aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/ExecutionDepsFix.cpp
blob: e272d25047e63929d7a91dcc6f35a59c947d19f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
//===- ExecutionDepsFix.cpp - Fix execution dependecy issues ----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/ExecutionDepsFix.h"

#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"

using namespace llvm;

#define DEBUG_TYPE "execution-deps-fix"

/// Translate TRI register number to a list of indices into our smaller tables
/// of interesting registers.
iterator_range<SmallVectorImpl<int>::const_iterator>
ExecutionDepsFix::regIndices(unsigned Reg) const {
  assert(Reg < AliasMap.size() && "Invalid register");
  const auto &Entry = AliasMap[Reg];
  return make_range(Entry.begin(), Entry.end());
}

DomainValue *ExecutionDepsFix::alloc(int domain) {
  DomainValue *dv = Avail.empty() ?
                      new(Allocator.Allocate()) DomainValue :
                      Avail.pop_back_val();
  if (domain >= 0)
    dv->addDomain(domain);
  assert(dv->Refs == 0 && "Reference count wasn't cleared");
  assert(!dv->Next && "Chained DomainValue shouldn't have been recycled");
  return dv;
}

/// Release a reference to DV.  When the last reference is released,
/// collapse if needed.
void ExecutionDepsFix::release(DomainValue *DV) {
  while (DV) {
    assert(DV->Refs && "Bad DomainValue");
    if (--DV->Refs)
      return;

    // There are no more DV references. Collapse any contained instructions.
    if (DV->AvailableDomains && !DV->isCollapsed())
      collapse(DV, DV->getFirstDomain());

    DomainValue *Next = DV->Next;
    DV->clear();
    Avail.push_back(DV);
    // Also release the next DomainValue in the chain.
    DV = Next;
  }
}

/// Follow the chain of dead DomainValues until a live DomainValue is reached.
/// Update the referenced pointer when necessary.
DomainValue *ExecutionDepsFix::resolve(DomainValue *&DVRef) {
  DomainValue *DV = DVRef;
  if (!DV || !DV->Next)
    return DV;

  // DV has a chain. Find the end.
  do DV = DV->Next;
  while (DV->Next);

  // Update DVRef to point to DV.
  retain(DV);
  release(DVRef);
  DVRef = DV;
  return DV;
}

/// Set LiveRegs[rx] = dv, updating reference counts.
void ExecutionDepsFix::setLiveReg(int rx, DomainValue *dv) {
  assert(unsigned(rx) < NumRegs && "Invalid index");
  assert(LiveRegs && "Must enter basic block first.");

  if (LiveRegs[rx].Value == dv)
    return;
  if (LiveRegs[rx].Value)
    release(LiveRegs[rx].Value);
  LiveRegs[rx].Value = retain(dv);
}

// Kill register rx, recycle or collapse any DomainValue.
void ExecutionDepsFix::kill(int rx) {
  assert(unsigned(rx) < NumRegs && "Invalid index");
  assert(LiveRegs && "Must enter basic block first.");
  if (!LiveRegs[rx].Value)
    return;

  release(LiveRegs[rx].Value);
  LiveRegs[rx].Value = nullptr;
}

/// Force register rx into domain.
void ExecutionDepsFix::force(int rx, unsigned domain) {
  assert(unsigned(rx) < NumRegs && "Invalid index");
  assert(LiveRegs && "Must enter basic block first.");
  if (DomainValue *dv = LiveRegs[rx].Value) {
    if (dv->isCollapsed())
      dv->addDomain(domain);
    else if (dv->hasDomain(domain))
      collapse(dv, domain);
    else {
      // This is an incompatible open DomainValue. Collapse it to whatever and
      // force the new value into domain. This costs a domain crossing.
      collapse(dv, dv->getFirstDomain());
      assert(LiveRegs[rx].Value && "Not live after collapse?");
      LiveRegs[rx].Value->addDomain(domain);
    }
  } else {
    // Set up basic collapsed DomainValue.
    setLiveReg(rx, alloc(domain));
  }
}

