summaryrefslogtreecommitdiff
path: root/source/Plugins/Process/Linux/NativeRegisterContextLinux_x86_64.cpp
blob: 4963c52ecee9f91280c1a760c040e353611df476 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
//===-- NativeRegisterContextLinux_x86_64.cpp ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#if defined(__i386__) || defined(__x86_64__)

#include "NativeRegisterContextLinux_x86_64.h"

#include "lldb/Host/HostInfo.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Status.h"

#include "Plugins/Process/Utility/RegisterContextLinux_i386.h"
#include "Plugins/Process/Utility/RegisterContextLinux_x86_64.h"

#include <linux/elf.h>

using namespace lldb_private;
using namespace lldb_private::process_linux;

// ----------------------------------------------------------------------------
// Private namespace.
// ----------------------------------------------------------------------------

namespace {
// x86 32-bit general purpose registers.
const uint32_t g_gpr_regnums_i386[] = {
    lldb_eax_i386,      lldb_ebx_i386,    lldb_ecx_i386, lldb_edx_i386,
    lldb_edi_i386,      lldb_esi_i386,    lldb_ebp_i386, lldb_esp_i386,
    lldb_eip_i386,      lldb_eflags_i386, lldb_cs_i386,  lldb_fs_i386,
    lldb_gs_i386,       lldb_ss_i386,     lldb_ds_i386,  lldb_es_i386,
    lldb_ax_i386,       lldb_bx_i386,     lldb_cx_i386,  lldb_dx_i386,
    lldb_di_i386,       lldb_si_i386,     lldb_bp_i386,  lldb_sp_i386,
    lldb_ah_i386,       lldb_bh_i386,     lldb_ch_i386,  lldb_dh_i386,
    lldb_al_i386,       lldb_bl_i386,     lldb_cl_i386,  lldb_dl_i386,
    LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert((sizeof(g_gpr_regnums_i386) / sizeof(g_gpr_regnums_i386[0])) -
                      1 ==
                  k_num_gpr_registers_i386,
              "g_gpr_regnums_i386 has wrong number of register infos");

// x86 32-bit floating point registers.
const uint32_t g_fpu_regnums_i386[] = {
    lldb_fctrl_i386,    lldb_fstat_i386,     lldb_ftag_i386,  lldb_fop_i386,
    lldb_fiseg_i386,    lldb_fioff_i386,     lldb_foseg_i386, lldb_fooff_i386,
    lldb_mxcsr_i386,    lldb_mxcsrmask_i386, lldb_st0_i386,   lldb_st1_i386,
    lldb_st2_i386,      lldb_st3_i386,       lldb_st4_i386,   lldb_st5_i386,
    lldb_st6_i386,      lldb_st7_i386,       lldb_mm0_i386,   lldb_mm1_i386,
    lldb_mm2_i386,      lldb_mm3_i386,       lldb_mm4_i386,   lldb_mm5_i386,
    lldb_mm6_i386,      lldb_mm7_i386,       lldb_xmm0_i386,  lldb_xmm1_i386,
    lldb_xmm2_i386,     lldb_xmm3_i386,      lldb_xmm4_i386,  lldb_xmm5_i386,
    lldb_xmm6_i386,     lldb_xmm7_i386,
    LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert((sizeof(g_fpu_regnums_i386) / sizeof(g_fpu_regnums_i386[0])) -
                      1 ==
                  k_num_fpr_registers_i386,
              "g_fpu_regnums_i386 has wrong number of register infos");

// x86 32-bit AVX registers.
const uint32_t g_avx_regnums_i386[] = {
    lldb_ymm0_i386,     lldb_ymm1_i386, lldb_ymm2_i386, lldb_ymm3_i386,
    lldb_ymm4_i386,     lldb_ymm5_i386, lldb_ymm6_i386, lldb_ymm7_i386,
    LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert((sizeof(g_avx_regnums_i386) / sizeof(g_avx_regnums_i386[0])) -
                      1 ==
                  k_num_avx_registers_i386,
              " g_avx_regnums_i386 has wrong number of register infos");

// x64 32-bit MPX registers.
static const uint32_t g_mpx_regnums_i386[] = {
    lldb_bnd0_i386,     lldb_bnd1_i386, lldb_bnd2_i386, lldb_bnd3_i386,
    lldb_bndcfgu_i386,  lldb_bndstatus_i386,
    LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert((sizeof(g_mpx_regnums_i386) / sizeof(g_mpx_regnums_i386[0])) -
                      1 ==
                  k_num_mpx_registers_i386,
              "g_mpx_regnums_x86_64 has wrong number of register infos");

// x86 64-bit general purpose registers.
static const uint32_t g_gpr_regnums_x86_64[] = {
    lldb_rax_x86_64,    lldb_rbx_x86_64,    lldb_rcx_x86_64, lldb_rdx_x86_64,
    lldb_rdi_x86_64,    lldb_rsi_x86_64,    lldb_rbp_x86_64, lldb_rsp_x86_64,
    lldb_r8_x86_64,     lldb_r9_x86_64,     lldb_r10_x86_64, lldb_r11_x86_64,
    lldb_r12_x86_64,    lldb_r13_x86_64,    lldb_r14_x86_64, lldb_r15_x86_64,
    lldb_rip_x86_64,    lldb_rflags_x86_64, lldb_cs_x86_64,  lldb_fs_x86_64,
    lldb_gs_x86_64,     lldb_ss_x86_64,     lldb_ds_x86_64,  lldb_es_x86_64,
    lldb_eax_x86_64,    lldb_ebx_x86_64,    lldb_ecx_x86_64, lldb_edx_x86_64,
    lldb_edi_x86_64,    lldb_esi_x86_64,    lldb_ebp_x86_64, lldb_esp_x86_64,
    lldb_r8d_x86_64,  // Low 32 bits or r8
    lldb_r9d_x86_64,  // Low 32 bits or r9
    lldb_r10d_x86_64, // Low 32 bits or r10
    lldb_r11d_x86_64, // Low 32 bits or r11
    lldb_r12d_x86_64, // Low 32 bits or r12
    lldb_r13d_x86_64, // Low 32 bits or r13
    lldb_r14d_x86_64, // Low 32 bits or r14
    lldb_r15d_x86_64, // Low 32 bits or r15
    lldb_ax_x86_64,     lldb_bx_x86_64,     lldb_cx_x86_64,  lldb_dx_x86_64,
    lldb_di_x86_64,     lldb_si_x86_64,     lldb_bp_x86_64,  lldb_sp_x86_64,
    lldb_r8w_x86_64,  // Low 16 bits or r8
    lldb_r9w_x86_64,  // Low 16 bits or r9
    lldb_r10w_x86_64, // Low 16 bits or r10
    lldb_r11w_x86_64, // Low 16 bits or r11
    lldb_r12w_x86_64, // Low 16 bits or r12
    lldb_r13w_x86_64, // Low 16 bits or r13
    lldb_r14w_x86_64, // Low 16 bits or r14
    lldb_r15w_x86_64, // Low 16 bits or r15
    lldb_ah_x86_64,     lldb_bh_x86_64,     lldb_ch_x86_64,  lldb_dh_x86_64,
    lldb_al_x86_64,     lldb_bl_x86_64,     lldb_cl_x86_64,  lldb_dl_x86_64,
    lldb_dil_x86_64,    lldb_sil_x86_64,    lldb_bpl_x86_64, lldb_spl_x86_64,
    lldb_r8l_x86_64,    // Low 8 bits or r8
    lldb_r9l_x86_64,    // Low 8 bits or r9
    lldb_r10l_x86_64,   // Low 8 bits or r10
    lldb_r11l_x86_64,   // Low 8 bits or r11
    lldb_r12l_x86_64,   // Low 8 bits or r12
    lldb_r13l_x86_64,   // Low 8 bits or r13
    lldb_r14l_x86_64,   // Low 8 bits or r14
    lldb_r15l_x86_64,   // Low 8 bits or r15
    LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert((sizeof(g_gpr_regnums_x86_64) / sizeof(g_gpr_regnums_x86_64[0])) -
                      1 ==
                  k_num_gpr_registers_x86_64,
              "g_gpr_regnums_x86_64 has wrong number of register infos");

