aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/ValueTracking.cpp
blob: 2010858139a6b1470d237255e4095dbd64b4cb5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
//===- ValueTracking.cpp - Walk computations to compute properties --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains routines that help analyze properties that chains of
// computations have.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/ValueTracking.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>     

using namespace llvm;
using namespace llvm::PatternMatch;

const unsigned MaxDepth = 6;

// Controls the number of uses of the value searched for possible
// dominating comparisons.
static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
                                              cl::Hidden, cl::init(20));

/// Returns the bitwidth of the given scalar or pointer type. For vector types,
/// returns the element type's bitwidth.
static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
  if (unsigned BitWidth = Ty->getScalarSizeInBits())
    return BitWidth;

  return DL.getPointerTypeSizeInBits(Ty);
}

namespace {

// Simplifying using an assume can only be done in a particular control-flow
// context (the context instruction provides that context). If an assume and
// the context instruction are not in the same block then the DT helps in
// figuring out if we can use it.
struct Query {
  const DataLayout &DL;
  AssumptionCache *AC;
  const Instruction *CxtI;
  const DominatorTree *DT;

  // Unlike the other analyses, this may be a nullptr because not all clients
  // provide it currently.
  OptimizationRemarkEmitter *ORE;

  /// Set of assumptions that should be excluded from further queries.
  /// This is because of the potential for mutual recursion to cause
  /// computeKnownBits to repeatedly visit the same assume intrinsic. The
  /// classic case of this is assume(x = y), which will attempt to determine
  /// bits in x from bits in y, which will attempt to determine bits in y from
  /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
  /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
  /// (all of which can call computeKnownBits), and so on.
  std::array<const Value *, MaxDepth> Excluded;

  unsigned NumExcluded = 0;

  Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
        const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr)
      : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE) {}

  Query(const Query &Q, const Value *NewExcl)
      : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE),
        NumExcluded(Q.NumExcluded) {
    Excluded = Q.Excluded;
    Excluded[NumExcluded++] = NewExcl;
    assert(NumExcluded <= Excluded.size());
  }

  bool isExcluded(const Value *Value) const {
    if (NumExcluded == 0)
      return false;
    auto End = Excluded.begin() + NumExcluded;
    return std::find(Excluded.begin(), End, Value) != End;
  }
};

} // end anonymous namespace

// Given the provided Value and, potentially, a context instruction, return
// the preferred context instruction (if any).
static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
  // If we've been provided with a context instruction, then use that (provided
  // it has been inserted).
  if (CxtI && CxtI->getParent())
    return CxtI;

  // If the value is really an already-inserted instruction, then use that.
  CxtI = dyn_cast<Instruction>(V);
  if (CxtI && CxtI->getParent())
    return CxtI;

  return nullptr;
}

static void computeKnownBits(const Value *V, KnownBits &Known,
                             unsigned Depth, const Query &Q);

void llvm::computeKnownBits(const Value *V, KnownBits &Known,
                            const DataLayout &DL, unsigned Depth,
                            AssumptionCache *AC, const Instruction *CxtI,
                            const DominatorTree *DT,
                            OptimizationRemarkEmitter *ORE) {
  ::computeKnownBits(V, Known, Depth,
                     Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
}

static KnownBits computeKnownBits(const Value *V, unsigned Depth,
                                  const Query &Q);

KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
                                 unsigned Depth, AssumptionCache *AC,
                                 const Instruction *CxtI,
                                 const DominatorTree *DT,
                                 OptimizationRemarkEmitter *ORE) {
  return ::computeKnownBits(V, Depth,
                            Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
}

bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
                               const DataLayout &DL,
                               AssumptionCache *AC, const Instruction *CxtI,
                               const DominatorTree *DT) {
  assert(LHS->getType() == RHS->getType() &&
         "LHS and RHS should have the same type");
  assert(LHS->getType()->isIntOrIntVectorTy() &&
         "LHS and RHS should be integers");
  IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
  KnownBits LHSKnown(IT->getBitWidth());
  KnownBits RHSKnown(IT->getBitWidth());
  computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT);
  computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT);
  return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
}

bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
  for (const User *U : CxtI->users()) {
    if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
      if (IC->isEquality())
        if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
          if (C->isNullValue())
            continue;
    return false;
  }
  return true;
}

static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
                                   const Query &Q);

bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
                                  bool OrZero,
                                  unsigned Depth, AssumptionCache *AC,
                                  const Instruction *CxtI,
                                  const DominatorTree *DT) {
  return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
                                  Query(DL, AC, safeCxtI(V, CxtI), DT));
}

static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);

bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
                          AssumptionCache *AC, const Instruction *CxtI,
                          const DominatorTree *DT) {
  return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
}

bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
                              unsigned Depth,
                              AssumptionCache *AC, const Instruction *CxtI,
                              const DominatorTree *DT) {
  KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
  return Known.isNonNegative();
}

bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
                           AssumptionCache *AC, const Instruction *CxtI,
                           const DominatorTree *DT) {
  if (auto *CI = dyn_cast<ConstantInt>(V))
    return CI->getValue().isStrictlyPositive();

  // TODO: We'd doing two recursive queries here.  We should factor this such
  // that only a single query is needed.
  return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
    isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
}

bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
                           AssumptionCache *AC, const Instruction *CxtI,
                           const DominatorTree *DT) {
  KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT);
  return Known.isNegative();
}

static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);

bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
                           const DataLayout &DL,
                           AssumptionCache *AC, const Instruction *CxtI,
                           const DominatorTree *DT) {
  return ::isKnownNonEqual(V1, V2, Query(DL, AC,
                                         safeCxtI(V1, safeCxtI(V2, CxtI)),
                                         DT));
}

static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
                              const Query &Q);

bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
                             const DataLayout &DL,
                             unsigned Depth, AssumptionCache *AC,
                             const Instruction *CxtI, const DominatorTree *DT) {
  return ::MaskedValueIsZero(V, Mask, Depth,
                             Query(DL, AC, safeCxtI(V, CxtI), DT));
}

static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
                                   const Query &Q);

unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
                                  unsigned Depth, AssumptionCache *AC,
                                  const Instruction *CxtI,
                                  const DominatorTree *DT) {
  return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
}

static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
                                   bool NSW,
                                   KnownBits &KnownOut, KnownBits &Known2,
                                   unsigned Depth, const Query &Q) {
  unsigned BitWidth = KnownOut.getBitWidth();

  // If an initial sequence of bits in the result is not needed, the
  // corresponding bits in the operands are not needed.
  KnownBits LHSKnown(BitWidth);
  computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
  computeKnownBits(Op1, Known2, Depth + 1, Q);

  KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
}

static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
                                KnownBits &Known, KnownBits &Known2,
                                unsigned Depth, const Query &Q) {
  unsigned BitWidth = Known.getBitWidth();
  computeKnownBits(Op1, Known, Depth + 1, Q);
  computeKnownBits(Op0, Known2, Depth + 1, Q);

  bool isKnownNegative = false;
  bool isKnownNonNegative = false;
  // If the multiplication is known not to overflow, compute the sign bit.
  if (NSW) {
    if (Op0 == Op1) {
      // The product of a number with itself is non-negative.
      isKnownNonNegative = true;
    } else {
      bool isKnownNonNegativeOp1 = Known.isNonNegative();
      bool isKnownNonNegativeOp0 = Known2.isNonNegative();
      bool isKnownNegativeOp1 = Known.isNegative();
      bool isKnownNegativeOp0 = Known2.isNegative();
      // The product of two numbers with the same sign is non-negative.
      isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
        (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
      // The product of a negative number and a non-negative number is either
      // negative or zero.
      if (!isKnownNonNegative)
        isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
                           isKnownNonZero(Op0, Depth, Q)) ||
                          (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
                           isKnownNonZero(Op1, Depth, Q));
    }
  }

  // If low bits are zero in either operand, output low known-0 bits.
  // Also compute a conservative estimate for high known-0 bits.
  // More trickiness is possible, but this is sufficient for the
  // interesting case of alignment computation.
  unsigned TrailZ = Known.countMinTrailingZeros() +
                    Known2.countMinTrailingZeros();
  unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
                             Known2.countMinLeadingZeros(),
                             BitWidth) - BitWidth;

  TrailZ = std::min(TrailZ, BitWidth);
  LeadZ = std::min(LeadZ, BitWidth);
  Known.resetAll();
  Known.Zero.setLowBits(TrailZ);
  Known.Zero.setHighBits(LeadZ);

  // Only make use of no-wrap flags if we failed to compute the sign bit
  // directly.  This matters if the multiplication always overflows, in
  // which case we prefer to follow the result of the direct computation,
  // though as the program is invoking undefined behaviour we can choose
  // whatever we like here.
  if (isKnownNonNegative && !Known.isNegative())
    Known.makeNonNegative();
  else if (isKnownNegative && !Known.isNonNegative())
    Known.makeNegative();
}

void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
                                             KnownBits &Known) {
  unsigned BitWidth = Known.getBitWidth();
  unsigned NumRanges = Ranges.getNumOperands() / 2;
  assert(NumRanges >= 1);

  Known.Zero.setAllBits();
  Known.One.setAllBits();

  for (unsigned i = 0; i < NumRanges; ++i) {
    ConstantInt *Lower =
        mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
    ConstantInt *Upper =
        mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
    ConstantRange Range(Lower->getValue(), Upper->getValue());

    // The first CommonPrefixBits of all values in Range are equal.
    unsigned CommonPrefixBits =
        (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();

    APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
    Known.One &= Range.getUnsignedMax() & Mask;
    Known.Zero &= ~Range.getUnsignedMax() & Mask;
  }
}

static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
  SmallVector<const Value *, 16> WorkSet(1, I);
  SmallPtrSet<const Value *, 32> Visited;
  SmallPtrSet<const Value *, 16> EphValues;

  // The instruction defining an assumption's condition itself is always
  // considered ephemeral to that assumption (even if it has other
  // non-ephemeral users). See r246696's test case for an example.
  if (is_contained(I->operands(), E))
    return true;

  while (!WorkSet.empty()) {
    const Value *V = WorkSet.pop_back_val();
    if (!Visited.insert(V).second)
      continue;

    // If all uses of this value are ephemeral, then so is this value.
    if (llvm::all_of(V->users(), [&](const User *U) {
                                   return EphValues.count(U);
                                 })) {
      if (V == E)
        return true;

      if (V == I || isSafeToSpeculativelyExecute(V)) {
       EphValues.insert(V);
       if (const User *U = dyn_cast<User>(V))
         for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
              J != JE; ++J)
           WorkSet.push_back(*J);
      }
    }
  }

  return false;
}

// Is this an intrinsic that cannot be speculated but also cannot trap?
static bool isAssumeLikeIntrinsic(const Instruction *I) {
  if (const CallInst *CI = dyn_cast<CallInst>(I))
    if (Function *F = CI->getCalledFunction())
      switch (F->getIntrinsicID()) {
      default: break;
      // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
      case Intrinsic::assume:
      case Intrinsic::dbg_declare:
      case Intrinsic::dbg_value:
      case Intrinsic::invariant_start:
      case Intrinsic::invariant_end:
      case Intrinsic::lifetime_start:
      case Intrinsic::lifetime_end:
      case Intrinsic::objectsize:
      case Intrinsic::ptr_annotation:
      case Intrinsic::var_annotation:
        return true;
      }

  return false;
}

bool llvm::isValidAssumeForContext(const Instruction *Inv,
                                   const Instruction *CxtI,
                                   const DominatorTree *DT) {
  // There are two restrictions on the use of an assume:
  //  1. The assume must dominate the context (or the control flow must
  //     reach the assume whenever it reaches the context).
  //  2. The context must not be in the assume's set of ephemeral values
  //     (otherwise we will use the assume to prove that the condition
  //     feeding the assume is trivially true, thus causing the removal of
  //     the assume).

  if (DT) {
    if (DT->dominates(Inv, CxtI))
      return true;
  } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
    // We don't have a DT, but this trivially dominates.
    return true;
  }

  // With or without a DT, the only remaining case we will check is if the
  // instructions are in the same BB.  Give up if that is not the case.
  if (Inv->getParent() != CxtI->getParent())
    return false;

  // If we have a dom tree, then we now know that the assume doens't dominate
  // the other instruction.  If we don't have a dom tree then we can check if
  // the assume is first in the BB.
  if (!DT) {
    // Search forward from the assume until we reach the context (or the end
    // of the block); the common case is that the assume will come first.
    for (auto I = std::next(BasicBlock::const_iterator(Inv)),
         IE = Inv->getParent()->end(); I != IE; ++I)
      if (&*I == CxtI)
        return true;
  }

  // The context comes first, but they're both in the same block. Make sure
  // there is nothing in between that might interrupt the control flow.
  for (BasicBlock::const_iterator I =
         std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
       I != IE; ++I)
    if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
      return false;

  return !isEphemeralValueOf(Inv, CxtI);
}

static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
                                       unsigned Depth, const Query &Q) {
  // Use of assumptions is context-sensitive. If we don't have a context, we
  // cannot use them!
  if (!Q.AC || !Q.CxtI)
    return;

  unsigned BitWidth = Known.getBitWidth();

  // Note that the patterns below need to be kept in sync with the code
  // in AssumptionCache::updateAffectedValues.

  for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
    if (!AssumeVH)
      continue;
    CallInst *I = cast<CallInst>(AssumeVH);
    assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
           "Got assumption for the wrong function!");
    if (Q.isExcluded(I))
      continue;

    // Warning: This loop can end up being somewhat performance sensetive.
    // We're running this loop for once for each value queried resulting in a
    // runtime of ~O(#assumes * #values).

    assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
           "must be an assume intrinsic");

    Value *Arg = I->getArgOperand(0);

    if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      assert(BitWidth == 1 && "assume operand is not i1?");
      Known.setAllOnes();
      return;
    }
    if (match(Arg, m_Not(m_Specific(V))) &&
        isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      assert(BitWidth == 1 && "assume operand is not i1?");
      Known.setAllZero();
      return;
    }

    // The remaining tests are all recursive, so bail out if we hit the limit.
    if (Depth == MaxDepth)
      continue;

    Value *A, *B;
    auto m_V = m_CombineOr(m_Specific(V),
                           m_CombineOr(m_PtrToInt(m_Specific(V)),
                           m_BitCast(m_Specific(V))));

    CmpInst::Predicate Pred;
    ConstantInt *C;
    // assume(v = a)
    if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
        Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      KnownBits RHSKnown(BitWidth);
      computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
      Known.Zero |= RHSKnown.Zero;
      Known.One  |= RHSKnown.One;
    // assume(v & b = a)
    } else if (match(Arg,
                     m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
               Pred == ICmpInst::ICMP_EQ &&
               isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      KnownBits RHSKnown(BitWidth);
      computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
      KnownBits MaskKnown(BitWidth);
      computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));

      // For those bits in the mask that are known to be one, we can propagate
      // known bits from the RHS to V.
      Known.Zero |= RHSKnown.Zero & MaskKnown.One;
      Known.One  |= RHSKnown.One  & MaskKnown.One;
    // assume(~(v & b) = a)
    } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
                                   m_Value(A))) &&
               Pred == ICmpInst::ICMP_EQ &&
               isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      KnownBits RHSKnown(BitWidth);
      computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
      KnownBits MaskKnown(BitWidth);
      computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));

      // For those bits in the mask that are known to be one, we can propagate
      // inverted known bits from the RHS to V.
      Known.Zero |= RHSKnown.One  & MaskKnown.One;
      Known.One  |= RHSKnown.Zero & MaskKnown.One;
    // assume(v | b = a)
    } else if (match(Arg,
                     m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
               Pred == ICmpInst::ICMP_EQ &&
               isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      KnownBits RHSKnown(BitWidth);
      computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
      KnownBits BKnown(BitWidth);
      computeKnownBits(B, BKnown, Depth+1, Query(Q, I));

      // For those bits in B that are known to be zero, we can propagate known
      // bits from the RHS to V.
      Known.Zero |= RHSKnown.Zero & BKnown.Zero;
      Known.One  |= RHSKnown.One  & BKnown.Zero;
    // assume(~(v | b) = a)
    } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
                                   m_Value(A))) &&
               Pred == ICmpInst::ICMP_EQ &&
               isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      KnownBits RHSKnown(BitWidth);
      computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
      KnownBits BKnown(BitWidth);
      computeKnownBits(B, BKnown, Depth+1, Query(Q, I));

      // For those bits in B that are known to be zero, we can propagate
      // inverted known bits from the RHS to V.
      Known.Zero |= RHSKnown.One  & BKnown.Zero;
      Known.One  |= RHSKnown.Zero & BKnown.Zero;
    // assume(v ^ b = a)
    } else if (match(Arg,
                     m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
               Pred == ICmpInst::ICMP_EQ &&
               isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      KnownBits RHSKnown(BitWidth);
      computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
      KnownBits BKnown(BitWidth);
      computeKnownBits(B, BKnown, Depth+1, Query(Q, I));

