summaryrefslogtreecommitdiff
path: root/source/Plugins/Process/FreeBSD/RegisterContextPOSIXProcessMonitor_x86.cpp
blob: 01e1224ba28092bf7826fe61b2e7ab8e5d082067 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
//===-- RegisterContextPOSIXProcessMonitor_x86.cpp --------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "lldb/Target/Thread.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/RegisterValue.h"

#include "Plugins/Process/FreeBSD/ProcessFreeBSD.h"
#include "Plugins/Process/FreeBSD/ProcessMonitor.h"
#include "RegisterContextPOSIXProcessMonitor_x86.h"

using namespace lldb_private;
using namespace lldb;

// Support ptrace extensions even when compiled without required kernel support
#ifndef NT_X86_XSTATE
#define NT_X86_XSTATE 0x202
#endif

#define REG_CONTEXT_SIZE (GetGPRSize() + sizeof(FPR))

static uint32_t size_and_rw_bits(size_t size, bool read, bool write) {
  uint32_t rw;

  if (read)
    rw = 0x3; // READ or READ/WRITE
  else if (write)
    rw = 0x1; // WRITE
  else
    assert(0 && "read and write cannot both be false");

  switch (size) {
  case 1:
    return rw;
  case 2:
    return (0x1 << 2) | rw;
  case 4:
    return (0x3 << 2) | rw;
  case 8:
    return (0x2 << 2) | rw;
  default:
    assert(0 && "invalid size, must be one of 1, 2, 4, or 8");
    return 0; // Unreachable. Just to silence compiler.
  }
}

RegisterContextPOSIXProcessMonitor_x86_64::
    RegisterContextPOSIXProcessMonitor_x86_64(
        Thread &thread, uint32_t concrete_frame_idx,
        lldb_private::RegisterInfoInterface *register_info)
    : RegisterContextPOSIX_x86(thread, concrete_frame_idx, register_info) {
  // Store byte offset of fctrl (i.e. first register of FPR) wrt 'UserArea'
  const RegisterInfo *reg_info_fctrl = GetRegisterInfoByName("fctrl");
  m_fctrl_offset_in_userarea = reg_info_fctrl->byte_offset;

  m_iovec.iov_base = &m_fpr.xsave;
  m_iovec.iov_len = sizeof(m_fpr.xsave);
}

ProcessMonitor &RegisterContextPOSIXProcessMonitor_x86_64::GetMonitor() {
  ProcessSP base = CalculateProcess();
  ProcessFreeBSD *process = static_cast<ProcessFreeBSD *>(base.get());
  return process->GetMonitor();
}

bool RegisterContextPOSIXProcessMonitor_x86_64::ReadGPR() {
  ProcessMonitor &monitor = GetMonitor();
  return monitor.ReadGPR(m_thread.GetID(), &m_gpr_x86_64, GetGPRSize());
}

bool RegisterContextPOSIXProcessMonitor_x86_64::ReadFPR() {
  ProcessMonitor &monitor = GetMonitor();
  if (GetFPRType() == eFXSAVE)
    return monitor.ReadFPR(m_thread.GetID(), &m_fpr.fxsave,
                           sizeof(m_fpr.fxsave));

  if (GetFPRType() == eXSAVE)
    return monitor.ReadRegisterSet(m_thread.GetID(), &m_iovec,
                                   sizeof(m_fpr.xsave), NT_X86_XSTATE);
  return false;
}

bool RegisterContextPOSIXProcessMonitor_x86_64::WriteGPR() {
  ProcessMonitor &monitor = GetMonitor();
  return monitor.WriteGPR(m_thread.GetID(), &m_gpr_x86_64, GetGPRSize());
}

bool RegisterContextPOSIXProcessMonitor_x86_64::WriteFPR() {
  ProcessMonitor &monitor = GetMonitor();
  if (GetFPRType() == eFXSAVE)
    return monitor.WriteFPR(m_thread.GetID(), &m_fpr.fxsave,
                            sizeof(m_fpr.fxsave));

  if (GetFPRType() == eXSAVE)
    return monitor.WriteRegisterSet(m_thread.GetID(), &m_iovec,
                                    sizeof(m_fpr.xsave), NT_X86_XSTATE);
  return false;
}

bool RegisterContextPOSIXProcessMonitor_x86_64::ReadRegister(
    const unsigned reg, RegisterValue &value) {
  ProcessMonitor &monitor = GetMonitor();