// x86 64-bit floating point registers.
static const uint32_t g_fpu_regnums_x86_64[] = {
    lldb_fctrl_x86_64,     lldb_fstat_x86_64, lldb_ftag_x86_64,
    lldb_fop_x86_64,       lldb_fiseg_x86_64, lldb_fioff_x86_64,
    lldb_foseg_x86_64,     lldb_fooff_x86_64, lldb_mxcsr_x86_64,
    lldb_mxcsrmask_x86_64, lldb_st0_x86_64,   lldb_st1_x86_64,
    lldb_st2_x86_64,       lldb_st3_x86_64,   lldb_st4_x86_64,
    lldb_st5_x86_64,       lldb_st6_x86_64,   lldb_st7_x86_64,
    lldb_mm0_x86_64,       lldb_mm1_x86_64,   lldb_mm2_x86_64,
    lldb_mm3_x86_64,       lldb_mm4_x86_64,   lldb_mm5_x86_64,
    lldb_mm6_x86_64,       lldb_mm7_x86_64,   lldb_xmm0_x86_64,
    lldb_xmm1_x86_64,      lldb_xmm2_x86_64,  lldb_xmm3_x86_64,
    lldb_xmm4_x86_64,      lldb_xmm5_x86_64,  lldb_xmm6_x86_64,
    lldb_xmm7_x86_64,      lldb_xmm8_x86_64,  lldb_xmm9_x86_64,
    lldb_xmm10_x86_64,     lldb_xmm11_x86_64, lldb_xmm12_x86_64,
    lldb_xmm13_x86_64,     lldb_xmm14_x86_64, lldb_xmm15_x86_64,
    LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert((sizeof(g_fpu_regnums_x86_64) / sizeof(g_fpu_regnums_x86_64[0])) -
                      1 ==
                  k_num_fpr_registers_x86_64,
              "g_fpu_regnums_x86_64 has wrong number of register infos");

// x86 64-bit AVX registers.
static const uint32_t g_avx_regnums_x86_64[] = {
    lldb_ymm0_x86_64,   lldb_ymm1_x86_64,  lldb_ymm2_x86_64,  lldb_ymm3_x86_64,
    lldb_ymm4_x86_64,   lldb_ymm5_x86_64,  lldb_ymm6_x86_64,  lldb_ymm7_x86_64,
    lldb_ymm8_x86_64,   lldb_ymm9_x86_64,  lldb_ymm10_x86_64, lldb_ymm11_x86_64,
    lldb_ymm12_x86_64,  lldb_ymm13_x86_64, lldb_ymm14_x86_64, lldb_ymm15_x86_64,
    LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert((sizeof(g_avx_regnums_x86_64) / sizeof(g_avx_regnums_x86_64[0])) -
                      1 ==
                  k_num_avx_registers_x86_64,
              "g_avx_regnums_x86_64 has wrong number of register infos");

// x86 64-bit MPX registers.
static const uint32_t g_mpx_regnums_x86_64[] = {
    lldb_bnd0_x86_64,    lldb_bnd1_x86_64,    lldb_bnd2_x86_64,
    lldb_bnd3_x86_64,    lldb_bndcfgu_x86_64, lldb_bndstatus_x86_64,
    LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert((sizeof(g_mpx_regnums_x86_64) / sizeof(g_mpx_regnums_x86_64[0])) -
                      1 ==
                  k_num_mpx_registers_x86_64,
              "g_mpx_regnums_x86_64 has wrong number of register infos");

// Number of register sets provided by this context.
enum { k_num_extended_register_sets = 2, k_num_register_sets = 4 };

// Register sets for x86 32-bit.
static const RegisterSet g_reg_sets_i386[k_num_register_sets] = {
    {"General Purpose Registers", "gpr", k_num_gpr_registers_i386,
     g_gpr_regnums_i386},
    {"Floating Point Registers", "fpu", k_num_fpr_registers_i386,
     g_fpu_regnums_i386},
    {"Advanced Vector Extensions", "avx", k_num_avx_registers_i386,
     g_avx_regnums_i386},
    { "Memory Protection Extensions", "mpx", k_num_mpx_registers_i386,
     g_mpx_regnums_i386}};

// Register sets for x86 64-bit.
static const RegisterSet g_reg_sets_x86_64[k_num_register_sets] = {
    {"General Purpose Registers", "gpr", k_num_gpr_registers_x86_64,
     g_gpr_regnums_x86_64},
    {"Floating Point Registers", "fpu", k_num_fpr_registers_x86_64,
     g_fpu_regnums_x86_64},
    {"Advanced Vector Extensions", "avx", k_num_avx_registers_x86_64,
     g_avx_regnums_x86_64},
    { "Memory Protection Extensions", "mpx", k_num_mpx_registers_x86_64,
     g_mpx_regnums_x86_64}};
}

#define REG_CONTEXT_SIZE (GetRegisterInfoInterface().GetGPRSize() + sizeof(FPR))

// ----------------------------------------------------------------------------
// Required ptrace defines.
// ----------------------------------------------------------------------------