      // For those bits in B that are known to be zero, we can propagate known
      // bits from the RHS to V. For those bits in B that are known to be one,
      // we can propagate inverted known bits from the RHS to V.
      Known.Zero |= RHSKnown.Zero & BKnown.Zero;
      Known.One  |= RHSKnown.One  & BKnown.Zero;
      Known.Zero |= RHSKnown.One  & BKnown.One;
      Known.One  |= RHSKnown.Zero & BKnown.One;
    // assume(~(v ^ b) = a)
    } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
                                   m_Value(A))) &&
               Pred == ICmpInst::ICMP_EQ &&
               isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      KnownBits RHSKnown(BitWidth);
      computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
      KnownBits BKnown(BitWidth);
      computeKnownBits(B, BKnown, Depth+1, Query(Q, I));

      // For those bits in B that are known to be zero, we can propagate
      // inverted known bits from the RHS to V. For those bits in B that are
      // known to be one, we can propagate known bits from the RHS to V.
      Known.Zero |= RHSKnown.One  & BKnown.Zero;
      Known.One  |= RHSKnown.Zero & BKnown.Zero;
      Known.Zero |= RHSKnown.Zero & BKnown.One;
      Known.One  |= RHSKnown.One  & BKnown.One;
    // assume(v << c = a)
    } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
                                   m_Value(A))) &&
               Pred == ICmpInst::ICMP_EQ &&
               isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      KnownBits RHSKnown(BitWidth);
      computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
      // For those bits in RHS that are known, we can propagate them to known
      // bits in V shifted to the right by C.
      RHSKnown.Zero.lshrInPlace(C->getZExtValue());
      Known.Zero |= RHSKnown.Zero;
      RHSKnown.One.lshrInPlace(C->getZExtValue());
      Known.One  |= RHSKnown.One;
    // assume(~(v << c) = a)
    } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
                                   m_Value(A))) &&
               Pred == ICmpInst::ICMP_EQ &&
               isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      KnownBits RHSKnown(BitWidth);
      computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
      // For those bits in RHS that are known, we can propagate them inverted
      // to known bits in V shifted to the right by C.
      RHSKnown.One.lshrInPlace(C->getZExtValue());
      Known.Zero |= RHSKnown.One;
      RHSKnown.Zero.lshrInPlace(C->getZExtValue());
      Known.One  |= RHSKnown.Zero;
    // assume(v >> c = a)
    } else if (match(Arg,
                     m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
                              m_Value(A))) &&
               Pred == ICmpInst::ICMP_EQ &&
               isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      KnownBits RHSKnown(BitWidth);
      computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
      // For those bits in RHS that are known, we can propagate them to known
      // bits in V shifted to the right by C.
      Known.Zero |= RHSKnown.Zero << C->getZExtValue();
      Known.One  |= RHSKnown.One  << C->getZExtValue();
    // assume(~(v >> c) = a)
    } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
                                   m_Value(A))) &&
               Pred == ICmpInst::ICMP_EQ &&
               isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      KnownBits RHSKnown(BitWidth);
      computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
      // For those bits in RHS that are known, we can propagate them inverted
      // to known bits in V shifted to the right by C.
      Known.Zero |= RHSKnown.One  << C->getZExtValue();
      Known.One  |= RHSKnown.Zero << C->getZExtValue();
    // assume(v >=_s c) where c is non-negative
    } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
               Pred == ICmpInst::ICMP_SGE &&
               isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      KnownBits RHSKnown(BitWidth);
      computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));

      if (RHSKnown.isNonNegative()) {
        // We know that the sign bit is zero.
        Known.makeNonNegative();
      }
    // assume(v >_s c) where c is at least -1.
    } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
               Pred == ICmpInst::ICMP_SGT &&
               isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      KnownBits RHSKnown(BitWidth);
      computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));

      if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
        // We know that the sign bit is zero.
        Known.makeNonNegative();
      }
    // assume(v <=_s c) where c is negative
    } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
               Pred == ICmpInst::ICMP_SLE &&
               isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      KnownBits RHSKnown(BitWidth);
      computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));

      if (RHSKnown.isNegative()) {
        // We know that the sign bit is one.
        Known.makeNegative();
      }
    // assume(v <_s c) where c is non-positive
    } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
               Pred == ICmpInst::ICMP_SLT &&
               isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      KnownBits RHSKnown(BitWidth);
      computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));

      if (RHSKnown.isZero() || RHSKnown.isNegative()) {
        // We know that the sign bit is one.
        Known.makeNegative();
      }
    // assume(v <=_u c)
    } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
               Pred == ICmpInst::ICMP_ULE &&
               isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      KnownBits RHSKnown(BitWidth);
      computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));

      // Whatever high bits in c are zero are known to be zero.
      Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
      // assume(v <_u c)
    } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
               Pred == ICmpInst::ICMP_ULT &&
               isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
      KnownBits RHSKnown(BitWidth);
      computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));

      // Whatever high bits in c are zero are known to be zero (if c is a power
      // of 2, then one more).
      if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
        Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
      else
        Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
    }
  }

  // If assumptions conflict with each other or previous known bits, then we
  // have a logical fallacy. It's possible that the assumption is not reachable,
  // so this isn't a real bug. On the other hand, the program may have undefined
  // behavior, or we might have a bug in the compiler. We can't assert/crash, so
  // clear out the known bits, try to warn the user, and hope for the best.
  if (Known.Zero.intersects(Known.One)) {
    Known.resetAll();

    if (Q.ORE)
      Q.ORE->emit([&]() {
        auto *CxtI = const_cast<Instruction *>(Q.CxtI);
        return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
                                          CxtI)
               << "Detected conflicting code assumptions. Program may "
                  "have undefined behavior, or compiler may have "
                  "internal error.";
      });
  }
}

/// Compute known bits from a shift operator, including those with a
/// non-constant shift amount. Known is the output of this function. Known2 is a
/// pre-allocated temporary with the same bit width as Known. KZF and KOF are
/// operator-specific functors that, given the known-zero or known-one bits
/// respectively, and a shift amount, compute the implied known-zero or
/// known-one bits of the shift operator's result respectively for that shift
/// amount. The results from calling KZF and KOF are conservatively combined for
/// all permitted shift amounts.
static void computeKnownBitsFromShiftOperator(
    const Operator *I, KnownBits &Known, KnownBits &Known2,
    unsigned Depth, const Query &Q,
    function_ref<APInt(const APInt &, unsigned)> KZF,
    function_ref<APInt(const APInt &, unsigned)> KOF) {
  unsigned BitWidth = Known.getBitWidth();

  if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);

    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
    Known.Zero = KZF(Known.Zero, ShiftAmt);
    Known.One  = KOF(Known.One, ShiftAmt);
    // If the known bits conflict, this must be an overflowing left shift, so
    // the shift result is poison. We can return anything we want. Choose 0 for
    // the best folding opportunity.
    if (Known.hasConflict())
      Known.setAllZero();

    return;
  }

  computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);

  // If the shift amount could be greater than or equal to the bit-width of the
  // LHS, the value could be poison, but bail out because the check below is
  // expensive. TODO: Should we just carry on?
  if ((~Known.Zero).uge(BitWidth)) {
    Known.resetAll();
    return;
  }

  // Note: We cannot use Known.Zero.getLimitedValue() here, because if
  // BitWidth > 64 and any upper bits are known, we'll end up returning the
  // limit value (which implies all bits are known).
  uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
  uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();

  // It would be more-clearly correct to use the two temporaries for this
  // calculation. Reusing the APInts here to prevent unnecessary allocations.
  Known.resetAll();

  // If we know the shifter operand is nonzero, we can sometimes infer more
  // known bits. However this is expensive to compute, so be lazy about it and
  // only compute it when absolutely necessary.
  Optional<bool> ShifterOperandIsNonZero;

  // Early exit if we can't constrain any well-defined shift amount.
  if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
      !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
    ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
    if (!*ShifterOperandIsNonZero)
      return;
  }

  computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);

  Known.Zero.setAllBits();
  Known.One.setAllBits();
  for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
    // Combine the shifted known input bits only for those shift amounts
    // compatible with its known constraints.
    if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
      continue;
    if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
      continue;
    // If we know the shifter is nonzero, we may be able to infer more known
    // bits. This check is sunk down as far as possible to avoid the expensive
    // call to isKnownNonZero if the cheaper checks above fail.
    if (ShiftAmt == 0) {
      if (!ShifterOperandIsNonZero.hasValue())
        ShifterOperandIsNonZero =
            isKnownNonZero(I->getOperand(1), Depth + 1, Q);
      if (*ShifterOperandIsNonZero)
        continue;
    }

    Known.Zero &= KZF(Known2.Zero, ShiftAmt);
    Known.One  &= KOF(Known2.One, ShiftAmt);
  }

  // If the known bits conflict, the result is poison. Return a 0 and hope the
  // caller can further optimize that.
  if (Known.hasConflict())
    Known.setAllZero();
}

static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
                                         unsigned Depth, const Query &Q) {
  unsigned BitWidth = Known.getBitWidth();

  KnownBits Known2(Known);
  switch (I->getOpcode()) {
  default: break;
  case Instruction::Load:
    if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
      computeKnownBitsFromRangeMetadata(*MD, Known);
    break;
  case Instruction::And: {
    // If either the LHS or the RHS are Zero, the result is zero.
    computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
    computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);

    // Output known-1 bits are only known if set in both the LHS & RHS.
    Known.One &= Known2.One;
    // Output known-0 are known to be clear if zero in either the LHS | RHS.
    Known.Zero |= Known2.Zero;

    // and(x, add (x, -1)) is a common idiom that always clears the low bit;
    // here we handle the more general case of adding any odd number by
    // matching the form add(x, add(x, y)) where y is odd.
    // TODO: This could be generalized to clearing any bit set in y where the
    // following bit is known to be unset in y.
    Value *Y = nullptr;
    if (!Known.Zero[0] && !Known.One[0] &&
        (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
                                       m_Value(Y))) ||
         match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
                                       m_Value(Y))))) {
      Known2.resetAll();
      computeKnownBits(Y, Known2, Depth + 1, Q);
      if (Known2.countMinTrailingOnes() > 0)
        Known.Zero.setBit(0);
    }
    break;
  }
  case Instruction::Or:
    computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
    computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);

    // Output known-0 bits are only known if clear in both the LHS & RHS.
    Known.Zero &= Known2.Zero;
    // Output known-1 are known to be set if set in either the LHS | RHS.
    Known.One |= Known2.One;
    break;
  case Instruction::Xor: {
    computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
    computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);

    // Output known-0 bits are known if clear or set in both the LHS & RHS.
    APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
    Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
    Known.Zero = std::move(KnownZeroOut);
    break;
  }
  case Instruction::Mul: {
    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
    computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
                        Known2, Depth, Q);
    break;
  }
  case Instruction::UDiv: {
    // For the purposes of computing leading zeros we can conservatively
    // treat a udiv as a logical right shift by the power of 2 known to
    // be less than the denominator.
    computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
    unsigned LeadZ = Known2.countMinLeadingZeros();

    Known2.resetAll();
    computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
    unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
    if (RHSMaxLeadingZeros != BitWidth)
      LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);

    Known.Zero.setHighBits(LeadZ);
    break;
  }
  case Instruction::Select: {
    const Value *LHS, *RHS;
    SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
    if (SelectPatternResult::isMinOrMax(SPF)) {
      computeKnownBits(RHS, Known, Depth + 1, Q);
      computeKnownBits(LHS, Known2, Depth + 1, Q);
    } else {
      computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
      computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
    }

    unsigned MaxHighOnes = 0;
    unsigned MaxHighZeros = 0;
    if (SPF == SPF_SMAX) {
      // If both sides are negative, the result is negative.
      if (Known.isNegative() && Known2.isNegative())
        // We can derive a lower bound on the result by taking the max of the
        // leading one bits.
        MaxHighOnes =
            std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
      // If either side is non-negative, the result is non-negative.
      else if (Known.isNonNegative() || Known2.isNonNegative())
        MaxHighZeros = 1;
    } else if (SPF == SPF_SMIN) {
      // If both sides are non-negative, the result is non-negative.
      if (Known.isNonNegative() && Known2.isNonNegative())
        // We can derive an upper bound on the result by taking the max of the
        // leading zero bits.
        MaxHighZeros = std::max(Known.countMinLeadingZeros(),
                                Known2.countMinLeadingZeros());
      // If either side is negative, the result is negative.
      else if (Known.isNegative() || Known2.isNegative())
        MaxHighOnes = 1;
    } else if (SPF == SPF_UMAX) {
      // We can derive a lower bound on the result by taking the max of the
      // leading one bits.
      MaxHighOnes =
          std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
    } else if (SPF == SPF_UMIN) {
      // We can derive an upper bound on the result by taking the max of the
      // leading zero bits.
      MaxHighZeros =
          std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
    }

    // Only known if known in both the LHS and RHS.
    Known.One &= Known2.One;
    Known.Zero &= Known2.Zero;
    if (MaxHighOnes > 0)
      Known.One.setHighBits(MaxHighOnes);
    if (MaxHighZeros > 0)
      Known.Zero.setHighBits(MaxHighZeros);
    break;
  }
  case Instruction::FPTrunc:
  case Instruction::FPExt:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
  case Instruction::SIToFP:
  case Instruction::UIToFP:
    break; // Can't work with floating point.
  case Instruction::PtrToInt:
  case Instruction::IntToPtr:
    // Fall through and handle them the same as zext/trunc.
    LLVM_FALLTHROUGH;
  case Instruction::ZExt:
  case Instruction::Trunc: {
    Type *SrcTy = I->getOperand(0)->getType();

    unsigned SrcBitWidth;
    // Note that we handle pointer operands here because of inttoptr/ptrtoint
    // which fall through here.
    SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());

    assert(SrcBitWidth && "SrcBitWidth can't be zero");
    Known = Known.zextOrTrunc(SrcBitWidth);
    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
    Known = Known.zextOrTrunc(BitWidth);
    // Any top bits are known to be zero.
    if (BitWidth > SrcBitWidth)
      Known.Zero.setBitsFrom(SrcBitWidth);
    break;
  }
  case Instruction::BitCast: {
    Type *SrcTy = I->getOperand(0)->getType();
    if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
        // TODO: For now, not handling conversions like:
        // (bitcast i64 %x to <2 x i32>)
        !I->getType()->isVectorTy()) {
      computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
      break;
    }
    break;
  }
  case Instruction::SExt: {
    // Compute the bits in the result that are not present in the input.
    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();

    Known = Known.trunc(SrcBitWidth);
    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
    // If the sign bit of the input is known set or clear, then we know the
    // top bits of the result.
    Known = Known.sext(BitWidth);
    break;
  }
  case Instruction::Shl: {
    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
    auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
      APInt KZResult = KnownZero << ShiftAmt;
      KZResult.setLowBits(ShiftAmt); // Low bits known 0.
      // If this shift has "nsw" keyword, then the result is either a poison
      // value or has the same sign bit as the first operand.
      if (NSW && KnownZero.isSignBitSet())
        KZResult.setSignBit();
      return KZResult;
    };

    auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
      APInt KOResult = KnownOne << ShiftAmt;
      if (NSW && KnownOne.isSignBitSet())
        KOResult.setSignBit();
      return KOResult;
    };

    computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
    break;
  }
  case Instruction::LShr: {
    // (lshr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
    auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
      APInt KZResult = KnownZero.lshr(ShiftAmt);
      // High bits known zero.
      KZResult.setHighBits(ShiftAmt);
      return KZResult;
    };

    auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
      return KnownOne.lshr(ShiftAmt);
    };

    computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
    break;
  }
  case Instruction::AShr: {
    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
    auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
      return KnownZero.ashr(ShiftAmt);
    };

    auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
      return KnownOne.ashr(ShiftAmt);
    };

    computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
    break;
  }
  case Instruction::Sub: {
    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
    computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
                           Known, Known2, Depth, Q);
    break;
  }
  case Instruction::Add: {
    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
    computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
                           Known, Known2, Depth, Q);
    break;
  }
  case Instruction::SRem:
    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
      APInt RA = Rem->getValue().abs();
      if (RA.isPowerOf2()) {
        APInt LowBits = RA - 1;
        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);

        // The low bits of the first operand are unchanged by the srem.
        Known.Zero = Known2.Zero & LowBits;
        Known.One = Known2.One & LowBits;

        // If the first operand is non-negative or has all low bits zero, then
        // the upper bits are all zero.
        if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
          Known.Zero |= ~LowBits;

        // If the first operand is negative and not all low bits are zero, then
        // the upper bits are all one.
        if (Known2.isNegative() && LowBits.intersects(Known2.One))
          Known.One |= ~LowBits;

        assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
        break;
      }
    }

    // The sign bit is the LHS's sign bit, except when the result of the
    // remainder is zero.
    computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
    // If it's known zero, our sign bit is also zero.
    if (Known2.isNonNegative())
      Known.makeNonNegative();

    break;
  case Instruction::URem: {
    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
      const APInt &RA = Rem->getValue();
      if (RA.isPowerOf2()) {
        APInt LowBits = (RA - 1);
        computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
        Known.Zero |= ~LowBits;
        Known.One &= LowBits;
        break;
      }
    }

    // Since the result is less than or equal to either operand, any leading
    // zero bits in either operand must also exist in the result.
    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
    computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);

    unsigned Leaders =
        std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
    Known.resetAll();
    Known.Zero.setHighBits(Leaders);
    break;
  }

  case Instruction::Alloca: {
    const AllocaInst *AI = cast<AllocaInst>(I);
    unsigned Align = AI->getAlignment();
    if (Align == 0)
      Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());

    if (Align > 0)
      Known.Zero.setLowBits(countTrailingZeros(Align));
    break;
  }
  case Instruction::GetElementPtr: {
    // Analyze all of the subscripts of this getelementptr instruction
    // to determine if we can prove known low zero bits.
    KnownBits LocalKnown(BitWidth);
    computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
    unsigned TrailZ = LocalKnown.countMinTrailingZeros();

    gep_type_iterator GTI = gep_type_begin(I);
    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
      Value *Index = I->getOperand(i);
      if (StructType *STy = GTI.getStructTypeOrNull()) {
        // Handle struct member offset arithmetic.