#if defined(__FreeBSD__)
  if (reg >= m_reg_info.first_dr)
    return monitor.ReadDebugRegisterValue(
        m_thread.GetID(), GetRegisterOffset(reg), GetRegisterName(reg),
        GetRegisterSize(reg), value);
#endif
  return monitor.ReadRegisterValue(m_thread.GetID(), GetRegisterOffset(reg),
                                   GetRegisterName(reg), GetRegisterSize(reg),
                                   value);
}

bool RegisterContextPOSIXProcessMonitor_x86_64::WriteRegister(
    const unsigned reg, const RegisterValue &value) {
  unsigned reg_to_write = reg;
  RegisterValue value_to_write = value;

  // Check if this is a subregister of a full register.
  const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
  if (reg_info->invalidate_regs &&
      (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM)) {
    RegisterValue full_value;
    uint32_t full_reg = reg_info->invalidate_regs[0];
    const RegisterInfo *full_reg_info = GetRegisterInfoAtIndex(full_reg);

    // Read the full register.
    if (ReadRegister(full_reg_info, full_value)) {
      Status error;
      ByteOrder byte_order = GetByteOrder();
      uint8_t dst[RegisterValue::kMaxRegisterByteSize];

      // Get the bytes for the full register.
      const uint32_t dest_size = full_value.GetAsMemoryData(
          full_reg_info, dst, sizeof(dst), byte_order, error);
      if (error.Success() && dest_size) {
        uint8_t src[RegisterValue::kMaxRegisterByteSize];

        // Get the bytes for the source data.
        const uint32_t src_size = value.GetAsMemoryData(
            reg_info, src, sizeof(src), byte_order, error);
        if (error.Success() && src_size && (src_size < dest_size)) {
          // Copy the src bytes to the destination.
          memcpy(dst + (reg_info->byte_offset & 0x1), src, src_size);
          // Set this full register as the value to write.
          value_to_write.SetBytes(dst, full_value.GetByteSize(), byte_order);
          value_to_write.SetType(full_reg_info);
          reg_to_write = full_reg;
        }
      }
    }
  }

  ProcessMonitor &monitor = GetMonitor();
#if defined(__FreeBSD__)
  if (reg >= m_reg_info.first_dr)
    return monitor.WriteDebugRegisterValue(
        m_thread.GetID(), GetRegisterOffset(reg_to_write),
        GetRegisterName(reg_to_write), value_to_write);
#endif
  return monitor.WriteRegisterValue(
      m_thread.GetID(), GetRegisterOffset(reg_to_write),
      GetRegisterName(reg_to_write), value_to_write);
}

bool RegisterContextPOSIXProcessMonitor_x86_64::ReadRegister(
    const RegisterInfo *reg_info, RegisterValue &value) {
  if (!reg_info)
    return false;

  const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];

  if (IsFPR(reg, GetFPRType())) {
    if (!ReadFPR())
      return false;
  } else {
    uint32_t full_reg = reg;
    bool is_subreg = reg_info->invalidate_regs &&
                     (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM);

    if (is_subreg) {
      // Read the full aligned 64-bit register.
      full_reg = reg_info->invalidate_regs[0];
    }

    bool success = ReadRegister(full_reg, value);

    if (success) {
      // If our read was not aligned (for ah,bh,ch,dh), shift our returned
      // value one byte to the right.
      if (is_subreg && (reg_info->byte_offset & 0x1))
        value.SetUInt64(value.GetAsUInt64() >> 8);

