMachineMemOperand(
            MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0));
    return true;
  }
  case Intrinsic::dbg_value: {
    // This form of DBG_VALUE is target-independent.
    const DbgValueInst &DI = cast<DbgValueInst>(CI);
    const Value *V = DI.getValue();
    assert(DI.getVariable()->isValidLocationForIntrinsic(
               MIRBuilder.getDebugLoc()) &&
           "Expected inlined-at fields to agree");
    if (!V) {
      // Currently the optimizer can produce this; insert an undef to
      // help debugging.  Probably the optimizer should not do this.
      MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
    } else if (const auto *CI = dyn_cast<Constant>(V)) {
      MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
    } else {
      unsigned Reg = getOrCreateVReg(*V);
      // FIXME: This does not handle register-indirect values at offset 0. The
      // direct/indirect thing shouldn't really be handled by something as
      // implicit as reg+noreg vs reg+imm in the first palce, but it seems
      // pretty baked in right now.
      MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
    }
    return true;
  }
  case Intrinsic::uadd_with_overflow:
    return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDE, MIRBuilder);
  case Intrinsic::sadd_with_overflow:
    return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
  case Intrinsic::usub_with_overflow:
    return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBE, MIRBuilder);
  case Intrinsic::ssub_with_overflow:
    return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
  case Intrinsic::umul_with_overflow:
    return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
  case Intrinsic::smul_with_overflow:
    return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
  case Intrinsic::pow:
    MIRBuilder.buildInstr(TargetOpcode::G_FPOW)
        .addDef(getOrCreateVReg(CI))
        .addUse(getOrCreateVReg(*CI.getArgOperand(0)))
        .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
    return true;
  case Intrinsic::exp:
    MIRBuilder.buildInstr(TargetOpcode::G_FEXP)
        .addDef(getOrCreateVReg(CI))
        .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
    return true;
  case Intrinsic::exp2:
    MIRBuilder.buildInstr(TargetOpcode::G_FEXP2)
        .addDef(getOrCreateVReg(CI))
        .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
    return true;
  case Intrinsic::log:
    MIRBuilder.buildInstr(TargetOpcode::G_FLOG)
        .addDef(getOrCreateVReg(CI))
        .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
    return true;
  case Intrinsic::log2:
    MIRBuilder.buildInstr(TargetOpcode::G_FLOG2)
        .addDef(getOrCreateVReg(CI))
        .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
    return true;
  case Intrinsic::fma:
    MIRBuilder.buildInstr(TargetOpcode::G_FMA)
        .addDef(getOrCreateVReg(CI))
        .addUse(getOrCreateVReg(*CI.getArgOperand(0)))
        .addUse(getOrCreateVReg(*CI.getArgOperand(1)))
        .addUse(getOrCreateVReg(*CI.getArgOperand(2)));
    return true;
  case Intrinsic::memcpy:
  case Intrinsic::memmove:
  case Intrinsic::memset:
    return translateMemfunc(CI, MIRBuilder, ID);
  case Intrinsic::eh_typeid_for: {
    GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
    unsigned Reg = getOrCreateVReg(CI);
    unsigned TypeID = MF->getTypeIDFor(GV);
    MIRBuilder.buildConstant(Reg, TypeID);
    return true;
  }
  case Intrinsic::objectsize: {
    // If we don't know by now, we're never going to know.
    const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1));

    MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0);
    return true;
  }
  case Intrinsic::stackguard:
    getStackGuard(getOrCreateVReg(CI), MIRBuilder);
    return true;
  case Intrinsic::stackprotector: {
    LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
    unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy);
    getStackGuard(GuardVal, MIRBuilder);

    AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
    MIRBuilder.buildStore(
        GuardVal, getOrCreateVReg(*Slot),
        *MF->getMachineMemOperand(
            MachinePointerInfo::getFixedStack(*MF,
                                              getOrCreateFrameIndex(*Slot)),
            MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
            PtrTy.getSizeInBits() / 8, 8));
    return true;
  }
  }
  return false;
}

bool IRTranslator::translateInlineAsm(const CallInst &CI,
                                      MachineIRBuilder &MIRBuilder) {
  const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue());
  if (!IA.getConstraintString().empty())
    return false;

  unsigned ExtraInfo = 0;
  if (IA.hasSideEffects())
    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
  if (IA.getDialect() == InlineAsm::AD_Intel)
    ExtraInfo |= InlineAsm::Extra_AsmDialect;

  MIRBuilder.buildInstr(TargetOpcode::INLINEASM)
    .addExternalSymbol(IA.getAsmString().c_str())
    .addImm(ExtraInfo);

  return true;
}

bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
  const CallInst &CI = cast<CallInst>(U);
  auto TII = MF->getTarget().getIntrinsicInfo();
  const Function *F = CI.getCalledFunction();

  if (CI.isInlineAsm())
    return translateInlineAsm(CI, MIRBuilder);

  if (!F || !F->isIntrinsic()) {
    unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI);
    SmallVector<unsigned, 8> Args;
    for (auto &Arg: CI.arg_operands())
      Args.push_back(getOrCreateVReg(*Arg));

    MF->getFrameInfo().setHasCalls(true);
    return CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() {
      return getOrCreateVReg(*CI.getCalledValue());
    });
  }

  Intrinsic::ID ID = F->getIntrinsicID();
  if (TII && ID == Intrinsic::not_intrinsic)
    ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));

  assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");

  if (translateKnownIntrinsic(CI, ID, MIRBuilder))
    return true;

  unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI);
  MachineInstrBuilder MIB =
      MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory());

  for (auto &Arg : CI.arg_operands()) {
    // Some intrinsics take metadata parameters. Reject them.
    if (isa<MetadataAsValue>(Arg))
      return false;
    MIB.addUse(getOrCreateVReg(*Arg));
  }

  // Add a MachineMemOperand if it is a target mem intrinsic.
  const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
  TargetLowering::IntrinsicInfo Info;
  // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
  if (TLI.getTgtMemIntrinsic(Info, CI, ID)) {
    MachineMemOperand::Flags Flags =
        Info.vol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
    Flags |=
        Info.readMem ? MachineMemOperand::MOLoad : MachineMemOperand::MOStore;
    uint64_t Size = Info.memVT.getSizeInBits() >> 3;
    MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
                                               Flags, Size, Info.align));
  }

  return true;
}

bool IRTranslator::translateInvoke(const User &U,
                                   MachineIRBuilder &MIRBuilder) {
  const InvokeInst &I = cast<InvokeInst>(U);
  MCContext &Context = MF->getContext();

  const BasicBlock *ReturnBB = I.getSuccessor(0);
  const BasicBlock *EHPadBB = I.getSuccessor(1);

  const Value *Callee = I.getCalledValue();
  const Function *Fn = dyn_cast<Function>(Callee);
  if (isa<InlineAsm>(Callee))
    return false;

  // FIXME: support invoking patchpoint and statepoint intrinsics.
  if (Fn && Fn->isIntrinsic())
    return false;

  // FIXME: support whatever these are.
  if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
    return false;

  // FIXME: support Windows exception handling.
  if (!isa<LandingPadInst>(EHPadBB->front()))
    return false;

  // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
  // the region covered by the try.
  MCSymbol *BeginSymbol = Context.createTempSymbol();
  MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);

  unsigned Res = I.getType()->isVoidTy() ? 0 : getOrCreateVReg(I);
  SmallVector<unsigned, 8> Args;
  for (auto &Arg: I.arg_operands())
    Args.push_back(getOrCreateVReg(*Arg));

  if (!CLI->lowerCall(MIRBuilder, &I, Res, Args,
                      [&]() { return getOrCreateVReg(*I.getCalledValue()); }))
    return false;