        // Handle case when index is vector zeroinitializer
        Constant *CIndex = cast<Constant>(Index);
        if (CIndex->isZeroValue())
          continue;

        if (CIndex->getType()->isVectorTy())
          Index = CIndex->getSplatValue();

        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
        const StructLayout *SL = Q.DL.getStructLayout(STy);
        uint64_t Offset = SL->getElementOffset(Idx);
        TrailZ = std::min<unsigned>(TrailZ,
                                    countTrailingZeros(Offset));
      } else {
        // Handle array index arithmetic.
        Type *IndexedTy = GTI.getIndexedType();
        if (!IndexedTy->isSized()) {
          TrailZ = 0;
          break;
        }
        unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
        uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
        LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
        computeKnownBits(Index, LocalKnown, Depth + 1, Q);
        TrailZ = std::min(TrailZ,
                          unsigned(countTrailingZeros(TypeSize) +
                                   LocalKnown.countMinTrailingZeros()));
      }
    }

    Known.Zero.setLowBits(TrailZ);
    break;
  }
  case Instruction::PHI: {
    const PHINode *P = cast<PHINode>(I);
    // Handle the case of a simple two-predecessor recurrence PHI.
    // There's a lot more that could theoretically be done here, but
    // this is sufficient to catch some interesting cases.
    if (P->getNumIncomingValues() == 2) {
      for (unsigned i = 0; i != 2; ++i) {
        Value *L = P->getIncomingValue(i);
        Value *R = P->getIncomingValue(!i);
        Operator *LU = dyn_cast<Operator>(L);
        if (!LU)
          continue;
        unsigned Opcode = LU->getOpcode();
        // Check for operations that have the property that if
        // both their operands have low zero bits, the result
        // will have low zero bits.
        if (Opcode == Instruction::Add ||
            Opcode == Instruction::Sub ||
            Opcode == Instruction::And ||
            Opcode == Instruction::Or ||
            Opcode == Instruction::Mul) {
          Value *LL = LU->getOperand(0);
          Value *LR = LU->getOperand(1);
          // Find a recurrence.
          if (LL == I)
            L = LR;
          else if (LR == I)
            L = LL;
          else
            break;
          // Ok, we have a PHI of the form L op= R. Check for low
          // zero bits.
          computeKnownBits(R, Known2, Depth + 1, Q);

          // We need to take the minimum number of known bits
          KnownBits Known3(Known);
          computeKnownBits(L, Known3, Depth + 1, Q);

          Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
                                         Known3.countMinTrailingZeros()));

          auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
          if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
            // If initial value of recurrence is nonnegative, and we are adding
            // a nonnegative number with nsw, the result can only be nonnegative
            // or poison value regardless of the number of times we execute the
            // add in phi recurrence. If initial value is negative and we are
            // adding a negative number with nsw, the result can only be
            // negative or poison value. Similar arguments apply to sub and mul.
            //
            // (add non-negative, non-negative) --> non-negative
            // (add negative, negative) --> negative
            if (Opcode == Instruction::Add) {
              if (Known2.isNonNegative() && Known3.isNonNegative())
                Known.makeNonNegative();
              else if (Known2.isNegative() && Known3.isNegative())
                Known.makeNegative();
            }

            // (sub nsw non-negative, negative) --> non-negative
            // (sub nsw negative, non-negative) --> negative
            else if (Opcode == Instruction::Sub && LL == I) {
              if (Known2.isNonNegative() && Known3.isNegative())
                Known.makeNonNegative();
              else if (Known2.isNegative() && Known3.isNonNegative())
                Known.makeNegative();
            }

            // (mul nsw non-negative, non-negative) --> non-negative
            else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
                     Known3.isNonNegative())
              Known.makeNonNegative();
          }

          break;
        }
      }
    }

    // Unreachable blocks may have zero-operand PHI nodes.
    if (P->getNumIncomingValues() == 0)
      break;

    // Otherwise take the unions of the known bit sets of the operands,
    // taking conservative care to avoid excessive recursion.
    if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
      // Skip if every incoming value references to ourself.
      if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
        break;

      Known.Zero.setAllBits();
      Known.One.setAllBits();
      for (Value *IncValue : P->incoming_values()) {
        // Skip direct self references.
        if (IncValue == P) continue;

        Known2 = KnownBits(BitWidth);
        // Recurse, but cap the recursion to one level, because we don't
        // want to waste time spinning around in loops.
        computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
        Known.Zero &= Known2.Zero;
        Known.One &= Known2.One;
        // If all bits have been ruled out, there's no need to check
        // more operands.
        if (!Known.Zero && !Known.One)
          break;
      }
    }
    break;
  }
  case Instruction::Call:
  case Instruction::Invoke:
    // If range metadata is attached to this call, set known bits from that,
    // and then intersect with known bits based on other properties of the
    // function.
    if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
      computeKnownBitsFromRangeMetadata(*MD, Known);
    if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
      computeKnownBits(RV, Known2, Depth + 1, Q);
      Known.Zero |= Known2.Zero;
      Known.One |= Known2.One;
    }
    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
      switch (II->getIntrinsicID()) {
      default: break;
      case Intrinsic::bitreverse:
        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
        Known.Zero |= Known2.Zero.reverseBits();
        Known.One |= Known2.One.reverseBits();
        break;
      case Intrinsic::bswap:
        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
        Known.Zero |= Known2.Zero.byteSwap();
        Known.One |= Known2.One.byteSwap();
        break;
      case Intrinsic::ctlz: {
        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
        // If we have a known 1, its position is our upper bound.
        unsigned PossibleLZ = Known2.One.countLeadingZeros();
        // If this call is undefined for 0, the result will be less than 2^n.
        if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
          PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
        unsigned LowBits = Log2_32(PossibleLZ)+1;
        Known.Zero.setBitsFrom(LowBits);
        break;
      }
      case Intrinsic::cttz: {
        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
        // If we have a known 1, its position is our upper bound.
        unsigned PossibleTZ = Known2.One.countTrailingZeros();
        // If this call is undefined for 0, the result will be less than 2^n.
        if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
          PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
        unsigned LowBits = Log2_32(PossibleTZ)+1;
        Known.Zero.setBitsFrom(LowBits);
        break;
      }
      case Intrinsic::ctpop: {
        computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
        // We can bound the space the count needs.  Also, bits known to be zero
        // can't contribute to the population.
        unsigned BitsPossiblySet = Known2.countMaxPopulation();
        unsigned LowBits = Log2_32(BitsPossiblySet)+1;
        Known.Zero.setBitsFrom(LowBits);
        // TODO: we could bound KnownOne using the lower bound on the number
        // of bits which might be set provided by popcnt KnownOne2.
        break;
      }
      case Intrinsic::x86_sse42_crc32_64_64:
        Known.Zero.setBitsFrom(32);
        break;
      }
    }
    break;
  case Instruction::ExtractElement:
    // Look through extract element. At the moment we keep this simple and skip
    // tracking the specific element. But at least we might find information
    // valid for all elements of the vector (for example if vector is sign
    // extended, shifted, etc).
    computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
    break;
  case Instruction::ExtractValue:
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
      const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
      if (EVI->getNumIndices() != 1) break;
      if (EVI->getIndices()[0] == 0) {
        switch (II->getIntrinsicID()) {
        default: break;
        case Intrinsic::uadd_with_overflow:
        case Intrinsic::sadd_with_overflow:
          computeKnownBitsAddSub(true, II->getArgOperand(0),
                                 II->getArgOperand(1), false, Known, Known2,
                                 Depth, Q);
          break;
        case Intrinsic::usub_with_overflow:
        case Intrinsic::ssub_with_overflow:
          computeKnownBitsAddSub(false, II->getArgOperand(0),
                                 II->getArgOperand(1), false, Known, Known2,
                                 Depth, Q);
          break;
        case Intrinsic::umul_with_overflow:
        case Intrinsic::smul_with_overflow:
          computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
                              Known, Known2, Depth, Q);
          break;
        }
      }
    }
  }
}

/// Determine which bits of V are known to be either zero or one and return
/// them.
KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
  KnownBits Known(getBitWidth(V->getType(), Q.DL));
  computeKnownBits(V, Known, Depth, Q);
  return Known;
}

/// Determine which bits of V are known to be either zero or one and return
/// them in the Known bit set.
///
/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
/// we cannot optimize based on the assumption that it is zero without changing
/// it to be an explicit zero.  If we don't change it to zero, other code could
/// optimized based on the contradictory assumption that it is non-zero.
/// Because instcombine aggressively folds operations with undef args anyway,
/// this won't lose us code quality.
///
/// This function is defined on values with integer type, values with pointer
/// type, and vectors of integers.  In the case
/// where V is a vector, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
                      const Query &Q) {
  assert(V && "No Value?");
  assert(Depth <= MaxDepth && "Limit Search Depth");
  unsigned BitWidth = Known.getBitWidth();

  assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
          V->getType()->isPtrOrPtrVectorTy()) &&
         "Not integer or pointer type!");
  assert(Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth &&
         "V and Known should have same BitWidth");
  (void)BitWidth;

  const APInt *C;
  if (match(V, m_APInt(C))) {
    // We know all of the bits for a scalar constant or a splat vector constant!
    Known.One = *C;
    Known.Zero = ~Known.One;
    return;
  }
  // Null and aggregate-zero are all-zeros.
  if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
    Known.setAllZero();
    return;
  }
  // Handle a constant vector by taking the intersection of the known bits of
  // each element.
  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
    // We know that CDS must be a vector of integers. Take the intersection of
    // each element.
    Known.Zero.setAllBits(); Known.One.setAllBits();
    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
      APInt Elt = CDS->getElementAsAPInt(i);
      Known.Zero &= ~Elt;
      Known.One &= Elt;
    }
    return;
  }

  if (const auto *CV = dyn_cast<ConstantVector>(V)) {
    // We know that CV must be a vector of integers. Take the intersection of
    // each element.
    Known.Zero.setAllBits(); Known.One.setAllBits();
    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
      Constant *Element = CV->getAggregateElement(i);
      auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
      if (!ElementCI) {
        Known.resetAll();
        return;
      }
      const APInt &Elt = ElementCI->getValue();
      Known.Zero &= ~Elt;
      Known.One &= Elt;
    }
    return;
  }

  // Start out not knowing anything.
  Known.resetAll();

  // We can't imply anything about undefs.
  if (isa<UndefValue>(V))
    return;

  // There's no point in looking through other users of ConstantData for
  // assumptions.  Confirm that we've handled them all.
  assert(!isa<ConstantData>(V) && "Unhandled constant data!");

  // Limit search depth.
  // All recursive calls that increase depth must come after this.
  if (Depth == MaxDepth)
    return;

  // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
  // the bits of its aliasee.
  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    if (!GA->isInterposable())
      computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
    return;
  }

  if (const Operator *I = dyn_cast<Operator>(V))
    computeKnownBitsFromOperator(I, Known, Depth, Q);

  // Aligned pointers have trailing zeros - refine Known.Zero set
  if (V->getType()->isPointerTy()) {
    unsigned Align = V->getPointerAlignment(Q.DL);
    if (Align)
      Known.Zero.setLowBits(countTrailingZeros(Align));
  }

  // computeKnownBitsFromAssume strictly refines Known.
  // Therefore, we run them after computeKnownBitsFromOperator.

  // Check whether a nearby assume intrinsic can determine some known bits.
  computeKnownBitsFromAssume(V, Known, Depth, Q);

  assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
}

/// Return true if the given value is known to have exactly one
/// bit set when defined. For vectors return true if every element is known to
/// be a power of two when defined. Supports values with integer or pointer
/// types and vectors of integers.
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
                            const Query &Q) {
  assert(Depth <= MaxDepth && "Limit Search Depth");

  if (const Constant *C = dyn_cast<Constant>(V)) {
    if (C->isNullValue())
      return OrZero;

    const APInt *ConstIntOrConstSplatInt;
    if (match(C, m_APInt(ConstIntOrConstSplatInt)))
      return ConstIntOrConstSplatInt->isPowerOf2();
  }

  // 1 << X is clearly a power of two if the one is not shifted off the end.  If
  // it is shifted off the end then the result is undefined.
  if (match(V, m_Shl(m_One(), m_Value())))
    return true;

  // (signmask) >>l X is clearly a power of two if the one is not shifted off
  // the bottom.  If it is shifted off the bottom then the result is undefined.
  if (match(V, m_LShr(m_SignMask(), m_Value())))
    return true;

  // The remaining tests are all recursive, so bail out if we hit the limit.
  if (Depth++ == MaxDepth)
    return false;

  Value *X = nullptr, *Y = nullptr;
  // A shift left or a logical shift right of a power of two is a power of two
  // or zero.
  if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
                 match(V, m_LShr(m_Value(X), m_Value()))))
    return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);

  if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
    return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);

  if (const SelectInst *SI = dyn_cast<SelectInst>(V))
    return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
           isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);

  if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
    // A power of two and'd with anything is a power of two or zero.
    if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
        isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
      return true;
    // X & (-X) is always a power of two or zero.
    if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
      return true;
    return false;
  }

  // Adding a power-of-two or zero to the same power-of-two or zero yields
  // either the original power-of-two, a larger power-of-two or zero.
  if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
    const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
    if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
      if (match(X, m_And(m_Specific(Y), m_Value())) ||
          match(X, m_And(m_Value(), m_Specific(Y))))
        if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
          return true;
      if (match(Y, m_And(m_Specific(X), m_Value())) ||
          match(Y, m_And(m_Value(), m_Specific(X))))
        if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
          return true;

      unsigned BitWidth = V->getType()->getScalarSizeInBits();
      KnownBits LHSBits(BitWidth);
      computeKnownBits(X, LHSBits, Depth, Q);

      KnownBits RHSBits(BitWidth);
      computeKnownBits(Y, RHSBits, Depth, Q);
      // If i8 V is a power of two or zero:
      //  ZeroBits: 1 1 1 0 1 1 1 1
      // ~ZeroBits: 0 0 0 1 0 0 0 0
      if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
        // If OrZero isn't set, we cannot give back a zero result.
        // Make sure either the LHS or RHS has a bit set.
        if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
          return true;
    }
  }

  // An exact divide or right shift can only shift off zero bits, so the result
  // is a power of two only if the first operand is a power of two and not
  // copying a sign bit (sdiv int_min, 2).
  if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
      match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
    return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
                                  Depth, Q);
  }

  return false;
}

/// \brief Test whether a GEP's result is known to be non-null.
///
/// Uses properties inherent in a GEP to try to determine whether it is known
/// to be non-null.
///
/// Currently this routine does not support vector GEPs.
static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
                              const Query &Q) {
  if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
    return false;

  // FIXME: Support vector-GEPs.
  assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");

  // If the base pointer is non-null, we cannot walk to a null address with an
  // inbounds GEP in address space zero.
  if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
    return true;