/// Collapse open DomainValue into given domain. If there are multiple
/// registers using dv, they each get a unique collapsed DomainValue.
void ExecutionDepsFix::collapse(DomainValue *dv, unsigned domain) {
  assert(dv->hasDomain(domain) && "Cannot collapse");

  // Collapse all the instructions.
  while (!dv->Instrs.empty())
    TII->setExecutionDomain(*dv->Instrs.pop_back_val(), domain);
  dv->setSingleDomain(domain);

  // If there are multiple users, give them new, unique DomainValues.
  if (LiveRegs && dv->Refs > 1)
    for (unsigned rx = 0; rx != NumRegs; ++rx)
      if (LiveRegs[rx].Value == dv)
        setLiveReg(rx, alloc(domain));
}

/// All instructions and registers in B are moved to A, and B is released.
bool ExecutionDepsFix::merge(DomainValue *A, DomainValue *B) {
  assert(!A->isCollapsed() && "Cannot merge into collapsed");
  assert(!B->isCollapsed() && "Cannot merge from collapsed");
  if (A == B)
    return true;
  // Restrict to the domains that A and B have in common.
  unsigned common = A->getCommonDomains(B->AvailableDomains);
  if (!common)
    return false;
  A->AvailableDomains = common;
  A->Instrs.append(B->Instrs.begin(), B->Instrs.end());

  // Clear the old DomainValue so we won't try to swizzle instructions twice.
  B->clear();
  // All uses of B are referred to A.
  B->Next = retain(A);

  for (unsigned rx = 0; rx != NumRegs; ++rx) {
    assert(LiveRegs && "no space allocated for live registers");
    if (LiveRegs[rx].Value == B)
      setLiveReg(rx, A);
  }
  return true;
}

/// Set up LiveRegs by merging predecessor live-out values.
void ExecutionDepsFix::enterBasicBlock(MachineBasicBlock *MBB) {
  // Reset instruction counter in each basic block.
  CurInstr = 0;

  // Set up UndefReads to track undefined register reads.
  UndefReads.clear();
  LiveRegSet.clear();

  // Set up LiveRegs to represent registers entering MBB.
  if (!LiveRegs)
    LiveRegs = new LiveReg[NumRegs];

  // Default values are 'nothing happened a long time ago'.
  for (unsigned rx = 0; rx != NumRegs; ++rx) {
    LiveRegs[rx].Value = nullptr;
    LiveRegs[rx].Def = -(1 << 20);
  }

  // This is the entry block.
  if (MBB->pred_empty()) {
    for (const auto &LI : MBB->liveins()) {
      for (int rx : regIndices(LI.PhysReg)) {
        // Treat function live-ins as if they were defined just before the first
        // instruction.  Usually, function arguments are set up immediately
        // before the call.
        LiveRegs[rx].Def = -1;
      }
    }
    DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": entry\n");
    return;
  }

  // Try to coalesce live-out registers from predecessors.
  for (MachineBasicBlock::const_pred_iterator pi = MBB->pred_begin(),
       pe = MBB->pred_end(); pi != pe; ++pi) {
    auto fi = MBBInfos.find(*pi);
    assert(fi != MBBInfos.end() &&
           "Should have pre-allocated MBBInfos for all MBBs");
    LiveReg *Incoming = fi->second.OutRegs;
    // Incoming is null if this is a backedge from a BB
    // we haven't processed yet
    if (Incoming == nullptr) {
      continue;
    }

    for (unsigned rx = 0; rx != NumRegs; ++rx) {
      // Use the most recent predecessor def for each register.
      LiveRegs[rx].Def = std::max(LiveRegs[rx].Def, Incoming[rx].Def);