  MCSymbol *EndSymbol = Context.createTempSymbol();
  MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);

  // FIXME: track probabilities.
  MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
                    &ReturnMBB = getMBB(*ReturnBB);
  MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
  MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
  MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
  MIRBuilder.buildBr(ReturnMBB);

  return true;
}

bool IRTranslator::translateLandingPad(const User &U,
                                       MachineIRBuilder &MIRBuilder) {
  const LandingPadInst &LP = cast<LandingPadInst>(U);

  MachineBasicBlock &MBB = MIRBuilder.getMBB();
  addLandingPadInfo(LP, MBB);

  MBB.setIsEHPad();

  // If there aren't registers to copy the values into (e.g., during SjLj
  // exceptions), then don't bother.
  auto &TLI = *MF->getSubtarget().getTargetLowering();
  const Constant *PersonalityFn = MF->getFunction()->getPersonalityFn();
  if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
      TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
    return true;

  // If landingpad's return type is token type, we don't create DAG nodes
  // for its exception pointer and selector value. The extraction of exception
  // pointer or selector value from token type landingpads is not currently
  // supported.
  if (LP.getType()->isTokenTy())
    return true;

  // Add a label to mark the beginning of the landing pad.  Deletion of the
  // landing pad can thus be detected via the MachineModuleInfo.
  MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
    .addSym(MF->addLandingPad(&MBB));

  LLT Ty = getLLTForType(*LP.getType(), *DL);
  unsigned Undef = MRI->createGenericVirtualRegister(Ty);
  MIRBuilder.buildUndef(Undef);

  SmallVector<LLT, 2> Tys;
  for (Type *Ty : cast<StructType>(LP.getType())->elements())
    Tys.push_back(getLLTForType(*Ty, *DL));
  assert(Tys.size() == 2 && "Only two-valued landingpads are supported");

  // Mark exception register as live in.
  unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
  if (!ExceptionReg)
    return false;

  MBB.addLiveIn(ExceptionReg);
  unsigned VReg = MRI->createGenericVirtualRegister(Tys[0]),
           Tmp = MRI->createGenericVirtualRegister(Ty);
  MIRBuilder.buildCopy(VReg, ExceptionReg);
  MIRBuilder.buildInsert(Tmp, Undef, VReg, 0);

  unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
  if (!SelectorReg)
    return false;

  MBB.addLiveIn(SelectorReg);

  // N.b. the exception selector register always has pointer type and may not
  // match the actual IR-level type in the landingpad so an extra cast is
  // needed.
  unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
  MIRBuilder.buildCopy(PtrVReg, SelectorReg);

  VReg = MRI->createGenericVirtualRegister(Tys[1]);
  MIRBuilder.buildInstr(TargetOpcode::G_PTRTOINT).addDef(VReg).addUse(PtrVReg);
  MIRBuilder.buildInsert(getOrCreateVReg(LP), Tmp, VReg,
                         Tys[0].getSizeInBits());
  return true;
}

bool IRTranslator::translateAlloca(const User &U,
                                   MachineIRBuilder &MIRBuilder) {
  auto &AI = cast<AllocaInst>(U);

  if (AI.isStaticAlloca()) {
    unsigned Res = getOrCreateVReg(AI);
    int FI = getOrCreateFrameIndex(AI);
    MIRBuilder.buildFrameIndex(Res, FI);
    return true;
  }

  // Now we're in the harder dynamic case.
  Type *Ty = AI.getAllocatedType();
  unsigned Align =
      std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment());

  unsigned NumElts = getOrCreateVReg(*AI.getArraySize());

  Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
  LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
  if (MRI->getType(NumElts) != IntPtrTy) {
    unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
    MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
    NumElts = ExtElts;
  }

  unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
  unsigned TySize =
      getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty)));
  MIRBuilder.buildMul(AllocSize, NumElts, TySize);