// Support ptrace extensions even when compiled without required kernel support
#ifndef NT_X86_XSTATE
#define NT_X86_XSTATE 0x202
#endif
#ifndef NT_PRXFPREG
#define NT_PRXFPREG 0x46e62b7f
#endif

// On x86_64 NT_PRFPREG is used to access the FXSAVE area. On i386, we need to
// use NT_PRXFPREG.
static inline unsigned int fxsr_regset(const ArchSpec &arch) {
  return arch.GetAddressByteSize() == 8 ? NT_PRFPREG : NT_PRXFPREG;
}

// ----------------------------------------------------------------------------
// Required MPX define.
// ----------------------------------------------------------------------------

// Support MPX extensions also if compiled with compiler without MPX support.
#ifndef bit_MPX
#define bit_MPX 0x4000
#endif

// ----------------------------------------------------------------------------
// XCR0 extended register sets masks.
// ----------------------------------------------------------------------------
#define mask_XSTATE_AVX (1ULL << 2)
#define mask_XSTATE_BNDREGS (1ULL << 3)
#define mask_XSTATE_BNDCFG (1ULL << 4)
#define mask_XSTATE_MPX (mask_XSTATE_BNDREGS | mask_XSTATE_BNDCFG)

std::unique_ptr<NativeRegisterContextLinux>
NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux(
    const ArchSpec &target_arch, NativeThreadProtocol &native_thread) {
  return std::unique_ptr<NativeRegisterContextLinux>(
      new NativeRegisterContextLinux_x86_64(target_arch, native_thread));
}

// ----------------------------------------------------------------------------
// NativeRegisterContextLinux_x86_64 members.
// ----------------------------------------------------------------------------

static RegisterInfoInterface *
CreateRegisterInfoInterface(const ArchSpec &target_arch) {
  if (HostInfo::GetArchitecture().GetAddressByteSize() == 4) {
    // 32-bit hosts run with a RegisterContextLinux_i386 context.
    return new RegisterContextLinux_i386(target_arch);
  } else {
    assert((HostInfo::GetArchitecture().GetAddressByteSize() == 8) &&
           "Register setting path assumes this is a 64-bit host");
    // X86_64 hosts know how to work with 64-bit and 32-bit EXEs using the
    // x86_64 register context.
    return new RegisterContextLinux_x86_64(target_arch);
  }
}

NativeRegisterContextLinux_x86_64::NativeRegisterContextLinux_x86_64(
    const ArchSpec &target_arch, NativeThreadProtocol &native_thread)
    : NativeRegisterContextLinux(native_thread,
                                 CreateRegisterInfoInterface(target_arch)),
      m_xstate_type(XStateType::Invalid), m_fpr(), m_iovec(), m_ymm_set(),
      m_mpx_set(), m_reg_info(), m_gpr_x86_64() {
  // Set up data about ranges of valid registers.
  switch (target_arch.GetMachine()) {
  case llvm::Triple::x86:
    m_reg_info.num_registers = k_num_registers_i386;
    m_reg_info.num_gpr_registers = k_num_gpr_registers_i386;
    m_reg_info.num_fpr_registers = k_num_fpr_registers_i386;
    m_reg_info.num_avx_registers = k_num_avx_registers_i386;
    m_reg_info.num_mpx_registers = k_num_mpx_registers_i386;
    m_reg_info.last_gpr = k_last_gpr_i386;
    m_reg_info.first_fpr = k_first_fpr_i386;
    m_reg_info.last_fpr = k_last_fpr_i386;
    m_reg_info.first_st = lldb_st0_i386;
    m_reg_info.last_st = lldb_st7_i386;
    m_reg_info.first_mm = lldb_mm0_i386;
    m_reg_info.last_mm = lldb_mm7_i386;
    m_reg_info.first_xmm = lldb_xmm0_i386;
    m_reg_info.last_xmm = lldb_xmm7_i386;
    m_reg_info.first_ymm = lldb_ymm0_i386;
    m_reg_info.last_ymm = lldb_ymm7_i386;
    m_reg_info.first_mpxr = lldb_bnd0_i386;
    m_reg_info.last_mpxr = lldb_bnd3_i386;
    m_reg_info.first_mpxc = lldb_bndcfgu_i386;
    m_reg_info.last_mpxc = lldb_bndstatus_i386;
    m_reg_info.first_dr = lldb_dr0_i386;
    m_reg_info.gpr_flags = lldb_eflags_i386;
    break;
  case llvm::Triple::x86_64:
    m_reg_info.num_registers = k_num_registers_x86_64;
    m_reg_info.num_gpr_registers = k_num_gpr_registers_x86_64;
    m_reg_info.num_fpr_registers = k_num_fpr_registers_x86_64;
    m_reg_info.num_avx_registers = k_num_avx_registers_x86_64;
    m_reg_info.num_mpx_registers = k_num_mpx_registers_x86_64;
    m_reg_info.last_gpr = k_last_gpr_x86_64;
    m_reg_info.first_fpr = k_first_fpr_x86_64;
    m_reg_info.last_fpr = k_last_fpr_x86_64;
    m_reg_info.first_st = lldb_st0_x86_64;
    m_reg_info.last_st = lldb_st7_x86_64;
    m_reg_info.first_mm = lldb_mm0_x86_64;
    m_reg_info.last_mm = lldb_mm7_x86_64;
    m_reg_info.first_xmm = lldb_xmm0_x86_64;
    m_reg_info.last_xmm = lldb_xmm15_x86_64;
    m_reg_info.first_ymm = lldb_ymm0_x86_64;
    m_reg_info.last_ymm = lldb_ymm15_x86_64;
    m_reg_info.first_mpxr = lldb_bnd0_x86_64;
    m_reg_info.last_mpxr = lldb_bnd3_x86_64;
    m_reg_info.first_mpxc = lldb_bndcfgu_x86_64;
    m_reg_info.last_mpxc = lldb_bndstatus_x86_64;
    m_reg_info.first_dr = lldb_dr0_x86_64;
    m_reg_info.gpr_flags = lldb_rflags_x86_64;
    break;
  default:
    assert(false && "Unhandled target architecture.");
    break;
  }

  // Initialize m_iovec to point to the buffer and buffer size using the
  // conventions of Berkeley style UIO structures, as required by PTRACE
  // extensions.
  m_iovec.iov_base = &m_fpr;
  m_iovec.iov_len = sizeof(m_fpr);

  // Clear out the FPR state.
  ::memset(&m_fpr, 0, sizeof(m_fpr));

  // Store byte offset of fctrl (i.e. first register of FPR)
  const RegisterInfo *reg_info_fctrl = GetRegisterInfoByName("fctrl");
  m_fctrl_offset_in_userarea = reg_info_fctrl->byte_offset;
}