  // Walk the GEP operands and see if any operand introduces a non-zero offset.
  // If so, then the GEP cannot produce a null pointer, as doing so would
  // inherently violate the inbounds contract within address space zero.
  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
       GTI != GTE; ++GTI) {
    // Struct types are easy -- they must always be indexed by a constant.
    if (StructType *STy = GTI.getStructTypeOrNull()) {
      ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
      unsigned ElementIdx = OpC->getZExtValue();
      const StructLayout *SL = Q.DL.getStructLayout(STy);
      uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
      if (ElementOffset > 0)
        return true;
      continue;
    }

    // If we have a zero-sized type, the index doesn't matter. Keep looping.
    if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
      continue;

    // Fast path the constant operand case both for efficiency and so we don't
    // increment Depth when just zipping down an all-constant GEP.
    if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
      if (!OpC->isZero())
        return true;
      continue;
    }

    // We post-increment Depth here because while isKnownNonZero increments it
    // as well, when we pop back up that increment won't persist. We don't want
    // to recurse 10k times just because we have 10k GEP operands. We don't
    // bail completely out because we want to handle constant GEPs regardless
    // of depth.
    if (Depth++ >= MaxDepth)
      continue;

    if (isKnownNonZero(GTI.getOperand(), Depth, Q))
      return true;
  }

  return false;
}

static bool isKnownNonNullFromDominatingCondition(const Value *V,
                                                  const Instruction *CtxI,
                                                  const DominatorTree *DT) {
  assert(V->getType()->isPointerTy() && "V must be pointer type");
  assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");

  if (!CtxI || !DT)
    return false;

  unsigned NumUsesExplored = 0;
  for (auto *U : V->users()) {
    // Avoid massive lists
    if (NumUsesExplored >= DomConditionsMaxUses)
      break;
    NumUsesExplored++;

    // If the value is used as an argument to a call or invoke, then argument
    // attributes may provide an answer about null-ness.
    if (auto CS = ImmutableCallSite(U))
      if (auto *CalledFunc = CS.getCalledFunction())
        for (const Argument &Arg : CalledFunc->args())
          if (CS.getArgOperand(Arg.getArgNo()) == V &&
              Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
            return true;

    // Consider only compare instructions uniquely controlling a branch
    CmpInst::Predicate Pred;
    if (!match(const_cast<User *>(U),
               m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
        (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
      continue;

    for (auto *CmpU : U->users()) {
      if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
        assert(BI->isConditional() && "uses a comparison!");

        BasicBlock *NonNullSuccessor =
            BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
        BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
        if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
          return true;
      } else if (Pred == ICmpInst::ICMP_NE &&
                 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
                 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
        return true;
      }
    }
  }

  return false;
}

/// Does the 'Range' metadata (which must be a valid MD_range operand list)
/// ensure that the value it's attached to is never Value?  'RangeType' is
/// is the type of the value described by the range.
static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
  const unsigned NumRanges = Ranges->getNumOperands() / 2;
  assert(NumRanges >= 1);
  for (unsigned i = 0; i < NumRanges; ++i) {
    ConstantInt *Lower =
        mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
    ConstantInt *Upper =
        mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
    ConstantRange Range(Lower->getValue(), Upper->getValue());
    if (Range.contains(Value))
      return false;
  }
  return true;
}

/// Return true if the given value is known to be non-zero when defined. For
/// vectors, return true if every element is known to be non-zero when
/// defined. For pointers, if the context instruction and dominator tree are
/// specified, perform context-sensitive analysis and return true if the
/// pointer couldn't possibly be null at the specified instruction.
/// Supports values with integer or pointer type and vectors of integers.
bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
  if (auto *C = dyn_cast<Constant>(V)) {
    if (C->isNullValue())
      return false;
    if (isa<ConstantInt>(C))
      // Must be non-zero due to null test above.
      return true;

    // For constant vectors, check that all elements are undefined or known
    // non-zero to determine that the whole vector is known non-zero.
    if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
      for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
        Constant *Elt = C->getAggregateElement(i);
        if (!Elt || Elt->isNullValue())
          return false;
        if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
          return false;
      }
      return true;
    }

    // A global variable in address space 0 is non null unless extern weak
    // or an absolute symbol reference. Other address spaces may have null as a
    // valid address for a global, so we can't assume anything.
    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
      if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
          GV->getType()->getAddressSpace() == 0)
        return true;
    } else
      return false;
  }

  if (auto *I = dyn_cast<Instruction>(V)) {
    if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
      // If the possible ranges don't contain zero, then the value is
      // definitely non-zero.
      if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
        const APInt ZeroValue(Ty->getBitWidth(), 0);
        if (rangeMetadataExcludesValue(Ranges, ZeroValue))
          return true;
      }
    }
  }

  // Check for pointer simplifications.
  if (V->getType()->isPointerTy()) {
    // Alloca never returns null, malloc might.
    if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
      return true;

    // A byval, inalloca, or nonnull argument is never null.
    if (const Argument *A = dyn_cast<Argument>(V))
      if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
        return true;

    // A Load tagged with nonnull metadata is never null.
    if (const LoadInst *LI = dyn_cast<LoadInst>(V))
      if (LI->getMetadata(LLVMContext::MD_nonnull))
        return true;

    if (auto CS = ImmutableCallSite(V))
      if (CS.isReturnNonNull())
        return true;
  }

  // The remaining tests are all recursive, so bail out if we hit the limit.
  if (Depth++ >= MaxDepth)
    return false;

  // Check for recursive pointer simplifications.
  if (V->getType()->isPointerTy()) {
    if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
      return true;

    if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
      if (isGEPKnownNonNull(GEP, Depth, Q))
        return true;
  }

  unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);

  // X | Y != 0 if X != 0 or Y != 0.
  Value *X = nullptr, *Y = nullptr;
  if (match(V, m_Or(m_Value(X), m_Value(Y))))
    return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);

  // ext X != 0 if X != 0.
  if (isa<SExtInst>(V) || isa<ZExtInst>(V))
    return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);

  // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
  // if the lowest bit is shifted off the end.
  if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
    // shl nuw can't remove any non-zero bits.
    const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
    if (BO->hasNoUnsignedWrap())
      return isKnownNonZero(X, Depth, Q);

    KnownBits Known(BitWidth);
    computeKnownBits(X, Known, Depth, Q);
    if (Known.One[0])
      return true;
  }
  // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
  // defined if the sign bit is shifted off the end.
  else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
    // shr exact can only shift out zero bits.
    const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
    if (BO->isExact())
      return isKnownNonZero(X, Depth, Q);

    KnownBits Known = computeKnownBits(X, Depth, Q);
    if (Known.isNegative())
      return true;

    // If the shifter operand is a constant, and all of the bits shifted
    // out are known to be zero, and X is known non-zero then at least one
    // non-zero bit must remain.
    if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
      auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
      // Is there a known one in the portion not shifted out?
      if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
        return true;
      // Are all the bits to be shifted out known zero?
      if (Known.countMinTrailingZeros() >= ShiftVal)
        return isKnownNonZero(X, Depth, Q);
    }
  }
  // div exact can only produce a zero if the dividend is zero.
  else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
    return isKnownNonZero(X, Depth, Q);
  }
  // X + Y.
  else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
    KnownBits XKnown = computeKnownBits(X, Depth, Q);
    KnownBits YKnown = computeKnownBits(Y, Depth, Q);

    // If X and Y are both non-negative (as signed values) then their sum is not
    // zero unless both X and Y are zero.
    if (XKnown.isNonNegative() && YKnown.isNonNegative())
      if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
        return true;

    // If X and Y are both negative (as signed values) then their sum is not
    // zero unless both X and Y equal INT_MIN.
    if (XKnown.isNegative() && YKnown.isNegative()) {
      APInt Mask = APInt::getSignedMaxValue(BitWidth);
      // The sign bit of X is set.  If some other bit is set then X is not equal
      // to INT_MIN.
      if (XKnown.One.intersects(Mask))
        return true;
      // The sign bit of Y is set.  If some other bit is set then Y is not equal
      // to INT_MIN.
      if (YKnown.One.intersects(Mask))
        return true;
    }

    // The sum of a non-negative number and a power of two is not zero.
    if (XKnown.isNonNegative() &&
        isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
      return true;
    if (YKnown.isNonNegative() &&
        isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
      return true;
  }
  // X * Y.
  else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
    const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
    // If X and Y are non-zero then so is X * Y as long as the multiplication
    // does not overflow.
    if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
        isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
      return true;
  }
  // (C ? X : Y) != 0 if X != 0 and Y != 0.
  else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
    if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
        isKnownNonZero(SI->getFalseValue(), Depth, Q))
      return true;
  }
  // PHI
  else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
    // Try and detect a recurrence that monotonically increases from a
    // starting value, as these are common as induction variables.
    if (PN->getNumIncomingValues() == 2) {
      Value *Start = PN->getIncomingValue(0);
      Value *Induction = PN->getIncomingValue(1);
      if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
        std::swap(Start, Induction);
      if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
        if (!C->isZero() && !C->isNegative()) {
          ConstantInt *X;
          if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
               match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
              !X->isNegative())
            return true;
        }
      }
    }
    // Check if all incoming values are non-zero constant.
    bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
      return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
    });
    if (AllNonZeroConstants)
      return true;
  }

  KnownBits Known(BitWidth);
  computeKnownBits(V, Known, Depth, Q);
  return Known.One != 0;
}

/// Return true if V2 == V1 + X, where X is known non-zero.
static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
  const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
  if (!BO || BO->getOpcode() != Instruction::Add)
    return false;
  Value *Op = nullptr;
  if (V2 == BO->getOperand(0))
    Op = BO->getOperand(1);
  else if (V2 == BO->getOperand(1))
    Op = BO->getOperand(0);
  else
    return false;
  return isKnownNonZero(Op, 0, Q);
}

/// Return true if it is known that V1 != V2.
static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
  if (V1 == V2)
    return false;
  if (V1->getType() != V2->getType())
    // We can't look through casts yet.
    return false;
  if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
    return true;

  if (V1->getType()->isIntOrIntVectorTy()) {
    // Are any known bits in V1 contradictory to known bits in V2? If V1
    // has a known zero where V2 has a known one, they must not be equal.
    KnownBits Known1 = computeKnownBits(V1, 0, Q);
    KnownBits Known2 = computeKnownBits(V2, 0, Q);

    if (Known1.Zero.intersects(Known2.One) ||
        Known2.Zero.intersects(Known1.One))
      return true;
  }
  return false;
}

/// Return true if 'V & Mask' is known to be zero.  We use this predicate to
/// simplify operations downstream. Mask is known to be zero for bits that V
/// cannot have.
///
/// This function is defined on values with integer type, values with pointer
/// type, and vectors of integers.  In the case
/// where V is a vector, the mask, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
                       const Query &Q) {
  KnownBits Known(Mask.getBitWidth());
  computeKnownBits(V, Known, Depth, Q);
  return Mask.isSubsetOf(Known.Zero);
}

/// For vector constants, loop over the elements and find the constant with the
/// minimum number of sign bits. Return 0 if the value is not a vector constant
/// or if any element was not analyzed; otherwise, return the count for the
/// element with the minimum number of sign bits.
static unsigned computeNumSignBitsVectorConstant(const Value *V,
                                                 unsigned TyBits) {
  const auto *CV = dyn_cast<Constant>(V);
  if (!CV || !CV->getType()->isVectorTy())
    return 0;

  unsigned MinSignBits = TyBits;
  unsigned NumElts = CV->getType()->getVectorNumElements();
  for (unsigned i = 0; i != NumElts; ++i) {
    // If we find a non-ConstantInt, bail out.
    auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
    if (!Elt)
      return 0;

    MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
  }

  return MinSignBits;
}

static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
                                       const Query &Q);

static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
                                   const Query &Q) {
  unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
  assert(Result > 0 && "At least one sign bit needs to be present!");
  return Result;
}

/// Return the number of times the sign bit of the register is replicated into
/// the other bits. We know that at least 1 bit is always equal to the sign bit
/// (itself), but other cases can give us information. For example, immediately
/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
/// other, so we return 3. For vectors, return the number of sign bits for the
/// vector element with the mininum number of known sign bits.
static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
                                       const Query &Q) {
  assert(Depth <= MaxDepth && "Limit Search Depth");

  // We return the minimum number of sign bits that are guaranteed to be present
  // in V, so for undef we have to conservatively return 1.  We don't have the
  // same behavior for poison though -- that's a FIXME today.

  unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
  unsigned Tmp, Tmp2;
  unsigned FirstAnswer = 1;

  // Note that ConstantInt is handled by the general computeKnownBits case
  // below.

  if (Depth == MaxDepth)
    return 1;  // Limit search depth.

  const Operator *U = dyn_cast<Operator>(V);
  switch (Operator::getOpcode(V)) {
  default: break;
  case Instruction::SExt:
    Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
    return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;

  case Instruction::SDiv: {
    const APInt *Denominator;
    // sdiv X, C -> adds log(C) sign bits.
    if (match(U->getOperand(1), m_APInt(Denominator))) {

      // Ignore non-positive denominator.
      if (!Denominator->isStrictlyPositive())
        break;

      // Calculate the incoming numerator bits.
      unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);

      // Add floor(log(C)) bits to the numerator bits.
      return std::min(TyBits, NumBits + Denominator->logBase2());
    }
    break;
  }

  case Instruction::SRem: {
    const APInt *Denominator;
    // srem X, C -> we know that the result is within [-C+1,C) when C is a
    // positive constant.  This let us put a lower bound on the number of sign
    // bits.
    if (match(U->getOperand(1), m_APInt(Denominator))) {

      // Ignore non-positive denominator.
      if (!Denominator->isStrictlyPositive())
        break;

      // Calculate the incoming numerator bits. SRem by a positive constant
      // can't lower the number of sign bits.
      unsigned NumrBits =
          ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);

      // Calculate the leading sign bit constraints by examining the
      // denominator.  Given that the denominator is positive, there are two
      // cases:
      //
      //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
      //     (1 << ceilLogBase2(C)).
      //
      //  2. the numerator is negative.  Then the result range is (-C,0] and
      //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
      //
      // Thus a lower bound on the number of sign bits is `TyBits -
      // ceilLogBase2(C)`.

      unsigned ResBits = TyBits - Denominator->ceilLogBase2();
      return std::max(NumrBits, ResBits);
    }
    break;
  }

  case Instruction::AShr: {
    Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
    // ashr X, C   -> adds C sign bits.  Vectors too.
    const APInt *ShAmt;
    if (match(U->getOperand(1), m_APInt(ShAmt))) {
      unsigned ShAmtLimited = ShAmt->getZExtValue();
      if (ShAmtLimited >= TyBits)
        break;  // Bad shift.
      Tmp += ShAmtLimited;
      if (Tmp > TyBits) Tmp = TyBits;
    }
    return Tmp;
  }
  case Instruction::Shl: {
    const APInt *ShAmt;
    if (match(U->getOperand(1), m_APInt(ShAmt))) {
      // shl destroys sign bits.
      Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
      Tmp2 = ShAmt->getZExtValue();
      if (Tmp2 >= TyBits ||      // Bad shift.
          Tmp2 >= Tmp) break;    // Shifted all sign bits out.
      return Tmp - Tmp2;
    }
    break;
  }
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:    // NOT is handled here.
    // Logical binary ops preserve the number of sign bits at the worst.
    Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
    if (Tmp != 1) {
      Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
      FirstAnswer = std::min(Tmp, Tmp2);
      // We computed what we know about the sign bits as our first
      // answer. Now proceed to the generic code that uses
      // computeKnownBits, and pick whichever answer is better.
    }
    break;

  case Instruction::Select:
    Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
    if (Tmp == 1) return 1;  // Early out.
    Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
    return std::min(Tmp, Tmp2);

  case Instruction::Add:
    // Add can have at most one carry bit.  Thus we know that the output
    // is, at worst, one more bit than the inputs.
    Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
    if (Tmp == 1) return 1;  // Early out.