  LLT PtrTy = getLLTForType(*AI.getType(), *DL);
  auto &TLI = *MF->getSubtarget().getTargetLowering();
  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();

  unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy);
  MIRBuilder.buildCopy(SPTmp, SPReg);

  unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy);
  MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize);

  // Handle alignment. We have to realign if the allocation granule was smaller
  // than stack alignment, or the specific alloca requires more than stack
  // alignment.
  unsigned StackAlign =
      MF->getSubtarget().getFrameLowering()->getStackAlignment();
  Align = std::max(Align, StackAlign);
  if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) {
    // Round the size of the allocation up to the stack alignment size
    // by add SA-1 to the size. This doesn't overflow because we're computing
    // an address inside an alloca.
    unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy);
    MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align));
    AllocTmp = AlignedAlloc;
  }

  MIRBuilder.buildCopy(SPReg, AllocTmp);
  MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp);

  MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI);
  assert(MF->getFrameInfo().hasVarSizedObjects());
  return true;
}

bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
  // FIXME: We may need more info about the type. Because of how LLT works,
  // we're completely discarding the i64/double distinction here (amongst
  // others). Fortunately the ABIs I know of where that matters don't use va_arg
  // anyway but that's not guaranteed.
  MIRBuilder.buildInstr(TargetOpcode::G_VAARG)
    .addDef(getOrCreateVReg(U))
    .addUse(getOrCreateVReg(*U.getOperand(0)))
    .addImm(DL->getABITypeAlignment(U.getType()));
  return true;
}

bool IRTranslator::translateInsertElement(const User &U,
                                          MachineIRBuilder &MIRBuilder) {
  // If it is a <1 x Ty> vector, use the scalar as it is
  // not a legal vector type in LLT.
  if (U.getType()->getVectorNumElements() == 1) {
    unsigned Elt = getOrCreateVReg(*U.getOperand(1));
    ValToVReg[&U] = Elt;
    return true;
  }
  unsigned Res = getOrCreateVReg(U);
  unsigned Val = getOrCreateVReg(*U.getOperand(0));
  unsigned Elt = getOrCreateVReg(*U.getOperand(1));
  unsigned Idx = getOrCreateVReg(*U.getOperand(2));
  MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
  return true;
}

bool IRTranslator::translateExtractElement(const User &U,
                                           MachineIRBuilder &MIRBuilder) {
  // If it is a <1 x Ty> vector, use the scalar as it is
  // not a legal vector type in LLT.
  if (U.getOperand(0)->getType()->getVectorNumElements() == 1) {
    unsigned Elt = getOrCreateVReg(*U.getOperand(0));
    ValToVReg[&U] = Elt;
    return true;
  }
  unsigned Res = getOrCreateVReg(U);
  unsigned Val = getOrCreateVReg(*U.getOperand(0));
  unsigned Idx = getOrCreateVReg(*U.getOperand(1));
  MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
  return true;
}

bool IRTranslator::translateShuffleVector(const User &U,
                                          MachineIRBuilder &MIRBuilder) {
  MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR)
      .addDef(getOrCreateVReg(U))
      .addUse(getOrCreateVReg(*U.getOperand(0)))
      .addUse(getOrCreateVReg(*U.getOperand(1)))
      .addUse(getOrCreateVReg(*U.getOperand(2)));
  return true;
}

bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
  const PHINode &PI = cast<PHINode>(U);
  auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI);
  MIB.addDef(getOrCreateVReg(PI));

  PendingPHIs.emplace_back(&PI, MIB.getInstr());
  return true;
}

void IRTranslator::finishPendingPhis() {
  for (std::pair<const PHINode *, MachineInstr *> &Phi : PendingPHIs) {
    const PHINode *PI = Phi.first;
    MachineInstrBuilder MIB(*MF, Phi.second);

    // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator
    // won't create extra control flow here, otherwise we need to find the
    // dominating predecessor here (or perhaps force the weirder IRTranslators
    // to provide a simple boundary).
    SmallSet<const BasicBlock *, 4> HandledPreds;

    for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
      auto IRPred = PI->getIncomingBlock(i);
      if (HandledPreds.count(IRPred))
        continue;

      HandledPreds.insert(IRPred);
      unsigned ValReg = getOrCreateVReg(*PI->getIncomingValue(i));
      for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
        assert(Pred->isSuccessor(MIB->getParent()) &&
               "incorrect CFG at MachineBasicBlock level");
        MIB.addUse(ValReg);
        MIB.addMBB(Pred);
      }
    }
  }
}

bool IRTranslator::translate(const Instruction &Inst) {
  CurBuilder.setDebugLoc(Inst.getDebugLoc());
  switch(Inst.getOpcode()) {
#define HANDLE_INST(NUM, OPCODE, CLASS) \
    case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder);
#include "llvm/IR/Instruction.def"
  default:
    return false;
  }
}

bool IRTranslator::translate(const Constant &C, unsigned Reg) {
  if (auto CI = dyn_cast<ConstantInt>(&C))
    EntryBuilder.buildConstant(Reg, *CI);
  else if (auto CF = dyn_cast<ConstantFP>(&C))
    EntryBuilder.buildFConstant(Reg, *CF);
  else if (isa<UndefValue>(C))
    EntryBuilder.buildUndef(Reg);
  else if (isa<ConstantPointerNull>(C))
    EntryBuilder.buildConstant(Reg, 0);
  else if (auto GV = dyn_cast<GlobalValue>(&C))
    EntryBuilder.buildGlobalValue(Reg, GV);
  else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
    if (!CAZ->getType()->isVectorTy())
      return false;
    // Return the scalar if it is a <1 x Ty> vector.
    if (CAZ->getNumElements() == 1)
      return translate(*CAZ->getElementValue(0u), Reg);
    std::vector<unsigned> Ops;
    for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
      Constant &Elt = *CAZ->getElementValue(i);
      Ops.push_back(getOrCreateVReg(Elt));
    }
    EntryBuilder.buildMerge(Reg, Ops);
  } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
    // Return the scalar if it is a <1 x Ty> vector.
    if (CV->getNumElements() == 1)
      return translate(*CV->getElementAsConstant(0), Reg);
    std::vector<unsigned> Ops;
    for (unsigned i = 0; i < CV->getNumElements(); ++i) {
      Constant &Elt = *CV->getElementAsConstant(i);
      Ops.push_back(getOrCreateVReg(Elt));
    }
    EntryBuilder.buildMerge(Reg, Ops);
  } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
    switch(CE->getOpcode()) {
#define HANDLE_INST(NUM, OPCODE, CLASS)                         \
      case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder);
#include "llvm/IR/Instruction.def"
    default:
      return false;
    }
  } else if (auto CS = dyn_cast<ConstantStruct>(&C)) {
    // Return the element if it is a single element ConstantStruct.
    if (CS->getNumOperands() == 1) {
      unsigned EltReg = getOrCreateVReg(*CS->getOperand(0));
      EntryBuilder.buildCast(Reg, EltReg);
      return true;
    }
    SmallVector<unsigned, 4> Ops;
    SmallVector<uint64_t, 4> Indices;
    uint64_t Offset = 0;
    for (unsigned i = 0; i < CS->getNumOperands(); ++i) {
      unsigned OpReg = getOrCreateVReg(*CS->getOperand(i));
      Ops.push_back(OpReg);
      Indices.push_back(Offset);
      Offset += MRI->getType(OpReg).getSizeInBits();
    }
    EntryBuilder.buildSequence(Reg, Ops, Indices);
  } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
    if (CV->getNumOperands() == 1)
      return translate(*CV->getOperand(0), Reg);
    SmallVector<unsigned, 4> Ops;
    for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
      Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
    }
    EntryBuilder.buildMerge(Reg, Ops);
  } else
    return false;