// CONSIDER after local and llgs debugging are merged, register set support can
// be moved into a base x86-64 class with IsRegisterSetAvailable made virtual.
uint32_t NativeRegisterContextLinux_x86_64::GetRegisterSetCount() const {
  uint32_t sets = 0;
  for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index) {
    if (IsRegisterSetAvailable(set_index))
      ++sets;
  }

  return sets;
}

uint32_t NativeRegisterContextLinux_x86_64::GetUserRegisterCount() const {
  uint32_t count = 0;
  for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index) {
    const RegisterSet *set = GetRegisterSet(set_index);
    if (set)
      count += set->num_registers;
  }
  return count;
}

const RegisterSet *
NativeRegisterContextLinux_x86_64::GetRegisterSet(uint32_t set_index) const {
  if (!IsRegisterSetAvailable(set_index))
    return nullptr;

  switch (GetRegisterInfoInterface().GetTargetArchitecture().GetMachine()) {
  case llvm::Triple::x86:
    return &g_reg_sets_i386[set_index];
  case llvm::Triple::x86_64:
    return &g_reg_sets_x86_64[set_index];
  default:
    assert(false && "Unhandled target architecture.");
    return nullptr;
  }

  return nullptr;
}

Status
NativeRegisterContextLinux_x86_64::ReadRegister(const RegisterInfo *reg_info,
                                                RegisterValue &reg_value) {
  Status error;

  if (!reg_info) {
    error.SetErrorString("reg_info NULL");
    return error;
  }

  const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB];
  if (reg == LLDB_INVALID_REGNUM) {
    // This is likely an internal register for lldb use only and should not be
    // directly queried.
    error.SetErrorStringWithFormat("register \"%s\" is an internal-only lldb "
                                   "register, cannot read directly",
                                   reg_info->name);
    return error;
  }

  if (IsFPR(reg) || IsAVX(reg) || IsMPX(reg)) {
    error = ReadFPR();
    if (error.Fail())
      return error;
  } else {
    uint32_t full_reg = reg;
    bool is_subreg = reg_info->invalidate_regs &&
                     (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM);

    if (is_subreg) {
      // Read the full aligned 64-bit register.
      full_reg = reg_info->invalidate_regs[0];
    }

    error = ReadRegisterRaw(full_reg, reg_value);

    if (error.Success()) {
      // If our read was not aligned (for ah,bh,ch,dh), shift our returned
      // value one byte to the right.
      if (is_subreg && (reg_info->byte_offset & 0x1))
        reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8);

      // If our return byte size was greater than the return value reg size,
      // then use the type specified by reg_info rather than the uint64_t
      // default
      if (reg_value.GetByteSize() > reg_info->byte_size)
        reg_value.SetType(reg_info);
    }
    return error;
  }

  if (reg_info->encoding == lldb::eEncodingVector) {
    lldb::ByteOrder byte_order = GetByteOrder();

    if (byte_order != lldb::eByteOrderInvalid) {
      if (reg >= m_reg_info.first_st && reg <= m_reg_info.last_st)
        reg_value.SetBytes(m_fpr.fxsave.stmm[reg - m_reg_info.first_st].bytes,
                           reg_info->byte_size, byte_order);
      if (reg >= m_reg_info.first_mm && reg <= m_reg_info.last_mm)
        reg_value.SetBytes(m_fpr.fxsave.stmm[reg - m_reg_info.first_mm].bytes,
                           reg_info->byte_size, byte_order);
      if (reg >= m_reg_info.first_xmm && reg <= m_reg_info.last_xmm)
        reg_value.SetBytes(m_fpr.fxsave.xmm[reg - m_reg_info.first_xmm].bytes,
                           reg_info->byte_size, byte_order);
      if (reg >= m_reg_info.first_ymm && reg <= m_reg_info.last_ymm) {
        // Concatenate ymm using the register halves in xmm.bytes and
        // ymmh.bytes
        if (CopyXSTATEtoYMM(reg, byte_order))
          reg_value.SetBytes(m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes,
                             reg_info->byte_size, byte_order);
        else {
          error.SetErrorString("failed to copy ymm register value");
          return error;
        }
      }
      if (reg >= m_reg_info.first_mpxr && reg <= m_reg_info.last_mpxr) {
        if (CopyXSTATEtoMPX(reg))
          reg_value.SetBytes(m_mpx_set.mpxr[reg - m_reg_info.first_mpxr].bytes,
                             reg_info->byte_size, byte_order);
        else {
          error.SetErrorString("failed to copy mpx register value");
          return error;
        }
      }
      if (reg >= m_reg_info.first_mpxc && reg <= m_reg_info.last_mpxc) {
        if (CopyXSTATEtoMPX(reg))
          reg_value.SetBytes(m_mpx_set.mpxc[reg - m_reg_info.first_mpxc].bytes,
                             reg_info->byte_size, byte_order);
        else {
          error.SetErrorString("failed to copy mpx register value");
          return error;
        }
      }

      if (reg_value.GetType() != RegisterValue::eTypeBytes)
        error.SetErrorString(
            "write failed - type was expected to be RegisterValue::eTypeBytes");

      return error;
    }

    error.SetErrorString("byte order is invalid");
    return error;
  }

  // Get pointer to m_fpr.fxsave variable and set the data from it.

  // Byte offsets of all registers are calculated wrt 'UserArea' structure.
  // However, ReadFPR() reads fpu registers {using ptrace(PTRACE_GETFPREGS,..)}
  // and stores them in 'm_fpr' (of type FPR structure). To extract values of
  // fpu registers, m_fpr should be read at byte offsets calculated wrt to FPR
  // structure.

  // Since, FPR structure is also one of the member of UserArea structure.
  // byte_offset(fpu wrt FPR) = byte_offset(fpu wrt UserArea) -
  // byte_offset(fctrl wrt UserArea)
  assert((reg_info->byte_offset - m_fctrl_offset_in_userarea) < sizeof(m_fpr));
  uint8_t *src =
      (uint8_t *)&m_fpr + reg_info->byte_offset - m_fctrl_offset_in_userarea;
  switch (reg_info->byte_size) {
  case 1:
    reg_value.SetUInt8(*(uint8_t *)src);
    break;
  case 2:
    reg_value.SetUInt16(*(uint16_t *)src);
    break;
  case 4:
    reg_value.SetUInt32(*(uint32_t *)src);
    break;
  case 8:
    reg_value.SetUInt64(*(uint64_t *)src);
    break;
  default:
    assert(false && "Unhandled data size.");
    error.SetErrorStringWithFormat("unhandled byte size: %" PRIu32,
                                   reg_info->byte_size);
    break;
  }

  return error;
}

void NativeRegisterContextLinux_x86_64::UpdateXSTATEforWrite(
    uint32_t reg_index) {
  XSAVE_HDR::XFeature &xstate_bv = m_fpr.xsave.header.xstate_bv;
  if (IsFPR(reg_index)) {
    // IsFPR considers both %st and %xmm registers as floating point, but these
    // map to two features. Set both flags, just in case.
    xstate_bv |= XSAVE_HDR::XFeature::FP | XSAVE_HDR::XFeature::SSE;
  } else if (IsAVX(reg_index)) {
    // Lower bytes of some %ymm registers are shared with %xmm registers.
    xstate_bv |= XSAVE_HDR::XFeature::YMM | XSAVE_HDR::XFeature::SSE;
  } else if (IsMPX(reg_index)) {
    // MPX registers map to two XSAVE features.
    xstate_bv |= XSAVE_HDR::XFeature::BNDREGS | XSAVE_HDR::XFeature::BNDCSR;
  }
}

