aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/BlockFrequencyInfo.cpp
blob: 5d2170dcf1551dbea19bd700268fea99202ede25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
//===- BlockFrequencyInfo.cpp - Block Frequency Analysis ------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Loops should be simplified before this analysis.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <string>

using namespace llvm;

#define DEBUG_TYPE "block-freq"

static cl::opt<GVDAGType> ViewBlockFreqPropagationDAG(
    "view-block-freq-propagation-dags", cl::Hidden,
    cl::desc("Pop up a window to show a dag displaying how block "
             "frequencies propagation through the CFG."),
    cl::values(clEnumValN(GVDT_None, "none", "do not display graphs."),
               clEnumValN(GVDT_Fraction, "fraction",
                          "display a graph using the "
                          "fractional block frequency representation."),
               clEnumValN(GVDT_Integer, "integer",
                          "display a graph using the raw "
                          "integer fractional block frequency representation."),
               clEnumValN(GVDT_Count, "count", "display a graph using the real "
                                               "profile count if available.")));

cl::opt<std::string>
    ViewBlockFreqFuncName("view-bfi-func-name", cl::Hidden,
                          cl::desc("The option to specify "
                                   "the name of the function "
                                   "whose CFG will be displayed."));

cl::opt<unsigned>
    ViewHotFreqPercent("view-hot-freq-percent", cl::init(10), cl::Hidden,
                       cl::desc("An integer in percent used to specify "
                                "the hot blocks/edges to be displayed "
                                "in red: a block or edge whose frequency "
                                "is no less than the max frequency of the "
                                "function multiplied by this percent."));

// Command line option to turn on CFG dot or text dump after profile annotation.
cl::opt<PGOViewCountsType> PGOViewCounts(
    "pgo-view-counts", cl::Hidden,
    cl::desc("A boolean option to show CFG dag or text with "
             "block profile counts and branch probabilities "
             "right after PGO profile annotation step. The "
             "profile counts are computed using branch "
             "probabilities from the runtime profile data and "
             "block frequency propagation algorithm. To view "
             "the raw counts from the profile, use option "
             "-pgo-view-raw-counts instead. To limit graph "
             "display to only one function, use filtering option "
             "-view-bfi-func-name."),
    cl::values(clEnumValN(PGOVCT_None, "none", "do not show."),
               clEnumValN(PGOVCT_Graph, "graph", "show a graph."),
               clEnumValN(PGOVCT_Text, "text", "show in text.")));

static cl::opt<bool> PrintBlockFreq(
    "print-bfi", cl::init(false), cl::Hidden,
    cl::desc("Print the block frequency info."));

cl::opt<std::string> PrintBlockFreqFuncName(
    "print-bfi-func-name", cl::Hidden,
    cl::desc("The option to specify the name of the function "
             "whose block frequency info is printed."));

namespace llvm {

static GVDAGType getGVDT() {
  if (PGOViewCounts == PGOVCT_Graph)
    return GVDT_Count;
  return ViewBlockFreqPropagationDAG;
}

template <>
struct GraphTraits<BlockFrequencyInfo *> {
  using NodeRef = const BasicBlock *;
  using ChildIteratorType = succ_const_iterator;
  using nodes_iterator = pointer_iterator<Function::const_iterator>;

  static NodeRef getEntryNode(const BlockFrequencyInfo *G) {
    return &G->getFunction()->front();
  }

  static ChildIteratorType child_begin(const NodeRef N) {
    return succ_begin(N);
  }

  static ChildIteratorType child_end(const NodeRef N) { return succ_end(N); }

  static nodes_iterator nodes_begin(const BlockFrequencyInfo *G) {
    return nodes_iterator(G->getFunction()->begin());
  }

  static nodes_iterator nodes_end(const BlockFrequencyInfo *G) {
    return nodes_iterator(G->getFunction()->end());
  }
};

using BFIDOTGTraitsBase =
    BFIDOTGraphTraitsBase<BlockFrequencyInfo, BranchProbabilityInfo>;

template <>
struct DOTGraphTraits<BlockFrequencyInfo *> : public BFIDOTGTraitsBase {
  explicit DOTGraphTraits(bool isSimple = false)
      : BFIDOTGTraitsBase(isSimple) {}