  return true;
}

void IRTranslator::finalizeFunction() {
  // Release the memory used by the different maps we
  // needed during the translation.
  PendingPHIs.clear();
  ValToVReg.clear();
  FrameIndices.clear();
  MachinePreds.clear();
  // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
  // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
  // destroying it twice (in ~IRTranslator() and ~LLVMContext())
  EntryBuilder = MachineIRBuilder();
  CurBuilder = MachineIRBuilder();
}

bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
  MF = &CurMF;
  const Function &F = *MF->getFunction();
  if (F.empty())
    return false;
  CLI = MF->getSubtarget().getCallLowering();
  CurBuilder.setMF(*MF);
  EntryBuilder.setMF(*MF);
  MRI = &MF->getRegInfo();
  DL = &F.getParent()->getDataLayout();
  TPC = &getAnalysis<TargetPassConfig>();
  ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F);

  assert(PendingPHIs.empty() && "stale PHIs");

  // Release the per-function state when we return, whether we succeeded or not.
  auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });

  // Setup a separate basic-block for the arguments and constants
  MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
  MF->push_back(EntryBB);
  EntryBuilder.setMBB(*EntryBB);

  // Create all blocks, in IR order, to preserve the layout.
  for (const BasicBlock &BB: F) {
    auto *&MBB = BBToMBB[&BB];

    MBB = MF->CreateMachineBasicBlock(&BB);
    MF->push_back(MBB);

    if (BB.hasAddressTaken())
      MBB->setHasAddressTaken();
  }

  // Make our arguments/constants entry block fallthrough to the IR entry block.
  EntryBB->addSuccessor(&getMBB(F.front()));

  // Lower the actual args into this basic block.
  SmallVector<unsigned, 8> VRegArgs;
  for (const Argument &Arg: F.args())
    VRegArgs.push_back(getOrCreateVReg(Arg));
  if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) {
    OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
                               MF->getFunction()->getSubprogram(),
                               &MF->getFunction()->getEntryBlock());
    R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
    reportTranslationError(*MF, *TPC, *ORE, R);
    return false;
  }

  // And translate the function!
  for (const BasicBlock &BB: F) {
    MachineBasicBlock &MBB = getMBB(BB);
    // Set the insertion point of all the following translations to
    // the end of this basic block.
    CurBuilder.setMBB(MBB);

    for (const Instruction &Inst: BB) {
      if (translate(Inst))
        continue;

      OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
                                 Inst.getDebugLoc(), &BB);
      R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);

      if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
        std::string InstStrStorage;
        raw_string_ostream InstStr(InstStrStorage);
        InstStr << Inst;

        R << ": '" << InstStr.str() << "'";
      }

      reportTranslationError(*MF, *TPC, *ORE, R);
      return false;
    }
  }

  finishPendingPhis();

  // Merge the argument lowering and constants block with its single
  // successor, the LLVM-IR entry block.  We want the basic block to
  // be maximal.
  assert(EntryBB->succ_size() == 1 &&
         "Custom BB used for lowering should have only one successor");
  // Get the successor of the current entry block.
  MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
  assert(NewEntryBB.pred_size() == 1 &&
         "LLVM-IR entry block has a predecessor!?");
  // Move all the instruction from the current entry block to the
  // new entry block.
  NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
                    EntryBB->end());

  // Update the live-in information for the new entry block.
  for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
    NewEntryBB.addLiveIn(LiveIn);
  NewEntryBB.sortUniqueLiveIns();

  // Get rid of the now empty basic block.
  EntryBB->removeSuccessor(&NewEntryBB);
  MF->remove(EntryBB);
  MF->DeleteMachineBasicBlock(EntryBB);

  assert(&MF->front() == &NewEntryBB &&
         "New entry wasn't next in the list of basic block!");

  return false;
}