Status NativeRegisterContextLinux_x86_64::WriteRegister(
    const RegisterInfo *reg_info, const RegisterValue &reg_value) {
  assert(reg_info && "reg_info is null");

  const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB];
  if (reg_index == LLDB_INVALID_REGNUM)
    return Status("no lldb regnum for %s", reg_info && reg_info->name
                                               ? reg_info->name
                                               : "<unknown register>");

  UpdateXSTATEforWrite(reg_index);

  if (IsGPR(reg_index))
    return WriteRegisterRaw(reg_index, reg_value);

  if (IsFPR(reg_index) || IsAVX(reg_index) || IsMPX(reg_index)) {
    if (reg_info->encoding == lldb::eEncodingVector) {
      if (reg_index >= m_reg_info.first_st && reg_index <= m_reg_info.last_st)
        ::memcpy(m_fpr.fxsave.stmm[reg_index - m_reg_info.first_st].bytes,
                 reg_value.GetBytes(), reg_value.GetByteSize());

      if (reg_index >= m_reg_info.first_mm && reg_index <= m_reg_info.last_mm)
        ::memcpy(m_fpr.fxsave.stmm[reg_index - m_reg_info.first_mm].bytes,
                 reg_value.GetBytes(), reg_value.GetByteSize());

      if (reg_index >= m_reg_info.first_xmm && reg_index <= m_reg_info.last_xmm)
        ::memcpy(m_fpr.fxsave.xmm[reg_index - m_reg_info.first_xmm].bytes,
                 reg_value.GetBytes(), reg_value.GetByteSize());

      if (reg_index >= m_reg_info.first_ymm &&
          reg_index <= m_reg_info.last_ymm) {
        // Store ymm register content, and split into the register halves in
        // xmm.bytes and ymmh.bytes
        ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes,
                 reg_value.GetBytes(), reg_value.GetByteSize());
        if (!CopyYMMtoXSTATE(reg_index, GetByteOrder()))
          return Status("CopyYMMtoXSTATE() failed");
      }

      if (reg_index >= m_reg_info.first_mpxr &&
          reg_index <= m_reg_info.last_mpxr) {
        ::memcpy(m_mpx_set.mpxr[reg_index - m_reg_info.first_mpxr].bytes,
                 reg_value.GetBytes(), reg_value.GetByteSize());
        if (!CopyMPXtoXSTATE(reg_index))
          return Status("CopyMPXtoXSTATE() failed");
      }

      if (reg_index >= m_reg_info.first_mpxc &&
          reg_index <= m_reg_info.last_mpxc) {
        ::memcpy(m_mpx_set.mpxc[reg_index - m_reg_info.first_mpxc].bytes,
                 reg_value.GetBytes(), reg_value.GetByteSize());
        if (!CopyMPXtoXSTATE(reg_index))
          return Status("CopyMPXtoXSTATE() failed");
      }
    } else {
      // Get pointer to m_fpr.fxsave variable and set the data to it.

      // Byte offsets of all registers are calculated wrt 'UserArea' structure.
      // However, WriteFPR() takes m_fpr (of type FPR structure) and writes
      // only fpu registers using ptrace(PTRACE_SETFPREGS,..) API. Hence fpu
      // registers should be written in m_fpr at byte offsets calculated wrt
      // FPR structure.

      // Since, FPR structure is also one of the member of UserArea structure.
      // byte_offset(fpu wrt FPR) = byte_offset(fpu wrt UserArea) -
      // byte_offset(fctrl wrt UserArea)
      assert((reg_info->byte_offset - m_fctrl_offset_in_userarea) <
             sizeof(m_fpr));
      uint8_t *dst = (uint8_t *)&m_fpr + reg_info->byte_offset -
                     m_fctrl_offset_in_userarea;
      switch (reg_info->byte_size) {
      case 1:
        *(uint8_t *)dst = reg_value.GetAsUInt8();
        break;
      case 2:
        *(uint16_t *)dst = reg_value.GetAsUInt16();
        break;
      case 4:
        *(uint32_t *)dst = reg_value.GetAsUInt32();
        break;
      case 8:
        *(uint64_t *)dst = reg_value.GetAsUInt64();
        break;
      default:
        assert(false && "Unhandled data size.");
        return Status("unhandled register data size %" PRIu32,
                      reg_info->byte_size);
      }
    }

    Status error = WriteFPR();
    if (error.Fail())
      return error;

    if (IsAVX(reg_index)) {
      if (!CopyYMMtoXSTATE(reg_index, GetByteOrder()))
        return Status("CopyYMMtoXSTATE() failed");
    }

    if (IsMPX(reg_index)) {
      if (!CopyMPXtoXSTATE(reg_index))
        return Status("CopyMPXtoXSTATE() failed");
    }
    return Status();
  }
  return Status("failed - register wasn't recognized to be a GPR or an FPR, "
                "write strategy unknown");
}