      // If our return byte size was greater than the return value reg size,
      // then use the type specified by reg_info rather than the uint64_t
      // default
      if (value.GetByteSize() > reg_info->byte_size)
        value.SetType(reg_info);
    }
    return success;
  }

  if (reg_info->encoding == eEncodingVector) {
    ByteOrder byte_order = GetByteOrder();

    if (byte_order != ByteOrder::eByteOrderInvalid) {
      if (reg >= m_reg_info.first_st && reg <= m_reg_info.last_st)
        value.SetBytes(m_fpr.fxsave.stmm[reg - m_reg_info.first_st].bytes,
                       reg_info->byte_size, byte_order);
      if (reg >= m_reg_info.first_mm && reg <= m_reg_info.last_mm)
        value.SetBytes(m_fpr.fxsave.stmm[reg - m_reg_info.first_mm].bytes,
                       reg_info->byte_size, byte_order);
      if (reg >= m_reg_info.first_xmm && reg <= m_reg_info.last_xmm)
        value.SetBytes(m_fpr.fxsave.xmm[reg - m_reg_info.first_xmm].bytes,
                       reg_info->byte_size, byte_order);
      if (reg >= m_reg_info.first_ymm && reg <= m_reg_info.last_ymm) {
        // Concatenate ymm using the register halves in xmm.bytes and
        // ymmh.bytes
        if (GetFPRType() == eXSAVE && CopyXSTATEtoYMM(reg, byte_order))
          value.SetBytes(m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes,
                         reg_info->byte_size, byte_order);
        else
          return false;
      }
      return value.GetType() == RegisterValue::eTypeBytes;
    }
    return false;
  }

  // Get pointer to m_fpr.fxsave variable and set the data from it. Byte
  // offsets of all registers are calculated wrt 'UserArea' structure. However,
  // ReadFPR() reads fpu registers {using ptrace(PT_GETFPREGS,..)} and stores
  // them in 'm_fpr' (of type FPR structure). To extract values of fpu
  // registers, m_fpr should be read at byte offsets calculated wrt to FPR
  // structure.

  // Since, FPR structure is also one of the member of UserArea structure.
  // byte_offset(fpu wrt FPR) = byte_offset(fpu wrt UserArea) -
  // byte_offset(fctrl wrt UserArea)
  assert((reg_info->byte_offset - m_fctrl_offset_in_userarea) < sizeof(m_fpr));
  uint8_t *src =
      (uint8_t *)&m_fpr + reg_info->byte_offset - m_fctrl_offset_in_userarea;
  switch (reg_info->byte_size) {
  case 1:
    value.SetUInt8(*(uint8_t *)src);
    return true;
  case 2:
    value.SetUInt16(*(uint16_t *)src);
    return true;
  case 4:
    value.SetUInt32(*(uint32_t *)src);
    return true;
  case 8:
    value.SetUInt64(*(uint64_t *)src);
    return true;
  default:
    assert(false && "Unhandled data size.");
    return false;
  }
}

bool RegisterContextPOSIXProcessMonitor_x86_64::WriteRegister(
    const RegisterInfo *reg_info, const RegisterValue &value) {
  const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];

  if (IsGPR(reg))
    return WriteRegister(reg, value);

  if (IsFPR(reg, GetFPRType())) {
    if (reg_info->encoding == eEncodingVector) {
      if (reg >= m_reg_info.first_st && reg <= m_reg_info.last_st)
        ::memcpy(m_fpr.fxsave.stmm[reg - m_reg_info.first_st].bytes,
                 value.GetBytes(), value.GetByteSize());

      if (reg >= m_reg_info.first_mm && reg <= m_reg_info.last_mm)
        ::memcpy(m_fpr.fxsave.stmm[reg - m_reg_info.first_mm].bytes,
                 value.GetBytes(), value.GetByteSize());

      if (reg >= m_reg_info.first_xmm && reg <= m_reg_info.last_xmm)
        ::memcpy(m_fpr.fxsave.xmm[reg - m_reg_info.first_xmm].bytes,
                 value.GetBytes(), value.GetByteSize());

      if (reg >= m_reg_info.first_ymm && reg <= m_reg_info.last_ymm) {
        if (GetFPRType() != eXSAVE)
          return false; // the target processor does not support AVX