    // Special case decrementing a value (ADD X, -1):
    if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
      if (CRHS->isAllOnesValue()) {
        KnownBits Known(TyBits);
        computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);

        // If the input is known to be 0 or 1, the output is 0/-1, which is all
        // sign bits set.
        if ((Known.Zero | 1).isAllOnesValue())
          return TyBits;

        // If we are subtracting one from a positive number, there is no carry
        // out of the result.
        if (Known.isNonNegative())
          return Tmp;
      }

    Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
    if (Tmp2 == 1) return 1;
    return std::min(Tmp, Tmp2)-1;

  case Instruction::Sub:
    Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
    if (Tmp2 == 1) return 1;

    // Handle NEG.
    if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
      if (CLHS->isNullValue()) {
        KnownBits Known(TyBits);
        computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
        // If the input is known to be 0 or 1, the output is 0/-1, which is all
        // sign bits set.
        if ((Known.Zero | 1).isAllOnesValue())
          return TyBits;

        // If the input is known to be positive (the sign bit is known clear),
        // the output of the NEG has the same number of sign bits as the input.
        if (Known.isNonNegative())
          return Tmp2;

        // Otherwise, we treat this like a SUB.
      }

    // Sub can have at most one carry bit.  Thus we know that the output
    // is, at worst, one more bit than the inputs.
    Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
    if (Tmp == 1) return 1;  // Early out.
    return std::min(Tmp, Tmp2)-1;

  case Instruction::Mul: {
    // The output of the Mul can be at most twice the valid bits in the inputs.
    unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
    if (SignBitsOp0 == 1) return 1;  // Early out.
    unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
    if (SignBitsOp1 == 1) return 1;
    unsigned OutValidBits =
        (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
    return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
  }

  case Instruction::PHI: {
    const PHINode *PN = cast<PHINode>(U);
    unsigned NumIncomingValues = PN->getNumIncomingValues();
    // Don't analyze large in-degree PHIs.
    if (NumIncomingValues > 4) break;
    // Unreachable blocks may have zero-operand PHI nodes.
    if (NumIncomingValues == 0) break;

    // Take the minimum of all incoming values.  This can't infinitely loop
    // because of our depth threshold.
    Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
    for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
      if (Tmp == 1) return Tmp;
      Tmp = std::min(
          Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
    }
    return Tmp;
  }

  case Instruction::Trunc:
    // FIXME: it's tricky to do anything useful for this, but it is an important
    // case for targets like X86.
    break;

  case Instruction::ExtractElement:
    // Look through extract element. At the moment we keep this simple and skip
    // tracking the specific element. But at least we might find information
    // valid for all elements of the vector (for example if vector is sign
    // extended, shifted, etc).
    return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
  }

  // Finally, if we can prove that the top bits of the result are 0's or 1's,
  // use this information.

  // If we can examine all elements of a vector constant successfully, we're
  // done (we can't do any better than that). If not, keep trying.
  if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
    return VecSignBits;

  KnownBits Known(TyBits);
  computeKnownBits(V, Known, Depth, Q);

  // If we know that the sign bit is either zero or one, determine the number of
  // identical bits in the top of the input value.
  return std::max(FirstAnswer, Known.countMinSignBits());
}

/// This function computes the integer multiple of Base that equals V.
/// If successful, it returns true and returns the multiple in
/// Multiple. If unsuccessful, it returns false. It looks
/// through SExt instructions only if LookThroughSExt is true.
bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
                           bool LookThroughSExt, unsigned Depth) {
  const unsigned MaxDepth = 6;

  assert(V && "No Value?");
  assert(Depth <= MaxDepth && "Limit Search Depth");
  assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");

  Type *T = V->getType();

  ConstantInt *CI = dyn_cast<ConstantInt>(V);

  if (Base == 0)
    return false;

  if (Base == 1) {
    Multiple = V;
    return true;
  }

  ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
  Constant *BaseVal = ConstantInt::get(T, Base);
  if (CO && CO == BaseVal) {
    // Multiple is 1.
    Multiple = ConstantInt::get(T, 1);
    return true;
  }

  if (CI && CI->getZExtValue() % Base == 0) {
    Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
    return true;
  }

  if (Depth == MaxDepth) return false;  // Limit search depth.

  Operator *I = dyn_cast<Operator>(V);
  if (!I) return false;

  switch (I->getOpcode()) {
  default: break;
  case Instruction::SExt:
    if (!LookThroughSExt) return false;
    // otherwise fall through to ZExt
    LLVM_FALLTHROUGH;
  case Instruction::ZExt:
    return ComputeMultiple(I->getOperand(0), Base, Multiple,
                           LookThroughSExt, Depth+1);
  case Instruction::Shl:
  case Instruction::Mul: {
    Value *Op0 = I->getOperand(0);
    Value *Op1 = I->getOperand(1);

    if (I->getOpcode() == Instruction::Shl) {
      ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
      if (!Op1CI) return false;
      // Turn Op0 << Op1 into Op0 * 2^Op1
      APInt Op1Int = Op1CI->getValue();
      uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
      APInt API(Op1Int.getBitWidth(), 0);
      API.setBit(BitToSet);
      Op1 = ConstantInt::get(V->getContext(), API);
    }

    Value *Mul0 = nullptr;
    if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
      if (Constant *Op1C = dyn_cast<Constant>(Op1))
        if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
          if (Op1C->getType()->getPrimitiveSizeInBits() <
              MulC->getType()->getPrimitiveSizeInBits())
            Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
          if (Op1C->getType()->getPrimitiveSizeInBits() >
              MulC->getType()->getPrimitiveSizeInBits())
            MulC = ConstantExpr::getZExt(MulC, Op1C->getType());

          // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
          Multiple = ConstantExpr::getMul(MulC, Op1C);
          return true;
        }

      if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
        if (Mul0CI->getValue() == 1) {
          // V == Base * Op1, so return Op1
          Multiple = Op1;
          return true;
        }
    }

    Value *Mul1 = nullptr;
    if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
      if (Constant *Op0C = dyn_cast<Constant>(Op0))
        if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
          if (Op0C->getType()->getPrimitiveSizeInBits() <
              MulC->getType()->getPrimitiveSizeInBits())
            Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
          if (Op0C->getType()->getPrimitiveSizeInBits() >
              MulC->getType()->getPrimitiveSizeInBits())
            MulC = ConstantExpr::getZExt(MulC, Op0C->getType());

          // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
          Multiple = ConstantExpr::getMul(MulC, Op0C);
          return true;
        }

      if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
        if (Mul1CI->getValue() == 1) {
          // V == Base * Op0, so return Op0
          Multiple = Op0;
          return true;
        }
    }
  }
  }

  // We could not determine if V is a multiple of Base.
  return false;
}

Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
                                            const TargetLibraryInfo *TLI) {
  const Function *F = ICS.getCalledFunction();
  if (!F)
    return Intrinsic::not_intrinsic;

  if (F->isIntrinsic())
    return F->getIntrinsicID();

  if (!TLI)
    return Intrinsic::not_intrinsic;

  LibFunc Func;
  // We're going to make assumptions on the semantics of the functions, check
  // that the target knows that it's available in this environment and it does
  // not have local linkage.
  if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
    return Intrinsic::not_intrinsic;

  if (!ICS.onlyReadsMemory())
    return Intrinsic::not_intrinsic;

  // Otherwise check if we have a call to a function that can be turned into a
  // vector intrinsic.
  switch (Func) {
  default:
    break;
  case LibFunc_sin:
  case LibFunc_sinf:
  case LibFunc_sinl:
    return Intrinsic::sin;
  case LibFunc_cos:
  case LibFunc_cosf:
  case LibFunc_cosl:
    return Intrinsic::cos;
  case LibFunc_exp:
  case LibFunc_expf:
  case LibFunc_expl:
    return Intrinsic::exp;
  case LibFunc_exp2:
  case LibFunc_exp2f:
  case LibFunc_exp2l:
    return Intrinsic::exp2;
  case LibFunc_log:
  case LibFunc_logf:
  case LibFunc_logl:
    return Intrinsic::log;
  case LibFunc_log10:
  case LibFunc_log10f:
  case LibFunc_log10l:
    return Intrinsic::log10;
  case LibFunc_log2:
  case LibFunc_log2f:
  case LibFunc_log2l:
    return Intrinsic::log2;
  case LibFunc_fabs:
  case LibFunc_fabsf:
  case LibFunc_fabsl:
    return Intrinsic::fabs;
  case LibFunc_fmin:
  case LibFunc_fminf:
  case LibFunc_fminl:
    return Intrinsic::minnum;
  case LibFunc_fmax:
  case LibFunc_fmaxf:
  case LibFunc_fmaxl:
    return Intrinsic::maxnum;
  case LibFunc_copysign:
  case LibFunc_copysignf:
  case LibFunc_copysignl:
    return Intrinsic::copysign;
  case LibFunc_floor:
  case LibFunc_floorf:
  case LibFunc_floorl:
    return Intrinsic::floor;
  case LibFunc_ceil:
  case LibFunc_ceilf:
  case LibFunc_ceill:
    return Intrinsic::ceil;
  case LibFunc_trunc:
  case LibFunc_truncf:
  case LibFunc_truncl:
    return Intrinsic::trunc;
  case LibFunc_rint:
  case LibFunc_rintf:
  case LibFunc_rintl:
    return Intrinsic::rint;
  case LibFunc_nearbyint:
  case LibFunc_nearbyintf:
  case LibFunc_nearbyintl:
    return Intrinsic::nearbyint;
  case LibFunc_round:
  case LibFunc_roundf:
  case LibFunc_roundl:
    return Intrinsic::round;
  case LibFunc_pow:
  case LibFunc_powf:
  case LibFunc_powl:
    return Intrinsic::pow;
  case LibFunc_sqrt:
  case LibFunc_sqrtf:
  case LibFunc_sqrtl:
    return Intrinsic::sqrt;
  }

  return Intrinsic::not_intrinsic;
}

/// Return true if we can prove that the specified FP value is never equal to
/// -0.0.
///
/// NOTE: this function will need to be revisited when we support non-default
/// rounding modes!
bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
                                unsigned Depth) {
  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
    return !CFP->getValueAPF().isNegZero();

  if (Depth == MaxDepth)
    return false;  // Limit search depth.

  const Operator *I = dyn_cast<Operator>(V);
  if (!I) return false;

  // Check if the nsz fast-math flag is set
  if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
    if (FPO->hasNoSignedZeros())
      return true;

  // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
  if (I->getOpcode() == Instruction::FAdd)
    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
      if (CFP->isNullValue())
        return true;

  // sitofp and uitofp turn into +0.0 for zero.
  if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
    return true;

  if (const CallInst *CI = dyn_cast<CallInst>(I)) {
    Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
    switch (IID) {
    default:
      break;
    // sqrt(-0.0) = -0.0, no other negative results are possible.
    case Intrinsic::sqrt:
      return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
    // fabs(x) != -0.0
    case Intrinsic::fabs:
      return true;
    }
  }

  return false;
}

/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
/// bit despite comparing equal.
static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
                                            const TargetLibraryInfo *TLI,
                                            bool SignBitOnly,
                                            unsigned Depth) {
  // TODO: This function does not do the right thing when SignBitOnly is true
  // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
  // which flips the sign bits of NaNs.  See
  // https://llvm.org/bugs/show_bug.cgi?id=31702.

  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
    return !CFP->getValueAPF().isNegative() ||
           (!SignBitOnly && CFP->getValueAPF().isZero());
  }

  if (Depth == MaxDepth)
    return false; // Limit search depth.

  const Operator *I = dyn_cast<Operator>(V);
  if (!I)
    return false;

  switch (I->getOpcode()) {
  default:
    break;
  // Unsigned integers are always nonnegative.
  case Instruction::UIToFP:
    return true;
  case Instruction::FMul:
    // x*x is always non-negative or a NaN.
    if (I->getOperand(0) == I->getOperand(1) &&
        (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
      return true;

    LLVM_FALLTHROUGH;
  case Instruction::FAdd:
  case Instruction::FDiv:
  case Instruction::FRem:
    return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
                                           Depth + 1) &&
           cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
                                           Depth + 1);
  case Instruction::Select:
    return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
                                           Depth + 1) &&
           cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
                                           Depth + 1);
  case Instruction::FPExt:
  case Instruction::FPTrunc:
    // Widening/narrowing never change sign.
    return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
                                           Depth + 1);
  case Instruction::Call:
    const auto *CI = cast<CallInst>(I);
    Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
    switch (IID) {
    default:
      break;
    case Intrinsic::maxnum:
      return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
                                             Depth + 1) ||
             cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
                                             Depth + 1);
    case Intrinsic::minnum:
      return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
                                             Depth + 1) &&
             cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
                                             Depth + 1);
    case Intrinsic::exp:
    case Intrinsic::exp2:
    case Intrinsic::fabs:
      return true;

    case Intrinsic::sqrt:
      // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
      if (!SignBitOnly)
        return true;
      return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
                                 CannotBeNegativeZero(CI->getOperand(0), TLI));

    case Intrinsic::powi:
      if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
        // powi(x,n) is non-negative if n is even.
        if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
          return true;
      }
      // TODO: This is not correct.  Given that exp is an integer, here are the
      // ways that pow can return a negative value:
      //
      //   pow(x, exp)    --> negative if exp is odd and x is negative.
      //   pow(-0, exp)   --> -inf if exp is negative odd.
      //   pow(-0, exp)   --> -0 if exp is positive odd.
      //   pow(-inf, exp) --> -0 if exp is negative odd.
      //   pow(-inf, exp) --> -inf if exp is positive odd.
      //
      // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
      // but we must return false if x == -0.  Unfortunately we do not currently
      // have a way of expressing this constraint.  See details in
      // https://llvm.org/bugs/show_bug.cgi?id=31702.
      return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
                                             Depth + 1);

    case Intrinsic::fma:
    case Intrinsic::fmuladd:
      // x*x+y is non-negative if y is non-negative.
      return I->getOperand(0) == I->getOperand(1) &&
             (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
             cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
                                             Depth + 1);
    }
    break;
  }
  return false;
}

bool llvm::CannotBeOrderedLessThanZero(const Value *V,
                                       const TargetLibraryInfo *TLI) {
  return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
}

bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
  return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
}

bool llvm::isKnownNeverNaN(const Value *V) {
  assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");

  // If we're told that NaNs won't happen, assume they won't.
  if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
    if (FPMathOp->hasNoNaNs())
      return true;

  // TODO: Handle instructions and potentially recurse like other 'isKnown'
  // functions. For example, the result of sitofp is never NaN.

  // Handle scalar constants.
  if (auto *CFP = dyn_cast<ConstantFP>(V))
    return !CFP->isNaN();

  // Bail out for constant expressions, but try to handle vector constants.
  if (!V->getType()->isVectorTy() || !isa<Constant>(V))
    return false;

  // For vectors, verify that each element is not NaN.
  unsigned NumElts = V->getType()->getVectorNumElements();
  for (unsigned i = 0; i != NumElts; ++i) {
    Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
    if (!Elt)
      return false;
    if (isa<UndefValue>(Elt))
      continue;
    auto *CElt = dyn_cast<ConstantFP>(Elt);
    if (!CElt || CElt->isNaN())
      return false;
  }
  // All elements were confirmed not-NaN or undefined.
  return true;
}

/// If the specified value can be set by repeating the same byte in memory,
/// return the i8 value that it is represented with.  This is
/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
/// byte store (e.g. i16 0x1234), return null.
Value *llvm::isBytewiseValue(Value *V) {
  // All byte-wide stores are splatable, even of arbitrary variables.
  if (V->getType()->isIntegerTy(8)) return V;

  // Handle 'null' ConstantArrayZero etc.
  if (Constant *C = dyn_cast<Constant>(V))
    if (C->isNullValue())
      return Constant::getNullValue(Type::getInt8Ty(V->getContext()));

  // Constant float and double values can be handled as integer values if the
  // corresponding integer value is "byteable".  An important case is 0.0.
  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
    if (CFP->getType()->isFloatTy())
      V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
    if (CFP->getType()->isDoubleTy())
      V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
    // Don't handle long double formats, which have strange constraints.
  }

  // We can handle constant integers that are multiple of 8 bits.
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    if (CI->getBitWidth() % 8 == 0) {
      assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");

      if (!CI->getValue().isSplat(8))
        return nullptr;
      return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
    }
  }

  // A ConstantDataArray/Vector is splatable if all its members are equal and
  // also splatable.
  if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
    Value *Elt = CA->getElementAsConstant(0);
    Value *Val = isBytewiseValue(Elt);
    if (!Val)
      return nullptr;

    for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
      if (CA->getElementAsConstant(I) != Elt)
        return nullptr;

    return Val;
  }

  // Conceptually, we could handle things like:
  //   %a = zext i8 %X to i16
  //   %b = shl i16 %a, 8
  //   %c = or i16 %a, %b
  // but until there is an example that actually needs this, it doesn't seem
  // worth worrying about.
  return nullptr;
}

// This is the recursive version of BuildSubAggregate. It takes a few different
// arguments. Idxs is the index within the nested struct From that we are
// looking at now (which is of type IndexedType). IdxSkip is the number of
// indices from Idxs that should be left out when inserting into the resulting
// struct. To is the result struct built so far, new insertvalue instructions
// build on that.
static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
                                SmallVectorImpl<unsigned> &Idxs,
                                unsigned IdxSkip,
                                Instruction *InsertBefore) {
  StructType *STy = dyn_cast<StructType>(IndexedType);
  if (STy) {
    // Save the original To argument so we can modify it
    Value *OrigTo = To;
    // General case, the type indexed by Idxs is a struct
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
      // Process each struct element recursively
      Idxs.push_back(i);
      Value *PrevTo = To;
      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
                             InsertBefore);
      Idxs.pop_back();
      if (!To) {
        // Couldn't find any inserted value for this index? Cleanup
        while (PrevTo != OrigTo) {
          InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
          PrevTo = Del->getAggregateOperand();
          Del->eraseFromParent();
        }
        // Stop processing elements
        break;
      }
    }
    // If we successfully found a value for each of our subaggregates
    if (To)
      return To;
  }
  // Base case, the type indexed by SourceIdxs is not a struct, or not all of
  // the struct's elements had a value that was inserted directly. In the latter
  // case, perhaps we can't determine each of the subelements individually, but
  // we might be able to find the complete struct somewhere.