Status NativeRegisterContextLinux_x86_64::ReadAllRegisterValues(
    lldb::DataBufferSP &data_sp) {
  Status error;

  data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0));
  error = ReadGPR();
  if (error.Fail())
    return error;

  error = ReadFPR();
  if (error.Fail())
    return error;

  uint8_t *dst = data_sp->GetBytes();
  ::memcpy(dst, &m_gpr_x86_64, GetRegisterInfoInterface().GetGPRSize());
  dst += GetRegisterInfoInterface().GetGPRSize();
  if (m_xstate_type == XStateType::FXSAVE)
    ::memcpy(dst, &m_fpr.fxsave, sizeof(m_fpr.fxsave));
  else if (m_xstate_type == XStateType::XSAVE) {
    lldb::ByteOrder byte_order = GetByteOrder();

    if (IsCPUFeatureAvailable(RegSet::avx)) {
      // Assemble the YMM register content from the register halves.
      for (uint32_t reg = m_reg_info.first_ymm; reg <= m_reg_info.last_ymm;
           ++reg) {
        if (!CopyXSTATEtoYMM(reg, byte_order)) {
          error.SetErrorStringWithFormat(
              "NativeRegisterContextLinux_x86_64::%s "
              "CopyXSTATEtoYMM() failed for reg num "
              "%" PRIu32,
              __FUNCTION__, reg);
          return error;
        }
      }
    }

    if (IsCPUFeatureAvailable(RegSet::mpx)) {
      for (uint32_t reg = m_reg_info.first_mpxr; reg <= m_reg_info.last_mpxc;
           ++reg) {
        if (!CopyXSTATEtoMPX(reg)) {
          error.SetErrorStringWithFormat(
              "NativeRegisterContextLinux_x86_64::%s "
              "CopyXSTATEtoMPX() failed for reg num "
              "%" PRIu32,
              __FUNCTION__, reg);
          return error;
        }
      }
    }
    // Copy the extended register state including the assembled ymm registers.
    ::memcpy(dst, &m_fpr, sizeof(m_fpr));
  } else {
    assert(false && "how do we save the floating point registers?");
    error.SetErrorString("unsure how to save the floating point registers");
  }
  /** The following code is specific to Linux x86 based architectures,
   *  where the register orig_eax (32 bit)/orig_rax (64 bit) is set to
   *  -1 to solve the bug 23659, such a setting prevents the automatic
   *  decrement of the instruction pointer which was causing the SIGILL
   *  exception.
   * **/

  RegisterValue value((uint64_t)-1);
  const RegisterInfo *reg_info =
      GetRegisterInfoInterface().GetDynamicRegisterInfo("orig_eax");
  if (reg_info == nullptr)
    reg_info = GetRegisterInfoInterface().GetDynamicRegisterInfo("orig_rax");

  if (reg_info != nullptr)
    return DoWriteRegisterValue(reg_info->byte_offset, reg_info->name, value);

  return error;
}

Status NativeRegisterContextLinux_x86_64::WriteAllRegisterValues(
    const lldb::DataBufferSP &data_sp) {
  Status error;

  if (!data_sp) {
    error.SetErrorStringWithFormat(
        "NativeRegisterContextLinux_x86_64::%s invalid data_sp provided",
        __FUNCTION__);
    return error;
  }

  if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) {
    error.SetErrorStringWithFormatv(
        "data_sp contained mismatched data size, expected {0}, actual {1}",
        REG_CONTEXT_SIZE, data_sp->GetByteSize());
    return error;
  }

  uint8_t *src = data_sp->GetBytes();
  if (src == nullptr) {
    error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s "
                                   "DataBuffer::GetBytes() returned a null "
                                   "pointer",
                                   __FUNCTION__);
    return error;
  }
  ::memcpy(&m_gpr_x86_64, src, GetRegisterInfoInterface().GetGPRSize());

  error = WriteGPR();
  if (error.Fail())
    return error;

  src += GetRegisterInfoInterface().GetGPRSize();
  if (m_xstate_type == XStateType::FXSAVE)
    ::memcpy(&m_fpr.fxsave, src, sizeof(m_fpr.fxsave));
  else if (m_xstate_type == XStateType::XSAVE)
    ::memcpy(&m_fpr.xsave, src, sizeof(m_fpr.xsave));

  error = WriteFPR();
  if (error.Fail())
    return error;

  if (m_xstate_type == XStateType::XSAVE) {
    lldb::ByteOrder byte_order = GetByteOrder();

    if (IsCPUFeatureAvailable(RegSet::avx)) {
      // Parse the YMM register content from the register halves.
      for (uint32_t reg = m_reg_info.first_ymm; reg <= m_reg_info.last_ymm;
           ++reg) {
        if (!CopyYMMtoXSTATE(reg, byte_order)) {
          error.SetErrorStringWithFormat(
              "NativeRegisterContextLinux_x86_64::%s "
              "CopyYMMtoXSTATE() failed for reg num "
              "%" PRIu32,
              __FUNCTION__, reg);
          return error;
        }
      }
    }

    if (IsCPUFeatureAvailable(RegSet::mpx)) {
      for (uint32_t reg = m_reg_info.first_mpxr; reg <= m_reg_info.last_mpxc;
           ++reg) {
        if (!CopyMPXtoXSTATE(reg)) {
          error.SetErrorStringWithFormat(
              "NativeRegisterContextLinux_x86_64::%s "
              "CopyMPXtoXSTATE() failed for reg num "
              "%" PRIu32,
              __FUNCTION__, reg);
          return error;
        }
      }
    }
  }

  return error;
}

bool NativeRegisterContextLinux_x86_64::IsCPUFeatureAvailable(
    RegSet feature_code) const {
  if (m_xstate_type == XStateType::Invalid) {
    if (const_cast<NativeRegisterContextLinux_x86_64 *>(this)->ReadFPR().Fail())
      return false;
  }
  switch (feature_code) {
  case RegSet::gpr:
  case RegSet::fpu:
    return true;
  case RegSet::avx: // Check if CPU has AVX and if there is kernel support, by
                    // reading in the XCR0 area of XSAVE.
    if ((m_fpr.xsave.i387.xcr0 & mask_XSTATE_AVX) == mask_XSTATE_AVX)
      return true;
     break;
  case RegSet::mpx: // Check if CPU has MPX and if there is kernel support, by
                    // reading in the XCR0 area of XSAVE.
    if ((m_fpr.xsave.i387.xcr0 & mask_XSTATE_MPX) == mask_XSTATE_MPX)
      return true;
    break;
  }
  return false;
}

bool NativeRegisterContextLinux_x86_64::IsRegisterSetAvailable(
    uint32_t set_index) const {
  uint32_t num_sets = k_num_register_sets - k_num_extended_register_sets;

  switch (static_cast<RegSet>(set_index)) {
  case RegSet::gpr:
  case RegSet::fpu:
    return (set_index < num_sets);
  case RegSet::avx:
    return IsCPUFeatureAvailable(RegSet::avx);
  case RegSet::mpx:
    return IsCPUFeatureAvailable(RegSet::mpx);
  }
  return false;
}

bool NativeRegisterContextLinux_x86_64::IsGPR(uint32_t reg_index) const {
  // GPRs come first.
  return reg_index <= m_reg_info.last_gpr;
}

bool NativeRegisterContextLinux_x86_64::IsFPR(uint32_t reg_index) const {
  return (m_reg_info.first_fpr <= reg_index &&
          reg_index <= m_reg_info.last_fpr);
}