        // Store ymm register content, and split into the register halves in
        // xmm.bytes and ymmh.bytes
        ::memcpy(m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes,
                 value.GetBytes(), value.GetByteSize());
        if (false == CopyYMMtoXSTATE(reg, GetByteOrder()))
          return false;
      }
    } else {
      // Get pointer to m_fpr.fxsave variable and set the data to it. Byte
      // offsets of all registers are calculated wrt 'UserArea' structure.
      // However, WriteFPR() takes m_fpr (of type FPR structure) and writes
      // only fpu registers using ptrace(PT_SETFPREGS,..) API. Hence fpu
      // registers should be written in m_fpr at byte offsets calculated wrt
      // FPR structure.

      // Since, FPR structure is also one of the member of UserArea structure.
      // byte_offset(fpu wrt FPR) = byte_offset(fpu wrt UserArea) -
      // byte_offset(fctrl wrt UserArea)
      assert((reg_info->byte_offset - m_fctrl_offset_in_userarea) <
             sizeof(m_fpr));
      uint8_t *dst = (uint8_t *)&m_fpr + reg_info->byte_offset -
                     m_fctrl_offset_in_userarea;
      switch (reg_info->byte_size) {
      case 1:
        *(uint8_t *)dst = value.GetAsUInt8();
        break;
      case 2:
        *(uint16_t *)dst = value.GetAsUInt16();
        break;
      case 4:
        *(uint32_t *)dst = value.GetAsUInt32();
        break;
      case 8:
        *(uint64_t *)dst = value.GetAsUInt64();
        break;
      default:
        assert(false && "Unhandled data size.");
        return false;
      }
    }

    if (WriteFPR()) {
      if (IsAVX(reg))
        return CopyYMMtoXSTATE(reg, GetByteOrder());
      return true;
    }
  }
  return false;
}

bool RegisterContextPOSIXProcessMonitor_x86_64::ReadAllRegisterValues(
    DataBufferSP &data_sp) {
  bool success = false;
  data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0));
  if (data_sp && ReadGPR() && ReadFPR()) {
    uint8_t *dst = data_sp->GetBytes();
    success = dst != 0;

    if (success) {
      ::memcpy(dst, &m_gpr_x86_64, GetGPRSize());
      dst += GetGPRSize();
      if (GetFPRType() == eFXSAVE)
        ::memcpy(dst, &m_fpr.fxsave, sizeof(m_fpr.fxsave));
    }

    if (GetFPRType() == eXSAVE) {
      ByteOrder byte_order = GetByteOrder();

      // Assemble the YMM register content from the register halves.
      for (uint32_t reg = m_reg_info.first_ymm;
           success && reg <= m_reg_info.last_ymm; ++reg)
        success = CopyXSTATEtoYMM(reg, byte_order);

      if (success) {
        // Copy the extended register state including the assembled ymm
        // registers.
        ::memcpy(dst, &m_fpr, sizeof(m_fpr));
      }
    }
  }
  return success;
}

bool RegisterContextPOSIXProcessMonitor_x86_64::WriteAllRegisterValues(
    const DataBufferSP &data_sp) {
  bool success = false;
  if (data_sp && data_sp->GetByteSize() == REG_CONTEXT_SIZE) {
    uint8_t *src = data_sp->GetBytes();
    if (src) {
      ::memcpy(&m_gpr_x86_64, src, GetGPRSize());

      if (WriteGPR()) {
        src += GetGPRSize();
        if (GetFPRType() == eFXSAVE)
          ::memcpy(&m_fpr.fxsave, src, sizeof(m_fpr.fxsave));
        if (GetFPRType() == eXSAVE)
          ::memcpy(&m_fpr.xsave, src, sizeof(m_fpr.xsave));

        success = WriteFPR();
        if (success) {
          if (GetFPRType() == eXSAVE) {
            ByteOrder byte_order = GetByteOrder();