  // Find the value that is at that particular spot
  Value *V = FindInsertedValue(From, Idxs);

  if (!V)
    return nullptr;

  // Insert the value in the new (sub) aggregrate
  return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
                                 "tmp", InsertBefore);
}

// This helper takes a nested struct and extracts a part of it (which is again a
// struct) into a new value. For example, given the struct:
// { a, { b, { c, d }, e } }
// and the indices "1, 1" this returns
// { c, d }.
//
// It does this by inserting an insertvalue for each element in the resulting
// struct, as opposed to just inserting a single struct. This will only work if
// each of the elements of the substruct are known (ie, inserted into From by an
// insertvalue instruction somewhere).
//
// All inserted insertvalue instructions are inserted before InsertBefore
static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
                                Instruction *InsertBefore) {
  assert(InsertBefore && "Must have someplace to insert!");
  Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
                                                             idx_range);
  Value *To = UndefValue::get(IndexedType);
  SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
  unsigned IdxSkip = Idxs.size();

  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
}

/// Given an aggregrate and an sequence of indices, see if
/// the scalar value indexed is already around as a register, for example if it
/// were inserted directly into the aggregrate.
///
/// If InsertBefore is not null, this function will duplicate (modified)
/// insertvalues when a part of a nested struct is extracted.
Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
                               Instruction *InsertBefore) {
  // Nothing to index? Just return V then (this is useful at the end of our
  // recursion).
  if (idx_range.empty())
    return V;
  // We have indices, so V should have an indexable type.
  assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
         "Not looking at a struct or array?");
  assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
         "Invalid indices for type?");

  if (Constant *C = dyn_cast<Constant>(V)) {
    C = C->getAggregateElement(idx_range[0]);
    if (!C) return nullptr;
    return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
  }

  if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
    // Loop the indices for the insertvalue instruction in parallel with the
    // requested indices
    const unsigned *req_idx = idx_range.begin();
    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
         i != e; ++i, ++req_idx) {
      if (req_idx == idx_range.end()) {
        // We can't handle this without inserting insertvalues
        if (!InsertBefore)
          return nullptr;

        // The requested index identifies a part of a nested aggregate. Handle
        // this specially. For example,
        // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
        // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
        // %C = extractvalue {i32, { i32, i32 } } %B, 1
        // This can be changed into
        // %A = insertvalue {i32, i32 } undef, i32 10, 0
        // %C = insertvalue {i32, i32 } %A, i32 11, 1
        // which allows the unused 0,0 element from the nested struct to be
        // removed.
        return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
                                 InsertBefore);
      }

      // This insert value inserts something else than what we are looking for.
      // See if the (aggregate) value inserted into has the value we are
      // looking for, then.
      if (*req_idx != *i)
        return FindInsertedValue(I->getAggregateOperand(), idx_range,
                                 InsertBefore);
    }
    // If we end up here, the indices of the insertvalue match with those
    // requested (though possibly only partially). Now we recursively look at
    // the inserted value, passing any remaining indices.
    return FindInsertedValue(I->getInsertedValueOperand(),
                             makeArrayRef(req_idx, idx_range.end()),
                             InsertBefore);
  }

  if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
    // If we're extracting a value from an aggregate that was extracted from
    // something else, we can extract from that something else directly instead.
    // However, we will need to chain I's indices with the requested indices.

    // Calculate the number of indices required
    unsigned size = I->getNumIndices() + idx_range.size();
    // Allocate some space to put the new indices in
    SmallVector<unsigned, 5> Idxs;
    Idxs.reserve(size);
    // Add indices from the extract value instruction
    Idxs.append(I->idx_begin(), I->idx_end());

    // Add requested indices
    Idxs.append(idx_range.begin(), idx_range.end());

    assert(Idxs.size() == size
           && "Number of indices added not correct?");

    return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
  }
  // Otherwise, we don't know (such as, extracting from a function return value
  // or load instruction)
  return nullptr;
}

/// Analyze the specified pointer to see if it can be expressed as a base
/// pointer plus a constant offset. Return the base and offset to the caller.
Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
                                              const DataLayout &DL) {
  unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
  APInt ByteOffset(BitWidth, 0);

  // We walk up the defs but use a visited set to handle unreachable code. In
  // that case, we stop after accumulating the cycle once (not that it
  // matters).
  SmallPtrSet<Value *, 16> Visited;
  while (Visited.insert(Ptr).second) {
    if (Ptr->getType()->isVectorTy())
      break;

    if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
      // If one of the values we have visited is an addrspacecast, then
      // the pointer type of this GEP may be different from the type
      // of the Ptr parameter which was passed to this function.  This
      // means when we construct GEPOffset, we need to use the size
      // of GEP's pointer type rather than the size of the original
      // pointer type.
      APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
      if (!GEP->accumulateConstantOffset(DL, GEPOffset))
        break;

      ByteOffset += GEPOffset.getSExtValue();

      Ptr = GEP->getPointerOperand();
    } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
               Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
      Ptr = cast<Operator>(Ptr)->getOperand(0);
    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
      if (GA->isInterposable())
        break;
      Ptr = GA->getAliasee();
    } else {
      break;
    }
  }
  Offset = ByteOffset.getSExtValue();
  return Ptr;
}

bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
                                       unsigned CharSize) {
  // Make sure the GEP has exactly three arguments.
  if (GEP->getNumOperands() != 3)
    return false;

  // Make sure the index-ee is a pointer to array of \p CharSize integers.
  // CharSize.
  ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
  if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
    return false;

  // Check to make sure that the first operand of the GEP is an integer and
  // has value 0 so that we are sure we're indexing into the initializer.
  const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
  if (!FirstIdx || !FirstIdx->isZero())
    return false;

  return true;
}

bool llvm::getConstantDataArrayInfo(const Value *V,
                                    ConstantDataArraySlice &Slice,
                                    unsigned ElementSize, uint64_t Offset) {
  assert(V);

  // Look through bitcast instructions and geps.
  V = V->stripPointerCasts();

  // If the value is a GEP instruction or constant expression, treat it as an
  // offset.
  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    // The GEP operator should be based on a pointer to string constant, and is
    // indexing into the string constant.
    if (!isGEPBasedOnPointerToString(GEP, ElementSize))
      return false;

    // If the second index isn't a ConstantInt, then this is a variable index
    // into the array.  If this occurs, we can't say anything meaningful about
    // the string.
    uint64_t StartIdx = 0;
    if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
      StartIdx = CI->getZExtValue();
    else
      return false;
    return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
                                    StartIdx + Offset);
  }

  // The GEP instruction, constant or instruction, must reference a global
  // variable that is a constant and is initialized. The referenced constant
  // initializer is the array that we'll use for optimization.
  const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
    return false;

  const ConstantDataArray *Array;
  ArrayType *ArrayTy;
  if (GV->getInitializer()->isNullValue()) {
    Type *GVTy = GV->getValueType();
    if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
      // A zeroinitializer for the array; there is no ConstantDataArray.
      Array = nullptr;
    } else {
      const DataLayout &DL = GV->getParent()->getDataLayout();
      uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
      uint64_t Length = SizeInBytes / (ElementSize / 8);
      if (Length <= Offset)
        return false;

      Slice.Array = nullptr;
      Slice.Offset = 0;
      Slice.Length = Length - Offset;
      return true;
    }
  } else {
    // This must be a ConstantDataArray.
    Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
    if (!Array)
      return false;
    ArrayTy = Array->getType();
  }
  if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
    return false;

  uint64_t NumElts = ArrayTy->getArrayNumElements();
  if (Offset > NumElts)
    return false;

  Slice.Array = Array;
  Slice.Offset = Offset;
  Slice.Length = NumElts - Offset;
  return true;
}

/// This function computes the length of a null-terminated C string pointed to
/// by V. If successful, it returns true and returns the string in Str.
/// If unsuccessful, it returns false.
bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
                                 uint64_t Offset, bool TrimAtNul) {
  ConstantDataArraySlice Slice;
  if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
    return false;

  if (Slice.Array == nullptr) {
    if (TrimAtNul) {
      Str = StringRef();
      return true;
    }
    if (Slice.Length == 1) {
      Str = StringRef("", 1);
      return true;
    }
    // We cannot instantiate a StringRef as we do not have an appropriate string
    // of 0s at hand.
    return false;
  }

  // Start out with the entire array in the StringRef.
  Str = Slice.Array->getAsString();
  // Skip over 'offset' bytes.
  Str = Str.substr(Slice.Offset);

  if (TrimAtNul) {
    // Trim off the \0 and anything after it.  If the array is not nul
    // terminated, we just return the whole end of string.  The client may know
    // some other way that the string is length-bound.
    Str = Str.substr(0, Str.find('\0'));
  }
  return true;
}

// These next two are very similar to the above, but also look through PHI
// nodes.
// TODO: See if we can integrate these two together.

/// If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'.  If we can't, return 0.
static uint64_t GetStringLengthH(const Value *V,
                                 SmallPtrSetImpl<const PHINode*> &PHIs,
                                 unsigned CharSize) {
  // Look through noop bitcast instructions.
  V = V->stripPointerCasts();

  // If this is a PHI node, there are two cases: either we have already seen it
  // or we haven't.
  if (const PHINode *PN = dyn_cast<PHINode>(V)) {
    if (!PHIs.insert(PN).second)
      return ~0ULL;  // already in the set.

    // If it was new, see if all the input strings are the same length.
    uint64_t LenSoFar = ~0ULL;
    for (Value *IncValue : PN->incoming_values()) {
      uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
      if (Len == 0) return 0; // Unknown length -> unknown.

      if (Len == ~0ULL) continue;

      if (Len != LenSoFar && LenSoFar != ~0ULL)
        return 0;    // Disagree -> unknown.
      LenSoFar = Len;
    }

    // Success, all agree.
    return LenSoFar;
  }

  // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
  if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
    uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
    if (Len1 == 0) return 0;
    uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
    if (Len2 == 0) return 0;
    if (Len1 == ~0ULL) return Len2;
    if (Len2 == ~0ULL) return Len1;
    if (Len1 != Len2) return 0;
    return Len1;
  }

  // Otherwise, see if we can read the string.
  ConstantDataArraySlice Slice;
  if (!getConstantDataArrayInfo(V, Slice, CharSize))
    return 0;

  if (Slice.Array == nullptr)
    return 1;

  // Search for nul characters
  unsigned NullIndex = 0;
  for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
    if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
      break;
  }

  return NullIndex + 1;
}

/// If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'.  If we can't, return 0.
uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
  if (!V->getType()->isPointerTy()) return 0;

  SmallPtrSet<const PHINode*, 32> PHIs;
  uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
  // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
  // an empty string as a length.
  return Len == ~0ULL ? 1 : Len;
}

/// \brief \p PN defines a loop-variant pointer to an object.  Check if the
/// previous iteration of the loop was referring to the same object as \p PN.
static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
                                         const LoopInfo *LI) {
  // Find the loop-defined value.
  Loop *L = LI->getLoopFor(PN->getParent());
  if (PN->getNumIncomingValues() != 2)
    return true;

  // Find the value from previous iteration.
  auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
  if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
    PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
  if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
    return true;

  // If a new pointer is loaded in the loop, the pointer references a different
  // object in every iteration.  E.g.:
  //    for (i)
  //       int *p = a[i];
  //       ...
  if (auto *Load = dyn_cast<LoadInst>(PrevValue))
    if (!L->isLoopInvariant(Load->getPointerOperand()))
      return false;
  return true;
}

Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
                                 unsigned MaxLookup) {
  if (!V->getType()->isPointerTy())
    return V;
  for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
      V = GEP->getPointerOperand();
    } else if (Operator::getOpcode(V) == Instruction::BitCast ||
               Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
      V = cast<Operator>(V)->getOperand(0);
    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
      if (GA->isInterposable())
        return V;
      V = GA->getAliasee();
    } else if (isa<AllocaInst>(V)) {
      // An alloca can't be further simplified.
      return V;
    } else {
      if (auto CS = CallSite(V))
        if (Value *RV = CS.getReturnedArgOperand()) {
          V = RV;
          continue;
        }

      // See if InstructionSimplify knows any relevant tricks.
      if (Instruction *I = dyn_cast<Instruction>(V))
        // TODO: Acquire a DominatorTree and AssumptionCache and use them.
        if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
          V = Simplified;
          continue;
        }

      return V;
    }
    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
  }
  return V;
}

void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
                                const DataLayout &DL, LoopInfo *LI,
                                unsigned MaxLookup) {
  SmallPtrSet<Value *, 4> Visited;
  SmallVector<Value *, 4> Worklist;
  Worklist.push_back(V);
  do {
    Value *P = Worklist.pop_back_val();
    P = GetUnderlyingObject(P, DL, MaxLookup);

    if (!Visited.insert(P).second)
      continue;

    if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
      Worklist.push_back(SI->getTrueValue());
      Worklist.push_back(SI->getFalseValue());
      continue;
    }

    if (PHINode *PN = dyn_cast<PHINode>(P)) {
      // If this PHI changes the underlying object in every iteration of the
      // loop, don't look through it.  Consider:
      //   int **A;
      //   for (i) {
      //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
      //     Curr = A[i];
      //     *Prev, *Curr;
      //
      // Prev is tracking Curr one iteration behind so they refer to different
      // underlying objects.
      if (!LI || !LI->isLoopHeader(PN->getParent()) ||
          isSameUnderlyingObjectInLoop(PN, LI))
        for (Value *IncValue : PN->incoming_values())
          Worklist.push_back(IncValue);
      continue;
    }

    Objects.push_back(P);
  } while (!Worklist.empty());
}

/// This is the function that does the work of looking through basic
/// ptrtoint+arithmetic+inttoptr sequences.
static const Value *getUnderlyingObjectFromInt(const Value *V) {
  do {
    if (const Operator *U = dyn_cast<Operator>(V)) {
      // If we find a ptrtoint, we can transfer control back to the
      // regular getUnderlyingObjectFromInt.
      if (U->getOpcode() == Instruction::PtrToInt)
        return U->getOperand(0);
      // If we find an add of a constant, a multiplied value, or a phi, it's
      // likely that the other operand will lead us to the base
      // object. We don't have to worry about the case where the
      // object address is somehow being computed by the multiply,
      // because our callers only care when the result is an
      // identifiable object.
      if (U->getOpcode() != Instruction::Add ||
          (!isa<ConstantInt>(U->getOperand(1)) &&
           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
           !isa<PHINode>(U->getOperand(1))))
        return V;
      V = U->getOperand(0);
    } else {
      return V;
    }
    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
  } while (true);
}

/// This is a wrapper around GetUnderlyingObjects and adds support for basic
/// ptrtoint+arithmetic+inttoptr sequences.
/// It returns false if unidentified object is found in GetUnderlyingObjects.
bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
                          SmallVectorImpl<Value *> &Objects,
                          const DataLayout &DL) {
  SmallPtrSet<const Value *, 16> Visited;
  SmallVector<const Value *, 4> Working(1, V);
  do {
    V = Working.pop_back_val();

    SmallVector<Value *, 4> Objs;
    GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);

    for (Value *V : Objs) {
      if (!Visited.insert(V).second)
        continue;
      if (Operator::getOpcode(V) == Instruction::IntToPtr) {
        const Value *O =
          getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
        if (O->getType()->isPointerTy()) {
          Working.push_back(O);
          continue;
        }
      }
      // If GetUnderlyingObjects fails to find an identifiable object,
      // getUnderlyingObjectsForCodeGen also fails for safety.
      if (!isIdentifiedObject(V)) {
        Objects.clear();
        return false;
      }
      Objects.push_back(const_cast<Value *>(V));
    }
  } while (!Working.empty());
  return true;
}