Status NativeRegisterContextLinux_x86_64::WriteFPR() {
  switch (m_xstate_type) {
  case XStateType::FXSAVE:
    return WriteRegisterSet(
        &m_iovec, sizeof(m_fpr.fxsave),
        fxsr_regset(GetRegisterInfoInterface().GetTargetArchitecture()));
  case XStateType::XSAVE:
    return WriteRegisterSet(&m_iovec, sizeof(m_fpr.xsave), NT_X86_XSTATE);
  default:
    return Status("Unrecognized FPR type.");
  }
}

bool NativeRegisterContextLinux_x86_64::IsAVX(uint32_t reg_index) const {
  if (!IsCPUFeatureAvailable(RegSet::avx))
    return false;
  return (m_reg_info.first_ymm <= reg_index &&
          reg_index <= m_reg_info.last_ymm);
}

bool NativeRegisterContextLinux_x86_64::CopyXSTATEtoYMM(
    uint32_t reg_index, lldb::ByteOrder byte_order) {
  if (!IsAVX(reg_index))
    return false;

  if (byte_order == lldb::eByteOrderLittle) {
    ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes,
             m_fpr.fxsave.xmm[reg_index - m_reg_info.first_ymm].bytes,
             sizeof(XMMReg));
    ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes +
                 sizeof(XMMReg),
             m_fpr.xsave.ymmh[reg_index - m_reg_info.first_ymm].bytes,
             sizeof(YMMHReg));
    return true;
  }

  if (byte_order == lldb::eByteOrderBig) {
    ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes +
                 sizeof(XMMReg),
             m_fpr.fxsave.xmm[reg_index - m_reg_info.first_ymm].bytes,
             sizeof(XMMReg));
    ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes,
             m_fpr.xsave.ymmh[reg_index - m_reg_info.first_ymm].bytes,
             sizeof(YMMHReg));
    return true;
  }
  return false; // unsupported or invalid byte order
}

bool NativeRegisterContextLinux_x86_64::CopyYMMtoXSTATE(
    uint32_t reg, lldb::ByteOrder byte_order) {
  if (!IsAVX(reg))
    return false;

  if (byte_order == lldb::eByteOrderLittle) {
    ::memcpy(m_fpr.fxsave.xmm[reg - m_reg_info.first_ymm].bytes,
             m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes, sizeof(XMMReg));
    ::memcpy(m_fpr.xsave.ymmh[reg - m_reg_info.first_ymm].bytes,
             m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes + sizeof(XMMReg),
             sizeof(YMMHReg));
    return true;
  }

  if (byte_order == lldb::eByteOrderBig) {
    ::memcpy(m_fpr.fxsave.xmm[reg - m_reg_info.first_ymm].bytes,
             m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes + sizeof(XMMReg),
             sizeof(XMMReg));
    ::memcpy(m_fpr.xsave.ymmh[reg - m_reg_info.first_ymm].bytes,
             m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes, sizeof(YMMHReg));
    return true;
  }
  return false; // unsupported or invalid byte order
}

void *NativeRegisterContextLinux_x86_64::GetFPRBuffer() {
  switch (m_xstate_type) {
  case XStateType::FXSAVE:
    return &m_fpr.fxsave;
  case XStateType::XSAVE:
    return &m_iovec;
  default:
    return nullptr;
  }
}

size_t NativeRegisterContextLinux_x86_64::GetFPRSize() {
  switch (m_xstate_type) {
  case XStateType::FXSAVE:
    return sizeof(m_fpr.fxsave);
  case XStateType::XSAVE:
    return sizeof(m_iovec);
  default:
    return 0;
  }
}

Status NativeRegisterContextLinux_x86_64::ReadFPR() {
  Status error;

  // Probe XSAVE and if it is not supported fall back to FXSAVE.
  if (m_xstate_type != XStateType::FXSAVE) {
    error = ReadRegisterSet(&m_iovec, sizeof(m_fpr.xsave), NT_X86_XSTATE);
    if (!error.Fail()) {
      m_xstate_type = XStateType::XSAVE;
      return error;
    }
  }
  error = ReadRegisterSet(
      &m_iovec, sizeof(m_fpr.xsave),
      fxsr_regset(GetRegisterInfoInterface().GetTargetArchitecture()));
  if (!error.Fail()) {
    m_xstate_type = XStateType::FXSAVE;
    return error;
  }
  return Status("Unrecognized FPR type.");
}

bool NativeRegisterContextLinux_x86_64::IsMPX(uint32_t reg_index) const {
  if (!IsCPUFeatureAvailable(RegSet::mpx))
    return false;
  return (m_reg_info.first_mpxr <= reg_index &&
          reg_index <= m_reg_info.last_mpxc);
}

bool NativeRegisterContextLinux_x86_64::CopyXSTATEtoMPX(uint32_t reg) {
  if (!IsMPX(reg))
    return false;

  if (reg >= m_reg_info.first_mpxr && reg <= m_reg_info.last_mpxr) {
    ::memcpy(m_mpx_set.mpxr[reg - m_reg_info.first_mpxr].bytes,
             m_fpr.xsave.mpxr[reg - m_reg_info.first_mpxr].bytes,
             sizeof(MPXReg));
  } else {
    ::memcpy(m_mpx_set.mpxc[reg - m_reg_info.first_mpxc].bytes,
             m_fpr.xsave.mpxc[reg - m_reg_info.first_mpxc].bytes,
             sizeof(MPXCsr));
  }
  return true;
}

bool NativeRegisterContextLinux_x86_64::CopyMPXtoXSTATE(uint32_t reg) {
  if (!IsMPX(reg))
    return false;

  if (reg >= m_reg_info.first_mpxr && reg <= m_reg_info.last_mpxr) {
    ::memcpy(m_fpr.xsave.mpxr[reg - m_reg_info.first_mpxr].bytes,
             m_mpx_set.mpxr[reg - m_reg_info.first_mpxr].bytes, sizeof(MPXReg));
  } else {
    ::memcpy(m_fpr.xsave.mpxc[reg - m_reg_info.first_mpxc].bytes,
             m_mpx_set.mpxc[reg - m_reg_info.first_mpxc].bytes, sizeof(MPXCsr));
  }
  return true;
}

Status NativeRegisterContextLinux_x86_64::IsWatchpointHit(uint32_t wp_index,
                                                          bool &is_hit) {
  if (wp_index >= NumSupportedHardwareWatchpoints())
    return Status("Watchpoint index out of range");