      DomainValue *pdv = resolve(Incoming[rx].Value);
      if (!pdv)
        continue;
      if (!LiveRegs[rx].Value) {
        setLiveReg(rx, pdv);
        continue;
      }

      // We have a live DomainValue from more than one predecessor.
      if (LiveRegs[rx].Value->isCollapsed()) {
        // We are already collapsed, but predecessor is not. Force it.
        unsigned Domain = LiveRegs[rx].Value->getFirstDomain();
        if (!pdv->isCollapsed() && pdv->hasDomain(Domain))
          collapse(pdv, Domain);
        continue;
      }

      // Currently open, merge in predecessor.
      if (!pdv->isCollapsed())
        merge(LiveRegs[rx].Value, pdv);
      else
        force(rx, pdv->getFirstDomain());
    }
  }
  DEBUG(
      dbgs() << "BB#" << MBB->getNumber()
             << (!isBlockDone(MBB) ? ": incomplete\n" : ": all preds known\n"));
}

void ExecutionDepsFix::leaveBasicBlock(MachineBasicBlock *MBB) {
  assert(LiveRegs && "Must enter basic block first.");
  LiveReg *OldOutRegs = MBBInfos[MBB].OutRegs;
  // Save register clearances at end of MBB - used by enterBasicBlock().
  MBBInfos[MBB].OutRegs = LiveRegs;

  // While processing the basic block, we kept `Def` relative to the start
  // of the basic block for convenience. However, future use of this information
  // only cares about the clearance from the end of the block, so adjust
  // everything to be relative to the end of the basic block.
  for (unsigned i = 0, e = NumRegs; i != e; ++i)
    LiveRegs[i].Def -= CurInstr;
  if (OldOutRegs) {
    // This must be the second pass.
    // Release all the DomainValues instead of keeping them.
    for (unsigned i = 0, e = NumRegs; i != e; ++i)
      release(OldOutRegs[i].Value);
    delete[] OldOutRegs;
  }
  LiveRegs = nullptr;
}

bool ExecutionDepsFix::visitInstr(MachineInstr *MI) {
  // Update instructions with explicit execution domains.
  std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(*MI);
  if (DomP.first) {
    if (DomP.second)
      visitSoftInstr(MI, DomP.second);
    else
      visitHardInstr(MI, DomP.first);
  }

  return !DomP.first;
}

/// \brief Helps avoid false dependencies on undef registers by updating the
/// machine instructions' undef operand to use a register that the instruction
/// is truly dependent on, or use a register with clearance higher than Pref.
/// Returns true if it was able to find a true dependency, thus not requiring
/// a dependency breaking instruction regardless of clearance.
bool ExecutionDepsFix::pickBestRegisterForUndef(MachineInstr *MI,
                                                unsigned OpIdx, unsigned Pref) {
  MachineOperand &MO = MI->getOperand(OpIdx);
  assert(MO.isUndef() && "Expected undef machine operand");

  unsigned OriginalReg = MO.getReg();

  // Update only undef operands that are mapped to one register.
  if (AliasMap[OriginalReg].size() != 1)
    return false;

  // Get the undef operand's register class
  const TargetRegisterClass *OpRC =
      TII->getRegClass(MI->getDesc(), OpIdx, TRI, *MF);

  // If the instruction has a true dependency, we can hide the false depdency
  // behind it.
  for (MachineOperand &CurrMO : MI->operands()) {
    if (!CurrMO.isReg() || CurrMO.isDef() || CurrMO.isUndef() ||
        !OpRC->contains(CurrMO.getReg()))
      continue;
    // We found a true dependency - replace the undef register with the true
    // dependency.
    MO.setReg(CurrMO.getReg());
    return true;
  }