/// Return true if the only users of this pointer are lifetime markers.
bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
  for (const User *U : V->users()) {
    const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
    if (!II) return false;

    if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
        II->getIntrinsicID() != Intrinsic::lifetime_end)
      return false;
  }
  return true;
}

bool llvm::isSafeToSpeculativelyExecute(const Value *V,
                                        const Instruction *CtxI,
                                        const DominatorTree *DT) {
  const Operator *Inst = dyn_cast<Operator>(V);
  if (!Inst)
    return false;

  for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
    if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
      if (C->canTrap())
        return false;

  switch (Inst->getOpcode()) {
  default:
    return true;
  case Instruction::UDiv:
  case Instruction::URem: {
    // x / y is undefined if y == 0.
    const APInt *V;
    if (match(Inst->getOperand(1), m_APInt(V)))
      return *V != 0;
    return false;
  }
  case Instruction::SDiv:
  case Instruction::SRem: {
    // x / y is undefined if y == 0 or x == INT_MIN and y == -1
    const APInt *Numerator, *Denominator;
    if (!match(Inst->getOperand(1), m_APInt(Denominator)))
      return false;
    // We cannot hoist this division if the denominator is 0.
    if (*Denominator == 0)
      return false;
    // It's safe to hoist if the denominator is not 0 or -1.
    if (*Denominator != -1)
      return true;
    // At this point we know that the denominator is -1.  It is safe to hoist as
    // long we know that the numerator is not INT_MIN.
    if (match(Inst->getOperand(0), m_APInt(Numerator)))
      return !Numerator->isMinSignedValue();
    // The numerator *might* be MinSignedValue.
    return false;
  }
  case Instruction::Load: {
    const LoadInst *LI = cast<LoadInst>(Inst);
    if (!LI->isUnordered() ||
        // Speculative load may create a race that did not exist in the source.
        LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
        // Speculative load may load data from dirty regions.
        LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
      return false;
    const DataLayout &DL = LI->getModule()->getDataLayout();
    return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
                                              LI->getAlignment(), DL, CtxI, DT);
  }
  case Instruction::Call: {
    auto *CI = cast<const CallInst>(Inst);
    const Function *Callee = CI->getCalledFunction();

    // The called function could have undefined behavior or side-effects, even
    // if marked readnone nounwind.
    return Callee && Callee->isSpeculatable();
  }
  case Instruction::VAArg:
  case Instruction::Alloca:
  case Instruction::Invoke:
  case Instruction::PHI:
  case Instruction::Store:
  case Instruction::Ret:
  case Instruction::Br:
  case Instruction::IndirectBr:
  case Instruction::Switch:
  case Instruction::Unreachable:
  case Instruction::Fence:
  case Instruction::AtomicRMW:
  case Instruction::AtomicCmpXchg:
  case Instruction::LandingPad:
  case Instruction::Resume:
  case Instruction::CatchSwitch:
  case Instruction::CatchPad:
  case Instruction::CatchRet:
  case Instruction::CleanupPad:
  case Instruction::CleanupRet:
    return false; // Misc instructions which have effects
  }
}

bool llvm::mayBeMemoryDependent(const Instruction &I) {
  return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
}

OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
                                                   const Value *RHS,
                                                   const DataLayout &DL,
                                                   AssumptionCache *AC,
                                                   const Instruction *CxtI,
                                                   const DominatorTree *DT) {
  // Multiplying n * m significant bits yields a result of n + m significant
  // bits. If the total number of significant bits does not exceed the
  // result bit width (minus 1), there is no overflow.
  // This means if we have enough leading zero bits in the operands
  // we can guarantee that the result does not overflow.
  // Ref: "Hacker's Delight" by Henry Warren
  unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
  KnownBits LHSKnown(BitWidth);
  KnownBits RHSKnown(BitWidth);
  computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
  computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT);
  // Note that underestimating the number of zero bits gives a more
  // conservative answer.
  unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
                      RHSKnown.countMinLeadingZeros();
  // First handle the easy case: if we have enough zero bits there's
  // definitely no overflow.
  if (ZeroBits >= BitWidth)
    return OverflowResult::NeverOverflows;

  // Get the largest possible values for each operand.
  APInt LHSMax = ~LHSKnown.Zero;
  APInt RHSMax = ~RHSKnown.Zero;

  // We know the multiply operation doesn't overflow if the maximum values for
  // each operand will not overflow after we multiply them together.
  bool MaxOverflow;
  (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
  if (!MaxOverflow)
    return OverflowResult::NeverOverflows;

  // We know it always overflows if multiplying the smallest possible values for
  // the operands also results in overflow.
  bool MinOverflow;
  (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
  if (MinOverflow)
    return OverflowResult::AlwaysOverflows;

  return OverflowResult::MayOverflow;
}

OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
                                                   const Value *RHS,
                                                   const DataLayout &DL,
                                                   AssumptionCache *AC,
                                                   const Instruction *CxtI,
                                                   const DominatorTree *DT) {
  KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
  if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
    KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);

    if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
      // The sign bit is set in both cases: this MUST overflow.
      // Create a simple add instruction, and insert it into the struct.
      return OverflowResult::AlwaysOverflows;
    }

    if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
      // The sign bit is clear in both cases: this CANNOT overflow.
      // Create a simple add instruction, and insert it into the struct.
      return OverflowResult::NeverOverflows;
    }
  }

  return OverflowResult::MayOverflow;
}

/// \brief Return true if we can prove that adding the two values of the
/// knownbits will not overflow.
/// Otherwise return false.
static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
                                    const KnownBits &RHSKnown) {
  // Addition of two 2's complement numbers having opposite signs will never
  // overflow.
  if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
      (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
    return true;

  // If either of the values is known to be non-negative, adding them can only
  // overflow if the second is also non-negative, so we can assume that.
  // Two non-negative numbers will only overflow if there is a carry to the 
  // sign bit, so we can check if even when the values are as big as possible
  // there is no overflow to the sign bit.
  if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
    APInt MaxLHS = ~LHSKnown.Zero;
    MaxLHS.clearSignBit();
    APInt MaxRHS = ~RHSKnown.Zero;
    MaxRHS.clearSignBit();
    APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
    return Result.isSignBitClear();
  }

  // If either of the values is known to be negative, adding them can only
  // overflow if the second is also negative, so we can assume that.
  // Two negative number will only overflow if there is no carry to the sign
  // bit, so we can check if even when the values are as small as possible
  // there is overflow to the sign bit.
  if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
    APInt MinLHS = LHSKnown.One;
    MinLHS.clearSignBit();
    APInt MinRHS = RHSKnown.One;
    MinRHS.clearSignBit();
    APInt Result = std::move(MinLHS) + std::move(MinRHS);
    return Result.isSignBitSet();
  }

  // If we reached here it means that we know nothing about the sign bits.
  // In this case we can't know if there will be an overflow, since by 
  // changing the sign bits any two values can be made to overflow.
  return false;
}

static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
                                                  const Value *RHS,
                                                  const AddOperator *Add,
                                                  const DataLayout &DL,
                                                  AssumptionCache *AC,
                                                  const Instruction *CxtI,
                                                  const DominatorTree *DT) {
  if (Add && Add->hasNoSignedWrap()) {
    return OverflowResult::NeverOverflows;
  }

  // If LHS and RHS each have at least two sign bits, the addition will look
  // like
  //
  // XX..... +
  // YY.....
  //
  // If the carry into the most significant position is 0, X and Y can't both
  // be 1 and therefore the carry out of the addition is also 0.
  //
  // If the carry into the most significant position is 1, X and Y can't both
  // be 0 and therefore the carry out of the addition is also 1.
  //
  // Since the carry into the most significant position is always equal to
  // the carry out of the addition, there is no signed overflow.
  if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
      ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
    return OverflowResult::NeverOverflows;

  KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
  KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);

  if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
    return OverflowResult::NeverOverflows;

  // The remaining code needs Add to be available. Early returns if not so.
  if (!Add)
    return OverflowResult::MayOverflow;

  // If the sign of Add is the same as at least one of the operands, this add
  // CANNOT overflow. This is particularly useful when the sum is
  // @llvm.assume'ed non-negative rather than proved so from analyzing its
  // operands.
  bool LHSOrRHSKnownNonNegative =
      (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
  bool LHSOrRHSKnownNegative = 
      (LHSKnown.isNegative() || RHSKnown.isNegative());
  if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
    KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
    if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
        (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
      return OverflowResult::NeverOverflows;
    }
  }

  return OverflowResult::MayOverflow;
}

bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
                                     const DominatorTree &DT) {
#ifndef NDEBUG
  auto IID = II->getIntrinsicID();
  assert((IID == Intrinsic::sadd_with_overflow ||
          IID == Intrinsic::uadd_with_overflow ||
          IID == Intrinsic::ssub_with_overflow ||
          IID == Intrinsic::usub_with_overflow ||
          IID == Intrinsic::smul_with_overflow ||
          IID == Intrinsic::umul_with_overflow) &&
         "Not an overflow intrinsic!");
#endif

  SmallVector<const BranchInst *, 2> GuardingBranches;
  SmallVector<const ExtractValueInst *, 2> Results;

  for (const User *U : II->users()) {
    if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
      assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");

      if (EVI->getIndices()[0] == 0)
        Results.push_back(EVI);
      else {
        assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");

        for (const auto *U : EVI->users())
          if (const auto *B = dyn_cast<BranchInst>(U)) {
            assert(B->isConditional() && "How else is it using an i1?");
            GuardingBranches.push_back(B);
          }
      }
    } else {
      // We are using the aggregate directly in a way we don't want to analyze
      // here (storing it to a global, say).
      return false;
    }
  }

  auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
    BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
    if (!NoWrapEdge.isSingleEdge())
      return false;

    // Check if all users of the add are provably no-wrap.
    for (const auto *Result : Results) {
      // If the extractvalue itself is not executed on overflow, the we don't
      // need to check each use separately, since domination is transitive.
      if (DT.dominates(NoWrapEdge, Result->getParent()))
        continue;

      for (auto &RU : Result->uses())
        if (!DT.dominates(NoWrapEdge, RU))
          return false;
    }

    return true;
  };

  return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
}


OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
                                                 const DataLayout &DL,
                                                 AssumptionCache *AC,
                                                 const Instruction *CxtI,
                                                 const DominatorTree *DT) {
  return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
                                       Add, DL, AC, CxtI, DT);
}

OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
                                                 const Value *RHS,
                                                 const DataLayout &DL,
                                                 AssumptionCache *AC,
                                                 const Instruction *CxtI,
                                                 const DominatorTree *DT) {
  return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
}

bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
  // A memory operation returns normally if it isn't volatile. A volatile
  // operation is allowed to trap.
  //
  // An atomic operation isn't guaranteed to return in a reasonable amount of
  // time because it's possible for another thread to interfere with it for an
  // arbitrary length of time, but programs aren't allowed to rely on that.
  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
    return !LI->isVolatile();
  if (const StoreInst *SI = dyn_cast<StoreInst>(I))
    return !SI->isVolatile();
  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
    return !CXI->isVolatile();
  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
    return !RMWI->isVolatile();
  if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
    return !MII->isVolatile();

  // If there is no successor, then execution can't transfer to it.
  if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
    return !CRI->unwindsToCaller();
  if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
    return !CatchSwitch->unwindsToCaller();
  if (isa<ResumeInst>(I))
    return false;
  if (isa<ReturnInst>(I))
    return false;
  if (isa<UnreachableInst>(I))
    return false;

  // Calls can throw, or contain an infinite loop, or kill the process.
  if (auto CS = ImmutableCallSite(I)) {
    // Call sites that throw have implicit non-local control flow.
    if (!CS.doesNotThrow())
      return false;

    // Non-throwing call sites can loop infinitely, call exit/pthread_exit
    // etc. and thus not return.  However, LLVM already assumes that
    //
    //  - Thread exiting actions are modeled as writes to memory invisible to
    //    the program.
    //
    //  - Loops that don't have side effects (side effects are volatile/atomic
    //    stores and IO) always terminate (see http://llvm.org/PR965).
    //    Furthermore IO itself is also modeled as writes to memory invisible to
    //    the program.
    //
    // We rely on those assumptions here, and use the memory effects of the call
    // target as a proxy for checking that it always returns.

    // FIXME: This isn't aggressive enough; a call which only writes to a global
    // is guaranteed to return.
    return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
           match(I, m_Intrinsic<Intrinsic::assume>());
  }

  // Other instructions return normally.
  return true;
}

bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
                                                  const Loop *L) {
  // The loop header is guaranteed to be executed for every iteration.
  //
  // FIXME: Relax this constraint to cover all basic blocks that are
  // guaranteed to be executed at every iteration.
  if (I->getParent() != L->getHeader()) return false;

  for (const Instruction &LI : *L->getHeader()) {
    if (&LI == I) return true;
    if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
  }
  llvm_unreachable("Instruction not contained in its own parent basic block.");
}

bool llvm::propagatesFullPoison(const Instruction *I) {
  switch (I->getOpcode()) {
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Xor:
  case Instruction::Trunc:
  case Instruction::BitCast:
  case Instruction::AddrSpaceCast:
  case Instruction::Mul:
  case Instruction::Shl:
  case Instruction::GetElementPtr:
    // These operations all propagate poison unconditionally. Note that poison
    // is not any particular value, so xor or subtraction of poison with
    // itself still yields poison, not zero.
    return true;

  case Instruction::AShr:
  case Instruction::SExt:
    // For these operations, one bit of the input is replicated across
    // multiple output bits. A replicated poison bit is still poison.
    return true;

  case Instruction::ICmp:
    // Comparing poison with any value yields poison.  This is why, for
    // instance, x s< (x +nsw 1) can be folded to true.
    return true;

  default:
    return false;
  }
}

const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
  switch (I->getOpcode()) {
    case Instruction::Store:
      return cast<StoreInst>(I)->getPointerOperand();

    case Instruction::Load:
      return cast<LoadInst>(I)->getPointerOperand();

    case Instruction::AtomicCmpXchg:
      return cast<AtomicCmpXchgInst>(I)->getPointerOperand();

    case Instruction::AtomicRMW:
      return cast<AtomicRMWInst>(I)->getPointerOperand();

    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::URem:
    case Instruction::SRem:
      return I->getOperand(1);

    default:
      return nullptr;
  }
}

bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
  // We currently only look for uses of poison values within the same basic
  // block, as that makes it easier to guarantee that the uses will be
  // executed given that PoisonI is executed.
  //
  // FIXME: Expand this to consider uses beyond the same basic block. To do
  // this, look out for the distinction between post-dominance and strong
  // post-dominance.
  const BasicBlock *BB = PoisonI->getParent();

  // Set of instructions that we have proved will yield poison if PoisonI
  // does.
  SmallSet<const Value *, 16> YieldsPoison;
  SmallSet<const BasicBlock *, 4> Visited;
  YieldsPoison.insert(PoisonI);
  Visited.insert(PoisonI->getParent());

  BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();

  unsigned Iter = 0;
  while (Iter++ < MaxDepth) {
    for (auto &I : make_range(Begin, End)) {
      if (&I != PoisonI) {
        const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
        if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
          return true;
        if (!isGuaranteedToTransferExecutionToSuccessor(&I))
          return false;
      }

      // Mark poison that propagates from I through uses of I.
      if (YieldsPoison.count(&I)) {
        for (const User *User : I.users()) {
          const Instruction *UserI = cast<Instruction>(User);
          if (propagatesFullPoison(UserI))
            YieldsPoison.insert(User);
        }
      }
    }

    if (auto *NextBB = BB->getSingleSuccessor()) {
      if (Visited.insert(NextBB).second) {
        BB = NextBB;
        Begin = BB->getFirstNonPHI()->getIterator();
        End = BB->end();
        continue;
      }
    }

    break;
  }
  return false;
}

static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
  if (FMF.noNaNs())
    return true;

  if (auto *C = dyn_cast<ConstantFP>(V))
    return !C->isNaN();
  return false;
}

static bool isKnownNonZero(const Value *V) {
  if (auto *C = dyn_cast<ConstantFP>(V))
    return !C->isZero();
  return false;
}

/// Match clamp pattern for float types without care about NaNs or signed zeros.
/// Given non-min/max outer cmp/select from the clamp pattern this
/// function recognizes if it can be substitued by a "canonical" min/max
/// pattern.
static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
                                               Value *CmpLHS, Value *CmpRHS,
                                               Value *TrueVal, Value *FalseVal,
                                               Value *&LHS, Value *&RHS) {
  // Try to match
  //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
  //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
  // and return description of the outer Max/Min.