  RegisterValue reg_value;
  Status error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value);
  if (error.Fail()) {
    is_hit = false;
    return error;
  }

  uint64_t status_bits = reg_value.GetAsUInt64();

  is_hit = status_bits & (1 << wp_index);

  return error;
}

Status NativeRegisterContextLinux_x86_64::GetWatchpointHitIndex(
    uint32_t &wp_index, lldb::addr_t trap_addr) {
  uint32_t num_hw_wps = NumSupportedHardwareWatchpoints();
  for (wp_index = 0; wp_index < num_hw_wps; ++wp_index) {
    bool is_hit;
    Status error = IsWatchpointHit(wp_index, is_hit);
    if (error.Fail()) {
      wp_index = LLDB_INVALID_INDEX32;
      return error;
    } else if (is_hit) {
      return error;
    }
  }
  wp_index = LLDB_INVALID_INDEX32;
  return Status();
}

Status NativeRegisterContextLinux_x86_64::IsWatchpointVacant(uint32_t wp_index,
                                                             bool &is_vacant) {
  if (wp_index >= NumSupportedHardwareWatchpoints())
    return Status("Watchpoint index out of range");

  RegisterValue reg_value;
  Status error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value);
  if (error.Fail()) {
    is_vacant = false;
    return error;
  }

  uint64_t control_bits = reg_value.GetAsUInt64();

  is_vacant = !(control_bits & (1 << (2 * wp_index)));

  return error;
}

Status NativeRegisterContextLinux_x86_64::SetHardwareWatchpointWithIndex(
    lldb::addr_t addr, size_t size, uint32_t watch_flags, uint32_t wp_index) {

  if (wp_index >= NumSupportedHardwareWatchpoints())
    return Status("Watchpoint index out of range");

  // Read only watchpoints aren't supported on x86_64. Fall back to read/write
  // waitchpoints instead.
  // TODO: Add logic to detect when a write happens and ignore that watchpoint
  // hit.
  if (watch_flags == 0x2)
    watch_flags = 0x3;

  if (watch_flags != 0x1 && watch_flags != 0x3)
    return Status("Invalid read/write bits for watchpoint");

  if (size != 1 && size != 2 && size != 4 && size != 8)
    return Status("Invalid size for watchpoint");

  bool is_vacant;
  Status error = IsWatchpointVacant(wp_index, is_vacant);
  if (error.Fail())
    return error;
  if (!is_vacant)
    return Status("Watchpoint index not vacant");

  RegisterValue reg_value;
  error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value);
  if (error.Fail())
    return error;

  // for watchpoints 0, 1, 2, or 3, respectively, set bits 1, 3, 5, or 7
  uint64_t enable_bit = 1 << (2 * wp_index);

  // set bits 16-17, 20-21, 24-25, or 28-29
  // with 0b01 for write, and 0b11 for read/write
  uint64_t rw_bits = watch_flags << (16 + 4 * wp_index);

  // set bits 18-19, 22-23, 26-27, or 30-31
  // with 0b00, 0b01, 0b10, or 0b11
  // for 1, 2, 8 (if supported), or 4 bytes, respectively
  uint64_t size_bits = (size == 8 ? 0x2 : size - 1) << (18 + 4 * wp_index);

  uint64_t bit_mask = (0x3 << (2 * wp_index)) | (0xF << (16 + 4 * wp_index));

  uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask;

  control_bits |= enable_bit | rw_bits | size_bits;

  error = WriteRegisterRaw(m_reg_info.first_dr + wp_index, RegisterValue(addr));
  if (error.Fail())
    return error;

  error =
      WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits));
  if (error.Fail())
    return error;

  error.Clear();
  return error;
}

bool NativeRegisterContextLinux_x86_64::ClearHardwareWatchpoint(
    uint32_t wp_index) {
  if (wp_index >= NumSupportedHardwareWatchpoints())
    return false;

  RegisterValue reg_value;

  // for watchpoints 0, 1, 2, or 3, respectively, clear bits 0, 1, 2, or 3 of
  // the debug status register (DR6)
  Status error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value);
  if (error.Fail())
    return false;
  uint64_t bit_mask = 1 << wp_index;
  uint64_t status_bits = reg_value.GetAsUInt64() & ~bit_mask;
  error = WriteRegisterRaw(m_reg_info.first_dr + 6, RegisterValue(status_bits));
  if (error.Fail())
    return false;

  // for watchpoints 0, 1, 2, or 3, respectively, clear bits {0-1,16-19},
  // {2-3,20-23}, {4-5,24-27}, or {6-7,28-31} of the debug control register
  // (DR7)
  error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value);
  if (error.Fail())
    return false;
  bit_mask = (0x3 << (2 * wp_index)) | (0xF << (16 + 4 * wp_index));
  uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask;
  return WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits))
      .Success();
}

Status NativeRegisterContextLinux_x86_64::ClearAllHardwareWatchpoints() {
  RegisterValue reg_value;

  // clear bits {0-4} of the debug status register (DR6)
  Status error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value);
  if (error.Fail())
    return error;
  uint64_t bit_mask = 0xF;
  uint64_t status_bits = reg_value.GetAsUInt64() & ~bit_mask;
  error = WriteRegisterRaw(m_reg_info.first_dr + 6, RegisterValue(status_bits));
  if (error.Fail())
    return error;

  // clear bits {0-7,16-31} of the debug control register (DR7)
  error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value);
  if (error.Fail())
    return error;
  bit_mask = 0xFF | (0xFFFF << 16);
  uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask;
  return WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits));
}

uint32_t NativeRegisterContextLinux_x86_64::SetHardwareWatchpoint(
    lldb::addr_t addr, size_t size, uint32_t watch_flags) {
  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
  const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
  for (uint32_t wp_index = 0; wp_index < num_hw_watchpoints; ++wp_index) {
    bool is_vacant;
    Status error = IsWatchpointVacant(wp_index, is_vacant);
    if (is_vacant) {
      error = SetHardwareWatchpointWithIndex(addr, size, watch_flags, wp_index);
      if (error.Success())
        return wp_index;
    }
    if (error.Fail() && log) {
      log->Printf("NativeRegisterContextLinux_x86_64::%s Error: %s",
                  __FUNCTION__, error.AsCString());
    }
  }
  return LLDB_INVALID_INDEX32;
}

lldb::addr_t
NativeRegisterContextLinux_x86_64::GetWatchpointAddress(uint32_t wp_index) {
  if (wp_index >= NumSupportedHardwareWatchpoints())
    return LLDB_INVALID_ADDRESS;
  RegisterValue reg_value;
  if (ReadRegisterRaw(m_reg_info.first_dr + wp_index, reg_value).Fail())
    return LLDB_INVALID_ADDRESS;
  return reg_value.GetAsUInt64();
}

uint32_t NativeRegisterContextLinux_x86_64::NumSupportedHardwareWatchpoints() {
  // Available debug address registers: dr0, dr1, dr2, dr3
  return 4;
}

#endif // defined(__i386__) || defined(__x86_64__)