  // Go over all registers in the register class and find the register with
  // max clearance or clearance higher than Pref.
  unsigned MaxClearance = 0;
  unsigned MaxClearanceReg = OriginalReg;
  ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(OpRC);
  for (auto Reg : Order) {
    assert(AliasMap[Reg].size() == 1 &&
           "Reg is expected to be mapped to a single index");
    int RCrx = *regIndices(Reg).begin();
    unsigned Clearance = CurInstr - LiveRegs[RCrx].Def;
    if (Clearance <= MaxClearance)
      continue;
    MaxClearance = Clearance;
    MaxClearanceReg = Reg;

    if (MaxClearance > Pref)
      break;
  }

  // Update the operand if we found a register with better clearance.
  if (MaxClearanceReg != OriginalReg)
    MO.setReg(MaxClearanceReg);

  return false;
}

/// \brief Return true to if it makes sense to break dependence on a partial def
/// or undef use.
bool ExecutionDepsFix::shouldBreakDependence(MachineInstr *MI, unsigned OpIdx,
                                             unsigned Pref) {
  unsigned reg = MI->getOperand(OpIdx).getReg();
  for (int rx : regIndices(reg)) {
    unsigned Clearance = CurInstr - LiveRegs[rx].Def;
    DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref);

    if (Pref > Clearance) {
      DEBUG(dbgs() << ": Break dependency.\n");
      continue;
    }
    DEBUG(dbgs() << ": OK .\n");
    return false;
  }
  return true;
}

// Update def-ages for registers defined by MI.
// If Kill is set, also kill off DomainValues clobbered by the defs.
//
// Also break dependencies on partial defs and undef uses.
void ExecutionDepsFix::processDefs(MachineInstr *MI, bool breakDependency,
                                   bool Kill) {
  assert(!MI->isDebugValue() && "Won't process debug values");

  // Break dependence on undef uses. Do this before updating LiveRegs below.
  unsigned OpNum;
  if (breakDependency) {
    unsigned Pref = TII->getUndefRegClearance(*MI, OpNum, TRI);
    if (Pref) {
      bool HadTrueDependency = pickBestRegisterForUndef(MI, OpNum, Pref);
      // We don't need to bother trying to break a dependency if this
      // instruction has a true dependency on that register through another
      // operand - we'll have to wait for it to be available regardless.
      if (!HadTrueDependency && shouldBreakDependence(MI, OpNum, Pref))
        UndefReads.push_back(std::make_pair(MI, OpNum));
    }
  }
  const MCInstrDesc &MCID = MI->getDesc();
  for (unsigned i = 0,
         e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
         i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg())
      continue;
    if (MO.isUse())
      continue;
    for (int rx : regIndices(MO.getReg())) {
      // This instruction explicitly defines rx.
      DEBUG(dbgs() << TRI->getName(RC->getRegister(rx)) << ":\t" << CurInstr
                   << '\t' << *MI);

      if (breakDependency) {
        // Check clearance before partial register updates.
        // Call breakDependence before setting LiveRegs[rx].Def.
        unsigned Pref = TII->getPartialRegUpdateClearance(*MI, i, TRI);
        if (Pref && shouldBreakDependence(MI, i, Pref))
          TII->breakPartialRegDependency(*MI, i, TRI);
      }

      // How many instructions since rx was last written?
      LiveRegs[rx].Def = CurInstr;

      // Kill off domains redefined by generic instructions.
      if (Kill)
        kill(rx);
    }
  }
  ++CurInstr;
}

/// \break Break false dependencies on undefined register reads.
///
/// Walk the block backward computing precise liveness. This is expensive, so we
/// only do it on demand. Note that the occurrence of undefined register reads
/// that should be broken is very rare, but when they occur we may have many in
/// a single block.
void ExecutionDepsFix::processUndefReads(MachineBasicBlock *MBB) {
  if (UndefReads.empty())
    return;

  // Collect this block's live out register units.
  LiveRegSet.init(*TRI);
  // We do not need to care about pristine registers as they are just preserved
  // but not actually used in the function.
  LiveRegSet.addLiveOutsNoPristines(*MBB);