  std::string getNodeLabel(const BasicBlock *Node,
                           const BlockFrequencyInfo *Graph) {

    return BFIDOTGTraitsBase::getNodeLabel(Node, Graph, getGVDT());
  }

  std::string getNodeAttributes(const BasicBlock *Node,
                                const BlockFrequencyInfo *Graph) {
    return BFIDOTGTraitsBase::getNodeAttributes(Node, Graph,
                                                ViewHotFreqPercent);
  }

  std::string getEdgeAttributes(const BasicBlock *Node, EdgeIter EI,
                                const BlockFrequencyInfo *BFI) {
    return BFIDOTGTraitsBase::getEdgeAttributes(Node, EI, BFI, BFI->getBPI(),
                                                ViewHotFreqPercent);
  }
};

} // end namespace llvm

BlockFrequencyInfo::BlockFrequencyInfo() = default;

BlockFrequencyInfo::BlockFrequencyInfo(const Function &F,
                                       const BranchProbabilityInfo &BPI,
                                       const LoopInfo &LI) {
  calculate(F, BPI, LI);
}

BlockFrequencyInfo::BlockFrequencyInfo(BlockFrequencyInfo &&Arg)
    : BFI(std::move(Arg.BFI)) {}

BlockFrequencyInfo &BlockFrequencyInfo::operator=(BlockFrequencyInfo &&RHS) {
  releaseMemory();
  BFI = std::move(RHS.BFI);
  return *this;
}

// Explicitly define the default constructor otherwise it would be implicitly
// defined at the first ODR-use which is the BFI member in the
// LazyBlockFrequencyInfo header.  The dtor needs the BlockFrequencyInfoImpl
// template instantiated which is not available in the header.
BlockFrequencyInfo::~BlockFrequencyInfo() = default;

bool BlockFrequencyInfo::invalidate(Function &F, const PreservedAnalyses &PA,
                                    FunctionAnalysisManager::Invalidator &) {
  // Check whether the analysis, all analyses on functions, or the function's
  // CFG have been preserved.
  auto PAC = PA.getChecker<BlockFrequencyAnalysis>();
  return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
           PAC.preservedSet<CFGAnalyses>());
}

void BlockFrequencyInfo::calculate(const Function &F,
                                   const BranchProbabilityInfo &BPI,
                                   const LoopInfo &LI) {
  if (!BFI)
    BFI.reset(new ImplType);
  BFI->calculate(F, BPI, LI);
  if (ViewBlockFreqPropagationDAG != GVDT_None &&
      (ViewBlockFreqFuncName.empty() ||
       F.getName().equals(ViewBlockFreqFuncName))) {
    view();
  }
  if (PrintBlockFreq &&
      (PrintBlockFreqFuncName.empty() ||
       F.getName().equals(PrintBlockFreqFuncName))) {
    print(dbgs());
  }
}

BlockFrequency BlockFrequencyInfo::getBlockFreq(const BasicBlock *BB) const {
  return BFI ? BFI->getBlockFreq(BB) : 0;
}

Optional<uint64_t>
BlockFrequencyInfo::getBlockProfileCount(const BasicBlock *BB) const {
  if (!BFI)
    return None;

  return BFI->getBlockProfileCount(*getFunction(), BB);
}

Optional<uint64_t>
BlockFrequencyInfo::getProfileCountFromFreq(uint64_t Freq) const {
  if (!BFI)
    return None;
  return BFI->getProfileCountFromFreq(*getFunction(), Freq);
}

void BlockFrequencyInfo::setBlockFreq(const BasicBlock *BB, uint64_t Freq) {
  assert(BFI && "Expected analysis to be available");
  BFI->setBlockFreq(BB, Freq);
}

