summaryrefslogtreecommitdiff
path: root/source/Symbol/SymbolFile.cpp
blob: 6087374969fb7e09cae0004fcf49ed3a7b0f0c4c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
//===-- SymbolFile.cpp ------------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "lldb/Symbol/SymbolFile.h"

#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/TypeMap.h"
#include "lldb/Symbol/TypeSystem.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/lldb-private.h"

#include <future>

using namespace lldb_private;

void SymbolFile::PreloadSymbols() {
  // No-op for most implementations.
}

std::recursive_mutex &SymbolFile::GetModuleMutex() const {
  return GetObjectFile()->GetModule()->GetMutex();
}

SymbolFile *SymbolFile::FindPlugin(ObjectFile *obj_file) {
  std::unique_ptr<SymbolFile> best_symfile_ap;
  if (obj_file != nullptr) {

    // We need to test the abilities of this section list. So create what it
    // would be with this new obj_file.
    lldb::ModuleSP module_sp(obj_file->GetModule());
    if (module_sp) {
      // Default to the main module section list.
      ObjectFile *module_obj_file = module_sp->GetObjectFile();
      if (module_obj_file != obj_file) {
        // Make sure the main object file's sections are created
        module_obj_file->GetSectionList();
        obj_file->CreateSections(*module_sp->GetUnifiedSectionList());
      }
    }

    // TODO: Load any plug-ins in the appropriate plug-in search paths and
    // iterate over all of them to find the best one for the job.

    uint32_t best_symfile_abilities = 0;

    SymbolFileCreateInstance create_callback;
    for (uint32_t idx = 0;
         (create_callback = PluginManager::GetSymbolFileCreateCallbackAtIndex(
              idx)) != nullptr;
         ++idx) {
      std::unique_ptr<SymbolFile> curr_symfile_ap(create_callback(obj_file));

      if (curr_symfile_ap.get()) {
        const uint32_t sym_file_abilities = curr_symfile_ap->GetAbilities();
        if (sym_file_abilities > best_symfile_abilities) {
          best_symfile_abilities = sym_file_abilities;
          best_symfile_ap.reset(curr_symfile_ap.release());
          // If any symbol file parser has all of the abilities, then we should
          // just stop looking.
          if ((kAllAbilities & sym_file_abilities) == kAllAbilities)
            break;
        }
      }
    }
    if (best_symfile_ap.get()) {
      // Let the winning symbol file parser initialize itself more completely
      // now that it has been chosen
      best_symfile_ap->InitializeObject();
    }
  }
  return best_symfile_ap.release();
}

TypeList *SymbolFile::GetTypeList() {
  if (m_obj_file)
    return m_obj_file->GetModule()->GetTypeList();
  return nullptr;
}

TypeSystem *SymbolFile::GetTypeSystemForLanguage(lldb::LanguageType language) {
  TypeSystem *type_system =
      m_obj_file->GetModule()->GetTypeSystemForLanguage(language);
  if (type_system)
    type_system->SetSymbolFile(this);
  return type_system;
}

uint32_t SymbolFile::ResolveSymbolContext(const FileSpec &file_spec,
                                          uint32_t line, bool check_inlines,
                                          lldb::SymbolContextItem resolve_scope,
                                          SymbolContextList &sc_list) {
  return 0;
}

uint32_t
SymbolFile::FindGlobalVariables(const ConstString &name,
                                const CompilerDeclContext *parent_decl_ctx,
                                uint32_t max_matches, VariableList &variables) {
  return 0;
}

uint32_t SymbolFile::FindGlobalVariables(const RegularExpression &regex,
                                         uint32_t max_matches,
                                         VariableList &variables) {
  return 0;
}

uint32_t SymbolFile::FindFunctions(const ConstString &name,
                                   const CompilerDeclContext *parent_decl_ctx,
                                   lldb::FunctionNameType name_type_mask,
                                   bool include_inlines, bool append,
                                   SymbolContextList &sc_list) {
  if (!append)
    sc_list.Clear();
  return 0;
}

uint32_t SymbolFile::FindFunctions(const RegularExpression &regex,
                                   bool include_inlines, bool append,
                                   SymbolContextList &sc_list) {
  if (!append)
    sc_list.Clear();
  return 0;
}

void SymbolFile::GetMangledNamesForFunction(
    const std::string &scope_qualified_name,
    std::vector<ConstString> &mangled_names) {
  return;
}

uint32_t SymbolFile::FindTypes(
    const ConstString &name, const CompilerDeclContext *parent_decl_ctx,
    bool append, uint32_t max_matches,
    llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files,
    TypeMap &types) {
  if (!append)
    types.Clear();
  return 0;
}

size_t SymbolFile::FindTypes(const std::vector<CompilerContext> &context,
                             bool append, TypeMap &types) {
  if (!append)
    types.Clear();
  return 0;
}

void SymbolFile::AssertModuleLock() {
  // The code below is too expensive to leave enabled in release builds. It's
  // enabled in debug builds or when the correct macro is set.
#if defined(LLDB_CONFIGURATION_DEBUG)
  // We assert that we have to module lock by trying to acquire the lock from a
  // different thread. Note that we must abort if the result is true to
  // guarantee correctness.
  assert(std::async(std::launch::async,
                    [this] { return this->GetModuleMutex().try_lock(); })
                 .get() == false &&
         "Module is not locked");
#endif
}