  MachineInstr *UndefMI = UndefReads.back().first;
  unsigned OpIdx = UndefReads.back().second;

  for (MachineInstr &I : make_range(MBB->rbegin(), MBB->rend())) {
    // Update liveness, including the current instruction's defs.
    LiveRegSet.stepBackward(I);

    if (UndefMI == &I) {
      if (!LiveRegSet.contains(UndefMI->getOperand(OpIdx).getReg()))
        TII->breakPartialRegDependency(*UndefMI, OpIdx, TRI);

      UndefReads.pop_back();
      if (UndefReads.empty())
        return;

      UndefMI = UndefReads.back().first;
      OpIdx = UndefReads.back().second;
    }
  }
}

// A hard instruction only works in one domain. All input registers will be
// forced into that domain.
void ExecutionDepsFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
  // Collapse all uses.
  for (unsigned i = mi->getDesc().getNumDefs(),
                e = mi->getDesc().getNumOperands(); i != e; ++i) {
    MachineOperand &mo = mi->getOperand(i);
    if (!mo.isReg()) continue;
    for (int rx : regIndices(mo.getReg())) {
      force(rx, domain);
    }
  }

  // Kill all defs and force them.
  for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
    MachineOperand &mo = mi->getOperand(i);
    if (!mo.isReg()) continue;
    for (int rx : regIndices(mo.getReg())) {
      kill(rx);
      force(rx, domain);
    }
  }
}

// A soft instruction can be changed to work in other domains given by mask.
void ExecutionDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
  // Bitmask of available domains for this instruction after taking collapsed
  // operands into account.
  unsigned available = mask;

  // Scan the explicit use operands for incoming domains.
  SmallVector<int, 4> used;
  if (LiveRegs)
    for (unsigned i = mi->getDesc().getNumDefs(),
                  e = mi->getDesc().getNumOperands(); i != e; ++i) {
      MachineOperand &mo = mi->getOperand(i);
      if (!mo.isReg()) continue;
      for (int rx : regIndices(mo.getReg())) {
        DomainValue *dv = LiveRegs[rx].Value;
        if (dv == nullptr)
          continue;
        // Bitmask of domains that dv and available have in common.
        unsigned common = dv->getCommonDomains(available);
        // Is it possible to use this collapsed register for free?
        if (dv->isCollapsed()) {
          // Restrict available domains to the ones in common with the operand.
          // If there are no common domains, we must pay the cross-domain
          // penalty for this operand.
          if (common) available = common;
        } else if (common)
          // Open DomainValue is compatible, save it for merging.
          used.push_back(rx);
        else
          // Open DomainValue is not compatible with instruction. It is useless
          // now.
          kill(rx);
      }
    }

  // If the collapsed operands force a single domain, propagate the collapse.
  if (isPowerOf2_32(available)) {
    unsigned domain = countTrailingZeros(available);
    TII->setExecutionDomain(*mi, domain);
    visitHardInstr(mi, domain);
    return;
  }

  // Kill off any remaining uses that don't match available, and build a list of
  // incoming DomainValues that we want to merge.
  SmallVector<const LiveReg *, 4> Regs;
  for (int rx : used) {
    assert(LiveRegs && "no space allocated for live registers");
    const LiveReg &LR = LiveRegs[rx];
    // This useless DomainValue could have been missed above.
    if (!LR.Value->getCommonDomains(available)) {
      kill(rx);
      continue;
    }
    // Sorted insertion.
    auto I = std::upper_bound(Regs.begin(), Regs.end(), &LR,
                              [](const LiveReg *LHS, const LiveReg *RHS) {
                                return LHS->Def < RHS->Def;
                              });
    Regs.insert(I, &LR);
  }