void BlockFrequencyInfo::setBlockFreqAndScale(
    const BasicBlock *ReferenceBB, uint64_t Freq,
    SmallPtrSetImpl<BasicBlock *> &BlocksToScale) {
  assert(BFI && "Expected analysis to be available");
  // Use 128 bits APInt to avoid overflow.
  APInt NewFreq(128, Freq);
  APInt OldFreq(128, BFI->getBlockFreq(ReferenceBB).getFrequency());
  APInt BBFreq(128, 0);
  for (auto *BB : BlocksToScale) {
    BBFreq = BFI->getBlockFreq(BB).getFrequency();
    // Multiply first by NewFreq and then divide by OldFreq
    // to minimize loss of precision.
    BBFreq *= NewFreq;
    // udiv is an expensive operation in the general case. If this ends up being
    // a hot spot, one of the options proposed in
    // https://reviews.llvm.org/D28535#650071 could be used to avoid this.
    BBFreq = BBFreq.udiv(OldFreq);
    BFI->setBlockFreq(BB, BBFreq.getLimitedValue());
  }
  BFI->setBlockFreq(ReferenceBB, Freq);
}

/// Pop up a ghostview window with the current block frequency propagation
/// rendered using dot.
void BlockFrequencyInfo::view() const {
  ViewGraph(const_cast<BlockFrequencyInfo *>(this), "BlockFrequencyDAGs");
}

const Function *BlockFrequencyInfo::getFunction() const {
  return BFI ? BFI->getFunction() : nullptr;
}

const BranchProbabilityInfo *BlockFrequencyInfo::getBPI() const {
  return BFI ? &BFI->getBPI() : nullptr;
}

raw_ostream &BlockFrequencyInfo::
printBlockFreq(raw_ostream &OS, const BlockFrequency Freq) const {
  return BFI ? BFI->printBlockFreq(OS, Freq) : OS;
}

raw_ostream &
BlockFrequencyInfo::printBlockFreq(raw_ostream &OS,
                                   const BasicBlock *BB) const {
  return BFI ? BFI->printBlockFreq(OS, BB) : OS;
}

uint64_t BlockFrequencyInfo::getEntryFreq() const {
  return BFI ? BFI->getEntryFreq() : 0;
}

void BlockFrequencyInfo::releaseMemory() { BFI.reset(); }

void BlockFrequencyInfo::print(raw_ostream &OS) const {
  if (BFI)
    BFI->print(OS);
}

INITIALIZE_PASS_BEGIN(BlockFrequencyInfoWrapperPass, "block-freq",
                      "Block Frequency Analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(BlockFrequencyInfoWrapperPass, "block-freq",
                    "Block Frequency Analysis", true, true)

char BlockFrequencyInfoWrapperPass::ID = 0;

BlockFrequencyInfoWrapperPass::BlockFrequencyInfoWrapperPass()
    : FunctionPass(ID) {
  initializeBlockFrequencyInfoWrapperPassPass(*PassRegistry::getPassRegistry());
}

BlockFrequencyInfoWrapperPass::~BlockFrequencyInfoWrapperPass() = default;

void BlockFrequencyInfoWrapperPass::print(raw_ostream &OS,
                                          const Module *) const {
  BFI.print(OS);
}

void BlockFrequencyInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<BranchProbabilityInfoWrapperPass>();
  AU.addRequired<LoopInfoWrapperPass>();
  AU.setPreservesAll();
}

void BlockFrequencyInfoWrapperPass::releaseMemory() { BFI.releaseMemory(); }

bool BlockFrequencyInfoWrapperPass::runOnFunction(Function &F) {
  BranchProbabilityInfo &BPI =
      getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
  LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  BFI.calculate(F, BPI, LI);
  return false;
}

AnalysisKey BlockFrequencyAnalysis::Key;
BlockFrequencyInfo BlockFrequencyAnalysis::run(Function &F,
                                               FunctionAnalysisManager &AM) {
  BlockFrequencyInfo BFI;
  BFI.calculate(F, AM.getResult<BranchProbabilityAnalysis>(F),
                AM.getResult<LoopAnalysis>(F));
  return BFI;
}

PreservedAnalyses
BlockFrequencyPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
  OS << "Printing analysis results of BFI for function "
     << "'" << F.getName() << "':"
     << "\n";
  AM.getResult<BlockFrequencyAnalysis>(F).print(OS);
  return PreservedAnalyses::all();
}