            // Parse the YMM register content from the register halves.
            for (uint32_t reg = m_reg_info.first_ymm;
                 success && reg <= m_reg_info.last_ymm; ++reg)
              success = CopyYMMtoXSTATE(reg, byte_order);
          }
        }
      }
    }
  }
  return success;
}

uint32_t RegisterContextPOSIXProcessMonitor_x86_64::SetHardwareWatchpoint(
    addr_t addr, size_t size, bool read, bool write) {
  const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
  uint32_t hw_index;

  for (hw_index = 0; hw_index < num_hw_watchpoints; ++hw_index) {
    if (IsWatchpointVacant(hw_index))
      return SetHardwareWatchpointWithIndex(addr, size, read, write, hw_index);
  }

  return LLDB_INVALID_INDEX32;
}

bool RegisterContextPOSIXProcessMonitor_x86_64::ClearHardwareWatchpoint(
    uint32_t hw_index) {
  if (hw_index < NumSupportedHardwareWatchpoints()) {
    RegisterValue current_dr7_bits;

    if (ReadRegister(m_reg_info.first_dr + 7, current_dr7_bits)) {
      uint64_t new_dr7_bits =
          current_dr7_bits.GetAsUInt64() & ~(3 << (2 * hw_index));

      if (WriteRegister(m_reg_info.first_dr + 7, RegisterValue(new_dr7_bits)))
        return true;
    }
  }

  return false;
}

bool RegisterContextPOSIXProcessMonitor_x86_64::HardwareSingleStep(
    bool enable) {
  enum { TRACE_BIT = 0x100 };
  uint64_t rflags;

  if ((rflags = ReadRegisterAsUnsigned(m_reg_info.gpr_flags, -1UL)) == -1UL)
    return false;

  if (enable) {
    if (rflags & TRACE_BIT)
      return true;

    rflags |= TRACE_BIT;
  } else {
    if (!(rflags & TRACE_BIT))
      return false;

    rflags &= ~TRACE_BIT;
  }

  return WriteRegisterFromUnsigned(m_reg_info.gpr_flags, rflags);
}

bool RegisterContextPOSIXProcessMonitor_x86_64::UpdateAfterBreakpoint() {
  // PC points one byte past the int3 responsible for the breakpoint.
  lldb::addr_t pc;

  if ((pc = GetPC()) == LLDB_INVALID_ADDRESS)
    return false;

  SetPC(pc - 1);
  return true;
}

unsigned RegisterContextPOSIXProcessMonitor_x86_64::GetRegisterIndexFromOffset(
    unsigned offset) {
  unsigned reg;
  for (reg = 0; reg < m_reg_info.num_registers; reg++) {
    if (GetRegisterInfo()[reg].byte_offset == offset)
      break;
  }
  assert(reg < m_reg_info.num_registers && "Invalid register offset.");
  return reg;
}

bool RegisterContextPOSIXProcessMonitor_x86_64::IsWatchpointHit(
    uint32_t hw_index) {
  bool is_hit = false;

  if (m_watchpoints_initialized == false) {
    // Reset the debug status and debug control registers
    RegisterValue zero_bits = RegisterValue(uint64_t(0));
    if (!WriteRegister(m_reg_info.first_dr + 6, zero_bits) ||
        !WriteRegister(m_reg_info.first_dr + 7, zero_bits))
      assert(false && "Could not initialize watchpoint registers");
    m_watchpoints_initialized = true;
  }

  if (hw_index < NumSupportedHardwareWatchpoints()) {
    RegisterValue value;

    if (ReadRegister(m_reg_info.first_dr + 6, value)) {
      uint64_t val = value.GetAsUInt64();
      is_hit = val & (1 << hw_index);
    }
  }