  // doms are now sorted in order of appearance. Try to merge them all, giving
  // priority to the latest ones.
  DomainValue *dv = nullptr;
  while (!Regs.empty()) {
    if (!dv) {
      dv = Regs.pop_back_val()->Value;
      // Force the first dv to match the current instruction.
      dv->AvailableDomains = dv->getCommonDomains(available);
      assert(dv->AvailableDomains && "Domain should have been filtered");
      continue;
    }

    DomainValue *Latest = Regs.pop_back_val()->Value;
    // Skip already merged values.
    if (Latest == dv || Latest->Next)
      continue;
    if (merge(dv, Latest))
      continue;

    // If latest didn't merge, it is useless now. Kill all registers using it.
    for (int i : used) {
      assert(LiveRegs && "no space allocated for live registers");
      if (LiveRegs[i].Value == Latest)
        kill(i);
    }
  }

  // dv is the DomainValue we are going to use for this instruction.
  if (!dv) {
    dv = alloc();
    dv->AvailableDomains = available;
  }
  dv->Instrs.push_back(mi);

  // Finally set all defs and non-collapsed uses to dv. We must iterate through
  // all the operators, including imp-def ones.
  for (MachineInstr::mop_iterator ii = mi->operands_begin(),
                                  ee = mi->operands_end();
                                  ii != ee; ++ii) {
    MachineOperand &mo = *ii;
    if (!mo.isReg()) continue;
    for (int rx : regIndices(mo.getReg())) {
      if (!LiveRegs[rx].Value || (mo.isDef() && LiveRegs[rx].Value != dv)) {
        kill(rx);
        setLiveReg(rx, dv);
      }
    }
  }
}

void ExecutionDepsFix::processBasicBlock(MachineBasicBlock *MBB,
                                         bool PrimaryPass) {
  enterBasicBlock(MBB);
  // If this block is not done, it makes little sense to make any decisions
  // based on clearance information. We need to make a second pass anyway,
  // and by then we'll have better information, so we can avoid doing the work
  // to try and break dependencies now.
  bool breakDependency = isBlockDone(MBB);
  for (MachineInstr &MI : *MBB) {
    if (!MI.isDebugValue()) {
      bool Kill = false;
      if (PrimaryPass)
        Kill = visitInstr(&MI);
      processDefs(&MI, breakDependency, Kill);
    }
  }
  if (breakDependency)
    processUndefReads(MBB);
  leaveBasicBlock(MBB);
}

bool ExecutionDepsFix::isBlockDone(MachineBasicBlock *MBB) {
  return MBBInfos[MBB].PrimaryCompleted &&
         MBBInfos[MBB].IncomingCompleted == MBBInfos[MBB].PrimaryIncoming &&
         MBBInfos[MBB].IncomingProcessed == MBB->pred_size();
}

bool ExecutionDepsFix::runOnMachineFunction(MachineFunction &mf) {
  if (skipFunction(*mf.getFunction()))
    return false;
  MF = &mf;
  TII = MF->getSubtarget().getInstrInfo();
  TRI = MF->getSubtarget().getRegisterInfo();
  RegClassInfo.runOnMachineFunction(mf);
  LiveRegs = nullptr;
  assert(NumRegs == RC->getNumRegs() && "Bad regclass");

  DEBUG(dbgs() << "********** FIX EXECUTION DEPENDENCIES: "
               << TRI->getRegClassName(RC) << " **********\n");

  // If no relevant registers are used in the function, we can skip it
  // completely.
  bool anyregs = false;
  const MachineRegisterInfo &MRI = mf.getRegInfo();
  for (unsigned Reg : *RC) {
    if (MRI.isPhysRegUsed(Reg)) {
      anyregs = true;
      break;
    }
  }
  if (!anyregs) return false;

  // Initialize the AliasMap on the first use.
  if (AliasMap.empty()) {
    // Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and
    // therefore the LiveRegs array.
    AliasMap.resize(TRI->getNumRegs());
    for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
      for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true);
           AI.isValid(); ++AI)
        AliasMap[*AI].push_back(i);
  }