  // First, check if select has inverse order:
  if (CmpRHS == FalseVal) {
    std::swap(TrueVal, FalseVal);
    Pred = CmpInst::getInversePredicate(Pred);
  }

  // Assume success now. If there's no match, callers should not use these anyway.
  LHS = TrueVal;
  RHS = FalseVal;

  const APFloat *FC1;
  if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
    return {SPF_UNKNOWN, SPNB_NA, false};

  const APFloat *FC2;
  switch (Pred) {
  case CmpInst::FCMP_OLT:
  case CmpInst::FCMP_OLE:
  case CmpInst::FCMP_ULT:
  case CmpInst::FCMP_ULE:
    if (match(FalseVal,
              m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
                          m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
        FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
      return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
    break;
  case CmpInst::FCMP_OGT:
  case CmpInst::FCMP_OGE:
  case CmpInst::FCMP_UGT:
  case CmpInst::FCMP_UGE:
    if (match(FalseVal,
              m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
                          m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
        FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
      return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
    break;
  default:
    break;
  }

  return {SPF_UNKNOWN, SPNB_NA, false};
}

/// Recognize variations of:
///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
                                      Value *CmpLHS, Value *CmpRHS,
                                      Value *TrueVal, Value *FalseVal) {
  // Swap the select operands and predicate to match the patterns below.
  if (CmpRHS != TrueVal) {
    Pred = ICmpInst::getSwappedPredicate(Pred);
    std::swap(TrueVal, FalseVal);
  }
  const APInt *C1;
  if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
    const APInt *C2;
    // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
    if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
        C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
      return {SPF_SMAX, SPNB_NA, false};

    // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
    if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
        C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
      return {SPF_SMIN, SPNB_NA, false};

    // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
    if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
        C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
      return {SPF_UMAX, SPNB_NA, false};

    // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
    if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
        C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
      return {SPF_UMIN, SPNB_NA, false};
  }
  return {SPF_UNKNOWN, SPNB_NA, false};
}

/// Match non-obvious integer minimum and maximum sequences.
static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
                                       Value *CmpLHS, Value *CmpRHS,
                                       Value *TrueVal, Value *FalseVal,
                                       Value *&LHS, Value *&RHS) {
  // Assume success. If there's no match, callers should not use these anyway.
  LHS = TrueVal;
  RHS = FalseVal;

  SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
  if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
    return SPR;

  if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
    return {SPF_UNKNOWN, SPNB_NA, false};

  // Z = X -nsw Y
  // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
  // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
  if (match(TrueVal, m_Zero()) &&
      match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
    return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};

  // Z = X -nsw Y
  // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
  // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
  if (match(FalseVal, m_Zero()) &&
      match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
    return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};

  const APInt *C1;
  if (!match(CmpRHS, m_APInt(C1)))
    return {SPF_UNKNOWN, SPNB_NA, false};

  // An unsigned min/max can be written with a signed compare.
  const APInt *C2;
  if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
      (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
    // Is the sign bit set?
    // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
    // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
    if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
        C2->isMaxSignedValue())
      return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};

    // Is the sign bit clear?
    // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
    // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
    if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
        C2->isMinSignedValue())
      return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
  }

  // Look through 'not' ops to find disguised signed min/max.
  // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
  // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
  if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
      match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
    return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};

  // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
  // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
  if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
      match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
    return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};

  return {SPF_UNKNOWN, SPNB_NA, false};
}

static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
                                              FastMathFlags FMF,
                                              Value *CmpLHS, Value *CmpRHS,
                                              Value *TrueVal, Value *FalseVal,
                                              Value *&LHS, Value *&RHS) {
  LHS = CmpLHS;
  RHS = CmpRHS;

  // If the predicate is an "or-equal"  (FP) predicate, then signed zeroes may
  // return inconsistent results between implementations.
  //   (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
  //   minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
  // Therefore we behave conservatively and only proceed if at least one of the
  // operands is known to not be zero, or if we don't care about signed zeroes.
  switch (Pred) {
  default: break;
  case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
  case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
    if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
        !isKnownNonZero(CmpRHS))
      return {SPF_UNKNOWN, SPNB_NA, false};
  }

  SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
  bool Ordered = false;

  // When given one NaN and one non-NaN input:
  //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
  //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
  //     ordered comparison fails), which could be NaN or non-NaN.
  // so here we discover exactly what NaN behavior is required/accepted.
  if (CmpInst::isFPPredicate(Pred)) {
    bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
    bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);

    if (LHSSafe && RHSSafe) {
      // Both operands are known non-NaN.
      NaNBehavior = SPNB_RETURNS_ANY;
    } else if (CmpInst::isOrdered(Pred)) {
      // An ordered comparison will return false when given a NaN, so it
      // returns the RHS.
      Ordered = true;
      if (LHSSafe)
        // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
        NaNBehavior = SPNB_RETURNS_NAN;
      else if (RHSSafe)
        NaNBehavior = SPNB_RETURNS_OTHER;
      else
        // Completely unsafe.
        return {SPF_UNKNOWN, SPNB_NA, false};
    } else {
      Ordered = false;
      // An unordered comparison will return true when given a NaN, so it
      // returns the LHS.
      if (LHSSafe)
        // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
        NaNBehavior = SPNB_RETURNS_OTHER;
      else if (RHSSafe)
        NaNBehavior = SPNB_RETURNS_NAN;
      else
        // Completely unsafe.
        return {SPF_UNKNOWN, SPNB_NA, false};
    }
  }

  if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
    std::swap(CmpLHS, CmpRHS);
    Pred = CmpInst::getSwappedPredicate(Pred);
    if (NaNBehavior == SPNB_RETURNS_NAN)
      NaNBehavior = SPNB_RETURNS_OTHER;
    else if (NaNBehavior == SPNB_RETURNS_OTHER)
      NaNBehavior = SPNB_RETURNS_NAN;
    Ordered = !Ordered;
  }

  // ([if]cmp X, Y) ? X : Y
  if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
    switch (Pred) {
    default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
    case ICmpInst::ICMP_UGT:
    case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
    case ICmpInst::ICMP_SGT:
    case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
    case ICmpInst::ICMP_ULT:
    case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
    case ICmpInst::ICMP_SLT:
    case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
    case FCmpInst::FCMP_UGT:
    case FCmpInst::FCMP_UGE:
    case FCmpInst::FCMP_OGT:
    case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
    case FCmpInst::FCMP_ULT:
    case FCmpInst::FCMP_ULE:
    case FCmpInst::FCMP_OLT:
    case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
    }
  }

  const APInt *C1;
  if (match(CmpRHS, m_APInt(C1))) {
    if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
        (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {

      // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
      // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
      if (Pred == ICmpInst::ICMP_SGT &&
          (C1->isNullValue() || C1->isAllOnesValue())) {
        return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
      }

      // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
      // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
      if (Pred == ICmpInst::ICMP_SLT &&
          (C1->isNullValue() || C1->isOneValue())) {
        return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
      }
    }
  }

  if (CmpInst::isIntPredicate(Pred))
    return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);

  // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
  // may return either -0.0 or 0.0, so fcmp/select pair has stricter
  // semantics than minNum. Be conservative in such case.
  if (NaNBehavior != SPNB_RETURNS_ANY ||
      (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
       !isKnownNonZero(CmpRHS)))
    return {SPF_UNKNOWN, SPNB_NA, false};

  return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
}

/// Helps to match a select pattern in case of a type mismatch.
///
/// The function processes the case when type of true and false values of a
/// select instruction differs from type of the cmp instruction operands because
/// of a cast instructon. The function checks if it is legal to move the cast
/// operation after "select". If yes, it returns the new second value of
/// "select" (with the assumption that cast is moved):
/// 1. As operand of cast instruction when both values of "select" are same cast
/// instructions.
/// 2. As restored constant (by applying reverse cast operation) when the first
/// value of the "select" is a cast operation and the second value is a
/// constant.
/// NOTE: We return only the new second value because the first value could be
/// accessed as operand of cast instruction.
static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
                              Instruction::CastOps *CastOp) {
  auto *Cast1 = dyn_cast<CastInst>(V1);
  if (!Cast1)
    return nullptr;

  *CastOp = Cast1->getOpcode();
  Type *SrcTy = Cast1->getSrcTy();
  if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
    // If V1 and V2 are both the same cast from the same type, look through V1.
    if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
      return Cast2->getOperand(0);
    return nullptr;
  }

  auto *C = dyn_cast<Constant>(V2);
  if (!C)
    return nullptr;

  Constant *CastedTo = nullptr;
  switch (*CastOp) {
  case Instruction::ZExt:
    if (CmpI->isUnsigned())
      CastedTo = ConstantExpr::getTrunc(C, SrcTy);
    break;
  case Instruction::SExt:
    if (CmpI->isSigned())
      CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
    break;
  case Instruction::Trunc:
    Constant *CmpConst;
    if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
        CmpConst->getType() == SrcTy) {
      // Here we have the following case:
      //
      //   %cond = cmp iN %x, CmpConst
      //   %tr = trunc iN %x to iK
      //   %narrowsel = select i1 %cond, iK %t, iK C
      //
      // We can always move trunc after select operation:
      //
      //   %cond = cmp iN %x, CmpConst
      //   %widesel = select i1 %cond, iN %x, iN CmpConst
      //   %tr = trunc iN %widesel to iK
      //
      // Note that C could be extended in any way because we don't care about
      // upper bits after truncation. It can't be abs pattern, because it would
      // look like:
      //
      //   select i1 %cond, x, -x.
      //
      // So only min/max pattern could be matched. Such match requires widened C
      // == CmpConst. That is why set widened C = CmpConst, condition trunc
      // CmpConst == C is checked below.
      CastedTo = CmpConst;
    } else {
      CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
    }
    break;
  case Instruction::FPTrunc:
    CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
    break;
  case Instruction::FPExt:
    CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
    break;
  case Instruction::FPToUI:
    CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
    break;
  case Instruction::FPToSI:
    CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
    break;
  case Instruction::UIToFP:
    CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
    break;
  case Instruction::SIToFP:
    CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
    break;
  default:
    break;
  }

  if (!CastedTo)
    return nullptr;

  // Make sure the cast doesn't lose any information.
  Constant *CastedBack =
      ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
  if (CastedBack != C)
    return nullptr;

  return CastedTo;
}

SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
                                             Instruction::CastOps *CastOp) {
  SelectInst *SI = dyn_cast<SelectInst>(V);
  if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};

  CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
  if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};

  CmpInst::Predicate Pred = CmpI->getPredicate();
  Value *CmpLHS = CmpI->getOperand(0);
  Value *CmpRHS = CmpI->getOperand(1);
  Value *TrueVal = SI->getTrueValue();
  Value *FalseVal = SI->getFalseValue();
  FastMathFlags FMF;
  if (isa<FPMathOperator>(CmpI))
    FMF = CmpI->getFastMathFlags();

  // Bail out early.
  if (CmpI->isEquality())
    return {SPF_UNKNOWN, SPNB_NA, false};

  // Deal with type mismatches.
  if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
    if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
      return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
                                  cast<CastInst>(TrueVal)->getOperand(0), C,
                                  LHS, RHS);
    if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
      return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
                                  C, cast<CastInst>(FalseVal)->getOperand(0),
                                  LHS, RHS);
  }
  return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
                              LHS, RHS);
}

/// Return true if "icmp Pred LHS RHS" is always true.
static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
                            const Value *RHS, const DataLayout &DL,
                            unsigned Depth) {
  assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
  if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
    return true;

  switch (Pred) {
  default:
    return false;

  case CmpInst::ICMP_SLE: {
    const APInt *C;

    // LHS s<= LHS +_{nsw} C   if C >= 0
    if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
      return !C->isNegative();
    return false;
  }

  case CmpInst::ICMP_ULE: {
    const APInt *C;

    // LHS u<= LHS +_{nuw} C   for any C
    if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
      return true;

    // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
    auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
                                       const Value *&X,
                                       const APInt *&CA, const APInt *&CB) {
      if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
          match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
        return true;

      // If X & C == 0 then (X | C) == X +_{nuw} C
      if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
          match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
        KnownBits Known(CA->getBitWidth());
        computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
                         /*CxtI*/ nullptr, /*DT*/ nullptr);
        if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
          return true;
      }

      return false;
    };

    const Value *X;
    const APInt *CLHS, *CRHS;
    if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
      return CLHS->ule(*CRHS);

    return false;
  }
  }
}

/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
/// ALHS ARHS" is true.  Otherwise, return None.
static Optional<bool>
isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
                      const Value *ARHS, const Value *BLHS, const Value *BRHS,
                      const DataLayout &DL, unsigned Depth) {
  switch (Pred) {
  default:
    return None;

  case CmpInst::ICMP_SLT:
  case CmpInst::ICMP_SLE:
    if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
        isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
      return true;
    return None;

  case CmpInst::ICMP_ULT:
  case CmpInst::ICMP_ULE:
    if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
        isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
      return true;
    return None;
  }
}

/// Return true if the operands of the two compares match.  IsSwappedOps is true
/// when the operands match, but are swapped.
static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
                          const Value *BLHS, const Value *BRHS,
                          bool &IsSwappedOps) {

  bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
  IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
  return IsMatchingOps || IsSwappedOps;
}

/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
/// true.  Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
/// BRHS" is false.  Otherwise, return None if we can't infer anything.
static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
                                                    const Value *ALHS,
                                                    const Value *ARHS,
                                                    CmpInst::Predicate BPred,
                                                    const Value *BLHS,
                                                    const Value *BRHS,
                                                    bool IsSwappedOps) {
  // Canonicalize the operands so they're matching.
  if (IsSwappedOps) {
    std::swap(BLHS, BRHS);
    BPred = ICmpInst::getSwappedPredicate(BPred);
  }
  if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
    return true;
  if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
    return false;

  return None;
}

/// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
/// true.  Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
/// C2" is false.  Otherwise, return None if we can't infer anything.
static Optional<bool>
isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
                                 const ConstantInt *C1,
                                 CmpInst::Predicate BPred,
                                 const Value *BLHS, const ConstantInt *C2) {
  assert(ALHS == BLHS && "LHS operands must match.");
  ConstantRange DomCR =
      ConstantRange::makeExactICmpRegion(APred, C1->getValue());
  ConstantRange CR =
      ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
  ConstantRange Intersection = DomCR.intersectWith(CR);
  ConstantRange Difference = DomCR.difference(CR);
  if (Intersection.isEmptySet())
    return false;
  if (Difference.isEmptySet())
    return true;
  return None;
}

/// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
/// false.  Otherwise, return None if we can't infer anything.
static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
                                         const ICmpInst *RHS,
                                         const DataLayout &DL, bool LHSIsTrue,
                                         unsigned Depth) {
  Value *ALHS = LHS->getOperand(0);
  Value *ARHS = LHS->getOperand(1);
  // The rest of the logic assumes the LHS condition is true.  If that's not the
  // case, invert the predicate to make it so.
  ICmpInst::Predicate APred =
      LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();

  Value *BLHS = RHS->getOperand(0);
  Value *BRHS = RHS->getOperand(1);
  ICmpInst::Predicate BPred = RHS->getPredicate();

  // Can we infer anything when the two compares have matching operands?
  bool IsSwappedOps;
  if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
    if (Optional<bool> Implication = isImpliedCondMatchingOperands(
            APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
      return Implication;
    // No amount of additional analysis will infer the second condition, so
    // early exit.
    return None;
  }

  // Can we infer anything when the LHS operands match and the RHS operands are
  // constants (not necessarily matching)?
  if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
    if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
            APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
            cast<ConstantInt>(BRHS)))
      return Implication;
    // No amount of additional analysis will infer the second condition, so
    // early exit.
    return None;
  }

  if (APred == BPred)
    return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
  return None;
}

/// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
/// false.  Otherwise, return None if we can't infer anything.  We expect the
/// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
                                         const ICmpInst *RHS,
                                         const DataLayout &DL, bool LHSIsTrue,
                                         unsigned Depth) {
  // The LHS must be an 'or' or an 'and' instruction.
  assert((LHS->getOpcode() == Instruction::And ||
          LHS->getOpcode() == Instruction::Or) &&
         "Expected LHS to be 'and' or 'or'.");

  assert(Depth <= MaxDepth && "Hit recursion limit");

  // If the result of an 'or' is false, then we know both legs of the 'or' are
  // false.  Similarly, if the result of an 'and' is true, then we know both
  // legs of the 'and' are true.
  Value *ALHS, *ARHS;
  if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
      (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
    // FIXME: Make this non-recursion.
    if (Optional<bool> Implication =
            isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
      return Implication;
    if (Optional<bool> Implication =
            isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
      return Implication;
    return None;
  }
  return None;
}

Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
                                        const DataLayout &DL, bool LHSIsTrue,
                                        unsigned Depth) {
  // Bail out when we hit the limit.
  if (Depth == MaxDepth)
    return None;

  // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
  // example.
  if (LHS->getType() != RHS->getType())
    return None;

  Type *OpTy = LHS->getType();
  assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");

  // LHS ==> RHS by definition
  if (LHS == RHS)
    return LHSIsTrue;

  // FIXME: Extending the code below to handle vectors.
  if (OpTy->isVectorTy())
    return None;

  assert(OpTy->isIntegerTy(1) && "implied by above");

  // Both LHS and RHS are icmps.
  const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
  const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
  if (LHSCmp && RHSCmp)
    return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);

  // The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to be
  // an icmp. FIXME: Add support for and/or on the RHS.
  const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
  if (LHSBO && RHSCmp) {
    if ((LHSBO->getOpcode() == Instruction::And ||
         LHSBO->getOpcode() == Instruction::Or))
      return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
  }
  return None;
}