  return is_hit;
}

bool RegisterContextPOSIXProcessMonitor_x86_64::ClearWatchpointHits() {
  return WriteRegister(m_reg_info.first_dr + 6, RegisterValue((uint64_t)0));
}

addr_t RegisterContextPOSIXProcessMonitor_x86_64::GetWatchpointAddress(
    uint32_t hw_index) {
  addr_t wp_monitor_addr = LLDB_INVALID_ADDRESS;

  if (hw_index < NumSupportedHardwareWatchpoints()) {
    if (!IsWatchpointVacant(hw_index)) {
      RegisterValue value;

      if (ReadRegister(m_reg_info.first_dr + hw_index, value))
        wp_monitor_addr = value.GetAsUInt64();
    }
  }

  return wp_monitor_addr;
}

bool RegisterContextPOSIXProcessMonitor_x86_64::IsWatchpointVacant(
    uint32_t hw_index) {
  bool is_vacant = false;
  RegisterValue value;

  assert(hw_index < NumSupportedHardwareWatchpoints());

  if (m_watchpoints_initialized == false) {
    // Reset the debug status and debug control registers
    RegisterValue zero_bits = RegisterValue(uint64_t(0));
    if (!WriteRegister(m_reg_info.first_dr + 6, zero_bits) ||
        !WriteRegister(m_reg_info.first_dr + 7, zero_bits))
      assert(false && "Could not initialize watchpoint registers");
    m_watchpoints_initialized = true;
  }

  if (ReadRegister(m_reg_info.first_dr + 7, value)) {
    uint64_t val = value.GetAsUInt64();
    is_vacant = (val & (3 << 2 * hw_index)) == 0;
  }

  return is_vacant;
}

bool RegisterContextPOSIXProcessMonitor_x86_64::SetHardwareWatchpointWithIndex(
    addr_t addr, size_t size, bool read, bool write, uint32_t hw_index) {
  const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();

  if (num_hw_watchpoints == 0 || hw_index >= num_hw_watchpoints)
    return false;

  if (!(size == 1 || size == 2 || size == 4 || size == 8))
    return false;

  if (read == false && write == false)
    return false;

  if (!IsWatchpointVacant(hw_index))
    return false;

  // Set both dr7 (debug control register) and dri (debug address register).

  // dr7{7-0} encodes the local/global enable bits:
  //  global enable --. .-- local enable
  //                  | |
  //                  v v
  //      dr0 -> bits{1-0}
  //      dr1 -> bits{3-2}
  //      dr2 -> bits{5-4}
  //      dr3 -> bits{7-6}
  //
  // dr7{31-16} encodes the rw/len bits:
  //  b_x+3, b_x+2, b_x+1, b_x
  //      where bits{x+1, x} => rw
  //            0b00: execute, 0b01: write, 0b11: read-or-write,
  //            0b10: io read-or-write (unused)
  //      and bits{x+3, x+2} => len
  //            0b00: 1-byte, 0b01: 2-byte, 0b11: 4-byte, 0b10: 8-byte
  //
  //      dr0 -> bits{19-16}
  //      dr1 -> bits{23-20}
  //      dr2 -> bits{27-24}
  //      dr3 -> bits{31-28}
  if (hw_index < num_hw_watchpoints) {
    RegisterValue current_dr7_bits;

    if (ReadRegister(m_reg_info.first_dr + 7, current_dr7_bits)) {
      uint64_t new_dr7_bits =
          current_dr7_bits.GetAsUInt64() |
          (1 << (2 * hw_index) |
           size_and_rw_bits(size, read, write) << (16 + 4 * hw_index));

      if (WriteRegister(m_reg_info.first_dr + hw_index, RegisterValue(addr)) &&
          WriteRegister(m_reg_info.first_dr + 7, RegisterValue(new_dr7_bits)))
        return true;
    }
  }

  return false;
}

uint32_t
RegisterContextPOSIXProcessMonitor_x86_64::NumSupportedHardwareWatchpoints() {
  // Available debug address registers: dr0, dr1, dr2, dr3
  return 4;
}