  // Initialize the MMBInfos
  for (auto &MBB : mf) {
    MBBInfo InitialInfo;
    MBBInfos.insert(std::make_pair(&MBB, InitialInfo));
  }

  /*
   *  We want to visit every instruction in every basic block in order to update
   *  it's execution domain or break any false dependencies. However, for the
   *  dependency breaking, we need to know clearances from all predecessors
   *  (including any backedges). One way to do so would be to do two complete
   *  passes over all basic blocks/instructions, the first for recording
   *  clearances, the second to break the dependencies. However, for functions
   *  without backedges, or functions with a lot of straight-line code, and
   *  a small loop, that would be a lot of unnecessary work (since only the
   *  BBs that are part of the loop require two passes). As an example,
   *  consider the following loop.
   *
   *
   *     PH -> A -> B (xmm<Undef> -> xmm<Def>) -> C -> D -> EXIT
   *           ^                                  |
   *           +----------------------------------+
   *
   *  The iteration order is as follows:
   *  Naive: PH A B C D A' B' C' D'
   *  Optimized: PH A B C A' B' C' D
   *
   *  Note that we avoid processing D twice, because we can entirely process
   *  the predecessors before getting to D. We call a block that is ready
   *  for its second round of processing `done` (isBlockDone). Once we finish
   *  processing some block, we update the counters in MBBInfos and re-process
   *  any successors that are now done.
   */

  MachineBasicBlock *Entry = &*MF->begin();
  ReversePostOrderTraversal<MachineBasicBlock*> RPOT(Entry);
  SmallVector<MachineBasicBlock *, 4> Workqueue;
  for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
         MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
    MachineBasicBlock *MBB = *MBBI;
    // N.B: IncomingProcessed and IncomingCompleted were already updated while
    // processing this block's predecessors.
    MBBInfos[MBB].PrimaryCompleted = true;
    MBBInfos[MBB].PrimaryIncoming = MBBInfos[MBB].IncomingProcessed;
    bool Primary = true;
    Workqueue.push_back(MBB);
    while (!Workqueue.empty()) {
      MachineBasicBlock *ActiveMBB = &*Workqueue.back();
      Workqueue.pop_back();
      processBasicBlock(ActiveMBB, Primary);
      bool Done = isBlockDone(ActiveMBB);
      for (auto *Succ : ActiveMBB->successors()) {
        if (!isBlockDone(Succ)) {
          if (Primary) {
            MBBInfos[Succ].IncomingProcessed++;
          }
          if (Done) {
            MBBInfos[Succ].IncomingCompleted++;
          }
          if (isBlockDone(Succ)) {
            Workqueue.push_back(Succ);
          }
        }
      }
      Primary = false;
    }
  }

  // We need to go through again and finalize any blocks that are not done yet.
  // This is possible if blocks have dead predecessors, so we didn't visit them
  // above.
  for (ReversePostOrderTraversal<MachineBasicBlock *>::rpo_iterator
           MBBI = RPOT.begin(),
           MBBE = RPOT.end();
       MBBI != MBBE; ++MBBI) {
    MachineBasicBlock *MBB = *MBBI;
    if (!isBlockDone(MBB)) {
      processBasicBlock(MBB, false);
      // Don't update successors here. We'll get to them anyway through this
      // loop.
    }
  }

  // Clear the LiveOuts vectors and collapse any remaining DomainValues.
  for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
         MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
    auto FI = MBBInfos.find(*MBBI);
    if (FI == MBBInfos.end() || !FI->second.OutRegs)
      continue;
    for (unsigned i = 0, e = NumRegs; i != e; ++i)
      if (FI->second.OutRegs[i].Value)
        release(FI->second.OutRegs[i].Value);
    delete[] FI->second.OutRegs;
  }
  MBBInfos.clear();
  UndefReads.clear();
  Avail.clear();
  Allocator.DestroyAll();

  return false;
}